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Abstract
In modular design, one of the most important roles of designers is to select appropriate 
combination of the functional parts. To support part selection, this paper proposes hu-
man-computer interaction system. We firstly propose a classifier to estimate the functional 
relationship between the design requirement and the modularized functional parts based 
on data of parts usage in actual products. Simulations revealed the effectiveness of the pro-
posed classifier. As another proposal, we also propose the parts recommendation system to 
suggest good combination of the parts to designers in order to find less cost combination 
of the parts within limited time. Simulations revealed the effectiveness of the proposed 
algorithm.

Introduction
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy 
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi 
enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis 
nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in 
hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat 
nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit prae-
sent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum 
dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod 
tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim 
veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip 
ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vul-
putate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at 
vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril 
delenit augue duis dolore te feugait nulla facilisi.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy 
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi 
enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis 
nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in 
hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat 
nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent 
luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy 
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi 
enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis 
nisl ut aliquip ex ea commodo consequat.
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Abstract
Robust designs protect system utility in the presence of uncertainty in technical and
operational outcomes. Systems-of-systems, which lack centralized managerial control,
are vulnerable to strategic uncertainty from coordination failures between partially
or completely independent system actors. This work assesses the suitability of a
game-theoretic equilibrium selection criterion to measure system robustness to strategic
uncertainty and investigates the effect of strategically robust designs on collaborative
behavior. The work models interactions between agents in a thematic representation of
a mobile computing technology transition using an evolutionary game theory framework.
Strategic robustness and collaborative solutions are assessed over a range of conditions by
varying agent payoffs. Models are constructed on small world, preferential attachment,
and random graph topologies and executed in batch simulations. Results demonstrate that
systems designed to reduce the impacts of coordination failure stemming from strategic
uncertainty also increase the stability of the collaborative strategy by increasing the
probability of collaboration by partners; a form of robustness by environment shaping
that has not been previously investigated in design literature. The work also demonstrates
that strategy selection follows the risk dominance equilibrium selection criterion and that
changes in robustness to coordination failure can be measured with this criterion.

1. Introduction
Robust design methods seek to minimize system sensitivity to uncertain events
or conditions. Extensive work in the field has developed methods to minimize
the impacts of noise factors, design variable uncertainty (Chen et al., 1996; Park
et al., 2006), model uncertainty (Choi et al., 2005; Allen et al., 2006), and design
process uncertainty (Seepersad et al., 2004). However, fundamentally different
sources of uncertainty in systems-of-systems (SoS) arise from interactions
among multiple design actors. Distributed decision authority and interdependent
utility functions create a game-like dynamic between actors based on available
alternatives and expected payoffs. The resulting strategic dynamic influences
each actor’s decision, most simply represented as a binary choice between
collaborating on a joint system or pursuing an independent system. Robust design
methodologies to address multi-actor dynamics in SoS are comparatively under-
studied yet influential to understand the formation and dissolution of joint system
architectures across organizational boundaries.

A successful SoS requires coordination on a common collaborative strategy
where each constituent system contributes to the joint system which, in turn,
provides greater utility for each member than alternative strategies like indepen-
dence. A coordination failure occurs when one or more constituent system actors
choose or default to (e.g., through a technical failure) a strategy that differs from
the common collaborative strategy. Strategic decisions to pursue a collaborative
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or independent strategy are distinct from design or operational decisions because
they are recursively influenced by anticipated strategic decisions of other system
actors as well as technical factors that affect system performance.

This work defines strategic stability as a desirable SoS-level property that
describes a particular strategic outcome as invariant to small perturbations.
As used here, it is closely related to the concept of a Nash equilibrium,
a game condition in which no actor can unilaterally improve their outcome
by changing strategies (or, in the case of mixed strategies, the frequency
of each strategy) (Nash, 1951). A strategically-stable Nash equilibrium can
withstand perturbations to the payoffs (within limits, relatively greater stability
allows greater perturbations), viz. a strategically-stable equilibrium remains an
equilibrium over a range of conditions.

Consequently, this work defines strategic robustness as a system-level design
property that preserves utility under strategic uncertainty, namely, coordination
failure. Robustness and stability work in concert to preserve utility by 1)
reducing the potential downside effects of others’ non-collaborative strategies
(robustness) and 2) influencing strategy dynamics so that others are more likely
to choose collaborative strategies (stability). A system design methodology to
mitigate the negative effects of other actor’s decisions and shape the strategic
environment to support desirable outcomes requires understanding of each goal
and corresponding measurement instruments to support the design process.

As a thematic application representing a SoS, this work considers a transition
between existing and next-generation technology alternatives. Technology
transitions exhibit operational and managerial independence, key features of a
SoS, at both the producer and consumer levels. For example, many organizations
and individuals develop and use interacting products that implement an interface
standard (e.g., USB) but no central authority governs whether or when a particular
manufacturer will transition a product to a particular standard. Furthermore,
technology transitions can occur organically, without a common, acknowledged
purpose. The interaction between systems composing the technology transition
SoS may occur at the technological level, e.g., maintaining interface compatibil-
ity; at the market level, e.g., system actors benefiting from economies of scale
and in expanded markets as a technology becomes more ubiquitous; or both.

A fictional mobile computing industry (e.g. smart phone, laptop, peripheral
device, etc.) whose market functions as a SoS is used as the thematic application
for this work. All industry actors are potentially impacted by the introduction
of a new wireless communication technology, ‘Greycloak’1. Greycloak offers
advantages in both range and power consumption over Bluetooth, but is not
backwards compatible. System actors must choose between releasing the latest
versions of their products using Bluetooth or Greycloak. If commonly interacting
devices are both released with the new technology, then the manufacturers
increase profits through increased sales volume and prices for the more capable
devices. However, if commonly interacting devices do not coordinate on the
same technology, then Greycloak implementers will lose sales revenue relative
to what they would have earned with a Bluetooth implementation. Bluetooth
implementers do not lose revenues in the event of a coordination failure due to
the large and established market for such devices.

1This motivating example assumes that the likely technical and regulatory challenges with the
introduction of such a technology are surmountable
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A portion of the industry has the option of releasing a product with both
technologies at a slight penalty to maximum profit under successful coordination
due to marginally increased device cost. Such devices mitigate losses under
coordination failure via implementation of Bluetooth and Greycloak transceivers,
but don’t fully recover losses due to greater manufacturing expense and reduced
sales (because consumers are unwilling to pay a premium for a device with an
interface that doesn’t work with their other devices). However, manufacturers of
small peripherals, e.g., earbuds, must choose between technologies due to size
and weight constraints. Each actor’s goal is maximum revenue.

Technology transitions exhibit tipping points that can be characterized by
coordination games with payoffs that grow with adoption (Sarkar, 1998; Farrell
and Klemperer, 2007; Keser et al., 2012; Zeppini et al., 2014); motivating it’s
use in this work as the example SoS. This work differs from other research
into technology transitions by focusing on how a strategically robust technology
implementation by a subset of the system actors, manifested in the system design,
affects selection of a collaborative strategy by all system actors. Consequently,
the findings should extend to other SoS that exhibit similar dynamics.

The core contributions of this article are: 1) validation of a proposed game-
theoretic measure of strategic stability in the context of multi-actor networked
design games and 2) identification of a relationship between system-level
strategic robustness and SoS-level strategic stability in a multi-actor agent-based
model whereby increasing individual system robustness also increases network-
wide collaboration. Results help to establish key theoretical insights about
strategically robust design in SoS settings as a precursor to new methodologies
for constituent system and SoS communication network design.

The remainder of this article is structured as follows. Section 2 summarizes
relevant background information from the fields of robust design, SoS, game-
theoretic equilibrium selection, and evolutionary games. Section 3 describes
the common elements of the evolutionary game theory model used to answer
the research questions. Section 4 presents unique model elements, results, and
discussion addressing the first research question. Section 5 presents the model,
results, and discussion for the second research question. Section 6 discusses
broader implications for design researchers and practitioners. Finally, Sec. 7
synthesizes the overall findings and shares concluding remarks.

2. Background
Strategic robustness draws from many bodies of research. This section presents
and unites important concepts from biological and artificial system robustness,
SoS engineering, game theoretic equilibrium selection, and evolutionary game
theory.

2.1. Definitions and Applications of Robustness
Robustness preserves a system characteristic in the presence of variation of
system components (Carlson and Doyle, 2002). Designers, researchers, and users
are often interested in system functionality for both engineered and biological
systems (Kitano, 2004; Clausing and Frey, 2005). Furthermore, Doyle and Csete
(2011) assert that a large fraction of design effort and system complexity is
attributable to features that enhance system robustness. Clausing and Frey (2005)
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support this assertion, reporting that many patent claims improve robustness
rather than new functionality. Robustness is studied across disciplines ranging
from functionality under extreme or accidental loads in structural engineering
(Baker et al., 2008) to preserving future options or opportunities under attempts
by others to cut off those options in political science (Padgett and Ansell, 1993).
Robustness clearly plays an important role across disciplines, and especially in
engineering and design, as it is a critical property of effective systems.

Research over the last several decades has identified four types of design
robustness for engineered systems, each corresponding to a type of uncertainty
that can affect a significant system characteristic. Taguchi proposed a design
philosophy that reduces variation in performance due to exogenous sources of
uncertainty (Type I) (Chen et al., 1996). Chen et al. (1996) developed methods
to simultaneously design for Type I uncertainty and endogenous variation such
as in design variable values (Type II uncertainty). Choi et al. (2005) augments
Chen et al.’s methodology to account for variability in the system performance
model used to evaluate candidate designs (Type III uncertainty). Seepersad et al.
(2004) identify changes in design specifications and variables and the “combined
effect of analysis tasks” as sources of design process uncertainty (Type IV),
resembling a combination of Type II and Type III uncertainty. In summary, the
objective of these four types of robustness is to preserve system performance or
functionality under uncertainty from exogenous sources, design variable values,
system performance models, and system design processes.

Past research treats designers or system decision-makers (collectively referred
to as system actors) as a source of uncertainty in technical factors such as
design variable values (Kalsi et al., 2001; Allen et al., 2006; Chen and Lewis,
1999). This perspective does not address strategic decisions, such as system actor
participation in a team or collaborative structure, and is an appropriate approach
only for design of a single system where there is little strategic uncertainty.

2.2. System-of-systems Collaboration
System actors designing a single system ostensibly share a common goal. While
their design decisions affect the utility delivered by each other’s design elements,
project managers can theoretically resolve conflicts within project constraints to
achieve an effective design and mitigate decision conflict. However, unity of
purpose does not similarly characterize all SoS because they are comprised of
complete, independently managed and operated systems (Maier, 1998).

SoS types exhibit different levels of management centralization. Maier (1998)
categorizes SoS as directed, collaborative, or virtual. OUSD AT&L (2008) adds
‘acknowledged’ SoS to Maier’s list. Only directed SoS are built and managed
for a particular collective purpose or set of purposes. Many defense SoS are
directed systems. Constituents of an acknowledged SoS share a common purpose
managed separately from each system’s goals. However, the constituents retain
managerial independence. Collaborative and virtual SoS form voluntarily, and
without SoS-specific management, because each constituent system can increase
its utility by doing so, either by increasing performance, reducing cost, or both.
Virtual SoS lack a shared purpose, whereas collaborative SoS retain this feature.
The upside benefit of participation depends on mutual collaboration of other
actors to overcome initial resource expenditure to enable interoperability.
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The combination of upside benefit generated through the SoS and downside
risk tied to upfront investments creates a large variation in potential outcomes
relative to an independent system. Awareness of these risks, especially as they
affect potential collaborative partners, may create uncertainty about the actions
of other system actors. These conditions create an environment, particularly
for collaborative and virtual SoS, in which system actors desire successful
collaboration, but are not certain it will occur and are unlikely to unconditionally
commit to collaboration.

Consequently, each system actor is motivated to influence others to adopt a
locally-favorable policy and to simultaneously pursue a policy that yields the
highest utility in response to other actors’ unknown decisions. The risk of
coordination failure may be mitigated through contractual agreements which
penalize defection and spread risk across the parties or through information
exchange which increases confidence that collaboration will be successful.
However, contracts are not always viable or effective options, e.g., when no
formal relationship exists between the actors. Furthermore, contracts generally
alter strategy dynamics to reduce the favorability of defection, not increase the
favorability of collaboration. Information sharing alone is insufficient to ensure
collaboration. For example, the shared information may be negative, and inhibit
SoS formation, or it might not be trusted.

The aim of robust SoS design is to reduce the consequences of coordination
failures (increasing the favorability of collaboration, conforming to traditional
Type I robust design) and to shape the collaboration environment to reduce
the probability of coordination failure. Existing design space exploration and
optimization methods alone are inadequate to achieve these goals because they
do not include the interactive decision models required to assess strategic issues
or the effect of design on strategy dynamics.

2.3. Game-theoretical Equilibrium Selection
Grogan and Valencia-Romero (2019) developed a system design model which
represents the collaborative dynamic as a type of bipolar game commonly
referred to as stag hunt. Bipolar games are two-strategy normal-form games
with two strict Nash equilibria (Selten, 1995). Applied to SoS, the strategy
space Si = {φi, ψi} denotes actor i’s “independent” and “collaborative” strategies
respectively. SoS formation requires that successful collaboration is mutually-
beneficial. This work further assumes that independence is strictly superior to
investing in a failed collaboration, completing the conditions required for a stag
hunt. Table 1 shows normal form payoffs V si, sj

i for an example stag hunt game
using the Bluetooth and Greycloak technology transition labels where numeric
payoff values encapsulate actor utilities including other factors like risk aversion.
To note, the game payoffs in this section only illustrate equilibrium selection
concepts and the bi-level system design model. They are not intended to represent
a particular technology transition.

The equilibria for two actors A = {1, 2} are φ = 〈φ1, φ2〉, all independent,
and ψ = 〈ψ1, ψ2〉, all collaborate. As an analogy for SoS design, each actor has a
choice between a safe strategy φi with a relatively-low payoff that does not require
collaboration (canonically referred to as “hare hunting”), and a riskier strategy ψi

that requires successful collaboration to achieve a higher payoff than hare hunting
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Table 1. Normal form payoffs for a symmetric two-actor technology transition game
modeled after a stag hunt.

Actor 2 (s2)

u1 = u2 = 2
3 Bluetooth (φ2) Greycloak (ψ2)

R = 0.69 Design: Mk I Design: Mk II

Actor 1 (s1)

Bluetooth (φ1) Vφ2 , φ1
2 = 0.4 Vψ2 , φ1

2 = 0

Design: Mk I Vφ1 , φ2
1 = 0.4 Vφ1 , ψ2

1 = 0.8

Greycloak (ψ1) Vφ2 , ψ1
2 = 0.8 Vψ2 , ψ1

2 = 1

Design: Mk II Vψ1 , φ2
1 = 0 Vψ1 , ψ2

1 = 1

(canonically referred to as “stag hunting”). Stag hunters with defecting partners
suffer a loss relative to what could be obtained if they had hunted hare.

In the context of the mobile computing technology transition example, the
hare hunting strategy retains the Bluetooth technology and is implemented by
a Mk I product design. The stag hunting strategy transitions to the Greycloak
technology with superior technical potential and is implemented by a Mk II
product design. A pair of interacting system actors successfully collaborate when
both adopt the Greycloak technology.

Technology transitions in a commercial environment are also influenced by
competitive forces, i.e., actors may adopt a new technology to gain or maintain
a long-term competitive advantage. Therefore, competition exerts forces on
system actors beyond the direct value of short-term gains in utility. Furthermore,
the interaction between complementary and substitute goods produces complex
dynamics that may accelerate or inhibit transition to a new technology. This
work focuses strictly on the complementary relationship between system actors,
rather than competitive forces, to reduce assumptions with overlapping impacts
and improve the interpretability of the results.

Design and strategy choices are linked in the context of the application case,
i.e., implementing a Mk II design indicates an actor intends to collaborate in
the market with others adopting the Greycloak technology. However, this is not
universally true of SoS. For instance, diverse defense systems may adopt a set of
common communication protocols to enable combined operations in a SoS but
the systems may intermittently or never be used as an SoS. In such a context, the
design enables a strategy but it does not determine it.

Rational actors select a strategy in games such as a stag hunt on the basis of
two criteria: payoff dominance and risk dominance (Harsanyi and Selten, 1988).
The payoff-dominant strategy is an element of a Pareto efficient equilibrium,
yielding the highest possible payoff for each actor. In the examples used here,
the Greycloak strategy ψi is always payoff-dominant. The risk-dominant strategy
exhibits the lowest risk when considering interactive effects and, as subsequent
sections demonstrate, has the greatest basin of attraction, meaning actors tend to
select it in repeated games on a multi-actor network (Kandori et al., 1993; Grogan
and Valencia-Romero, 2019).

Risk dominance is analogous to expected value maximization under specific
conditions. The normalized deviation loss ui, in Eq. (1), denotes the threshold
probability pj of actor j selecting strategy ψj that equalizes the expected value of
φi and ψi for actor i. For symmetric games, ui = uj, and therefore φ (conversely, ψ)
maximizes expected value and is risk dominant for ui > 0.5 (conversely, ui < 0.5)
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0 ui,β = 1
4 ui =

2
3

1

pj , probability actor j chooses ψj

0.0

0.2

0.4
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0.8
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E
[V

i]

φi
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ψi, βi

Figure 1. Expected value of actor i’s strategies under uncertainty in actor j’s strategy for
the baseline scenario in Table 1 and the scenario with the Mk II-B design in Table 3.

if actors play strategic alternatives with equal probability.

ui =
Vφi, φj

i − Vψi, φj

i(
Vφi, φj

i − Vψi, φj

i
)

+
(
Vψi, ψj

i − Vφi, ψj

i
) (1)

The weighted average log measure (WALM) of risk dominance, R, proposed
by Selten (1995), extends the concept of risk dominance to asymmetric and many
actor games with linear payoff functions by accounting for interactive effects

R ≡
n∑

i=1

wi(A) ln
ui

1 − ui
(2)

where wi(A) measures the weight of actor i based on an influence matrix A, noting
that wi(A) = 1

2 for all two-actor games. See Selten (1995) for a general derivation
of these values. R > 0 indicates that φ is risk-dominant and ψ is risk-dominated,
while R < 0 indicates the opposite, viz. ψ risk-dominates φ. Furthermore, the
magnitude of R indicates the strength of dominance.

Using payoffs from Table 1, Figure 1 illustrates ui = 2
3 as the intersection

between expected value curves for the φi (blue solid line) and ψi (red dashed line)
strategies. Following symmetry, the risk dominance criterion evaluates to R =

2 · 1
2 ln

(
2/3
1/3

)
= 0.69, indicating that the Bluetooth equilibrium φ is risk-dominant.

In general, symmetric games with ui > 0.5 result in R > 0 but asymmetric games
depend on the relative magnitude of all ui values and the influence weights of
each actor.

Whether payoff or risk dominance should ultimately determine equilibrium
selection has been a matter of inquiry for game theorists. Harsanyi and Selten
(1988) defined the concepts of payoff and risk dominance, asserting at the time
that payoff dominance is the relevant equilibrium selection criterion for stag
hunt games. However, Harsanyi later reversed his position, concluding that
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Table 2. Actor i’s strategy-specific design payoffs for a technology transition design game.

Design Payoff in Strategic Context (si, s j)

di φi, φj φi, ψj ψi, φj ψi, ψj

αi : Mk II-A 0 0 0 1

βi : Mk II-B 0.2 0.2 0.35 0.95

γi : Mk I 0.4 0.8 0 0

risk dominance should be the governing selection criterion (Harsanyi, 1995).
Carlsson and van Damme (1993) likewise concluded that risk dominance is the
only rational strategy for incomplete information bi-stability games, such as stag
hunt.

The importance of risk dominance also makes sense in systems design
settings because using payoff dominance to guide decisions would simply
optimize solutions to maximize utility under successful collaboration, ignoring
downside risks. Payoff dominance tells a designer nothing about the stability
of collaboration or strategic robustness of the system. Such designs are
likely to be over-optimized and fragile. Instead, system actors may use risk
dominance, specifically the risk dominance criterion R, to guide payoff-dominant
collaborative solutions to a more robust state.

2.4. Strategically-informed Design
Design can influence a system actor’s payoffs under the possible strategic
outcomes, thereby modifying the relative risk and payoff dominance of available
strategies. For example, actions to reduce losses under a coordination failure can
increase risk dominance of a payoff-efficient strategy. Such a design achieves
robustness by directly mitigating the impact of a coordination failure but also
by reducing the probability of coordination failure if partners also use risk
dominance to inform strategy selection. Therefore, an emanation of Selten’s
risk dominance criterion for engineering is that system design can reduce losses
under coordination failure and influence strategy dynamics to reduce defection
by system actors as a form of environment modification (Whitacre, 2012) that
increases utility robustness. Grogan and Valencia-Romero (2019) used this
relationship to develop a bi-level model of SoS design in which system actors
each select an upper-level strategy si ∈ Si and a lower-level design di ∈ Di. The
value function V s1,...,sn

i (d1, . . . , dn) maps decisions to payoff values for each system
actor.

Consider a new game in which each system actor has two decisions. The first
is an operational design decision: a choice between technical implementations
in design space Di = {αi, βi, γi} with assigned labels Mk II-A, Mk II-B, and
Mk I. The second is, as before, a choice between strategies in strategy space
Si = {φi, ψi}. Table 2 shows the payoffs V si, sj

i for each strategy pair-design
combination. To simplify presentation, payoffs are only a function of the design
and strategic context, not the partner’s design. For comparison, the prior game
in Table 1 adopts the Mk I design γi under the Bluetooth strategy φi and the Mk
II-A αi design under the Greycloak strategy ψi.

In a trade typical to design (Doyle and Csete, 2011), adopting the Mk II-B
design βi under the Greycloak strategy sacrifices a small amount of upside utility
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Table 3. Normal form payoffs for a symmetric technology transition design game
instance.

Actor 2 (s2, d2)

u1 = u2 = 1
4 Bluetooth (φ2), Greycloak(ψ2),

R = −1.10 Mk I (γ2) Mk II-B (β2)

Actor 1 (s1, d1)

Bluetooth (φ1), 0.4 0.35

Mk I (γ1) 0.4 0.8

Greycloak (ψ1), 0.8 0.95

Mk II-B (β1) 0.35 0.95

Table 4. Normal form payoffs for an asymmetric technology transition design game
instance.

Actor 2 (s2, d2)

u1 = 2
3 , u2 = 1

4 Bluetooth (φ2), Greycloak (ψ2),

R = −0.20 Mk I (γ2) Mk II-B (β2)

Actor 1 (s1, d1)

Bluetooth (φ1), 0.4 0.35

Mk I (γ1) 0.4 0.8

Greycloak (ψ1), 0.8 0.95

Mk II-A (α1) 0 1

relative to Mk II-A for a large reduction in downside risk, enhancing robustness
to coordination failure. Despite being dominated in both the 〈φi, φj〉 and 〈ψi, ψj〉

strategic contexts, the Mk II-B design reduces the normalized deviation loss
to ui = 1

4 , as shown in the normal form game in Table 3 and the green dash-
dot line in Figure 1. If the Mk II-B design is selected by both actors, the risk
dominance criterion decreases to R = 2 · 1

2 ln
(

1/4
3/4

)
= −1.10, indicating that the

payoff-dominant Greycloak equilibrium ψ is also risk-dominant.
An asymmetric scenario in Table 4 combines the two cases. If one actor’s

strategy-design pairs are (φi, γi) and (ψi, αi) and the other’s are (φj, γj) and (ψj, βj),
normalized deviation loss alone suggests a different “best” strategy for each actor.
However, neither 〈ψi, φj〉 nor 〈φi, ψj〉 are equilibria. Risk dominance resolves the
decision dilemma by accounting for the influence each actor has on the other’s
utility and the relative preference of each strategy for both actors. In this example
R = 1

2 (0.69) + 1
2 (−1.10) = −0.20, indicating that the Greycloak equilibrium ψ is

risk dominant.
Assuming risk dominance drives strategy selection in the bi-level model

reveals a valuable insight for strategic robustness and stability. The risk
dominance criterion R indicates which equilibrium has the larger basin of
attraction and its relative strength. Specifically, the magnitude of R captures
the stability of the risk-dominant strategy, viz. to what degree equilibrium
selection (and thereby strategy selection) resists change due to uncertainty or
perturbation. As the preceding bi-level design example illustrates, lower level
design decisions that trade system efficiency for robustness can influence strategy
dynamics by changing the utility resulting from a particular strategic outcome,
thereby increasing the basin of attraction of the collaborative strategy (Valencia-
Romero and Grogan, 2020). Strategic stability further increases utility robustness
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by reducing the probability of coordination failure in a positive feedback loop.
Consequently, system actors can use R as an indicator of both the stability of a
strategy and the strategic robustness of constituent system designs in a SoS.

However, these observations naturally lead to questions regarding the viability
of R to describe strategy selection and the influence of design decisions on
strategy dynamics in more realistic environments. The effect of robust design
implementation on strategy selection by system actors with fragile design options
is of particular interest (e.g., the effect of one actor selecting the Mk II-B design
on the strategy selection of another actor). The following subsections present
models and research questions to investigate the effect of strategically-robust
designs on actors’ strategy selections in multi-actor networks.

2.5. Evolutionary Games and Strategy Selection
Evolutionary game theory provides methods to determine the stability of strate-
gies and to recommend or evaluate equilibrium selection criteria for multi-actor,
repeated games as more representative settings for decision-making than two-
actor single-shot games as in the preceding section. Agent-based (actor-based)
evolutionary game theory models simulate the fitness and spread of strategies (or
other actor attributes) by representing actors as nodes in a graph and relationships
among actors as edges between nodes (Szabó and Fáth, 2007). Evolutionary
game theory models actor interactions as games and cumulative or single-
round payoffs indicate the fitness of each actor. That is, evolutionary games
use relatively many actors in a network, interactions restricted by the network
topology, and actor property updates based on a fitness measure. Researchers
study different phenomena by adjusting network topology, strategy update rules,
frequency, and synchronicity, and payoff structures to represent various real-
world conditions. Studies generally investigate the distribution or prevalence of
strategies under equilibrium conditions.

Kandori et al. (1993) found that large, well-mixed populations of simulated
actors converge to the risk-dominant equilibrium in coordination games (of
which stag hunt is a type) with infrequent myopic best-response strategy updates
and low probability mutations of actors’ strategies. Consistent convergence
to the risk-dominant equilibrium with small strategy selection perturbations
demonstrates that it is the stochastically-stable equilibrium, also known as
evolutionarily-stable. Without mutations, convergence is path dependent and
determined by the mixed strategies and the proportion of each strategy in the
initial population. Referencing the normalized deviation loss ui computed from
payoff values, Roca et al. (2009b) demonstrated that a well-mixed population
without mutations using a best-response update rule, playing a symmetric stag
hunt game, will converge to the ψ equilibrium if the proportion of actors playing
ψi is greater than ui.

Roca et al. (2009a) performed a comprehensive study of the effects of
temporal, spatial, and strategy update rules on strategy selection and stability
in evolutionary games, relaxing the well-mixed population and slow update
assumptions of Kandori et al. (1993). Many works prior to Roca et al. (2009a)
attempted to draw universal conclusions about the effect of individual features,
such as topology or selection pressure on strategy distributions. However, Roca
et al. (2009a) demonstrated that the effects caused by a given feature are generally
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convolved with other factors. The results presented by Roca et al. (2009a) extend
the findings of Kandori et al. (1993) to confirm that strategy selection in stag
hunt games is described by risk dominance on a variety of network topologies,
including random, scale free, and lattice networks, when a best response strategy
update rule is used. Therefore, the combinations of details such as the network
topology, update rule, and payoff structure are critical for achieving meaningful
results.

Braha (2020) further supports the importance of graph topology. His work
reports that real-world problem solving networks are often characterized by
high frequencies of three- and four-node directed sub-graphs that accelerate
convergence to a network-wide solution state, i.e., coordination, in a stochastic
problem-solving model. These coordination-facilitating graph motifs work to
reduce cycling between states. The findings of Braha (2020) may play an
important role in establishing the system actor communication networks of future
SoS to maximize coordination.

2.6. Research Objectives
The bi-level design model presented in the preceding section assumes that
risk dominance, as expressed in R, accurately models strategy selection in the
stag hunt game for utility-maximizing actors. Classic game-theoretical works
such as Harsanyi (1995) and Carlsson and van Damme (1993) assert that risk
dominance is the relevant equilibrium selection criterion in a single shot stag
hunt game. Furthermore, evolutionary game theory, subject to specific model
features, also indicates that risk dominance is the governing equilibrium selection
criterion in stag hunt games with returns that increase linearly with the number
of collaborating neighbors. The support from Roca et al. (2009a) is particularly
valuable, as their models examine a variety of network types and policy update
rules that may be applicable to SoS development and operations. However,
the application of risk dominance to evolutionary games with increasing or
decreasing marginal returns to collaboration, a common attribute of real-world
SoS, has not been examined. This work poses the following question, testing an
expanded application of risk dominance as a measure for subsequent work:

RQ1. How does risk dominance predict selected strategies in single-level, multi-
actor evolutionary games representing SoS with payoff functions exhibiting
a) constant, b) increasing, and c) decreasing marginal returns to the
number of collaborators?

Sub-questions a–c address scenarios when each additional collaborator is of equal
value to the focal actor, increasing value to the focal actor, and decreasing value
to the focal actor, respectively.

Therefore, the following hypothesis is made for RQ1:

H1. Strategy selection in single-level, multi-actor network games representing
SoS follows the risk dominance criterion, with Pareto efficient strategies
selected with greater frequency as R decreases2.

2The weighted average log measure of risk dominance, R, used here, was developed for games
with linear incentives. The payoff functions with increasing or decreasing marginal returns do not
have linear incentives. Consequently, this work tests if the relative magnitude of R values indicates
relative rates of selection of the Pareto efficient, collaborative, strategy. It does not seek to propose a
prescriptive strategy selection method for SoS actors following specific values of R.
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Further refined, the majority of system actors are hypothesized to select the
Pareto efficient strategy if R < 0 (the threshold value of R) for constant marginal
returns to the number of collaborators. The threshold value of R is less than
zero for increasing marginal returns due to the relatively low value of initial
collaborators. Lastly, the threshold value of R is greater than zero for decreasing
marginal returns due to the high value of initial collaborators. Examining all
three scenarios is important to establish the relationship between R and strategy
selection across a spectrum of payoff functions representative of SoS returns.

The bi-level model and the relationship between strategic robustness and
stability critically depend on the concept that design decisions in a SoS context
which increase robustness to others’ decisions also reduce the probability
of a coordination failure by reinforcing others’ favorable strategy selection.
Conclusions drawn by Grogan and Valencia-Romero (2019) based on the work
of Selten (1995), support this concept. However, no published research has tested
the idea in a dynamic setting representative of SoS. Furthermore, direct support
from the body of literature in evolutionary game theory provides insufficient
support because relatively little research has been done on equilibrium selection
in asymmetric games or with actors with asymmetric options, especially in an
engineering context. This gap leads to the second research question:

RQ2. Does adoption of strategically-robust designs by a subset of a population
in a evolutionary bi-level design game increase collaboration amongst all
system actors, including those with relatively fragile designs?

Testing RQ2 requires games with asymmetric payoffs and asymmetric options,
as expressed in the design decision layer. Combining the findings of Roca et al.
(2009a) with the theory presented by Selten (1995), the following hypothesis is
made for RQ2.

H2. Designs which increase strategic robustness reinforce favorable strategic
behavior from others, increasing the likelihood of collaboration by all
actors in a multi-actor bi-level design game representation of SoS.

The research proposes two computational simulation experiments based on
a common multi-actor model to evaluate the hypotheses. The first experiment
evaluates how well risk dominance describes equilibrium selection in a multi-
actor network, confirming the foundation for the second experiment. The second
experiment tests whether designs which increase strategic robustness (system
robustness to coordination failure), lowering R, increase collaboration among all
actors, including those with relatively fragile system designs.

3. Multi-actor SoS Model
This section describes the SoS used as the context for this research and common
components of a multi-actor simulation model with network topology, update
rule, and payoff structure representative of SoS. All games are played with
payoffs that produce stag hunt dynamics. Simulations are performed with
NetLogo and leverage several existing models (Wilensky, 2005a,b).
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3.1. Model Constructs
The fundamental features of each model are a set of actors, a game with payoffs,
and a network connecting the actors. Each actor’s neighborhood is defined by
the network and includes all actors with whom they are connected directly by
an edge. Actors play the game with each neighbor simultaneously, using the
same strategy and design (as applicable) in all interactions within the same round
of play. Actors may update their design and strategy decisions between each
round of play solely on the basis of past decisions (their own and neighbors’),
corresponding payoffs, and possible future payoffs as a function of strategy and
design options. Rounds of play continue until termination criteria are met.

Each round of the simulation represents the outcome of a complete set
of design and strategy decisions. Simultaneous move games are a proxy for
a scenario in which actors commit resources to a particular policy based on
beliefs about the future actions of other actors, but only discover what path
has been taken after some time has passed. In real-world SoS this may occur
because actors signal the intent to collaborate, but don’t follow through, or
because collaboration breaks down before system realization. The simulations
do not represent the design process itself. In other words, all design and
strategy decisions culminating in system deployment are combined into one
round of the simulation. Therefore, simulated actors learn their best one-shot
actions, not the best action sets for a repeated game representation of a SoS
design process. Strategy is used here to refer to the non-technical decision to
collaborate (embodied in the application case as a decision to adopt the Greycloak
technology) in the SoS or not. Actor action spaces are defined by their design and
strategy decision spaces. An actor’s policy, composed of a design and strategy
choice, is updated using the policy update rule described in a later subsection.

Design choices in this context determine strategy, i.e., if an actor implements
Greycloak, then it is also collaborating in the market with others that do the
same. However, this is not universally true of SoS. For instance, diverse
defense systems may adopt a set of common communication protocols, enabling
combined operations in a SoS, but the systems may intermittently, or never be
used as an SoS. In such a context the design may enable a strategy (whether to
collaborate), but it does not determine it.

Additionally, strategies are evaluated and selected on the basis of their utility
under the possible strategic outcomes, and not with a view to long-term business
objectives, or competitive concerns that are typically included in an organizations
long-term planning activities. These considerations could be included in a utility
measure used to evaluate design and strategy options, but are excluded from this
work to increase simplicity and interpretability of the results.

3.2. Network Topology
Each model implements three network topologies, each with 30 actors, as a
contextual variable. Including network topology helps to test the hypotheses over
a broad range of conditions, thereby increasing the generalizability of common
conclusions. The effect of topology itself is not a subject of interest for this
work, and is therefore not considered one of the independent variables in the
experiments to test each hypothesis.

The three network topologies include: a random network, a random network
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with preferential attachment, and a small world network (Barabási and Albert,
1999; Watts and Strogatz, 1998). All three networks are prevalent in the literature
on multi-actor simulations and evolutionary game theory (Roca et al., 2009a).
A random network randomly places edges between nodes with equal probability
(Erdős and Rényi, 1959); in the case of this work, until each node has a minimum
number of edges. Random networks with preferential attachment are constructed
by adding nodes to a minimal network (as few as two nodes and one edge) by
connecting the new node to an existing node with probability equal to the ratio of
the existing node’s edges and total number of edges in the network (Barabási and
Albert, 1999). Small world networks are formed from a ring lattice in which each
node is connected to specified number of nearest neighbors. Edges are randomly
re-wired to a new node with a specified probability, without forming self loops or
duplicate connections (Watts and Strogatz, 1998). Small world networks increase
node clustering relative to random graphs, without large average path lengths
between nodes. The random networks are simulated with minimum node degree
between 1 and 2.

Braha and Bar-Yam (2007) studied new product development networks for
a vehicle, operating system software, a pharmaceutical facility, and a 16-story
hospital and found that all had networks with high-clustering and short path
lengths, typical of small world networks. Therefore, this work assumes that small
world networks are the most representative of those typical in SoS development.
However, as relevant network structures likely vary between industries and
specific projects, comparisons across the three topologies bound outcomes and
help compare to previous results.

3.3. Update Rule
The policy update rule is a critical feature of any evolutionary game to update
decisions in response to environmental stimuli. The policy update rule determines
which actions actors make in generations subsequent to the seed generation. This
work uses the myopic best response (MBR) update rule proposed by Blume
(1993) and Kandori et al. (1993) with an implementation similar to Sysi-Aho
et al. (2005). Montanari and Saberi (2010) also used the best response update
rule in their study of the spread of innovations using Markov chain models.

Consider the set of actorsA = {1, ..., n}. Every actor i is connected to a finite
set of other actors (its neighborhood) denoted by νi. The number of collaborating
actors in actor i’s neighborhood, |{ j ∈ νi : sj = ψ}|, is denoted by ci. Actor
i chooses a strategy s(t)

i ∈ Si and a design d(t)
i ∈ Di from a set of alternatives at

time t, plays the game with each neighbor, and receives total payoff G(t)
i

(
s(t)

i , d
(t)
i

)
.

G takes one of three functional forms: for constant marginal returns with ci

G(t)
i =

∑
j∈νi

V s(t)
i , s

(t)
j
(
d(t)

i

)
, (3)

for increasing marginal returns with ci

G(t)
i = V s(t)

i , φj
(
d(t)

i

)
+

[
V s(t)

i , ψj
(
d(t)

i

)
− V s(t)

i , φj
(
d(t)

i

)
+ 1

]c(t)
i /|νi |

− 1, (4)
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or for decreasing marginal returns with ci

G(t)
i = V s(t)

i , φj
(
d(t)

i

)
+

[
V s(t)

i , ψj
(
d(t)

i

)
− V s(t)

i , φj
(
d(t)

i

)]
· log|νi |+1(c(t)

i + 1). (5)

The three payoff function forms represent possible network effects in the SoS.
Equation (3) represents the case when an actor’s payoff grows linearly with
the number of collaborators in the SoS. Equations (4)–(5) represent more
complex network effects in which many or few potential collaborators must
participate in the SoS for collaboration to be profitable. Real-world SoS may
also be characterized by networks with interactions with varied weights, i.e., the
collaboration of some actors is more valuable than that of others, regardless of
whether marginal returns are constant, increasing, or decreasing.

Actors select new si and di at time t + 1 with probability p using MBR by

s(t+1)
i , d(t+1)

i =


arg max
s∈S,d∈D

G(t)
i (s, d) , if k < p

s(t)
i , d

(t)
i , otherwise

(6)

where k is a uniform (0,1) distributed random variable. In other words, each
actor adopts the design and strategy to those that would have maximized G in the
previous round of play with probability p. The probabilistic formulation disrupts
simultaneous updates and mitigates the possibility of cycling between strategies
or designs. The MBR update rule rationally, but short-sightedly, maximizes
payoff by selecting strategies as if each round of play were the last (Kandori
et al., 1993).

As an example, consider the strategic network state in Figure 2 where dark
blue actors play the Bluetooth strategy φi and yellow actors play the Greycloak
strategy ψi (ignoring design decisions in this example). Assume that marginal
returns are constant and actor i realizes payoffs per Table 3 with s(t)

i = φi,
receiving a total payoff G(t)

i = 0.4 · 2 + 0.8 · 2 = 2.4 for this network state.
Alternatively, if actor i had selected s(t)

i = ψi, then the corresponding payoff would
have been G(t)

i = 0.35 · 2 + 0.95 · 2 = 2.6. Therefore, the MBR rule updates the
strategy to s(t+1)

i = ψi with probability p.
MBR has several features that make it well suited for application in a SoS

design model and justify its implementation here. Simple imitation rules like
“follow the best” require actors to know the best actor with highest payoff, either
in the neighborhood or globally, and the best actor’s selected design and strategy.
MBR requires only local information; namely, an actor’s own actions and the
effect of its neighbors’ actions. Actors’ strategies and the effect of their actions
on their neighbors are synonymous in most evolutionary game theory models.
In the model used in this work, only neighbors’ strategies affect actor payoffs,
and are therefore visible and possible to imitate. Neighbors’ design decisions are
not known and cannot be imitated. Furthermore, real-world interactions seldom
reveal complete and perfect information about a design actor’s strategy, design, or
resulting payoffs, even if neighbors’ designs do affect one’s payoff. Lastly, MBR
represents innovative, rational, but limited strategic behavior of the type expected
from a process such as decision making in business or design, while maintaining
simplicity, continuity with previous research, and interpretable results.
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Figure 2. Example game graph. Yellow actors play ψi and dark blue actors play φi.

3.4. Model Limitations
The implementation of each model feature discussed in this section introduces
limitations to the application of results to engineering design. Several are
discussed here and others are left for discussion in context of the experiments
presented in the following sections.

The basic model construct introduces several limiting features. MBR
is used because it produces actor behavior that is short-sightedly rational
and requires only local information. However, as van Duinen et al. (2016)
demonstrate, an actor selecting new technology strategies may switch between
policy update processes using repetition, deliberation, social comparison, and
imitation depending on the actor’s level of satisfaction and uncertainty. MBR is a
deliberative policy update rule. As cited earlier, imitation (and social comparison,
which is imitative) requires knowledge of neighbors’ past policies. Strategy
update rules representative of behavior amongst design actors in a SoS setting
is an area requiring additional research. Therefore, this work employs MBR as
an adequate proxy for human decision making rather than introducing a complex
rule that is not empirically supported.

Second, the model only considers populations with homogeneous payoff

functions. Actors in real-world SoS will often have different payoff functions
and be influenced to varying degrees by the other actors in the network.
Heterogeneous payoff functions and varied actor weight would also introduce
additional assumptions that complicate the interpretation of the results, and are,
therefore, not considered in this work.

Lastly, the structure of the networks also influences the dynamics by creating
clusters which can protect risk-dominated solutions, effectively biasing the local
probability of collaboration. Real-world networks are sometimes dynamic (Braha
and Bar-Yam, 2006), which could minimize or amplify the impacts of clustering
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Table 5. Normal form payoffs for a symmetric technology transition game with variable
payoffs S and T .

u1 = u2 = S
S +T−1 Actor 2 (s2)

R = ln S
T−1 Bluetooth (φ2) Greycloak (ψ2)

Actor 1 (s1)

Bluetooth (φ1) 0 S

0 T

Greycloak (ψ1) T 1

S 1

or transfer them temporally and spatially to a new network region. Like other
excluded features, the inclusion of dynamic networks would increase model
complexity and required assumptions and therefore are reserved for future work.

4. Risk Dominance and Strategy Selection
This section presents unique design elements, results, and discussion for the
experiment testing H1.

4.1. Experimental Design
The first experiment uses the network topologies and strategy update rule
presented in the preceding section to evaluate the effect of risk dominance on
strategy selection. Variable payoffs represented by S ∈ [−2, 0] and T ∈ [0, 0.975]
in Table 5 form the independent experimental variables. The notation for S and T
aligns with social dilemma game theory literature to represent the payoffs known
as the “sucker’s payoff” and “temptation to defect.” Varying S and T over the
corresponding domains produces a range of risk dominance R values in Figure 3.

The dependent variable is the density of collaborative strategies selected
in equilibrium, measured as the ratio of the number of actors playing the
collaborative strategy ψi to the total number of actors.

Each combination of topology and payoffs is simulated 1000 times with each
actor initially equally likely to implement either strategy. Each of the 1000 trials
is initialized with a new graph and a new set of actors, i.e. the graph structure
is unique for each trial; decisions and dynamics do not carry over from trial to
trial. Actors play their neighbors, collect payoffs according to the specified form
of G, and then update their strategies using MBR with probability p = 0.9. Each
trial is terminated when the number of actors playing each strategy is unchanged
in four consecutive rounds of the game. Results for each trial and experimental
condition are output as a CSV file with a record of the dependent and independent
variables. Theory and past research suggest that, for an initial probability of each
actor selecting ψ of 0.5, games with R > 0 will converge to φ while games with
R < 0 will converge to ψ when the payoff function is linearly increasing with the
number of collaborating neighbors.

4.2. Results
Figure 4, row A shows contours representing the threshold values of S and T for
which the majority of actors implement the collaborative strategy for constant,
decreasing, and increasing marginal return payoff functions. Red line overlays
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Figure 3. Risk dominance (R) contours as a function of variable payoffs S and T .

represent the iso-R contours for values −1, 0, and 1. The heat maps in Figure 4
rows B–D show the mean final percentage of collaborators for the range of S and
T . Each cell represents the mean dependent variable value over 1000 trials for
one combination of independent variables. The strategy percentage plots visually
characterize equilibrium selection for each (T, S ) game configuration. Figure 4,
columns 1–3 display results for the small world, random with minimum node
degree = 1, and random with minimum node degree = 2 networks respectively.
Preferential attachment network results are very similar to the small world
network results. Therefore, they are excluded from the presentation.

All plots in Figure 4 show a clear increase in collaboration as R decreases.
A unique linear threshold exists for each combination of payoff function and
graph topology, above which collaboration is prevalent. For constant marginal
returns, the 50% collaboration threshold is on the line representing R = 0 for all
topologies. Striations visible in regions above and below the 50% collaboration
threshold contour correspond to graph regions where the network structure
enables a strategy to persist despite not being the best response to an equal density
of actors using each strategy in networked games.

Consider an example converged game state in Figure 5 on a preferential
attachment network with S = −1 and T = 0.2 (ui = 0.555,R = 0.223) and constant
marginal returns where yellow cells represent actors playing ψi. The R value
indicates that φ is risk-dominant and is the expected strategy for all actors, i.e.,
all the nodes should be dark blue. However, the structure of the network allows
for exceptions to this rule. Case in point, actor i plays ψi and has four neighbors
that play ψj and one that plays φj; so its payoff is 1 · 4− 1 · 1 = 3. If i played φi its
payoff would be 0.2 · 4 + 0 · 1 = 0.8. Therefore, actor i will persist playing ψi.

Actor i can persist playing ψi, despite it being risk-dominated, as long as
S ≥ 4(T − 1). Similar conclusions can be observed in a single-shot two-actor
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Figure 4. Final collaborator (ψi) density for columns 1) small world networks, 2) random networks with minimum
node degree = 1, and 3) random networks with minimum node degree = 2. Row A) shows contour lines for threshold
values of S and T above which more than half of the actors collaborate (red lines are iso-R contours for values −1,
0, and 1). Other rows show heat maps of final collaborator density for variable S and T when marginal returns are
B) constant, C) decreasing, and D) increasing.

19/31



Design Science

Figure 5. Preferential attachment network in equilibrium with S = −1.0 and T = 0.2.
Yellow nodes are actors playing ψ, blue nodes are actors playing φ.

game if actor i can reliably estimate a probability of collaboration pj = 4
5 whereby

selecting ψi is rational for games with ui ≤
4
5 . Random and small world networks

can preserve risk-dominated strategies by the same mechanism with a wide
variety of configurations, manifesting as a graduated transition between regimes
with no and complete collaboration.

4.3. Discussion
Risk dominance clearly influences strategy selection in the conditions evaluated,
supporting H1. While the sign of R guides strategy selection for constant
marginal returns, its magnitude describes the relative stability of strategy se-
lection more generally. Games on all studied networks show variability in
strategy selection for small-magnitude risk dominance values but reliable strategy
selection for larger magnitude values.

The persistence of risk-dominated strategies in certain regions is attributable
to local network structure and initial conditions which have an effect akin
to biasing the probability that a strategy is selected. This result supports
findings of Braha (2020) as well as others such as Gianetto and Heydari (2015,
2016); Mosleh and Heydari (2017) that network structure and motifs influence
collaborative behaviors. Rather than disproving H1, this observation suggests that
approaches such as Bayesian games which apply a prior probability distribution
over the “types” of other system actors may prove useful for collaborative design
scenarios with uncertain bias towards a strategy or uncertainty in the outcome
of a strategy pair (Harsanyi, 1967). In the context of the technology transition
application case specifically and SoS design generally, this means that factors
such as business alliances or previous actions by potential partners should be
factored into priors over other system actors’ payoffs when using R as a measure
of design robustness.

Lastly, the payoff function form has a large, but consistent and foreseeable
effect on collaboration levels as a function of R. When only a small number of
participating systems are required to produce large benefits from collaboration,
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collaboration can dominate when R indicates unfavorable dynamics. Conversely,
for SoS with dynamics requiring relatively large numbers of participating systems
to accrue benefit, defection can dominate in regions where R indicates that
it should be rare. However, the relative magnitude of R (within each case)
remains a reliable predictor of collaboration rates, even with non-linear incentive
structures. Furthermore, it is likely that the payoffs in the normal form games
used to compute R can be transformed to include both asymmetric economic
importance of potential partners (a problem not studied here) and the value
of potential collaborators as a function of the ratio of realized partners versus
the number of partners required for full benefit. Such a transformation would
enable the retention of R = 0 as the switching point between regimes of mostly
collaboration and mostly defection, subject to an accurate characterization of the
strategy dynamics.

5. Risk Dominance for Robust Design
This section presents the experimental design, results, and discussion for the test
of H2. The emphasis is the study of design options on system actor equilibrium
selection in simulations of the technology transition SoS.

5.1. Experimental Design
The second experiment uses the same network topologies and update rule as the
first experiment but the update rule affects both strategy and design selection
simultaneously. Simultaneous update is an intentional simplification of real-
world collaborative design, in which strategy selection or modification may occur
asynchronously with design modification. The ease of updating either strategy
or design and the resulting rate at which updates are possible varies between
design efforts. This work starts with the simplest case, simultaneous update.
Furthermore, because each generation represents the complete sequence of events
leading to system deployments, asynchronous updates do not increase realism.

The experiment introduces one design for Bluetooth strategy and two designs
for the Greycloak strategy with a variable payoff for one design and initial
probability of collaboration as two independent factors. Whereas the first
experiment demonstrates how R affects strategy selection in a population initially
composed of actors equally likely to start as defectors or collaborators by varying
S and T for all actors, the second experiment investigates how varying options
for a single payoff for a subset of the population and varying the probability
that each actor is a collaborator in the initial population affects collaboration in
the equilibrium state. The goal of the second experiment is to understand how
design updates by a subset of a population affect collective dynamics under initial
conditions (the probability that actors are collaborators) that vary the favorability
of collaboration.

The population contains two types of actors assigned with equal probability.
Both types have two strategies Si = {φi, ψi}. Type 1 actors have design spaces
with two alternatives D1 = {Mk I,Mk II-A} associated with the Bluetooth and
Greycloak technologies respectively. Type 2 actors have design spaces with three
alternativesD2 = {Mk I,Mk II-A,Mk II-B}. Type 1 actors are technically unable
to implement the Mk II-B design because it uses the Bluetooth and Greycloak
transceivers and is, therefore, too large for their products.
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Table 6. Mobile Technology Transition Design Options

Design Payoff in Strategic Context

di φi, φj φi, ψj ψi, φj ψi, ψj

Mk II-A - - 1 7

Mk II-B 3 3 C 6.5

Mk I 5 5 - -

Design payoffs are given in Table 6; all are fixed values except for the Mk
II-B design in context 〈ψi, φj〉 which takes on variable value C between 2.0 and
4.9. With this formulation, games always exhibit the stag hunt dynamic.

Assuming the Mk I design is used with φi, pairing the Mk-IIA design with ψi

yields ui = 2
3 while pairing the Mk II-B design with ψi yields ui values between

1
16 and 2

3 . Risk dominance reaches a threshold value R = 0 at C = 4.25 for Type
2/Type 1 pairs and C = 3.5 for Type 2/Type 2 pairs.

The initial probability of collaboration pψ varies between 0 and 1. Decreasing
pψ increases the severity of the payoff perturbation experienced by an actor
playing ψi. The probability of any actor initially using the Mk II-B design is
always 0. All actors starting with the φi strategy select the Mk I design and those
starting with the ψi strategy select the Mk II-A design. Type 2 actors may select
the Mk II-B design in subsequent rounds of play.

The dependent variable is the fraction of Type 1 actors that select strategy
ψi in the equilibrium state. While the fraction of strategy ψi among Type 2
actors is also of interest, the result is expected to follow the patterns observed in
Experiment 1. Of greater interest is the effect that robust design implementation
has on strategic behavior of neighbors with relatively fragile designs (Type 1
actors). The risk dominance strategy selection concept predicts that actors are
more likely to collaborate if their neighbors have lower ui values such as that
provided by robust design solutions in an engineering context.

Each combination of topology, C, and pψ is simulated 1000 times following
the same process as the first experiment. Each simulation is terminated when
every actor plays the same strategy and design in four consecutive rounds of the
game.

5.2. Results
Figure 6 displays the results of the second experiment simulations as the
percentage of collaborators amongst Type 1 actors as a function of the initial
probability of collaboration pψ and the Mk II-B upside payoff C. Results from
the preferential attachment networks are again excluded due to similarity with
the small world network results. High initial probability of collaboration directly
increases pj to facilitate collaboration for all actors (including Type 1). High
values of C decreases ui for Type 2 actors which makes collaboration more
favorable; however, its effect on Type 1 actors is more complex.

Type 2 actors that adopt the Mk II-B design are more robust to defection than
those that do not (other Type 2 with Mk II-A) or cannot (Type 1). Consequently,
they are more likely to collaborate, even in the presence of some defectors.
Increased collaboration from Type 2 actors adopting Mk II-B effectively increases
pj from the perspective of their connected neighbors for whom collaboration
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Figure 6. Final collaborator (ψi) density among Type 1 actors for columns 1) small world networks, 2) random
networks with minimum node degree = 1, and 3) random networks with minimum node degree = 2. Row A) shows
contour lines for threshold values of pψ and C below which more than half of the Type 1 actors collaborate (red
contour lines display lowest possible R for an interaction between Type 2 actors). Other rows show heat maps of
final Type 1 collaborator density for variable pψ and C when marginal returns are: B) constant, C) decreasing, and
D) increasing.

23/31



Design Science

may be much riskier, stabilizing the collaborative strategy. In this way, the Mk
II-B design serves as a robust design by mitigating the effects of coordination
failure for the actors that implement it (strategic robustness) and by increasing
the probability of collaboration amongst potential partners (strategic stability).

Figure 7 further reinforces the conclusion by showing increasing selection
of the Mk II-B design with increasing C and decreasing pψ. The Mk II-B
design option both mitigates downside risk to coordination failure and enables
collaboration when there are few initial collaborators. Selection of the Mk
II-B design disappears, along with collaboration, when the initial population
is composed strictly of defectors and continued defection is the only rational
response.

The high variance in the prevalence of the Mk II-B design between the three
payoff function forms is noteworthy. Collaboration is generally low risk with
decreasing marginal returns. Consequently, the Mk II-B design is relatively
uncommon in the equilibrium state because it is inefficient and unnecessary when
there are large numbers of collaborators. It only persists for mid-range values of
C, and is replaced in the equilibrium state by the more efficient Mk II-A design
after playing the role of converting the population to collaborators for high values
of C. At the opposite extreme, the Mk II-B design is almost universally adopted
in equilibrium by Type 2 actors for increasing marginal returns. Collaboration is
persistently risky for increasing marginal returns, but the Mk II-B design enables
large numbers of Type 2 actors to collaborate and, as Figure 6 shows, even
enables small numbers of Type 1 actors to profitably collaborate and implement
the Mk II-A design. For all three payoff function forms, the Mk II-B design is
critical for the transition to increased levels of collaboration.

5.3. Discussion
The results of the second experiment demonstrate a mechanism for an individual
design actor to achieve utility robustness through strictly technical means. While
real-world design often focuses on robustness to exogenous noise, component
variation, etc. through mechanisms such as system control, redundancy, degener-
acy, and modularization, results show that a strategically-robust design (which
may be achieved by the aforementioned mechanisms) also creates a positive
feedback loop for simulated SoS by reducing the probability that any neighboring
design actor will select a non-collaborative solution, supporting H2. The robust
design feature modifies the system environment to reduce the probability of
perturbation occurrence, increasing the stability of the collaborative strategy and
utility robustness for all system actors.

6. Broader Discussion of Results
6.1. Limitations to Generalizability
In accordance with strategy selection following risk dominance, the positive
effect of strategically-robust designs on the collaborative behavior of system
actors observed in results depends on the design actors possessing or developing a
sufficiently accurate knowledge of the strategy dynamics. The selected model in-
forms actors through repeated interactions. While repeated interactions between
multiple system actors are characteristic of SoS design, decisions, particularly
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Figure 7. Final Mk II-B design density for columns 1) small world networks, 2) random networks with minimum
node degree = 1, and 3) random networks with minimum node degree = 2. Row A) shows contour lines for regions
of pψ and C within which more than 2% of actors implement the Mk II-B design, equating to ≈4% of Type 2 actors
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strategic decisions governing SoS formation, are often separated by months or
years, limiting the opportunities for learning in repeated interactions with a fixed
set of partners. Furthermore, early interactions may not produce rewards and
penalties consistent with the overarching coordination game dynamic, limiting
the learning that can be achieved from those interactions. Instead, it is more likely
that learning occurs over a longer, multi-program or multi-system timescale.
Therefore, initial decisions informed by an assessment of SoS strategy dynamics
are critically important because strategic exploration may be prohibitively costly.

While strategically-robust designs minimize the impacts of coordination
failure independent of the strategy dynamic, incomplete information about the
dynamic in real-world applications limits the hypothesized stabilizing effects.
Lack of understanding of the level of robustness needed for a particular applica-
tion may lead to overly conservative designs that diminish upside potential gains
or overly optimistic (fragile) designs that expose a high risk of losses. Likewise,
system actors are not encouraged to collaborate unless they are aware that others
pursue strategically-robust designs. This issue is exacerbated by the generally
asymmetric positions of the constituent system actors. Each will usually have
a unique payoff function and will differentially value the collaboration of the
other system actors. While the three payoff function forms studied here begin to
explore this issue, they do not replicate the actor-to-actor variability present in
real systems. Furthermore, additional information, such as risk or loss aversion,
reference points, and probability weights are required to transform payoffs into
actor-specific utilities. Collecting such information about potential participants
in an SoS presents difficulties, as has been the experience of many economists
in other domains (Barberis, 2013). Further research is required to determine the
necessity and practicality of assessing SoS strategy dynamics using actor-specific
utility functions.

Two methodological adjustments are required to close this gap and enable
practitioners to implement strategically-robust designs that also enhance the
stability of collaboration. The first is a method for estimating the true strategy
dynamics from incomplete information and characterizing the uncertainty of the
estimate. Bayesian games (Harsanyi, 1967) and team reasoning (Bacharach,
1999) are promising methods to characterize payoffs under incomplete informa-
tion and can be used to formulate games with probability distributions of utility
as a function of a design, business alliance, or other factors creating uncertainty.
Significant research is required to develop and validate design methods which
incorporate such features.

The second is a method to communicate one’s strategic robustness to
potential partners with the aim of increasing their likelihood of committing to
collaboration. In intra-organization collaborations, such as those common within
agencies of a government, signalling one’s strategic robustness may be relatively
simple because information can be shared more freely. Signalling strategic
robustness in commercial endeavors, particularly those with collaborators that
are also competitors, is comparatively difficult due to concerns about maintaining
or gaining competitive advantage. Additional research building on relevant
economics literature (e.g., Spence, 2002; Crawford and Sobel, 1982) may help
understand how to communicate strategic intent in different environments.

Finally, it must be stated that it is not yet known if human designers are more
likely to collaborate when their collaborative partners adopt strategically-robust
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designs, i.e, whether human decision-makers use risk dominance as a decision
criterion in a collaborative design context from both descriptive and normative
perspectives. This is a critical knowledge gap that should be investigated by
design experiments with human subjects building to real-world case studies to
test the key ideas presented in this work.

6.2. Implications for Engineering Design
Notwithstanding the limitations in the preceding section, there are a few key
implications of this research for design practitioners. The first experiment
demonstrates that, subject to local network effects, simulated system actors
following myopic decision rules maximize utility by selecting the risk-dominant
strategy in a stag hunt game as a model of technology transition SoS with
uncertain collaborative behavior. Design practitioners, especially policy makers,
can learn from this simple experiment that the mere existence of a Pareto-efficient
SoS design is insufficient grounds for each actor to commit to collaboration.
Even in cases with the prospect of mutual benefit for all parties, the specter
of a technical failure or discovery of a superior independent strategy by one
actor could lead to a coordination failure and corresponding utility loss. Risk
dominance represents a significant single factor that differentiates strategic
stability of equilibria.

The second experiment builds on the first, demonstrating that designs which
are robust to coordination failures increase collaboration by all system actors,
thereby reinforcing their expected utility. However, because strategy selection
for each actor is still driven by risk dominance and the initial probability of
collaboration, even actors with robust collaborative designs sometimes maximize
value through defection. Two lessons can be drawn from this result. First,
decisions to form a SoS should be supported by analysis of strategy dynamics
to determine if collaboration is favorable and, if so, whether options exist to
increase its stability. Second, even if it fails to achieve a sufficient stabilizing
effect, pursuing strategically-robust designs reduces losses in the event of a
coordination failure. Implementing strategically-robust designs maintains the
operational independence characteristic of SoS (Maier, 1998).

For design researchers, the second experiment clearly demonstrates that
a strategically-robust design for one or more constituent systems enhances
collaboration amongst all constituents in a robustness feedback loop, assuming
that each is aware of the robustness of the others’ designs and influenced by risk
dominance (limitations previously cited). Intuitively, the robustness feedback
loop is built on the idea that system actors with little to lose and much to
gain through collaboration are likely to do so. Design actors with a riskier
value proposition can collaborate with higher confidence knowing that others
are committed. The extent to which this robustness feedback loop is operative
amongst human designers is a potentially fruitful area of research.

7. Conclusion
Robust systems must be designed to be resistant to high-risk perturbations. Ro-
bust design has traditionally focused on reducing the consequence of variation in
design variables, uncontrolled parameters, system models, and design processes
(Types I, II, III, and IV robustness respectively). Design for SoS requires
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consideration of an additional type of robustness, robustness to unfavorable
strategic decisions by potential collaborators.

Strategic uncertainty in collaboration can be modeled as a stag hunt game
in which all actors increase their utility by collaborating, but are penalized if the
other actor(s) defect. A stag hunt game has two pure-strategy equilibria: when all
actors collaborate, and when all defect. Equilibrium selection can follow either
payoff dominance or risk dominance. The collaborative strategy is always payoff-
dominant in stag hunt games, just as collaboration is assumed to be mutually
beneficial in SoS. However, coordination failure can result in significant losses,
a consideration that is absent from payoff dominance. Risk dominance, however,
indicates which strategy has the greatest basin of attraction and accounts for all
possible game outcomes for all actors.

This work demonstrates that risk dominance accurately describes strategy se-
lection in evolutionary technology transition game as a thematic representation of
SoS. Significantly, design modifications which reduce losses due to coordination
failure (strategic robustness) increase the probability of collaboration for all sys-
tem actors, including those with designs that are relatively fragile to coordination
failures, thereby increasing the stability of the collaborative strategy. That is,
system designs which increase robustness by mitigating perturbations directly
also increase robustness by modifying the environment to make coordination
failure less probable. A change in one actor’s strategy selection as a function of
another’s payoff-altering design decisions is a consequence of strategy dynamics
and precisely what risk dominance measures.

Future steps for this work should attempt to replicate results with real-world
designers and design teams to better understand human design decision-making
in collaborative settings. Additionally, supporting design methodologies which
implement risk dominance as a measure of a design’s robustness to variations
in the strategic environment will help guide robust design efforts. Specific
areas of methodological research include probabilistic models of system actor
utility functions, implementation of Bayesian games to characterize uncertainty,
and domain-specific conceptual design methods incorporating risk dominance to
assess strategy dynamics.
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