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Abstract

Pooling multiple neuroimaging datasets across institu-
tions often enables improvements in statistical power when
evaluating associations (e.g., between risk factors and dis-
ease outcomes) that may otherwise be too weak to detect.
When there is only a single source of variability (e.g., dif-
ferent scanners), domain adaptation and matching the dis-
tributions of representations may suffice in many scenar-
ios. But in the presence of more than one nuisance vari-
able which concurrently influence the measurements, pool-
ing datasets poses unique challenges, e.g., variations in the
data can come from both the acquisition method as well
as the demographics of participants (gender, age). Invari-
ant representation learning, by itself, is ill-suited to fully
model the data generation process. In this paper, we show
how bringing recent results on equivariant representation
learning (for studying symmetries in neural networks) in-
stantiated on structured spaces together with simple use
of classical results on causal inference provides an effec-
tive practical solution. In particular, we demonstrate how
our model allows dealing with more than one nuisance
variable under some assumptions and can enable analy-
sis of pooled scientific datasets in scenarios that would
otherwise entail removing a large portion of the samples.
Our code is available on https://github.com/vsingh-
group/DatasetPooling

1. Introduction

Observational studies in many disciplines acquire cross-
sectional/longitudinal clinical and imaging data to under-
stand diseases such as neurodegeneration and dementia
[44]. Typically, these studies are sufficiently powered for
the primary scientific hypotheses of interest. However, sec-
ondary analyses to investigate weaker but potentially inter-
esting associations between risk factors (such as genetics)
and disease outcomes are often difficult when using com-
mon statistical significance thresholds, due to the small-
/medium sample sizes.

Over the last decade, there are coordinated large scale
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Figure 1. Learning Invariant Representations. In our framework,
input images X are pooled together from multiple sites. An encoder ¢
maps X to the latent representations ®(X') that corresponds to high-level
causal features X<« that influences the label prediction. Unlike the input
images X, ®(X) is robust to nuisance attributes like site (scanner) and
covariates (age). @ is trained alongside predictor ~ and decoder .
multi-institutional imaging studies (e.g., ADNI [26], NIH
All of Us and HCP [19]) but the types of data collected
or the project’s scope (e.g., demographic pool of partici-
pants) may not be suited for studying specific secondary
scientific questions. A “pooled” imaging dataset obtained
from combining roughly similar studies across different in-
stitutions/sites, when possible, is an attractive alternative.
The pooled datasets provide much larger sample sizes and
improved statistical power to identify early disease bio-
markers — analyses which would not otherwise be possi-
ble [16,30]. But even when study participants are consistent
across sites, pooling poses challenges. This is true even for
linear regression [56] — improvement in statistical power is
not always guaranteed. Partly due to these as well as other
reasons, high visibility projects such as ENIGMA [47] have
reported findings using meta-analysis methods.

Data pooling and fairness. Even under ideal conditions,
pooling imaging datasets across sites requires care. As-
sume that the participants across two sites, say site; and
sitey, are perfectly gender matched with the same propor-
tion of male/female and the age distribution (as well as the
proportion of diseased/health controls) is also identical. In
this idealized setting, the only difference between sites may
come from variations in scanners or acquisition (e.g., pulse
sequences). When training modern neural networks for a
regression/classification task with imaging data obtained in
this scenario, we may ask that the representations learned by
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(b) Variation due to site (scanner) for particular age group.

(c) Variation due to covariates (age) in Siemens scanner.

Figure 2. (a) A Causal Diagram listing variable of interest and their relationship for multi-site pooling problem. Nodes Dpoput> Dacqui and Dprevar denote
the population, acquisition and prevalence biases that vary across sites. C’s are covariates (like age or gender). X< denotes the high-level causal features
of an image X that influences the labels Y. Nodes in red d-separate the nodes in blue and green. (b) MRI images on control subjects from the ADNI [26]
dataset for different scanners in the age group 70-80. (c¢) Images obtained from the Siemens scanner (i.e., fixing site) on control subjects for three extreme
age groups. The gantt chart on top of the image indicates the respective age range in the Phillips and GE scanners. As observed, different scanner groups
do not share a common support on “age” covariates, resulting in samples outside of the common support to be discarded in naive pooling approaches.

the model be invariant to the categorical variable denoting
“site”. While this is not a “solved” problem, this strategy
has been successfully deployed based on results in invariant
representation learning [3, 5, 34] (see Fig. 1). One may al-
ternatively view this task via the lens of fairness — we want
the model’s performance to be fair with respect to the site
variable. This approach is effective, via constraints [52] or
using adversarial modules [17,53]. This setting also permits
re-purposing tools from domain adaptation [35, 50, 55] or
transfer learning [12] as a pre-processing step, before anal-
ysis of the pooled data proceeds.

Nuisance variables/confounds. Data pooling problems
one often encounters in scientific research typically vio-
lates many of the conditions in the aforementioned exam-
ple. The measured data X at each site is influenced not
only by the scanner properties but also by a number of other
covariates / nuisance variables. For instance, if the age dis-
tribution of participants is not identical across sites, com-
parison of the site-wise distributions is challenging because
it is influenced both by age and the scanner. An example
of the differences introduced due to age and scanner biases
is shown in Figures 2b, 2c. With multiple nuisance vari-
ables, even effective tools for invariant representation learn-
ing, when used directly, can provide limited help. The data
generation process, and the role of covariates/nuisance vari-
ables, available via a causal diagram (Figure 2a), can inform
how the formulation is designed [6,45]. Indeed, concepts
from causality have benefited various deep learning mod-
els [37,41]. Specially, recent work [3 1] has shown the value
of integrating structural causal models for domain general-
ization, which is related to dataset pooling.

Causal Diagram. Dataset pooling under completely arbi-
trary settings is challenging to study systematically. So, we
assume that the site-specific imaging datasets are not sig-
nificantly different to begin with, although the distributions
for covariates such as age/disease prevalence may not be
perfectly matched and each of these factors will influence
the data. We assume access to a causal diagram describing
how these variables influence the measurements. We show
how the distribution matching criteria provided by a causal

diagram can be nicely handled for some ordinal covariates
that are not perfectly matched across sites by adapting ideas
from equivariant representation learning.

Contributions. We propose a method to pool multiple neu-
roimaging datasets by learning representations that are ro-
bust to site (scanner) and covariate (age) values (see Fig. |
for visualization). We show that continuous nuisance co-
variates which do not have the same support and are not
identically distributed across sites, can be effectively han-
dled when learning invariant representations. We do not
require finding “closest match” participants across sites —
a strategy loosely based on covariate matching [39] from
statistics which is less feasible if the distributions for a co-
variate (e.g., age) do not closely overlap. Our model is
based on adapting recent results on equivariance together
with known concepts from group theory. When tied with
common invariant representation learners, our formulation
allows far improved analysis of pooled imaging datasets.
We first perform evaluations on common fairness datasets
and then show its applicability on two separate neuroimag-
ing tasks with multiple nuisance variables.

2. Reducing Multi-site Pooling to Infinite Di-
mensional Optimization

Let X denote an image of a participant and let Y be the
corresponding (continuous or discrete) response variable or
target label (such as cognitive score or disease status). For
simplicity, consider only two sites — site; and sites. Let
D represent the site-specific shifts, biases or covariates that
we want to take into account. One possible data generation
process relating these variables is shown in Figure 2a.

Site-specific biases/confounds. Observe that Y is, in
fact, influenced by high-level (or latent) features X¢ spe-
cific to the participant. The images (or image-based disease
biomarkers) X are simply our (lossy) measurement of the
participant’s brain X¢ [14]. Further, X also includes an
(unknown) confound: contribution from the scanner (or ac-
quisition protocol). Figure 2a also lists covariates C, such
as age and other factors which impact X (and therefore,
X). A few common site-specific biases D are shown in



Fig. 2a. These include (i) population bias Dpqpy that
leads to differences in age or gender distributions of the
cohort [9]; (ii) we must also account for acquisition shift
Dgcqui resulting from different scanners or imaging pro-
tocols — this affects X but not X; (iii) data are also in-
fluenced by a class prevalence bias Dpyeval, €.8., healthier
individuals over-represented in siteo will impact the distri-
bution of cognitive scores across sites.

For imaging data, in principle, site-invariance can be
achieved via an encoder-decoder style architecture to map
the images X into a “site invariant” latent space ®(X).
Here, ®(X) in the idealized setting, corresponds to the true
“causal” features X that is comparable across sites. In
practice, we know that images cannot fully capture the dis-
ease — so, ®(X) is simply a surrogate, limited by the mea-
surements we have on hand. Given these caveats, an archi-
tecture is shown in Fig. 1. Ideally, the encoder will mini-
mize Maximum Mean Discrepancy (MMD) [20] or another
discrepancy between the distributions of latent representa-
tions ®(-) of the data from site; and sites.

The site-specific attributes D are often unobserved or
otherwise unavailable. For instance, we may not have full
access to Dpopy from which our participants are drawn.
To tackle these issues, we use a causal diagram, see Fig. 2a,
similar to existing works [31,55] with minimal changes. For
dealing with unobserved D’s, some standard approaches are
known [22]. Let us see how it can help here. Applying d-
separation (see [22,36] ) on Fig. 2a, we see that the nodes
(Dpopul, C, X¢) form a so-called “head-to-tail” branch and
the nodes (Dicqui, X; X#), (Dpreval; Y, X ) form a “head-
to-head” branch. This implies that X 1L D | C. This
is exactly an invariance condition: X should not change
across different sites for samples with the same value of C'.
To enforce this using ®(-), we must optimize a discrepancy
between site-wise ®(X)’s at a given value of C,

m(Ii)nMMD <Psilel (‘I’(X) | C)7P5ite2 (‘I)(X) | C)) (h

Provably solving (1)? A brief comment on the difficulty
of the distributional optimization in (1) is useful. Generic
tools for (worst case) convergence rates for such problems
are actively being developed [51]. For the average case,
[38] presents an online method for a specific class of (fi-
nite dimensional) distributionally robust optimization prob-
lems that can be defined using standard divergence mea-
sures. Observe that even these convergence guarantees are
local in nature, i.e., they output a point that satisfies neces-
sary conditions and may not be sufficient.

In practice, the outlook is a little better. Intuitively, an
optimal matching of the conditional distributions P(®(X) |
(') across the two sites corresponds to a (globally) optimal
solution to the probabilistic optimization task in (1). Ex-
isting works show that it is indeed possible to approach this

computationally via sub-sampling methods [55] or by learn-
ing elaborate matching functions to identify image or object
pairs across sites that are “similar” [31] or have the same
value for C'. Sub-sampling, by definition, reduces the num-
ber of samples from the two sites by discarding samples
outside of the common support. This impacts the quality
of the estimator — for instance, [55] must restrict the analy-
sis only to that age range of C' which overlaps or is shared
across sites. Such discarding of samples is clearly undesir-
able when each image acquisition is expensive. Matching
functions also do not work if the support of C'is not identi-
cal across the sites, as briefly described next.

Example 2.1. Let C denote an observed covariate, e.g.,
age. Consider X; at sitey with C = c; and X; at sites
with C = c¢o. If ¢c1 = ¢9, a matching will seek ®(X;) =~
®(X;) in X space. If ¢1 falls outside the support of c’s
acquired at sites, one must not only estimate ®(-) but also a
transport expression T, ., () on X« such that ®(X;) =~
Tepmse, (B(X;)). The “transportation” involves estimating
what a latent image acquired at age co would look like at
age cy. This means that matching would need a solution to
the key difficulty, obtained further upstream.

2.1. Improved Distribution Matching via Equivari-
ant Mappings may be possible

Ignoring Y for the moment, recall that matching here
corresponds to a bijection between unlabeled (finite) con-
ditional distributions. Indeed, if the conditional distribu-
tions take specific forms such as a Poisson process, it is in-
deed possible to use simple matching algorithms that only
require access to pairwise ranking information on the cor-
responding empirical distributions [43], for example, the
well-known Gale-Shapley algorithm [46]. Unfortunately,
in applications that we consider here, such distributional as-
sumptions may not be fully faithful with respect to site spe-
cific covariates C. In essence, we want representations ®
(when viewed as a function of C) that vary in a predictable
(or say deterministic) manner — if so, we can avoid match-
ing altogether and instead match a suitable property of the
site-wise distributions of the representation ®(X). We can
make this criterion more specific. We want the site-wise
distributions to vary in a manner where the “trend” is con-
sistent across the sites. Assume that this were not true, say
P(®(X) | C) is continuous and monotonically increases
with C' for site; but monotonically decreases for sites. A
match of P(®(X) | C) across the sites at a particular value
of C' = cimplies at least one C' = ¢’ where P(®(X) | C)
do not match. The monotonicity argument is weak for high
dimensional ®. Plus, we have multiple nuisance variables.
It turns out that our requirement for P(®(X) | C) to vary
in a predictable manner across sites can be handled using
the idea of equivariant mappings, i.e., P(®(X) | C) must
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be equivariant with respect to C for both sites. In addition,
we will also seek invariance to scanner attributes.

While we are familiar with the well-studied notion of
invariance through the MMD criterion [29], we will briefly
formalize our idea behind an equivariant mapping which is
less common in this setting.

Definition 1. A mapping f : X — Y defined over mea-
surable Borel spaces X and ) is said to be G—equivariant
under the action of group G iff

flg-x)=g- f(z),

We refer the reader to two recent surveys, Section 2.1 of
[7] and Section 3.1 of [8], which provide a detailed review.

Equivariance is often understood in the context of a
group action (say, a matrix group) [24, 28]. While the co-
variates C' is a vector (and every vector space is an abelian
group), since this group will eventually act on the latent
space of our images, imposing additional structure will be
beneficial. To do so, we will utilize a mapping between C’s
and a group suitable for our setting. Once this is accom-
plished, we will derive an equivariant encoder. We discuss
these steps next.

geaqG

3. Methods

The dual goals of (i) equivariance to covariates (such as
age) and (ii) invariance to site, involves learning multiple
mappings. For simplicity, and to keep the computational
effort manageable, we divide our method into two stages.
Briefly, our stages are (a) Stage one: Equivariance to Co-
variates. We learn a mapping to a space that provides the
essential flexibility to characterize changes in covariate C'
as a group action. This enables us to construct a space sat-
isfying the equivariance condition as per Def. 1 (b) Stage
two: Invariance to Site. We learn a second encoding to
a generic vector space by apriori ensuring that the equiv-
ariance properties from Stage one are preserved. Such an
encoding is then tuned to optimize the MMD criterion, thus
generating a latent space that is invariant to site while re-
maining equivariant to covariates. We describe these stages
one by one in the following sections.

3.1. Stage one: Equivariance to Covariates

Given the space of images, X', with the covariates C,
first, we want to characterize the effect of C on X as a
group action for some group GG. Here, an element g € G
characterizes the change from covariate ¢; € C'toc; € C
(for short, we will use 7 and j). The change in C' corre-
sponds to a translation action which is difficult to instanti-
ate in X’ without invoking expensive conditional generative
models. Instead, we propose to learn a mapping to a latent
space L such that the change in C can be characterized by
a group action pertaining to G in the space L (the latent
space of X'). As an example, let us say X; goes to X; in X
as (X; — X,). This means that (X; — X) is caused due
to the covariate change (¢; — ¢;) in C. Let € be a mapping
between the image space X and the latent space L. In the la-
tent space L, for the moment, we want that (¢X; — €X;)
should correspond to the change in covariate (¢; — ¢;).

Remark 2. We are mostly interested in normalized covari-
ates for example, in £, norm, while other volume based de-
terministic normalization functions may also be applicable.
In the simplest case of p = 2 norm, the corresponding group
action is naturally induced by the matrix group of rotations.

Based on this choice of group, we will learn an autoen-
coder (&, D) with an encoder € : X — L and a decoder
® : L — X, here L is the encoding space. Due to Re-
mark 2, we can choose L to be a hypersphere, S7—1 and
(¢, D) as a hyperspherical autoencoder [54]. Then, we can
characterize the “action of C' on X as the action of G on
S”~!. That is to say that a covariate change (translation in
() is achange in angles on L. This corresponds to a rotation
due to the choice of our group G. Note that for £ = S™~!,
G is the space of n X n rotation matrices, denoted by SO(n),
and the action of G is well-defined. What remains is to en-
courage the latent space £ to be G-equivariant. We start
with some group theoretic properties that will be useful.

3.1.1 Review: Group theoretic properties of SO(n)

Let SO(n) = {X e R"V"|XTX = I,,,det(X) =1} be
the group of n x n special orthogonal matrices. The group
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SO(n) acts on S™~! with the group action given by
g - £ gl for g € SO(n) and £ € S"~ . Here we use g
to denote the multiplication of matrix ¢ with £. Under this
group action, we can identify S?~! with the quotient space
G/H with G = SO(n) and H = SO(n — 1) (see Ch. 3
of [13] for more details). Let 7 : S*~1 — G/ H be such
an identification, i.e., 7(£) = gH for some g € G. The
identification 7 is equivariant to GG in the following sense.

Fact 3. Given 7 : S™ 1 — G/H as defined above, T is
equivariant with the action of G, i.e., 7 (g - £) = g7(¥£).

Next, we see that given two points £;, £; on S"~! there
is a unique group element in G to move from 7(¢;) to 7(¢;).

Lemma 4. Given two latent space representations £;,£; €
S"~L, and the corresponding cosets g;H = T7(€;) and
ng = T(Kj), 3'913 = gjgi_l € G such thath = Gij * L;.

Thanks to Fact 3 and Lemma A.1, simply identifying a
suitable 7 will provide us the necessary equivariance prop-
erty. To do so, next, we parameterize 7 by a neural network
and describe a loss function to learn such a 7 and (&, D).

3.1.2 Learning a G-equivariant 7 with DNNs

Now that we established the key components: (a) an au-
toencoder (€,D) to map from X to the latent space S™~*
(b) a mapping 7 : S*~! — SO(n) which is G = SO(n)-
equivariant, see Figure 3, we discuss how to learn such a
(¢,D) and a G-equivariant 7.

Let X;, X; € X be two images with the corresponding
covariates i,j € C withi # j. Let £; = €(X;),¢; =
€ (X;). Using Lemma A.1, we can see that a g;; € G to
move from £; to £; does exist and is unique. Now, to learn
a 7 that satisfies the equivariance property (Fact 3), we will
need 7 to satisfy two conditions, 7(g;; - £;) = g;;7(£;) and
7(gji - £5) = g57(£;) Vg € G. The two conditions are
captured in the following loss function,

6=¢(X) £ =¢X;) 2)

_ GG, 5) -7 (&) —7 (&) > +
Bost = D gt i) ey @

{(X4,4),(X;5,0) }

CcxxC

Here, G : C' x C — G will be a table lookup given by
(i,7) — gi; is the function that takes two values for the
covariate c, say, ¢,j corresponding to X;, X; € X and
simply returns the group element (rotation) g;; needed to
move from &(X;) to €(X;). Choice of G: In general,
learning G is difficult since C' may not be continuous. In
this work, we fix G and learn 7 by minimizing (3). We
will simplify the choice of G as follows: assuming that
C' is a numerical/ordinal random variable, we define G by
(i,7) — expm((i — j)1,). Here m = () is the di-
mension of G and expm is the matrix exponential, i.e.,

Algorithm 1 Learning representations that are Equivariant
to Covariates and Invariant to Site

Input: Training Sets from multiple sites (X, Y )i,
(X, Y )site2- Nuisance covariates C'.
Stage one: Equivariance to Covariates
1 : Parameterize Encoder-Decoder pairs (&,D) and 7
mapping with neural networks
2 : Optimize over (&, ®) and 7 to minimize,

Luager + 2, | X — D(E(X,)|
Output: First latent space mapping ¢ and a supporting
mapping function 7. Here, 7 is G-equivariant to the co-
variates C' (see Lemma (A.1) and (3)).
Stage two: Invariance to Site
1 : Parameterize encoder b, predictor h and decoder ¥
with neural networks
2 : Preserve equivariance from stage one with an equiv-
ariant mapping P, (see Lemma (A.1))
3 : Optimize ®, b, h and ¥ to minimize Lgyge2 + MMD
Output: Second latent space mapping . Here, ® is
equivariant to the covariates and invariant to site.

expm : so(n) — SO(n), where so(n) is the Lie alge-
bra [21] of SO(n). Since so(n) is a vector space, hence
(1 — j)1,, € so(n). To reduce the runtime of expm,
we replace expm by a Cayley map [32, 42] defined by:
so(n) 2 Ars (I — A)(I + A)~! € SO(n). Here we used
expm for parameterization (other choices also suitable).

Finally, we learn the encoder-decoder (&, ®) by using
a reconstruction loss constraint with Lggee1 in (3). This
can also be thought of as a combined loss for this stage as
Lage1 + >, | Xi — D(€(X;))||? where the second term is
the reconstruction loss. The loss balances two terms and re-
quires a scaling factor (see appendix § A.7). A flowchart of
all steps in this stage can be seen in Fig 3.

3.2. Stage two: Invariance to Site

Having constructed a latent space £ that is equivariant to
changes in the covariates C', we must now handle the site
attribute, i.e., invariance with respect to site. Here, it will
be convenient to project £ onto a space that simultaneously
preserves the equivariant structure from £ and offers the
flexibility to enforce site-invariance. The following lemma,
inspired from the functional representations of probabilistic
symmetries (§4.2 of [7]), provides us strategies to achieve
this goal. Here, consider ¢ : £ — Z to be the projection.
Lemma 5. Fora T : L — G/H as defined above, and for
any arbitrary mapping b : L — Z, the function ® : L — Z
defined by

®(0) =7(€) - b(r(£)" - £) )

is G-equivariant, i.e., ®(g - £) = g®(£).
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Proof is available in the appendix § A.1. Note that ® re-
mains equivariant for any mapping b. This provides us the
option to parameterize b as a neural network and train the
entirety of @ for the desired site invariance where equivari-
ance will be preserved due to (9). In this work, we learn
sucha ® : £ — Z with the help of a decoder ¥ : Z — L
by minimizing the following loss,

Reconstruction loss Prediction loss

1€ =T (2(€))[* +[]Y — h(2(€))II* (5)

L stage2 — §

L=¢(X)eL
XeX,Yey

subjectto  ®(€) =7(£)-b(r(£)"" - £) (6)

G-equivariant map

Minimizing the loss (5) with the constraint (6) allows learn-
ing the network b : £ — Z and the decoder ¥ : Z — L.
We are now left with asking that Z € Z be such that the rep-
resentations are invariant across the sites. We simply use the
following MMD criterion although other statistical distance
measures can also be utilized.

MMD = E K(Z,)- E  K(Z:)lln D
1~ o
P(Q(Z))silel P(Q(e))sileZ

The criterion is defined using a Reproducing Kernel Hilbert
Space with norm || - || and kernel . We combine (5), (6)
and (7) as the objective function to ensure site invariance.
Thus, the combined loss function Lyage2 + MMD is min-
imized to learn (®, ¥). Scaling factor details are available
in the appendix § A.7.

Summary of the two stages. Our overall method com-
prises of two stages. The first stage, Section 3.1, involves
learning the 7 function. The function learned in this stage is
G-equivariant by the choice of the 108s Lgage1, see (3). Our
next stage, Section 3.2, employs the learned 7 function and
a trainable mapping b to generate invariant representations.
This stage preserves G-equivariance due to the & mapping
in (9). The loss for the second step is Lgger + MMD |, see
(5). Our method is summarized in Algorithm 1. Conver-
gence behavior of the proposed optimization (of 7, ®) still
seems challenging to characterize exactly, but recent papers

provide some hope, and opportunities. For example, if the
networks are linear, then results from [ | 8] maybe applicable
which explain the our superior empirical performance.

4. Experiments

We evaluate our proposed encoder for site-invariance
and robustness to changes in the covariate values C. Eval-
uations are performed on two multi-site neuroimaging
datasets, where algorithmic developments are likely to be
most impactful. Prior to neuroimaging datasets, we also
conduct experiments on two standard fairness datasets, Ger-
man and Adult. The inclusion of fairness datasets in our
analysis, provides us a means for sanity tests and optimiza-
tion feasibility on an established problem. Here, the goal
of achieving fair representations is treated as pooling multi-
ple subsets of data indexed by separate sensitive attributes.
We begin our analysis by first describing our measures of
evaluation and then reporting baselines for comparisons.

Measures of Evaluation. Recall that our method in-
volves learning 7 as in (3) to satisfy the equivariance prop-
erty. Moreover, we need to learn @ as in (9)—(5) to achieve
site invariance. Our measures assess the structure of the la-
tent space 7(£) and ®(€). The measures are: (a) A gq : This
metric evaluates the {5 distance between 7(£;) and 7(£;) for
all pairs ¢, j. Formally, it is computed as

Ap, = >

{(X4,9),(X;,5)}CXXC
£;=C.(X;),L;=Cc(X;)

i = jlllT (&) =7 (&) I* (8)

A higher value of this metric indicates that 7(£;) and
7(£;) are related by the group action g;;. Additionally,
we use t-SNE [48] to qualitatively visualize the effect of
7. (b) Adv : This metric quantifies the site-invariance
achieved by the encoder ®. We evaluate if ®(£) for a
learned £ € L has any information about the site. A three
layered fully network (see appendix § A.6) is trained as an
adversary to predict site from ®(£), similar to [49]. A lower
value of Adwv, that is close to random chance, is desirable.
(c) M : Here, we compute the MMD measure, as in (7),
on the test set. A smaller value of M indicates better invari-
ance to site. Lastly, (d) ACC : This metric notes the test set



Figure 5. Statistical Analysis on the reconstructed outputs. The vox-
els that are significantly associated with Alzheimer’s disease (p < 0.001)
are shown. Adjustments for multiple comparisons were made using Bon-
ferroni correction. A high density of significant voxels indicates that our
method preserves disease related signal after pooling across scanners.

accuracy in predicting the target variable Y.

Baselines for Comparison. We contrast our method’s
performance with respect to a few well-known baselines.
(i) Naive: This method indicates a naive approach of pool-
ing data from multiple sites without any scheme to handle
nuisance variables. (ii) MMD [29]: This method mini-
mizes the distribution differences across the sites without
any requirements for equivariance to the covariates. The la-
tent representations being devoid of the equivariance prop-
erty result in lower accuracy values as we will see shortly.
(iii) CAI [49]: This method introduces a discriminator to
train the encoder in a minimax adversarial fashion. The
training routine directly optimizes the Adv measure above.
While being a powerful implicit data model, adversarial
methods are known to have unstable training and lack con-
vergence guarantees [40]. (iv) SS [55]: This method adopts
a Sub-sampling (SS) framework to divide the images across
the sites by the covariate values C. An MMD criterion is
minimized individually for each of the sub-sampled groups
and an average estimate is computed. Lastly, (v) RM [33]:
Also used in [31], RandMatch (RM) learns invariant repre-
sentations on samples across sites that “match” in terms of
the class label (we match based on both Y and C' values) .
Below, we summarize each method and nuisance attribute
correction adopted by them.

Correction Naive MMD [29] CAI[49] SS[55] RM[33] Ours

Site X v v 4 v
v

v
Covariates X X X v v

Table 1. Baselines in the paper and their nuisance attribute correction.

We evaluate methods on the test partition provided with
the datasets. The mean of the metrics over three random
seeds is reported. The hyper-parameter selection is done on
a validation split from the training set, such that the predic-
tion accuracy falls within 5% window relative to the best
performing model [10] (more details in appendix § A.2).

4.1. Obtaining Fair Representations

We approach the problem of learning fair representations
through our multi-site pooling formulation. Specifically, we
consider each sensitive attribute value as a separate site. Re-
sults on two benchmark datasets, German and Adult [11],

are described below.

German Dataset. This dataset is a classification prob-
lem used to predict defaults on the consumer loans in the
German market. Among the several features in the dataset,
the attribute foreigner is chosen as a sensitive attribute. We
train our encoder while maintaining equivariance with re-
spect to the continuous valued age feature. Table 2 provides
a summary of the results in comparison to the baselines.
Our equivariant encoder maximizes the A g, metric indicat-
ing the the latent space 7(£) is well separated for different
values of age. Further, the invariance constraint improves
the Adv metric signifying a better elimination of sensitive
attribute information from the representations. The M met-
ric is higher relative to the other baselines. The ACC for all
the methods are within a 2% range.

Adult Dataset. In the Adult dataset, the task is to predict
if a person has an income higher (or lower) than $50K per
year. The dataset is biased with respect to gender, roughly,
1-in-5 women (in contrast to 1-in-3 men) are reported to
make over $50K. Thus, the female/male genders are con-
sidered as two separate sites with age as a nuisance covari-
ate feature. As shown in Table 2, our equivariant encoder
improves on metrics A g, and Adv relative to all the base-
lines similar to the German dataset. In addition to the quan-
titative metrics, we visualize the t-SNE plots of the repre-
sentations 7(£) in Fig. 4 (right). It is clear from the fig-
ure that an equivariant encoder imposes a certain monotonic
trend as the Age values as varied.

4.2. Pooling Brain Images across Scanners

For our motivating application, we focus on pool-
ing tasks for two different brain imaging datasets where
the problem is to classify individuals diagnosed with
Alzheimer’s disease (AD) and healthy control (CN).

Setup. Images are pre-processed by first normaliz-
ing and then skull-stripping using Freesurfer [15]. A linear
(affine) registration is performed to register each image to
MNI template space. Images are trained using 3D convo-
lutions with ResNet [23] backbone (details in the appendix
§ A.6). Since the datasets are small, we report results over
five random training-validation splits.

ADNI Dataset. The data for this experiment has been
downloaded from the Alzheimers Disease Neuroimaging

Naive Ours Naive Ours
Test MMD 0.27 0.04 Test MMD 0.34 0.09
INTERSECTION OF SUPPORT = 40 INTERSECTION OF SUPPORT = 10
oo A0\ = GE o A\ 3 GE
2o //\:, \ Siemens  D°** Siemens
. ) \\\ =3 Philips %) ... [/ A\ == philips
c y = | N
g AR g [\
Qoo A A\ Qe // A
©.08 = = S~ o.00 =t -
> Age Age

Figure 6. Distribution of age covariate in the ADNI dataset. Two set-
tings are considered — (left) the intersection of the support is large, and
(right) with a smaller common support. Despite the mismatch of support
across scanner attributes, our approach minimizes the MMD measure (de-
sirable) on the test set relative to the naive pooling method.



A gq : Equivariance Gap, Adv : Adversarial Test Accuracy, M : Test MM D measure, ACC : Test prediction accuracy
1: Higher Value is preferred, |: Lower Value is preferred

German Adult

ADNI ADCP

ApgT  Adv]

M| ACCT Agqt Adv|y M| ACCT Apgt Adv|l M| ACCT AgqsT Adv] M| ACCH

Naive 4.6(0.7) 0.62(0.03) 7.7(0.8) 74(0.9) 3.4(0.7) 83(0.1) 9.8(0.3) 84(0.1) 3.1(1.0) 59(2.9) 27(1.6) 80(2.6) 4.1(0.9) 49(s.4) 90(s.7) 83(4.4)
MMD [29] 4.5¢1.0) 0.66(0.04) 1.5¢0.3) 73(1.5) 3.4(0.9) 83(0.1) 3.1(0.3) 84(0.1) 3.1(1.0) 59(3.3) 27(1.7) 80(2.6) 3.6(1.0) 49(11.9) 86(11.0) 84(6.5)
CAI[49] 1.9(0.6) 0.65(0.01) 1.2(0.2) 76(1.3) 0.1(0.0) 81(0.7) 4.2(2.4) 84(0.04) 2.4(0.7) 61(2.1) 27(1.5) T4(3.6) 2.8(1.6) H6(6.9) 85(12.3) 82(5.1)

SS [55] 3.8(0.5) 0.70(0.07) 1.5(0.6) 76(0.9) 2.8(0.5) 83(0.2) 1.5(0.2) 84(0.1) 3.7(0.5) H57(2.1) 26(1.6) 81(3.7) 3.4(1.3) 5l(e.7) 88(14.6) 82(3.5)
RM [33] 3.4(0.4) 0.66(0.04) 7.5(0.9) 74(2.1) 0.8(0.1) 82(0.4) 4.8(0.7) 84(0.3) 0.8(0.9) 52(5.4) 22(0.6) 78(3.8) 0.4(0.5) 40(4.7) 77(13.8) 84(5.3)
Ours 6.4(0.6) 0.54(0.01) 2.7(0.6) 75(3.3) 5.3(0.9) 75(1.4) 7.1(0.6) 83(0.1) 5.1(1.2) 50(4.2) 16(7.2) 77(4.8) 7.5(1.2) 49(7.3) T0(22.3) 81(1.8)

Table 2. Quantitative Results. We show Mean(Std) results over multiple run. For our baselines, we consider a Naive encoder-decoder model, learning
representations via minimizing the MMD criterion [29] and Adversarial training [49], termed as CAI. We also compare against Sub-sampling (SS) [55]
that minimizes the MMD criterion separately for every age group, and the RandMatch (RM) [33] baseline that generates matching input pairs based on the
Age and target label values. The SS and RM baselines discard subset of samples if a match across sites is not available. The measure Adv represents the
adversarial test accuracy except for the German dataset where ROC-AUC is used due to high degree of skew in the data.

Initiative (ADNI) database (adni.loni.usc.edu). We have
three scanner types in the dataset, namely, GE, Siemens
and Phillips. Similar to the fairness experiments, equivari-
ance is sought relative to the covariate Age. The values of
Age are in the range 50-95 as indicated in density plot of
Fig. 6 (left). The Age distribution is observed to vary across
different scanners, albeit minimally, in the full dataset. In
the t-SNE plot, Fig. 4 (left), we see that the latent space
has an equivariant structure. Closer inspection of the plot
shows that the representations vary in the same order as that
of Age. Different colors indicate different Age sub-groups.
Next, in Fig. 5, we present the t-statistics in the template
space on the reconstructed images after pooling. Here, the
t-statistics measure the association with AD/CN target la-
bels. As seen in the figure, the voxels significantly associ-
ated with the Alzheimer’s disease (p < 0.001) are consid-
erable in number. This result supports our goal to combine
datasets to increase sample size and obtain a high power
in statistical analysis. Next, in Fig. 6 (right), we increase
the difficulty of our problem by randomly sub-sampling for
each scanner group such that the intersection of support is
minimized. In such an extreme case, our method attains a
better M metric relative to the Naive method, thus justify-
ing the applicability to situations where there is a mismatch
of support across the sites. Lastly, we inspect the perfor-
mance on the quantitative metrics on the entire dataset in
Table 2. All metrics Ag,, Adv and M improve relative to
the baselines with a small drop in the ACC.

ADCP dataset. This experiment’s data was collected
as part of the NIH-sponsored Alzheimer’s Disease Connec-
tome Project (ADCP) [1,25]. It is a two-center MRI, PET,
and behavioral study of brain connectivity in AD. Study in-
clusion criteria for AD / MCI (Mild Cognitive Impairment)
patients consisted of age 55— 90 years who retain decisional
capacity at initial visit, and meet criteria for probable AD or
MCI. MRI images were acquired at three sites. The three
sites differ primarily in terms of the patient demograph-

ics. We inspect the quantitative results of this experiment
in Tab. 2 and place the qualitative results in the appendix
§ A.4,A.5. The table reveals considerable improvements in
all our metrics relative to the Naive method.

Limitations. Currently, our formulation assumes that the
to-be-pooled imaging datasets are roughly similar — there is
definitely a role for new developments in domain alignment
to facilitate deployment in a broader range of applications.
Secondly, larger latent space dimensions may cause com-
pute overhead due to matrix exponential parameterization.
Finally, algorithmic improvements can potentially simplify
the overhead of the two-stage training.

5. Conclusions

Retrospective analysis of data pooled from previous /
ongoing studies can have a sizable influence on identifying
early disease processes, not otherwise possible to glean
from analysis of small neuroimaging datasets. Our devel-
opment based on recent results in equivariant representation
learning offers a strategy to perform such analysis when
covariates/nuisance attributes are not identically distributed
across sites. Our current work is limited to a few such
variables but suggests that this direction is promising and
can potentially lead to more powerful algorithms.
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A. Appendix
A.1. Proofs of theoretical results

In this section, we will provide the proofs of Lemma 4
and Lemma 5 discussed in the main paper.

Lemma. Given two latent space representations £;,£; €
S"~L, and the corresponding cosets g;H = T7(€;) and
ng = T(ej), 3'911 = gjgi_l € (G such thatfj = Gij * l;.

Proof. Given g;H = 7(£;) and g;H =
gigj_l € G suchthat, g; H = g;;9,H.
Now using the equivariance fact (3) , we get,

T(Ej), we use g;; =

9;iH = 9ij9iH
= 7(£;) = gi;7(£:)
= 7(£;) = 7(gi5 - )

Now as 7 is an identification, i.e., a diffeomorphism, we
get £; = g;;¢;. Note that S"~! is a Riemannian homoge-
neous space and the group G acts transitively on S"~1, i.e.,
given x,y € S"~!, 3g € G such that, y = g - x. Hence
from €; = g;;£; and the transitivity property we can con-
clude that g;; is unique. O

Lemma. For a 7 : L — G/H as defined above, and a
mapping b : L — Z, the function ® : L — Z defined by

)
is G-equivariant, i.e., ®(g - £) = g®(£).

Proof. Let £ € L. Consider the ¢ mapping of g - £, that is
P(g-€)=T1(g-£)-b(r(g-€)"-0).

Using the fact (3) from the main paper, we have 7(g -
£) = gr(£) and 7(g - )"t = 7(£)"1g~l. Substituting
these in ®(g - £), we get

D(g-£) =gr(L Nﬂ)l”gﬁ

)
= g7(£)b (T(E E)
Thus, ®(g - £) = gP ()
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A.2. Details on Evaluation Metrics

Recall from Section 4 of the paper, our discussion on
three metrics — Agq, Adv and M. While Agq and M
are variants of distance measure on the latent space, Adv
assesses the ability to predict the nuisance attributes from
the latent representation (and is therefore probabilistic in
nature). Observe that A g4 and M are (euclidean) distance
measures and could be very different depending on the nor-
malization of the vectors. For our purposes of evaluating
these latent vectors/features in downstream tasks, we per-
form a simple feature normalization in order to obtain 0 — 1
latent vectors given by,

z; — min(z;)

Z; =

(10)

max(z;) — min(z;)

Our feature normalization is composed of two steps: (i) cen-
tering — the numerator in (10) ensures that the mean of z
(along its coordinates) is 0; and (ii) scale — the denominator
projects the features z on the sphere at origin with radius
|z:]|Z = max(z;) — min(z;) > 0. Note that our scaling
step can be thought of as the usual projection in a special
case: when z; is guaranteed to be nonnegative (for exam-
ple, when z; represent activations), then ||z;||Z, simply cor-
responds to a lower bound of the usual infinity norm, ||z| oo
(hence projection on a scaled /., ball). We adopt this nor-
malization only to compute A g4 and M measures, and not
for model training.

For computing the Adwv measure, we follow [49] to train
an adversarial neural network predicting the nuisance at-
tributes. We use a three-layered fully connected network
with batch normalization and train for 150 epochs. [34] uses
similar architecture for the adversaries with different hidden
layers of 0,1,2,3. We found that a three-layer adversary
is powerful enough to predict the nuisance attributes and
hence we use it to report the Adv measure.

A.3. Understanding ADNI dataset

Dataset. The data was downloaded from the Alzheimers
Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investi-
gator Michael W. Weiner, MD. ADNI was set up with an
objective to measure the progression of mild cognitive
impairment (MCI) and early Alzheimers disease (AD)
using serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers. We
have three imaging protocol (scanner) types in the dataset,
namely, GE, Siemens and Phillips. The count of samples
AD/CN in each of these imaging protocols are provided in
Table 3. An example illustration (borrowed from [2]) of
using different scanner on the images is shown in Figure 8.
Preprocessing. All images were first normalized and skull-
stripped using Freesurfer [15]. A linear (affine) registra-



(a) Variation due to scanner for particular age group.

SITE 1
SITE 2
SITE3

Age =56
A 4

Age = 69 Age =87
A4 A4

(b) Variation due to covariates (age) in scanner 3.

Figure 7. Sample Images from ADCP dataset. (a) MRI images on control subjects from the ADCP dataset for different sites in the age group 70-80.
(b) Images obtained from Site 3 for three extreme age groups. The gantt chart on top of the image indicates the respective age range in the other sites.

(a) GE

(b) Siemens

Figure 8. Scanner effects on images. Two imaging protocols are shown:
(a) Siemens, (b) GE. The yellow region is the cortical ribbon segmenta-
tion, and the green circle shows that the imaging protocol from different
manufacturers have an effect on the scan. Image borrowed from [2].

tion was performed to register each image to MNI template
space.

A 4. Understanding ADCP dataset

Participants. The data for ADCP was collected through an
NIH-sponsored Alzheimer’s Disease Connectome Project
(ADCP) UO1 AGO051216. The study inclusion criteria for
AD (Alzheimer’s disease) / MCI (Mild Cognitive Impair-
ment) patients consisted of age between 55-90 years, will-
ing and able to undergo all procedures, retains decisional
capacity at initial visit, meets criteria for probable AD or
meets criteria for MCIL.

Scanners. MRI images were acquired at three distinct sites
on GE scanners. T1-weighted structural images were ac-
quired using a 3D gradient-echo pulse sequence (repetition
time (TR) = 604 ms, echo time (TE) = 2.516 ms, inversion
time = 1060 ms, flip angle = 8°, field of view (FOV) = 25.6
cm, 0.8 mm isotropic). T2-weighted structural images were
acquired using a 3D fast spin-echo sequence (TR = 2500
ms, TE = 94.398 ms, flip angle = 90°, FOV = 25.6 cm, 0.8

Table 3. Sample counts for ADNI dataset

Imaging Protocol AD CN
Manufacturer=GE Medical Systems 44 T8
Manufacturer=Philips Medical Systems 32 50
Manufacturer=Siemens 83 162
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mm isotropic).

Preprocessing. The Human Connectome Project (HCP)
minimal preprocessing pipeline version 3.4.0 [19] was fol-
lowed for data processing. This pipeline is based on FM-
RIB Software Library [27]. Next, the TIw and T2w images
are aligned, a B1 (bias field) correction is performed, and
the subject’s image in native structural volume space is reg-
istered to MNI space using FSL’s FNIRT [4]. Only Tlw
images in the MNI space were used for further analysis and
experiments.

Data Statistics. We plot the distributions of several at-
tributes in this dataset conditioned on the site. In Figure 10,
we show that the values of age and cognitive scores differ
across the three sites in this dataset. Cognitive scores are
computed based on an test assigned to the patients. Higher
scores indicate higher cognitive operation in the patient. Ta-
ble 4 shows the sample counts for target variable of predic-
tion AD (Alzheimer’s disease) and Control group.

A.5. Visualizing the latent space

In the paper Figure 4, we have seen the latent space
7(€) for the samples in the ADNI and the Adult datasets.
Here, we will see similar qualitative results for the
German and the ADCP dataset in Figure 9 of the sup-
plement. In the plots, the latent representations for a
non-equivariant encoder are stretched thoughout the latent
space. In contrast, the representations of an equivariant
encoder, for a discretized value of Age, are localized to
specific regions. Further, these representations have a
monotonic behaviour with respect to the values of Age.

Table 4. Sample counts for ADCP dataset

AD Control Female Male
sitel 10 39 29 20
site2 10 33 30 13
site3 5 19 14 10
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Figure 9. t-SNE plots of latent representations of 7(£) . For both ADCP (left) and German (right), the the latent vectors of the equivariant encoder are
evenly distributed with respect to the age covariate value. The non-equivariant space is generated from the naive pooling model. Different colors denote the

discretized set of age covariate value present in the data.

site 1 |
site 2 /‘ \
site 3 {1

gog

Density

40 50 60 70 80 % 100 10 20 30
Age Cognitive Scores

(a) Age (b) Cognitive Score

Figure 10. Distribution of attributes in the ADCP dataset. On the left
we observe the distribution of age for the three different sites present in the
ADCP dataset. On the right, we see the distribution of the cognitive scores.
The cognitive scores are computed based on a test that assesses executive
function. Higher scores indicate higher level of cognitive flexibility. Both
age and cognitive scores are observed to vary across the sites.

Listing 1. Residual Block

BatchNorm3d
Swish
Conv3d
BatchNorm3d
Swish
Conv3d

Listing 2. Fully Connected Block

AdaptiveAvgPool3d
Flatten

Dropout

Linear
BatchNorm1d

Swish

Dropout

Linear

A.6. Hyper-parameters and NN Architectures

For tabular datasets such as German and Adult, our en-
coders and decoders comprise of fully connected networks
and a hidden layer of 64 nodes. The dimension of the quo-
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tient latent space 7(£;) is 30. Adam is used as a default
optimizer and the learning rate is adjusted based on the val-
idation set.

Imaging datasets like ADNI and ADCP require 3D con-
volutions and a ResNet architecture as the backbone. The
last layer is used to describe the quotient space 7(£;). We
present the residual and the fully connected block below.
Detailed architectures can be viewed in the code.

A.7. Scaling factors

Recall from the Algorithm 1 of the main paper that our
loss function for each stage comprises of reconstruction
and prediction losses in addition to the objectives concern-
ing equivariance and invariance. These multi-objective loss
functions require scaling factors that upweight one objec-
tive over the other. These scaling factors group up as hyper-
parameters for the Algorithm. In our experiments, it was
observed that the results were robust to a range of scaling
factor choices. For the results reported in Table 1 of the
paper, they were identified through cross-validation. Here
we provide an example for the scaling factors used for the
Adult dataset, please refer to the bash scripts available in
the code for the scaling factors of other datasets.

» Stage one: Equivariance to Covariates

— Equivariance Loss Lgage1
Scaling Factor : 1.0

- Reconstruction Loss ), [| X; — D(€E(X,))]|
Scaling Factor : 0.02

¢ Stage two: Invariance to Site

— Invariance Loss MMD
Scaling Factor : 0.1

— Prediction Loss ||Y — h(®(£))|?
Scaling Factor : 1.0

— Reconstruction Loss ||[£ — U(®(£))]?
Scaling Factor : 0.1

We refer the reader to Algorithm 1 and Section 3 of the main
paper for the details on the notations used above.
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