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Federated Space Systems Tradespace Exploration
for Strategic Robustness
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Motivated by the growth of the commercial space economy and renewed focus on the dis-
aggregation of military space systems, this work develops a method for conceptual design
of federated satellite systems as a collaborative system-of-systems (SoS). Objectives seek to
improve the likelihood of successful SoS formation and pursue constituent system utility ro-
bustness. The proposed metaheuristic optimization tradespace exploration method accounts
for technical and economic design variables and multi-decision maker strategy dynamics. Con-
stituent system designs are ranked on their simulated net present value. A game-theoretic
measure of risk dominance is used in concert with net present value to assess robustness and
utility of candidate SoS designs. The method is validated with a notional application case
that assesses potential collaboration between Earth observing and telecommunications sys-
tems. The proposed methodology reduces the threshold probability of partner collaboration
for which SoS participation is economically rational by up to 18% for the most efficient designs
compared to a typical conceptual design method, thereby increasing the likelihood of successful
SoS formation. The results highlight the importance of accounting for strategy dynamics when

designing systems for collaboration.

Nomenclature

= weighted-average log measure of risk dominance
= independent strategy

= collaborative strategy

= normalized deviation loss for player i

= probability that player i selects strategy

= influence weight for player i

= influence matrix

= SATCOM system number of planes
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Ny = SATCOM system satellites per plane

€ = SATCOM system user minimum elevation angle
C = number of user channels

P = per channel transmitter output power
Ry = slant range

G = gain

n = efficiency

Ay = single satellite coverage area

Agerr = effective single satellite coverage area
Shase = SATCOM system subscriber base

K = maximum number of subscribers

by = subscriber growth model scaling factor
by = subscriber growth model inflection point
Mgry,s = SATCOM satellite dry mass

e = EO system number of planes

N, = EO system satellites per plane

D = primary aperture diameter

a = altitude

y = number of EO system ground stations
A = information value decay rate

0 = imagery resolution

P = monthly revenue

VA = single attribute value of latency

Vo = single attribute value of resolution
mgrye = EO satellite dry mass

I. Introduction
Hile early satellite clusters and constellations focused on operating together to perform a single function,
Wwork within the last decade has investigated Federated Space Systems (FSS) [1} 2]. FSS are collaborative
system-of-systems (SoS), with no central authority to enforce SoS level design goals and decisions [3]. Individual
satellites or constellations within a federation have unique missions and may be operated by separate organizations. Yet,

by leveraging one another’s capabilities, they create new effects or improve performance of core functions. As a SoS,



FSS require application of an engineering methodology suited for their unique socio-technical challenges [4].

The benefits of FSS come with risks of coordination failure unique to collaborative systems. Coordination failure
leads to two primary forms of consequences. The first consequence is non-recoverable investments made to enable
the collaboration. In the majority of cases, these investments will be for information system interoperability [4} [5]],
though transmission of power and motive forces between spacecraft have been envisioned as well [6]. The second
consequence is functional vulnerability stemming from efforts to reduce functional redundancy across the federation to
maximize efficiency. These potential consequences highlight the trade between efficiency and robustness in engineered
systems that is also found in biological systems [7]]. Therefore, designing for utility robustness in the face of uncertain
collaborative behavior from other system actors is the key challenge for FSS.

Much of the research in SoS design has focused on balancing the independent interests of multiple stakeholders to
achieve a compromise solution [8]] or with models that aim to predict when successful collaboration will occur [9].
Some methods assume that SoS-level goals exist [LO] or that there is unified managerial authority over each of the
constituent systems [[L1]]. Neither of these conditions are true of collaborative SoS, such as FSS [3]. Furthermore,
none of these methods quantitatively measure the stability of a collaboration, indicate each system’s robustness to
coordination failure, or provide a way to assess designs and design combinations for their ability to improve either of the
aforementioned attributes.

A recent body of research applies risk dominance measures from game theory [[12]], using the canonical stag hunt
game as an analogy for SoS development [13]]. Grogan and Valencia-Romero [13] close the aforementioned gaps in
SoS research with quantitative methods for assessing strategy dynamics amongst collaborators and designing systems
to incentivize participation by independent system owners. However, no existing work transitions the theory of risk
dominance to a tradespace exploration setting suitable for domain-specific conceptual design studies. This paper applies
SoS multi-actor value models [[13}114] to a collaborative space systems tradespace exploration problem, developing a
methodology that indicates which system designs are rational choices for implementation in a FSS. This work goes
beyond previous SoS tradespace exploration efforts by considering the primary difference between collaborative SoS
design and traditional system design; the strategy dynamics induced by multiple decision makers with differing goals.
While previous works recognize the challenges created by multiple decision makers, none present a methodology to
improve upside utility of every constituent system through collaboration and ensure that the strategy dynamics as a
whole favor the selection of the payoff dominant collaborative strategy, creating the conditions in which the SoS can
form.

The benefits of the method presented here are measured in two ways. First, it yields system designs that result in
strategy dynamics which more strongly favor collaboration for a rational decision maker, and can be adapted to varying
risk postures through utility function updates. Second, the method yields designs that are strategically robust, i.e., they

retain greater value or utility under a FSS coordination failure.



The balance of this paper is organized as follows. Section II reviews a background of issues related to SoS
development and fielding, with a special focus on challenges of multi-decision maker collaboration. Section III describes
the tradespace exploration methodology, system models, and the baseline application case. Section IV presents a
game-theoretic equilibrium selection measure as an evaluation metric in a tradespace exploration of the design spaces
and re-evaluates the application case with the updated methodology and an extended design space. Finally, Section V

discusses findings and Section VI concludes the paper.

I1. Background
This section outlines a brief background of the unique challenges of FSS conceptual design, previous work targeted

at these challenges, and an introduction to the tools used in this work to narrow existing methodological gaps.

A. Systems-of-Systems

Understanding the unique challenges of FSS requires a clear definition of their parent system type, SoS. Several
papers propose definitions for SoS with agreement on a subset of the proposed SoS attributes. This section provides a
brief overview of the existing work to establish the definition used throughout the remainder of this paper.

Maier [4]] characterizes SoS with a two part definition: 1) a SoS’s component systems must fulfill their own function
or purpose and continue performing that function if separated from the SoS and 2) the component systems must be
managed for their own purposes rather than the purposes of the SoS. Other works add to Maier’s definition with
geographic distribution, emergent behavior, and evolutionary development as additional defining features [[15} [16]].
These definitions implicitly assume there exists an upside for each constituent system to participate in the SoS and,
correspondingly, downside risks must be weighed against the upside potential [4, |16]. This paper adopts Maier’s
definition, with the understanding that constituent system owners must expect to benefit from collaboration to pursue it.

Several SoS engineering (SoSE) methods have been proposed to design systems to meet the objectives of independent
system actors. DiMario et al. [10] propose a method to discover satisficing SoS solutions employing the Analytical
Hierarchy Process (AHP) for group decision-making. They recognize that constituent system owners will only collaborate
if it increases their expected utility. AHP requires weights and combinations of the objectives of each constituent
system and any global SoS objectives. Others model SoS formation using a chemistry analogy in which systems are
represented by elements which complete their valence shells by forming molecules [9]. Still others propose transfer
contract mechanisms from corporate management to align the objectives of the constituent systems with global system
goals [[L1]]. While some of these works recognize that the constituent systems should benefit from participation in the
SoS, none presents a methodology that considers how the unique SoS risks and benefits will affect the independent
decisions of each constituent system actor.

Design methods for SoS are fundamentally limited by the distributed authority among system actors. A SoS



authority, to the extent it exists, has little control over shaping the objectives or decisions of constituent system actors.
Corresponding SoS design methods therefore shift from identifying solutions to proposing solution processes that
facilitate the discovery of desirable alternatives preferred by system actors and exhibiting properties preferred by SoS
observers such as Pareto efficiency, fairness, and stability to deviations. In short, each constituent system actor is seeking
to get the “best” possible system [17]], and the task of SoSE is to provide a process which explores possible alternatives

in pursuit of this goal, recognizing that the existence of the SoS depends on achieving it.

B. Tradespace Exploration

Tradespace exploration techniques have gained traction in recent years as design methods to support conceptual
design [18] [19]]. Traditional conceptual design methods focus on Analysis of Alternatives (AoA) that evaluate and
compare a few designs with respect to system objectives [20]. Consequently, AoAs can provide poor coverage of
a design space, increasing the probability that a sub-optimal design will be implemented [20]. On the other-hand,
automated tradespace exploration, whether by enumeration or guided by an optimization routine, enables relatively
rapid low to mid-fidelity evaluation of a large design space which helps to locate promising areas for more detailed
analyses and identifies trends and relationships amongst the design variables.

Multi-Attribute Tradespace Exploration (MATE) takes as inputs the design attributes, attribute value ranges,
single-attribute utility functions, and multi-attribute utility function for a system concept and outputs system utility
and cost for each design in the specified design space. Designers generally perform the exploration portion of MATE
enumerating possible designs in the space. Enumeration achieves a complete mapping from the design attribute
space to the utility-cost space, but can be time prohibitive for large design spaces or computationally expensive utility
functions. Several researchers addressed the issue of computation time by guiding the tradespace exploration process
with an optimization routine, often using a metaheuristic such as simulated annealing [21]] or a genetic algorithm [22].
Metaheuristic driven techniques cannot guarantee optimality, but are faster than direct enumeration.

A body of research establishes MATE as a method for discovering SoS or multi-stakeholder system designs
that trade the objectives of the constituent systems to find workable solutions for all constituents [8| 23| 24]]. These
methodologies assume overlap in objectives between systems and higher-level goals or a degree of unified managerial
authority—conditions that are not applicable to collaborative SoS. Additionally, simply modifying MATE to evaluate
utility independently for each system is inadequate because an optimistic upside benefit for each system is insufficient
grounds for participation in a collaborative system. Evaluating expected utility for each system, which considers
downside risks of collaboration, would seem to be the answer; however, individual evaluation of expected utility does
not account for the interactive dynamics created by multiple decision makers. Consequently, a new method is needed to

determine rational courses of action in a multi-decision-maker scenario in which common goals cannot be assumed.



C. Game Theory for Collaborative System Design

Game theory studies strategic interactions between multiple decision-makers [25]] and is well suited for application
to the SoS design problem. Essential game theoretic features include a set of decision-making actors (players), a set of
strategies that define a complete course of action, and outcomes (payoffs) resulting from combinations of strategies
selected by each actor. As an interactive decision-making problem, the strategy selected by one actor is influenced by
other actors and vice-versa. Solution strategies build on decision rules such as maximin or minimax and equilibrium
conditions that identify stable strategy sets where no actor has incentive to change strategies.

Game theory has been applied to study collaboration between independent businesses [26]], engineering design in
competitive environments [27, 28], and to negotiate between subsystem designers and stakeholders in collaborative
design of individual systems [29] [30]. Recent work applies a risk dominance measure from equilibrium selection
literature to determine whether system design combinations produce dynamics that favor independent or collaborative
strategies [12| [13]]. Accordingly, these methods can evaluate designs with the goal of selecting those which are
strategically robust. The concepts presented in Ref. [[13] are explained in greater detail in Section and form the
foundation of the research in this paper.

One of the main drawbacks of game-theoretic analysis is a focus on strategic decision-making at the highest levels
of abstraction. Analysis of strategy dynamics and equilibrium points only evaluate decisions such as whether to
pursue collaborative or independent architectures, rather than more detailed decisions governing system design and
implementation. The logical gap between strategic and non-strategic design decisions presents a barrier to adopting
game-theoretic metrics to a tradespace exploration paradigm. The work presented here addresses this issue with a
bi-level decision model. The lower-level design information determines each constituent’s utility given a particular
implementation and strategic context. The constituent system utilities under each strategic context are then used for

game-theoretic analysis of the strategy dynamics; linking design decisions to their impacts at the strategy level.

D. Research Objectives

The objective of this work is to develop and evaluate a methodology to find the robust, utility maximizing constituent
systems to operate in FSS and other SoS. Coordination failure between constituents is a unique perturbation for SoS
which means constituent actors must consider two new system characteristics. First, they must design their systems to
be robust to coordination failures to minimize the loss of utility if the SoS dissolves. Second, they must design their
systems to increase the stability of the collaborative strategy for all constituent systems, reducing the likelihood of SoS
dissolution. These tasks are related—a system actor who loses relatively little under coordination failure is more likely
to choose the collaborative strategy than one who takes a great risk by collaborating.

The research methodology includes two components. The first component implements a game-theoretic equilibrium

selection criterion within a simple FSS tradespace exploration process to determine if selected designs contribute to



favorable strategy dynamics. The second component includes economic factors such as contract terms and financial
resource exchanges that affect system actor payoffs to study how the proposed methodology can guide selection of

economic variable values and how the broader scope impacts the utility and robustness of candidate designs.

I11. Baseline Model
This section introduces a notional FSS application case, constituent system models, and results of a baseline
tradespace exploration process typical of existing analysis methods. A later section compares the results obtained in this

section with those obtained when SoS unique strategy dynamics are considered.

A. Application Case

This work uses conceptual design of commercial communication (SATCOM) and earth observation (EO) satellite
systems to illustrate the methodological concepts. Net present value (NPV), in dollars, measures attainment of individual
objectives and is calculated from system cost and revenue time series, assuming a 10% discount rate. SATCOM system
revenue depends on subscription users and EO system revenue depends on imagery resolution and latency, measured as
the time from request of an image of a specific location to the downlinking of that image.

Both systems can increase revenue by forming a FSS. EO latency decreases, increasing system revenue, by utilizing
the SATCOM system to relay image data to the ground. SATCOM revenue increases by selling the data transport
service to the EO system. Figure [T graphically displays the two systems operating independently and as a FSS. System
actors maximize utility strictly by maximizing their revenue. No distinct FSS-level goals contribute to individual system

utility. Similarly, system actors do not value each other’s objectives (other than how they indirectly affect their own).
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B. SATCOM System Model

The SATCOM system is modeled as a Low Earth Orbit (LEO) constellation with a primary mission to provide
internet connectivity services. Table[I]lists variable tradespace parameters. For simplicity, all SATCOM systems use
a polar orbit with a streets of coverage constellation design. First, Eq. (I)) uses the specified number of planes (ry),
satellites per plane (Ny), and elevation angle (€) to calculate the minimum altitude, a,,;,, to achieve a minimal street of
coverage, where R is the radius of the Earth. An optimizer varies the altitude to minimize the difference between the
combined longitudinal coverage of all the streets (measured in units of Earth central angle) and 2x radians. Altitudes
below 400 km are not permitted because constellations that can maintain coverage below 400 km have greater overlap
between antenna footprints. The altitude and minimum user elevation angle € determine the maximum slant range (Ry)
and coverage area (A, deg?) of each satellite.
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Table 1 SATCOM system tradespace

Variable Symbol Maximum Minimum
Number of planes s 60 4
Number of satellites per plane Ny 80 8
Number of user channels C 32 1

Per channel transmit power (W) p 10 1
Minimum user elevation angle (deg) € 40 10
Modulation scheme 22 options

The next step determines maximum data throughput for each satellite. Steerable and shapeable beams with 10%
effective coverage are assumed for all designs, i.e., 10% of the satellite field-of-regard is covered by beams at maximum
gain. Equation (2)) calculates the area covered by each beam. Equation (3] calculates maximum transmit antenna gain

(G, dBi) where 1 is transmit antenna efficiency [31]].
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The specified transmit power (p) and modulation scheme determine the maximum per channel data rate as the
minimum of the power limited and bandwidth limited rates. Per-satellite data rate is simply the channel rate multiplied

by the number of channels. See the Appendix for an example link budget. The number of user subscriptions, as the



minimum of the supportable subscriptions (based on deployment) and the subscription base for the month of the revenue
calculation, determines monthly revenue. The number of subscriptions supportable by the constellation uses the total
constellation throughput, a 10 Mbps user data rate, and a conservative over subscription ratio of 5:1 [32]]. A logistic
curve [33 134] using satellite internet market growth projections published in Ref. [35]] caps the subscriber base, Sp4se-
Eq. (@) implements the logistic curve, where K is the maximum number of subscriptions in millions, b, is the scaling

factor, ¢ is the time in months from the start of system development, and b, is the inflection point in months.

Shase = | + e-bi(t-b2)

K ] @)

The SATCOM system cost model uses parametric cost-estimating relationships (CERs) by first estimating dry mass
from transmit power in Eq. (3). The cost models assume the total communication payload transmit power, including
gateway, user, and inter-satellite links (ISLs), is 200% of the user link transmit power with an additional 10% overhead
for receivers and other payload electronics. The estimate of spacecraft dry mass divides the payload power by a 0.46
payload power fraction [31] and multiplies by a density factor 0.20 kg/W and a redundancy factor of 0.8 to account for
the short, five year mission life [36]].
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The model uses communication satellite CERs published in Ref. [31], Table 11-5 to estimate spacecraft non-recurring
engineering (NRE) and production costs. Production costs assume an 85% learning curve [37]]. Estimates of total
spacecraft mass assume an additional 27% propellant mass [31]]. Launch costs assume direct insertion, mass-limited
launches with at least one launch per plane, Atlas V 551 performance data [38]], at $62M per launch. A 1:10 gateway
ground station to satellite ratio determines the number of ground stations required [39]. The model implements CERs
published in Ref. [31] to estimate costs for ground station infrastructure, operations, launch and orbital operations, and
program level costs. The NRE period is 24 months, followed by 12 months of production and launch preparation prior
to the first launch. Subsequent launches occur monthly until the entire constellation is deployed. The model spreads
costs uniformly by month over the phase in which they are incurred. The model incurs launch costs starting 24 months
prior to each launch and groups production costs into lots by launch and spreads them over a 12 month period, working

backwards from the launch date. See the Appendix for a detailed cost model including the factors and CERs used.

C. EO System Model
The model represents the EO system as a low-Earth orbit (LEO) constellation with circular, polar orbits. Table[2]
lists variable tradespace parameters. The model uses a fixed minimum elevation angle of 40° for imaging and 15° for

communication with ground stations.



The model uses Orekit 10. and a Python wrappe to measure latency for each architecture by propagating
spacecraft orbits and performing spacecraft-to-target geometric calculations. 50 points distributed uniformly in longitude,
with a triangular distribution between 89° North and South latitude, approximating a uniform global distribution,
comprise the target set. All targets enter the imaging queue at the beginning of the simulation. The satellite with the
minimum time to receive a target imaging command, collect the image, and downlink to a ground station is tasked with
collection. The model selects the first y ground stations from a list that prioritizes extreme latitudes for favorable access
to all satellites in the system (see Appendix for all ground station locations). The time from simulation start to imagery
downlink is logged as the latency. The simulation runs until the data for the last target is downlinked. Simulation
replications consider five start times, each offset by six hours, to mitigate effects of initial conditions. The mean latency
for all targets and all simulation trials represents the performance metric for a given architecture.

The model does not consider observation range or angle to improve execution speed and to enable a greedy algorithm
to schedule imaging operations. The resulting metric captures best case latency, but not data quality. Resolution is

simply determined by the Rayleigh diffraction limit and small angle approximation for a nadir target.

Table 2 EO system tradespace

Variable Symbol Maximum Minimum
Number of planes e 4 1
Number of satellites per plane N, 4 1
Aperture diameter (cm) D 100 10
Altitude (km) a 800 400
Number of ground stations 0% 5 0

A two objective multiplicative value function [40] computes monthly revenue with a maximum revenue of $200M
in Eq. (6). An exponential single-attribute value function (SAVF) for latency represents the decay of information value
[41,142]) in Eq. (7). An aggressive decay rate (1) of 1/30,000 s~! requires system mean latency significantly less than
24 hours for appreciable value generation. An exponential SAVF in Eq. (8] for resolution (6) yields a value of 1 for

resolutions better than 20 cm.

PEO = $200M *VA Vo (6)

VA = e M (7N

* Available from CS GROUP at https://orekit.org
T Available from CS Systemes d’Information at https://gitlab.orekit.org/orekit-1labs/python-wrapper
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The EO system cost estimation process mirrors that of the SATCOM system with a few differences. EO system
dry mass is estimated from aperture diameter (D) in Eq. (9) using a parametric relationship from Ref. [36]. NRE and
spacecraft production costs are estimated using reconnaissance satellite CERs from Ref. [31]] Table 11-5. Lastly, the
number of ground stations is an independent design variable, rather than a parameter determined by the number of

satellites in the system.
k
Marye=D - 22.87;%1 0.8 )

D. Collaborative System Model

A collaborative system utilizes excess SATCOM system capacity to transport EO system commands and data,
increasing the potential revenue streams for the SATCOM system and the value of the EO system data. The collaborative
system model is implemented with updates to the EO latency model and revenue models, SATCOM revenue model, and
both cost models.

The EO system latency model assumes imaging tasks are instantaneously transmitted to the EO system upon demand
generation and data is immediately available upon collection. Collaborative systems use the same targets and start times
as the independent systems but latency for each target is reduced to the time from simulation start to the first possible
observation of the target. EO monthly revenue is reduced by $10M to pay a data transport service fee. The collaborative
EO system cost model increases system mass by a factor of 5% to account for inter-satellite link hardware and increases
NRE cost by an additional 10% to account for software to enable open inter-satellite links and additional bus complexity
from adding link hardware. Recurring costs increase as a result of the mass increase, plus an additional 5% complexity
factor.

The SATCOM system starts collecting the data transport service fee after it deploys the minimum number of satellites
required to access any other satellite in LEO and one or more EO satellites are deployed. The baseline SATCOM system
network is a lattice with phased arrays for steerable links orthogonal to the velocity vector. In implementation, a small
area of each array would be used periodically as a low gain “listening” antenna to receive data transport requests from
the EO system [43]. When a request is received and accepted, the array would focus a high gain beam at the EO satellite
to receive the data [43]. Therefore, no additional hardware was necessary to enable interoperability. The only change to

the SATCOM cost model was a 10% increase in NRE to account for the ad-hoc networking protocol implementation.
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E. Baseline Tradespace Exploration

The baseline analysis executes tradespace exploration in two phases depicted in Fig.[2] The first phase uses a genetic
algorithm to find the value-maximizing independent systems. The second phase searches for collaborative solutions that
maximize NPV under successful collaboration for each system actor (i.e., as a multi-attribute objective). A collaborative

design resulting in NPV greater than the independent designs for all systems is a viable candidate FSS.
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Fig. 2 Tradespace exploration structural diagram.

Tradespace exploration uses the Distributed Evolutionary Algorithms in Python (DEAP) ealMuPlusLambda genetic
algorithm (GA) implementation [44]. Each trial starts with a population of 200 designs and runs for 100 generations.
The cross-over and mutation rates are set to 0.8 and 0.2 respectively. Initial trials use the tradespaces displayed in Table
[T]and Table 2] to narrow the variable ranges, increasing the probability of finding the optimal designs in the subsequent
trials. Two or three trials are conducted for each tradespace.

Table 3] displays the top five independent EO system designs. All designs are similar with two or three planes and
three or four satellites per plane. No economic advantage is gained by employing more than three ground stations.
Designs 1 and 2 are identical aside from the employment of two additional ground stations for design 2, which reduce
NPV. Design 1 is the single Pareto efficient design.

All designs share similarities with existing or planned commercial imaging constellations. The 1m apertures yield
nadir resolution of 22 cm at the 400 km operating altitude. Comparable systems, such as WorldView-3, obtain 30 cm
nadir resolution at 600 km [45]]. Constellation size is also similar to the planned, 10 satellite, Maxar constellation
comprised of the four on-orbit systems and six WorldView Legion satellites scheduled for launch in 2022 [46, |47/]].
External validation of system latency using existing systems is more challenging. Imagery providers publish revisit

rates, but do not disclose time from customer imaging requests to data delivery, which is the metric used here.
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Table 3 Top five independent EO systems to maximize NPV

Design 7, N, D (cm) a(km) vy NPV ($M)
1 3 3 100 400 3 346.75
2 3 3 100 400 5 311.42
3 3 3 95 400 3 303.72
4 3 4 100 400 3 275.70
5 2 4 100 400 3 273.74

Table [ shows the top five independent SATCOM system designs. As was the case with the EO system, the highest
value SATCOM system designs are clustered around a narrow set of design variables. Most high-value SATCOM
systems select low transmitter power and large constellations, likely due to several factors. Large constellations can
maintain coverage at the minimum altitude, maximizing launch vehicle capability, and reducing free-space losses.
Additionally, per channel power requirements grow exponentially with the bandwidth limited data rate. Lastly, the NRE
for a smaller satellite is lower and learning effects benefit large constellations much more than small ones. Therefore, a
given power flux-density is more efficiently achieved with large numbers of relatively low-flying, low-power satellites
than with small numbers of higher-flying, high-power satellites. The relationship between required power, flux-density,
and satellite quantity also explains the preference for high minimum elevation angles, which require more satellites but
reduce the maximum slant range and enable the use of higher gain antennas.

Resulting architectures are similar to LEO mega-constellations that are in development or deployment. Design 1 is
composed of 3,280 satellites, similar in number to Starlink (4,408) and Kuiper (3,236) [48]. The max throughput of a
Design 1 satellite is 12.8 Gbps; again similar to estimated Starlink satellite performance (19.7 Gbps) [48]]. Design 1’s
minimum elevation angle of 40° is similar to the almost identically-sized Kuiper constellations 35° minimum elevation
angle [48]. The similarity of the results to contemporary LEO communication constellations provides external validation

for the reasonableness of the trade space and the rigor of the evaluation procedures.

Table 4 Top five independent SATCOM systems to maximize NPV

Design 7. N, €(°) p(W) C  Modulation Scheme NPV ($M)

1 41 80 40 1 32 8PSK, 2/3 Code Rate ~ 9035.65
2 40 80 40 1 32 8PSK, 2/3 Code Rate ~ 9034.57
3 42 80 40 1 32 8PSK, 2/3 Code Rate ~ 9025.21
4 39 80 40 1 32 8PSK, 2/3 Code Rate  9021.90
5 38 80 40 1 32 8PSK, 2/3 Code Rate  9021.07

Amongst the EO systems designed for collaboration, the highest value designs in Table 5] favor large constellations

with no ground stations. Collaboration increases maximum NPV by 103% over the highest NPV independent design.
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The complete elimination of ground stations is the most striking feature of the designs which maximize NPV under
collaboration.

Table 5 Top five collaborative EO systems to maximize NPV

Design 7, N, D(cm) a(km) vy NPV ($M)
1 3 4 100 400 0 704.38
2 3 3 100 400 0 685.78
3 2 4 100 400 0 662.45
4 3 4 95 400 0 622.02
5 3 3 95 400 0 606.41

Unlike the highest value collaborative EO systems, the SATCOM architectures in Table [6| are nearly unchanged
aside from the addition of interoperable ISLs. The highest value independent and collaborative systems are identical

with respect to other architectural decisions. Successful collaboration increases NPV by a modest 3.3%.

Table 6 Top five collaborative SATCOM systems to maximize NPV

Design 7y Ny €(°) p(W) C  Modulation Scheme NPV ($M)

1 41 80 40 1 32 8PSK, 2/3 Code Rate ~ 9332.78
2 40 80 40 1 32 8PSK, 2/3 Code Rate ~ 9331.70
3 42 80 40 1 32 8PSK, 2/3 Code Rate ~ 9322.34
4 39 80 40 1 32 8PSK, 2/3 Code Rate ~ 9319.03
5 38 80 40 1 32 8PSK, 2/3 Code Rate ~ 9318.20

Baseline analysis results show collaborative designs can achieve superior NPV than independent alternatives for
both EO and SATCOM systems; however, the results critically assume successful FSS formation. The analysis does not
consider sources of risk from coordination failures that diminish the desirability of collaborative solutions, exemplified
in the potentially-fragile choice of eliminating dedicated EO ground stations. Furthermore, as a strategic decision,
choosing to collaborate or remain independent is an interactive problem among the constituent system actors that
cannot simply be addressed with probabilistic analysis alone. Analysis of strategy dynamics in the following section

demonstrates that other factors should be considered in design selection.

IV. Collaborative System Design with Strategy Dynamics
This section explains and illustrates fundamental game theoretic principles of risk dominance and applies it to
SoS conceptual design. Risk dominance is then computed for results presented in the last section. Finally, an updated
tradespace exploration methodology is presented and applied to the FSS design case with the baseline design variables

and an extended case with additional design space dimensions.
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A. Risk Dominance in Bi-level Design Games

This work uses the game-theoretic concept of risk dominance to measure the strategic stability of the efficient
strategy as a function of the strategic robustness of the constituent system designs in a FSS context. This section
introduces risk dominance and its application to engineering design.

Grogan and Valencia-Romero [13] develop a methodology to apply game-theoretic principles to engineering design.
Their methodology uses the concept of risk-dominance from equilibrium selection literature to quantify the relationships
between design decisions and strategic stability in a federated system. The weighted average log measure of risk
dominance (R) converts payoffs from a multi-actor design game into a single number that indicates which strategy is risk
dominant [12]]. When comparing two or more SoS alternatives, the lowest R value most strongly favors collaboration.

The risk dominance concept is easily illustrated by application to the canonical stag hunt game [49] illustrated in
Table[7]in normal form. It presents a coordination problem between two hunters who have the choice of pursuing hare
(¢) or stag (). If both hunters select the hare-hunting strategy, then each receives a moderate payoff (2 utils). If both
hunters pursue a stag-hunting strategy, then they each improve their gains (5 utils) relative to the hare-hunting strategy.
However, if one hunter chooses to cooperate and the other defects, then the cooperating hunter receives nothing (0 utils)
from their unsuccessful hunt. Whereas, in this case, the non-cooperative, defecting hunter receives a greater reward (4

utils) from hunting hare due to reduced competition.

Table 7 Normal form representation of a stag hunt game

Actor 2
Actor 1
Hare (¢) Stag (1)
vyt =2 Vv =0
Hare () V/?=2 v/¢ =4
vV =4 vIv=5s
Stag () V'’ =0 v'V=s

Choosing a strategy in the stag hunt game must consider interactive effects; specifically, the strategy chosen by the
other hunter and the payoff for a given strategy combination as a function of the player’s selected design. Both hare/hare
and stag/stag outcomes are Nash equilibria in a stag hunt game. There is no reason to pursue stag if one’s partner
chooses hare and, alternatively, no reason to pursue hare if one’s partner chooses stag. While both are “stable” solutions,
the two equilibria produce very different outcomes. Similar to how payoff dominance identifies the alternative with
higher payoffs under successful coordination, risk dominance identifies the alternative with higher (expected) payoffs
under a possible coordination failure.

To visually explain risk dominance, Fig. [3|(a) illustrates a hunter’s expected payoff as a function of the probability

that the other hunter chooses to hunt stag (i.e. collaborates). The intersection point (u;) of the two expected value lines
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displays the threshold probability that player j collaborates (p ;) for which the efficient (expected value-maximizing)
strategy shifts from hunting hare (¢) to hunting stag (). Equation (I0) computes u; for a payoff function, V, where
superscripts indicate players i and j hunt hare (¢¢), i hunts hare and j hunts stag (¢y), i hunts stag and j hunts hare
(¥ ¢), and both players hunt stag (¢¢). Due to symmetry, u; = up = 2/3. Without additional information a rational
decision maker will choose to hunt hare which yields an expected payoff of 2 - 0.5 +4 - (1 — 0.5) = 3.0 which exceeds
the stag payoff of 0- 0.5+ 5 - (1 — 0.5) = 2.5. This analysis shows why choosing the hare-hunting strategy is viable and,
under specific conditions, even rational or normative, despite stag/stag being the payoff dominant equilibrium.
Vi¢¢ _ Vilﬂ ¢

u; = (10)
(Vl¢¢ _ Vi(//¢) _ (Vl¢¢ _ Vi¢¢)

To connect with engineering applications, a design layer is added by assuming payoffs associated with the strategic
decisions in Table 8] are also affected by the hunting implement (design) selected by each of the actors. For example, a
hunter who intends to hunt hare brings dogs, whereas a hunter who intends to hunt stag with a partner brings a spear.

Table 8 Stag hunt design-strategy payoffs

Strategy Combination

Design
Hare, Hare Hare, Stag  Stag, Hare Stag, Stag
Dogs 2 4 0 0
Spear 0 0 0 5
Bow 1 1 1.75 4.5

Adding a third design, bow, changes the strategy dynamics. Though the bow has a lower payoft than dogs if hunting
hare and a lower payoff than spear for a successful stag hunt, it significantly reduces the downside risk of collaboration
in the event of a failed stag hunt. A similar probabilistic analysis in Fig.[§] selecting the bow for a stag hunt, shows the
collaborative strategy has higher expected payoff for probabilities of cooperation above 1/3, graphically represented in
Fig.[3|(b), increasing E[V]; at p; = 0.5 from 3.0 to 3.125 despite the bow option being Pareto dominated in each fixed
context. Cooperation is the rational strategy if both hunters use the bow and no other factors influence strategy selection.

The risk dominance metric R formalizes the concept of risk-informed strategy selection when there are more than
two players or asymmetric payoffs. Several decades of research have demonstrated that the risk dominant strategy has the
greatest basin of attraction; that is, it is selected in repeated games between multiple players, updating their strategies to
maximize payoft in each round of play [50]. Carlsson and van Damme [51]] also found that the risk dominant equilibrium
should be selected in single-shot games if players allow the possibility of a strictly dominant equilibrium (this requires
that the players are not certain the game is a stag hunt, an entirely reasonable assumption for a real-world ‘game’ in
which payoffs are uncertain). R is computed using Eq. (TT) where w; are influence weights based on an influence matrix

A and w; = 0.5 for two-player games (see Ref. [13]] for a complete explanation of w; and A). A positive R indicates the
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Fig. 3 Expected value of player strategies under uncertainty.

independent strategy (¢) is risk dominant while a negative R indicates the collaborative strategy (i) is risk dominant.

More importantly, R provides a relative measure of collaborative stability that can be compared across scenarios.

Ui

R= Z wi(A) In (11)
i=1

1 —u;

The R value for the stag hunt scenario in Table[7)is 0.69 which is reduced to —0.69 after selecting the bow design
alternative in Table [§] The bow design makes the payoff dominant strategy also risk dominant; in other words, the
bow design under the collaborative strategy () is the rational choice in the absence of additional information about
the likely actions of the other player. In the context of SOSE, R acts as a criterion for collective stability of individual
objectives as a function of the selected system designs. Selecting a system design that reduces R more strongly supports
collaboration either by increasing the upside potential of collaboration or by decreasing the downside risk of failed
collaboration (as demonstrated with the bow design). However, as illustrated here, risk dominance may also decrease

upside potential, demanding a multi-attribute evaluation process to balance the two desirable traits.

B. Baseline Analysis of Strategic Robustness

Returning to the the independent and collaborative EO and SATCOM systems presented at the end of Sec. the
systems designed for collaboration appear to have superior value. Naive collaborative system design methodologies may
stop once the value maximizing, mutually beneficial, designs have been discovered. However, simple mutual benefit
is insufficient to determine if collaboration is rational. Table[9]shows the normal form game for the EO-SATCOM
SoS with value-maximizing architectures selected for independent and collaborative strategies. Simulations of FSS
coordination failure produce the off diagonal values. System cost, performance, and revenue determinations for all

strategic outcomes follow the two-stage decision process in Fig. ]
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Table 9 Normal form representation of EO-SATCOM SoS strategies

EO SATCOM
Independent Collaborative
$9035.61M $9024.36M
Independent  $346.75M $346.75M
$9035.61M $9332.78M
Collaborative —$689.11M $704.38M

Partner
strategy

collaborative
Mo

v v
Independent cost, Independent
performance, & performance &
revenue models revenue models

Fig. 4 Two-stage decision flow chart.

Collaborative
- performance, fee, &
revenue model

Collaborative
strategy
selected

Collaborative cost
model

Select Strategy

Table 9] shows that the SATCOM system losses are relatively small if collaboration fails, whereas the EO system
losses significantly exceed upside potential. The normalized deviation losses, u;, are 0.743 and 0.036 for the EO and
SATCOM systems respectively. The difference in downside losses has two causes. First, the EO system costs to enable
collaboration are much more significant than those of the SATCOM system. Second, maximization of the upside value
of collaboration requires architectural changes that severely inhibit functionality in independent operations (the “best”
collaborative EO design has no ground stations). The model implements a ground station leasing contingency plan
using publicly available pricinﬂ for zero ground station cases under failed collaboration. While the leased ground
station recovers some capability and avoids initial investment costs, operation costs are significantly higher relative
to a dedicated installation and capability does not match that of the three ground stations implemented in the best
independent design. These factors result in negative NPV for EO in the case of failed collaboration.

Considering the information in Table [9] it appears that the rational strategy for each system owner is different.
However, mutual collaboration and mutual independence are both strict Nash equilibria. In other words, it would be
irrational for the SATCOM system to pursue a collaborative strategy if the EO system is certainly not going to collaborate
or for the EO system to pursue an independent strategy if the SATCOM system certainly is going to collaborate. In the
absence of any information about the likelihood of the other actors actions, it is difficult to readily identify the rational
strategy.

Applying Eq. (TT) shows R is —1.11. Assuming no prior information about either actor’s preference for a particular

strategy, the rational strategy for both system actors is to collaborate. The relative losses of the SATCOM system are

 Accessed 7 August 2020 at https://aws.amazon.com/ground-station/pricing/
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small, so they are likely to collaborate. Combined with the significant upside gains for the EO system, the overall

strategy dynamics favor collaboration.

C. Tradespace Exploration with Risk Dominance

While the NPV maximizing designs produced by the baseline model produce favorable dynamics, guiding tradespace
exploration with a priori knowledge of risk dominance can produce designs that more strongly favor collaboration
by sacrificing efficiency for increased robustness. The results presented in this section are produced by an updated
tradespace exploration methodology that adds simulation of systems under coordination failure to generate values to
compute R. Implementation of R as a measure of the collective stability of individual objectives differentiates this
work from previously proposed SoSE design methods. Figure [5] shows the modified structural diagram elements for the
updated tradespace exploration methodology. The output is a Pareto efficient front in three dimensions: R and NPV for

each of the two systems.

: e ll

Heuristic Search

Individual design for

1 H [ o
each actor, best Collective 'fitness": |

independent solution upside potentials |

for each actor h 4 and R

Risk Dominance

Calculation |

Combinations of * Fitness for
: independent & collaborative each Actor

strategies and \
: corresponding designs |

Y

Joint Eval.
s Function 1

Phase 2

Fig. 5 Tradespace exploration with risk dominance structural diagram.

Table [T0] shows the Pareto efficient designs. Figure[6] plots the expected value of each EO solution against the
independent solution and Fig.[7]shows the EO NPV and R dimensions of the three-dimensional tradespace for all designs
with defined R. Figure[6]clearly shows that design 3 from Table[T0|sacrifices substantial upside potential relative to the
other two Pareto efficient designs.

However, design 3 also reduces the consequences of coordination failure through reduced space segment investment
costs and increased functional redundancy in the form of three ground stations. Both modifications bring design 3

architecturally closer to the highest performing independent EO design.
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Figure [7]shows that the viable EO system design space is fairly narrow and a subset of designs with positive NPV
under the independent strategy. The narrow range of viable design variables indicates a stable region in the space which

yields high-value designs for both strategies; in this case resulting in a number of designs which favor the collaborative

strategy.
Table 10 Pareto efficient collaborative designs with risk dominance
EO Design Planes Satellites Aperture Altitude Ground NPV, NPV R Ue
per plane  diameter (cm) (km) stations  ($M) ($M)
1 3 4 100 400 0 704.38 9332.78 -—1.11 0.743
2 3 3 100 400 0 685.78 933278 -1.13 0.733
3% 3 3 100 400 3 486.35 9332.78 -1.17 0.717

*Same as the value-maximizing design for the independent strategy, with interoperable ISLs added.
All SATCOM designs were Table@ design 1
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Fig. 6 Expected value for Pareto efficient EO solutions with consideration of risk dominance.

The results show that the primary dilemma is for the EO system. The u, values in Table[T0|indicate the minimum
probability of SATCOM collaboration for which the corresponding design yields higher expected value than the
independent strategy. Note that all u, exceed 0.5, yet the R values indicate that collaboration is dominant because it
accounts for SATCOM’s very low u, value near 0.036, which strongly favors collaboration. However, u, is a valuable
metric because it can diagnose the ability of the two systems to successfully engage without requiring global payoff
visibility, as R does.

EO design 1 yields the highest upside NPV. However, it is only preferred over the independent solution for probabilities
of SATCOM collaboration in the range 0.85 < psarcom < 1, while design 2 is preferred for 0.743 < psarcom < 0.85,
and design 3 is preferred for purcom < 0.743. This information enables the EO system decision maker to select the

design that maximizes expected value tailored to an estimated probability of successful collaboration.
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Fig. 7 Projected EO system tradespace under the collaborative strategy.

D. Extended Application Case: Effect of Economic Design Variables on Strategy Dynamics

Solutions to real-world engineering problems are intertwined with economic and mission factors that impact utility
throughout the system’s life-cycle. Therefore, this section provides expanded analysis of the original problem with
added economic design variables. Adding economic design variables aims to understand how the proposed tradespace
exploration methodology can facilitate evaluation of technical and non-technical variables and determine the usefulness
of including economic variables in design space exploration.

It is reasonable to assume that contract terms between the system owners are part of the design space of a collaborative
system and that the utility of a given technical implementation is a function of economic factors as well as system
performance. Therefore, simultaneous evaluation of technical and economic variables can identify designs with greater
strategic robustness, producing more stable dynamics, including designs that would not be considered when assessing
technical variables only.

The extended application case implements the monthly data transport service fee and a development cost-share as
economic design variables. Fixed fee results in the preceding section indicate the downside risk of failed collaboration
for SATCOM is low as compared to EO. A new cost-sharing agreement assigns up to 100% of EO’s collaboration costs
to SATCOM to balance the risk burden for each system. The monthly service fee can vary between $1M and $20M.
The SATCOM owner does not recoup the cost-share if they break the contract to pursue an independent solution. EO
reimburses SATCOM for the collaboration investment if EO defects. The variable fee and cost-share enable SATCOM
to collect higher data transport service fees to recoup their investment from EO without jeopardizing the federation.

The economic arrangement reduces EO’s downside risk and disincentivizes SATCOM’s defection without incentiviz-
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ing EO defection. Table [IT|shows a normal form example representing a modification to the highest NPV collaborative
design examined earlier with the data transport fee raised to $16.2M and addition of 50% cost-share. Note that values
are similar to Table[9]but with a transfer of $192M to EO in the event that EO collaborates and SATCOM defects. While
the game is no longer a stag hunt, it is still a bipolar game where R identifies the risk dominant strategy. The upside
payoffs are almost unchanged but the u; values are substantially reduced and R = —1.45. The cost-share agreement
increases SATCOM’s commitment to the collaborative strategy, and the cost penalty imposed on SATCOM can be

recovered by an increased data transport service fee, while still improving R.

Table 11 Example normal form game for cost-share contract

SATCOM NPV ($M)

EO NPV ($M)
Independent Collaborative
9035.61 9024.36
Independent 346.75 346.75
8843.92 9332.27
Collaborative ~ —497.38 704.88

Addition of fee and cost-share variables produce many Pareto efficient designs for each technical implementation
with desirable characteristics. Table[I2]lists a selection of high performing collaborative system designs with added
service fee and cost-share design variables in the tradespace exploration. Note that the design column is changed from
the numeric identifiers in the previous tables (with the exception of designs carried over from the preceding section,
included for reference) to descriptive names for further discussion. In the context of design names, min A designs are
those which minimize the difference in upside of collaboration for both systems.

Figure [8|displays designs from Table[12|as well as lines which represent the range of upside values for which R is
defined for each technical implementation on the Pareto frontier. Three of the designs in Table|12|are not on the Pareto
frontier, so their technical implementation value range lines are excluded. Two of these designs are apparent in the lower
left quadrant of Fig.[8} the third is nearby and is located at (556.40, 9260.86). R values are expressed in the color map,
with the scale maximum at 0. Points with R > 0 are colored the same as those with R = 0. Note that R decreases as EO
NPV increases across technical implementations because of the low downside risk for SATCOM relative to EO.

Several designs which would not be otherwise feasible, such as the two plane, three satellite per plane EO designs,
become feasible when economic variables are included in the tradespace exploration. Furthermore, the preference
for lower-cost designs may be even greater for a risk averse decision maker because downside risk is limited to the
investment cost, which is decreased.

Both the addition of economic variables and the application of risk dominance to assess the resulting designs create

insights over analyses that lack one or both of these features. The first benefit from implementing economic design
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Table 12 Select Pareto efficient collaborative designs with fee and cost-share as design variables

Design . N, D a y fee cost-share NPV, NPV R
(cm)  (km) ($M) (M) ($M)

1 3 4 100 400 0O 10.00 0.00 704.38 9332.78 -1.11
2 3 3 100 400 O 10.00 0.00 685.78 9332.78 -1.13
3 3 3 100 400 3 10.00 0.00 486.35 933278 -1.17
min R 3 3 100 400 3 1349 0.99 731.13  9087.99 -4.41
max NPV, 3 4 100 400 O 6.76 0.51 1000.04 9037.11 -1.30
max NPV 3 4 100 400 O 19.74 0.01 406.28  9630.87 -0.56
max up, min R 3 4 100 400 O 17.56 0.99 852.44 9184.72 -1.80
max up, min A 3 4 100 400 O 1991 0.72 673.25 936391 -1.57
3x4,3y 3 4 100 400 3 17.56 0.99 660.86 9179.64 -2.65
2x4, min R 2 4 100 400 3 1349 0.99 707.54 9098.41 -2.52
2x4, min A* 2 4 100 400 4 1442 0.82 53440 918749 -1.75
2x3, min R* 2 3 100 450 0O 14.60 0.68 556.40 9260.86 -1.32
2x3, 1 y** 2 3 100 450 1 14.60 0.68 437.11  9259.36 -0.86

Note: All SATCOM designs were TableH design 1
*Not on Pareto front
**Not in the results produced by the GA, but a promising low cost solution.
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Fig. 8 Pareto frontier, collaborative designs with fee and cost-share as design variables. Designs in Table
[12] are represented by ‘+> markers. Lines each represent the range of payoffs and R for a single technical
implementation that appears on the Pareto frontier. Note that the maximum R value on any line is 2.6, but the
color map maximum is set to 0 for clarity
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variables is an expanded Pareto front with new technical implementations, such as the two plane, four satellite per plane
EO system design and the three plane, four satellite per plane, three ground station design that were not feasible under
the fixed economic conditions presented above. Additionally, economic variables enable balancing of the upside and
downsides between each actor such that those bearing the greatest risk (EO in this example) have the most to gain. This
influences the dynamics towards strongly favoring collaboration; as demonstrated by the min R design in Table [I2]
which is identical to design 3 apart from the economic variables. Lastly, the economic variables move the Pareto front
such that design 3 is dominated by the max up, min ¢ design, yielding a superior option for both systems.

Discriminating between the Pareto efficient designs facilitated by the economic variables requires an additional
measure. R quantifies the basin of attraction for each strategy as a function of the game payoffs, which, in this context
are a function of technical and economic design. Therefore, R indicates which set of economic variables produce the
greatest basin of attraction for the collaborative strategy. The four “max” designs in Table[I2]illustrate this point well.
All four technical implementations are identical. However, the first two divide the upside benefit of collaboration to
maximize gains by one or the other systems, whereas the last divides the upside nearly equally between the two systems.
The min A design favors collaboration the most strongly of the three, but still does not represent the optimal arrangement
in terms of maximizing the basin of attraction for the SoS. The max up, min R design shifts a greater proportion of the
payoff to the EO system, maximizing the favorability of collaboration for the most efficient technical implementation.
While it is intuitive that the solutions that maximize the payoff for one system with minimal benefit for the other are not
optimal, R quantifies this intuition and indicates which designs are “best” with respect to creating the conditions for the
SoS to form and survive.

These results demonstrate the advantage of including economic design variables and applying the risk dominance
criterion to their assessment. Using only the upside payoffs as design selection criteria creates a dilemma for each
system owner between pursuing a solution that maximizes their own payoff and agreeing to a solution that is most
attractive to the other system owners, thereby facilitating mutually beneficial coordination. R helps to solve this dilemma
by providing an objective measure of the favorability of collaboration for a given set of designs as a consequence of

balancing the risk and upside potential for each system actor.

V. Discussion
This work demonstrates the application of the game-theoretic equilibria selection criterion, risk-dominance (R), to
satellite SoS tradespace exploration. Results show that multi-objective tradespace exploration combining traditional
measures of utility with a measure of risk-dominance yields designs that are more robust to dissolution of the SoS.
Furthermore, the results reinforce the idea that efficiency must be traded to gain robustness. In the case of the earth
observation and satellite communications SoS studied here, that means reducing the cost of the Earth observation system

space segment and increasing the number of ground-stations to ensure functionality in the absence of data transport
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services from the satellite communications system.

Adding economic variables to the tradespace, in the form of a data transport service fee and a cost-share contract,
expands the number of feasible alternatives and the feasible regions of the technical design space. R is shown to
be a valuable metric for discriminating between designs with common technical parameters and differing economic
parameters. While negotiation based methods may produce satisfactory results, R quantifies the stability of the
collaborative strategy given the system design utilities. This enables the identification of designs which most strongly
support desirable strategy dynamics.

The high-performing designs for both systems, whether independent or as an FSS, are architecturally similar to
systems currently in development or deployment [47} 52 153]. The SATCOM architectures are comprised of satellites
with many channels, low transmit power, narrow beams, and low operating altitude. This combination of features results
in a large number of small satellites. The number of users and data rates held constant, large numbers of small satellites
are superior to fewer large satellites because learning curve effects result in much lower production costs and a given
throughput is more efficiently achieved with many, low-flying satellites than with a smaller number of more powerful
satellites. It is reasonable to conclude that this finding holds true for other satellite systems, assuming that the mission’s
physics permit disaggregation.

Several problem specific modeling assumptions are made to accelerate the simulation efforts. For example,
illumination conditions are not included in the models, a major consideration for imaging. Additionally, spacecraft and
user demand models that enable simulation of data collection and transport would likely uncover orbital configurations,
regions, and time periods, that are more or less conducive to interoperation between the EO and SATCOM systems.
Simulating these interactions between thousands of satellites would be computationally prohibitive. Therefore, this
problem requires further consideration, and potential solutions need to be carefully weighed against the time it
takes to generate results. While the specific results are contingent upon these and other modelling assumptions, the
methodological contributions of the work are minimally impacted.

There are also assumptions that influenced results related to the core contributions of this work. The model assumes
that each system is “locked-in” to the design choices that are made at the beginning of the program. This is not likely
to be the case. Relaxing this assumption could make some collaborative designs more favorable when there are real
options for solutions that are higher value under coordination failure. Consequently, future work should include real
options for implementing system modifications that increase robustness to coordination failures. The methodology
presented in this paper could then be used to evaluate utility of the real options as well as their contribution to facilitating
collaboration. Most importantly, the conclusions reached in this work assume that risk dominance is an appropriate
measure of strategic stability. While work in other fields indicates that this is the case [54], additional research on the
bi-level decision dynamics of SoS design problems is required to fully understand its normative application to design.

A priori consideration of significant sources of uncertainty is required to generate the reliable utility measures on
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which the methodology depends. Future work will address this gap in the current methodology by implementing games
of incomplete information [55]] and other uncertainty modelling techniques; enabling computationally efficient, up-front

risk modeling and methodological realism for cases where partner utility functions are uncertain.

VI. Conclusion

This work demonstrates a methodology for Federated Space System (FSS) tradespace exploration, implementing
a risk dominance equilibrium selection method from game theory that yields system designs that are well-suited to
collaboration. Robustness to common perturbations is essential to good design. FSS, like other system-of-systems (SoS)
with distributed decision authority, are subject to a system actor withdrawing cooperation. Therefore, FSS engineers
should design constituent systems to reduce strategic uncertainty and/or its impacts. The work assumes, ceteris paribus,
that an equilibrium that is both risk and payoff dominant is the rational choice for all system actors; a property this
work refers to as strategic stability. Constituent system designs determine the payoffs for each system actor under the
possible strategic outcomes, and therefore strongly affect the stability of the FSS. The methodology can be implemented
to assess factors affecting constituent system payoffs, yielding an objective measure of design quality as it relates to
strategic robustness.

The methodology is implemented in the evaluation of a FSS comprised of an earth observation (EO) and a satellite
communication (SATCOM) system in two cases. Results show that optimal EO and SATCOM systems are composed of
many spacecraft in low orbits (relative to the nearest analogs from previous decades). While the details differ between
the systems, the chief reasons for these two architectural characteristics are that many small spacecraft are less expensive
than few large spacecraft due to learning during production, shorter observation and communication ranges increase
performance for a set platform design, and data rate is more efficiently increased by increasing the number of transmitters
in the system than by increasing per transmitter power.

Minimization of the risk dominance measure in the tradespace exploration activity yields system designs exhibiting
strategic robustness, with significantly reduced utility losses when FSS formation fails. Constituent system designs
achieved robustness by independent provisioning of some of the functionality provided by the FSS. These robustness
enhancements diminish FSS efficiency, but increase the overall favorability of collaboration, thereby strengthening
the FSS. Varying the economic parameters describing the interaction between systems in the FSS increases the range
of possible technical implementations and improves collaborative dynamics. The risk dominance measure indicates
which values of the economic variables most strongly promote collaborative dynamics; an insight unattainable when
measuring only the utility of each system or the FSS.

Rigorous testing and redundant systems have long been mainstays of spacecraft design. Collaborative systems
introduce a new source of uncertainty that is not easily addressed through testing and other traditional engineering

processes. As FSS become a reality, system designers and decision makers will need to understand the interaction
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between system design decisions and the strategic decision of whether to collaborate or design a stand-alone system.
Strategic decisions interact with technical designs, economic factors, and uncertainty to create complex decision spaces.
System designers, managers, and owners must account for these interactions when considering decisions at all levels.
This work has demonstrated how modelling system strategy decisions as games enables the use of the weighted average
log measure of risk dominance, R, as a criterion in multi-system tradespace exploration activities, discovering designs

that are robust to coordination failure and influence strategy dynamics to favor collaboration.

Appendix
Table [I3]|shows an example link budget. Note that transmitter power, coverage area, free space loss, required E,/N,

and spectral efficiency are influenced by design variables; additional parameters are in turn influenced by these.

Table 13 Example single channel link budget

Parameter Value  Units
Downlink frequency (f) 11.7 GHz
Bandwidth 250 MHz
Tx power (p) 2.6 w
Coverage area 6683 deg?
Tx gain (G) 31.41 dBi
Tx line loss -4.5¢ dB
EIRP 31.06 dBW
Free space loss -169.4 dB
Atmospheric loss -3.50 dB
Rx antenna diam. 0.7 m
User gain 36.07 dBi
Rx line loss -2.0¢ dB
RXx carrier power -107.75 dBW
System noise temp. 25.6"  dB-K
Rx C/N, 95.25 dBW
Req. Ep/No 5.49¢ dB
Spectral efficiency 3.0¢ -
Link margin 1.0 dB
Power limited rate 751.5  Mbps

Bandwidth limited rate 632.4  Mbps

¢ parameter value from Ref. [31]
b parameter value from Ref. [39]

Table [T4] shows the factors and constants used for the cost estimate. Equation (I2Z) determines space segment

non-recurring (NRE) costs for SATCOM by multiplying single spacecraft dry mass by an NRE factor and the inflation
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Table 14 Cost estimating relationship factors and constants

Factor Variable  Value Units

Tx efficiency NTx 0.17¢ -
Power-to-mass ratio PMR 5.0 W/kg
2010 to 2020 inflation i10 0.1858” -
Annual inflation i 0.0205” -
Payload power fraction PPF 0.46¢ W/wW
Learning curve S 0.85¢ -

First ground station GS 0.09¢ -
Subsequent ground station GS, 0.064 -
Systems engineering SE 0.20¢ -
Program management PM 0.15¢ -
Integration & test 1&T 0.15¢ -
Launch & orbital operations support ~ LOOS  0.061¢ -

Other MISC 0.16¢ -
Operations OPS 0.05¢ -
Ground maintenance MNT 0.135¢ -
Launch cost L 62 $M

Fuel fraction FF 0.27¢ -
Redundancy reduction RD 0.2° -

Open inter-satellite link complexity ISL. 0.1 -

Open inter-satellite link mass ISL,, 0.05 -
SATCOM non-recurring engineering ~ NREj 0.429¢ $M/kg dry mass
SATCOM recurring engineering Py 0.09¢ $M/kg dry mass
EO non-recurring engineering NRE, 0.402¢ $M/kg dry mass
EO recurring engineering P, 0.082¢ $M/kg dry mass

@ from Ref. [31]], ? from Ref. [36], ¢ from Ref. [36]], ¢ from Ref. [37]]
¢ accessed 10 May 2020 from https://www.spacex.com/about/capabilities

from the base year of the factor to 2020.

Xnre,s = Mdry,s * NRE; - (1 +ij9) (12)

Equation (T3] applies an additional factor when the collaborative strategy is selected.

Xnre,s,&r = Xnre,s * (1 +1SLy) (13)

Equation (T4) calculates first unit production cost (T1).

XT1,s = Mdry,s * Py - (] +i10) (14)
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Equations (I5)—(T6) calculate EO system space segment NRE and first unit production costs respectively.
Xnre,eo = Mdry.e * NREe . (1 + ilO) (15)

XT l,eo = Mdry.e * Pe : (1 +i10) (16)

Equations (I7)-(T8) are applied to increase EO system mass and cost respectively when the collaborative strategy is

selected.

Mdry,e,y = Mdry,e * (1 + ISLm) (17)
Xnre,eo,y = Mdry,e, -NRE, - (1 +i]O+ISLc) (18)
Equation (T9) increases T1 costs from increased mass and complexity when the collaborative strategy is selected.

XT 1,e0,y =mdry,e,¢/'Pe '(1+i10+ISLc/2) (19)

Equation (20) calculates the cost of each satellite with learning effects.
Xunit (n) = yr1 - n TSI (= IS -y = g (N ) (20)

Equation (ZI)) calculates individual spacecraft wet mass for all systems.
Myyer = Mdry * (1 + FF) 20

Equation (22) calculates maximum launch mass, m; using a linear approximation of Atlas V 551 capability to a polar
orbit [38]], where a is altitude in km.

my = 15888 — 1.4856 - a (22)

Equation (23) determines the number of launches, n;, as the ceiling of the total mass of all satellites in a plane divided

by the launch vehicle capability to that orbit multiplied by the number of planes.

N - Myyet,i
ny = TI < T (23)

Equation (24)) calculates total launch cost as the number of launches multiplied by the single launch cost.

Xxi=L-n (24)
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Equation (23)) calculates the number of satellites per launch to determine the number of production lots.

Nl' - Tt
nj

(25)

Nsats =

The number of ground stations is a design variable for the EO system. Equation (26) calculates the number of

ground stations for the SATCOM system.
Ny -7y
10

Ys = (26)

Equation calculates the ground NRE costs estimated based on the spacecraft T1 and NRE costs, where y ;. is
space segment NRE cost for either system. Note that the independent spacecraft NRE costs are always used as the
model assumes the ground system NRE would not increase substantially with the addition of open inter-satellite links to

the space segment.

Xnre,gnd = (ane +XT1) ' (GSI + GSn : 71) (27)

Equation (28)) calculates ground operations costs as the sum of space segment operations and ground system maintenance

costs. The independent strategy space segment NRE costs are always used.

Xops = Xnre,gnd * MNT + (/\/Tl +ane) -OPS (28)

Equations (29)-(30) apply wrap factors to the space segment NRE and each production lot respectively, where xjo,
is the cost of each production lot determined by the number of satellites in each lot and the cost of each satellite with

learning effects applied as calculated in Eq. (20).
Xnre = Xnre - (1 +SE + PM + I1&T + MISC) (29)

Xiot = Xiot - (1 +SE + PM + 1&T + MISC + LOOS) (30)

Costs are finally spread uniformly over each system program phase as described in Sec. and inflation, (7), applied
proportionally to each element of the cost series.

Table [15]shows the location of each ground station used in the EO models. Ground stations are always selected
in ascending index order starting with number 1. All ground stations locations are near existing Kongsberg Satellite

Service{ﬂ or Swedish Space Corporationﬂ] locations.

S Accessed 11 May 2020 at https://www.ksat.no/services/ground-station-services/
fAccessed 11 May 2020 at https://www.sscspace.com/ssc-worldwide/ground- station-network/
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Table 15 Ground station locations

Index Latitude Longitude

1 78.20 15.30
2 -72.00 2.50

3 -52.93 -70.85
4 67.88 21.07
5 68.40 -133.5
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