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We demonstrate band flip in one-dimensional dielectric pho-
tonic lattices presenting numerical and experimental results.
In periodic optical lattices supporting leaky Bloch modes,
there exists a second stop band where one band edge expe-
riences radiation loss resulting in guided-mode resonance
(GMR), while the other band edge becomes a nonleaky
bound state in the continuum (BIC). To illustrate the band
flip, band structures for two different lattices are provided
by calculating zero-order reflectance with respect to wave-
length and incident angle. We then provide three photonic
lattices, each with a different fill factor, consisting of photore-
sist gratings on Si;N, sublayers with glass substrates. The
designs are fabricated using laser interferometric lithogra-
phy. The lattice parameters are characterized and verified
with an atomic force microscope. The band transition under
fill-factor variation is accomplished experimentally. The
measured data are compared to simulation results and show
good agreement. © 2022 Optica Publishing Group
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The fundamental properties of solid-state materials are
explained with band theory formulating propagation of electron
waves in a periodic crystal lattice. Attendant Bragg diffraction
leads to energy bands and bandgaps, and classification of mate-
rials as insulators and conductors [1]. Analogous bands exist
in three-dimensional (3D) arrangements of periodic dielectric
structures called photonic crystals [2]. The band structure show-
ing how light propagation is affected by frequency, polarization,
and direction is important in photonic crystal modeling. It is
represented in the first Brillouin zone with the first and higher
bandgaps corresponding the first and higher Bragg reflections
with increasing frequency [3]. Photonic crystals and associated
photonic band structures are the subject of considerable past and
current research [2-7].

In addition to 3D periodic structures, there is immense inter-
est in 1D and 2D optical lattices hosted by thin-film layers with
parallel interfaces. The original photonic lattice, namely the 1D
diffraction grating, has been around for more than 100 years.
New solutions and applications based on 1D and 2D gratings
consisting of spatially periodic modulations continue to appear,
sometimes described as metamaterials or metasurfaces. Current
lithographic technology enables fabrication of spatial modula-
tions on subwavelength scales in one, two, or three dimensions.
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The resulting diffractive elements support waveguide modes if
properly designed; these devices are often termed waveguide
gratings in past literature. Modes that are guided, or quasi-
guided, in periodic films experience stopbands and passbands as
the light frequency is varied. Nano- and microstructured lattices
with subwavelength periodicity support guided-mode resonance
effects manifesting as resonant reflection with unit amplitude
across a particular spectral bandwidth [8—12].

Guided-mode resonance (GMR) occurs when an incident
wave is phase-matched to a leaky waveguide mode supported by
an optical lattice. Excitation at normal incidence yields coun-
terpropagating lateral modes producing a standing wave. Such
lattices operate at the second stop band. These bands differ from
3D photonic crystal Bragg-type stop bands in that there exists an
out-of-plane radiative energy-coupling channel. Therefore, the
leaky mode resides above the light line in the Brillouin zone.
The detailed physical and spectral properties of the resonance
lattice depend critically on its symmetry. A symmetric lattice
yields a single resonance and attendant radiation at one edge
of the second (leaky) stop band whereas both edges resonate
and radiate for asymmetric lattices. Clearly, the nonradiant edge
is symmetry protected in the absence of asymmetry [8,13,14].
It cannot radiate even though its frequency is above the light
line and thus connected with the radiation continuum. Taking a
complex leaky-mode propagation constant 8 = S + if3;, it was
shown that symmetric structures had ;=0 at one edge mean-
ing no radiation whereas asymmetric lattices had ; # 0 at both
edges [8]. Applying asymmetric profiles, spectral shaping by
increasing the resonance grid density was implemented [13].
In 2007, a detailed study of leaky waves and bandgaps in opti-
cal lattices adopted the terminology of “nonleaky edge” for the
symmetry-protected resonance and “leaky edge” for the GMR
spectral location [14]. In 2008, modeling two parallel resonant
lattices, the nonleaky edge became a “bound state in the con-
tinuum” or BIC [15] by drawing on analogy with bound states
in quantum systems [16]. The BIC terminology is now widely
accepted, and the physics of the leaky-edge BIC states is of
significant scientific interest.

In prior work, it was shown that it is possible to interchange the
frequency locations of the leaky and nonleaky edges [14]. The
transition point is expressed in a relationship between the first
(e;) and second (&,) Fourier harmonics of the periodic lattice
dielectric function as h, = Re(h,), where the coefficient h; « ¢,>
and h, o ¢,, and the width of the stop band being oc|h, — Im(h, )|
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[17,18]. It is at this transition point that the band closes [14]. It
is possible to transition to the closed-band state by design via
parametric and material choices. The transition to and across
this point executes a band flip whereby the leaky and nonleaky
edges trade places. The band flips and bound-state transitions
of simple optical lattices were studied previously using rigorous
and analytical models with key aspects of the physics involved
explained [18]. In more detail, the band flip and interband tran-
sition are governed by the superposition of Bragg processes
denoted by BR,,, where q represents the Bragg order and n
denotes the Fourier harmonic of the dielectric constant modu-
lation. For small values of fill factors, the nonleaky asymmetric
BIC locates at the upper band edge since the first-order Bragg
reflection off the second Fourier harmonic BR;, dominates the
second-order Bragg reflection off the first harmonic BR,; [18].
Analytical and numerical studies demonstrate that when the fill
factor F increases and approaches 0.5, BR,, is overwhelmed
by BR,,, because BR;, weakens as F approaches 0.5 with ¢,
simultaneously approaching zero. At this point, the bandgap
closes. Before (after) the band closure, BICs appear at the upper
(lower) band edge with respect to frequency. Rigorous numerical
models previously applied show that the values of F where the
close bands are increasingly pulled away from 0.5 as the index
modulation A¢ increases; this observation is consistent with the
results presented here (with shorter wavelengths defining the
upper edge).

Accordingly, the objective of this research is experimental
quantification of the leaky band dynamics of lossless dielectric
optical lattices. We choose the one-dimensional (1D) resonant
lattice as a canonical model as it contains all key physical pro-
cesses that then carryover to the 2D lattice. Numerical results
illustrate the band dynamics of representative lattices via com-
putation of spectral zero-order reflectance under variation of the
angle of incidence. We explain the fabrication and character-
ization processes of our designs to realize this phenomenon
experimentally. The theoretical and experimental results are
compared showing a good match. Related research in metal-
lic systems shows that dispersion characteristics of plasmonic
particle arrays exhibit analogous leaky and nonleaky band edges
[19-22] albeit governed by different physical processes.

In previous studies, band flips are investigated in designs hav-
ing different dielectric constants with identical fill factors. For
experimental expediency, we propose subwavelength structures
having various fill factors (F). Figure 1 illustrates the band struc-
ture and band flips pertaining to two model membrane designs
embedded in air. To obtain the band structure, we calculate the
zero-order spectral reflectance as a function of incident angle
with numerical methods based on rigorous coupled-wave analy-
sis (RCWA) [23]. The first design is an isolated-particle optical
grating composed of SiO, rectangular rods with refractive index
n=1.5, thickness d, = 870 nm, and period A=1000 nm. For this
design, the band flip is executed for F =0.36, F=0.38, and
F =0.4 as depicted in Fig. 1(a). It is seen that for F =0.36, the
bandgap is open, and the nonleaky (BIC) edge and the leaky
(GMR) edge reside at the upper and lower bands, respectively.
By increasing F to 0.38, the band closes, reopening at F'=0.4
with the BIC-GMR edges interchanged. Analogous results are
obtained for a lattice connected by a sublayer consisting of
ZnSe with refractive index n=2.5, d, = 100nm, d,=500nm,
and A =1000nm. This structure is placed on a glass substrate
with n=1.5. Figure 1(b) shows the attendant band flip process
under variation of fill factor as F=0.3, F =0.48, and F = 0.66.
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Fig. 1. Displayed are angle-wavelength (6-1) zero-order
reflectance (Rp) color maps for the (a) lattice with d,=870nm,
A =1000nm, n=1.5with F =0.36, F =0.38, and F = 0.4, (b) lattice
with d, = 100 nm, dj, = 500 nm, A=1000 nm, n = 2.5 having F' = 0.3,
F=0.48, and F =0.66. The incident wave is in the TE polarization
state with its electric field vector along the grating ridges. Note
that the upper (lower) edge refers to shorter (longer) wavelengths as
conventional.

The experimental devices consist of a positive photoresist
(PR) grating on an Si;N, homogenous layer and a glass substrate.
The grating parameters including period, depth, and refractive
index are A =1000nm, d,=250nm, and n= 1.6, respectively.
The homogenous layer thickness is (d,) 550 nm with a refrac-
tive index of 1.8. Apart from the fill factors, all the designs
possess the same materials and parameters. An advantage of
this approach is that device etching is avoided, reducing the
likelihood of fabrication errors.

The fabrication process of the gratings begins with the depo-
sition of a Si;N, thin film on a cleaned glass substrate using
plasma-enhanced chemical vapor deposition (PECVD). The film
thickness and refractive index of the film are d;, = 550.7 nm and
n=1.798, as confirmed by ellipsometry. Thereafter, a 250-nm
positive photoresist (Shipley 1813) layer is spin-coated on the
film. To improve the adhesion between the PR and Si;N,, we
spin-coat a thin layer of hexamethyldisiloxane (HDMS) on the
film before applying the PR. A 1D grating pattern with a 1000-
nm period is then recorded on the PR using laser interferometric
lithography (LIL). The lithography system is based on a classic
Lloyd-mirror geometry with pattern period easily regulated by
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Fig.2. AFM image showing the grating profile of a representative
PR design. The red, green, and blue arrows point out the period, fill
factor, and grating depth as F'=0.353, A = 1002 nm, d, =259 nm.

stage rotation. The exposing laser is well-polarized and has a
wavelength of 266 nm. The most critical parameter is the fill
factor which is controlled by the exposure energy of the laser.
By increasing the exposure energy, the fill factors of the grating
patterns decrease.

To characterize the fabricated resonant lattices, atomic force
microscopy (AFM) is employed to measure the period, grat-
ing thickness, and fill factor. Figure 2 depicts the measured
parameters for one of the PR gratings with red, green, and
blue arrows indicating the period, fill factor, and grating thick-
ness, respectively. This device has A=1002nm, F =0.353, and
d,=259nm, as shown in Fig. 2. Additional AFM measure-
ments give the parameters related to the second device as
A=1002nm, F=048, and d,=253nm, and the third as
A=1002nm, F=0.565, and d,=260nm. Repeated and aver-
aged AFM measurements with error ~+1% reveal that the
fabricated PR gratings possess nearly the same fill factors and
periods as in the simulated designs.

Figure 3 shows the experimental setup used to measure the
optical transmission. An optical fiber carries light from a super-
continuum laser source through a collimator. The collimated
light then passes through a polarizer. The polarized light is inci-
dent on the resonant grating after passing an optical aperture. A
detector connected to the optical spectrum analyzer (OSA) quan-
tifies the transmittance diffracted by the grating. A computer
collects the data related to the measured transmission.

Transmittance is measured as a function of wavelength with
and without the device under test to ascertain the zero-order
diffraction efficiency. Thus, the transmittance is measured for a
wavelength span of 1550 nm to 1700 nm. The supercontinuum
laser outputs a continuous spectrum covering the wavelength
range of interest. The OSA with resolution of 0.05nm deliv-
ers the transmission spectrum. This measurement is done for
each angle of incidence in the range —1° <6 <1° on a grid
with A@=0.01°. The transmittance related to each of these

Fig. 3. Photograph of the lattice-dynamics measurement setup.
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Fig. 4. Band flip demonstration for the subwavelength grating
structures showing the band structures for F' =0.36, F =0.48, and
F =0.56. (a)—(c) Theoretical R, results are calculated by rigorous
coupled-wave analysis. (d)—(f) Experimental Ry data measured with
the optical spectrum analyzer and plotted in MATLAB. The color
bar represents normalized experimental reflectance.

angles is measured showing two peaks at nonzero incidence.
The reflection spectrum is formed by using Ry=1—T,. To plot
the angle-dependent spectral reflection map, the corresponding
data is imported into MATLAB for processing. This procedure
is performed for the three fabricated devices.

Figure 4 depicts theoretical and corresponding experimental
results. The simulation results are shown in Figs. 4(a)—4(c) for
F=0.36, F=0.48, and F = 0.56, respectively. Figures 4(d)—4(f)
demonstrate the experimental data for the same structures. This
figure shows that the fabricated devices exhibit band structure
and band flip effects consistent with simulation. Moreover, the
experimental data illustrates the transition of the nonleaky BIC
state and the leaky GMR state across the bandgap.

For added detail and clarity, reflectance spectra of the lat-
tice design with F'=0.56 are provided here for an improved
comparison between the numerical and experimental data. The
numerical and experimental bandgaps for F=0.56 are com-
pared in Figs. 5(a) and 5(b) in increased resolution with red
dashes denoting experiment. Figures 5(c) and 5(d) show zero-
order reflectance for angles of 6 =0° and 6 = 1°, respectively.
The theoretical reflectance spectra for 6 =0° in Fig. 5(c) show
Ry=1 at 1=1.630 um, whereas the experimental data shows
an Ry=0.86 at 1.625 ym. For 6 = 1° the simulation shows two
resonant peaks appearing at = 1.615 ym and A = 1.647 um pro-
viding 100% reflection; nearby, at 1 =1.610 um and A =1.655
um, ~60% reflection is detected in the experimental results, as
presented in Fig. 5(d).
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Fig. 5. Comparison of (a) simulation and (b) experimental band
flip for the PR grating after band closure (¥ =0.56). Simulation
results and experimental data for R, are shown in blue and orange
plots, respectively for (c) 6 =0°, (d) 6 =1°.

The deviations in efficiency between the ideal element used
in the simulation and experiment arise mainly due to the differ-
ences in the interrogating waves. A plane wave source is used
in the RCWA simulations, whereas the beam produced by the
supercontinuum laser shown in Fig. 3 has a Gaussian shape with
a diameter of ~1 mm at A = 1100 nm; this finite-width beam is
not modeled in Figs. 5(c) and 5(d).

In summary, we provide an experimental demonstration
of band flips and bound-state transitions in one-dimensional
dielectric photonic lattices. Whereas the band dynamics were
previously explained using analytical and numerical models, we
review the detailed physical processes responsible for BIC/GMR
edge positioning as well as the band closure point providing a
clear view of the pertinent physics. In this study, subwavelength
optical lattices composed of a photoresist grating, Si;N, sub-
layer, and a glass substrate with distinct fill factors are designed,
fabricated, and characterized. The corresponding reflectance
spectra are subsequently measured. In the end, the theoret-
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ical results and experimental data are compared depicting a
reasonable match.
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