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An Initial Framework for Analyzing Students’ Reasoning  

with Equivalence Across Mathematical Domains 

 

The concept of equivalence is foundational in mathematics and is pervasive in the K-16 

curriculum.  Though much research has focused on equivalence, nearly all of it is domain-

specific, and it is therefore unclear how students’ reasoning about equivalence in one domain 

might influence their reasoning about it in another, if at all. This highlights a need for increased 

theoretical unity and coherence.  In this theoretical paper, we propose an initial framework for 

analyzing students’ reasoning about equivalence across domains.  We use the framework to 

highlight commonalities amongst the ways in which equivalence is interpreted with respect to 

fractions, K-12 algebra, modular arithmetic, and linear algebra.  We demonstrate the 

framework’s strength as an analytical tool by using it to conduct detailed analyses of student 

data from already-published studies in combinatorics and abstract algebra. We conclude by 

suggesting ways in which this framework lays a rich foundation for future research. 

 

 

1:  Introduction 

 

“Equivalence,” wrote the eminent mathematician Paul Halmos (1982), “is one of the basic 

building blocks out of which all mathematical thought is constructed” (p. 246). Indeed, 

equivalence is one of the most fundamental, far-reaching concepts in mathematics, and it 

emerges in a variety of content areas across the K-16 spectrum. There is ample evidence in the 

literature and in policy documents that highlights the centrality and ubiquity of equivalence in K-

12 mathematics (e.g., Carpenter, Franke, & Levi, 2003; Herscovics & Kieran, 1980; Kara, 

Simon, & Placa, 2018; Kieran & Sfard, 1999; Knuth et al., 2006; McNeil & Alibali, 2005; 

National Governors’ Association Center for Best Practices & Council of Chief State School 

Officers, 2010; Ni, 2001; J.P. Smith, 1995; Steffe, 2004; Wong & Evans, 2007). As one 

example, Charles (2005) argued that equivalence is one of the ‘big ideas’ at the K-8 level that 

“links numerous mathematical understandings into a coherent whole” (p. 10). In postsecondary 



mathematics, equivalence plays a key role in learning about such concepts as angle measure 

(e.g., Moore, 2013), logic (e.g., Stylianides et al., 2004), number theory (e.g., Smith, 2006), 

linear algebra (e.g., Berman et al., 2013), combinatorics (e.g., Lockwood & Reed, 2020), and 

abstract algebra (e.g., Cook, 2018; Larsen, 2013). Equivalence and its many manifestations also 

have important implications for teacher preparation (e.g., AMTE, 2017; NCTM, 2020). For 

example, it is generally agreed upon that future K-12 teachers should come to “understand the 

critical importance of equivalence and approach the teaching of algebraic concepts by explicitly 

attending to equivalence,” (AMTE, 2017, p. 97, emphasis added).   

However, in spite of the importance of equivalence across the K-16 curriculum, research 

suggests that students at all levels experience considerable difficulty with equivalence (e.g.,; 

Carpenter, Franke, & Levi, 2003; Chick, 2003; Chesney et al., 2013; Godfrey & Thomas, 2008; 

Kieran, 1981; McNeil et al., 2006; Pomerantsev & Korostoleva, 2003; Stephens, 2006; 

Weinberg, 2009). Moreover, while the literature emphasizes the importance of equivalence with 

respect to a variety of topics, there is a need for more overall coherence: characterizations of 

equivalence are often either implicit, underspecified, or domain-specific. This is notable given 

that, for students, “equivalence has had many different faces and […] many different names” 

(Asghari, 2019, p. 4675). As a result, it is currently unclear how the understandings of 

equivalence students develop in one domain might influence their reasoning about equivalence in 

another. Each time students encounter equivalence in a new context, we as a field have no 

theoretical recourse but to assume that they are encountering the concept for the first time. We 

therefore interpret that the equivalence literature as a whole is currently less than the sum of its 

parts. That is, potential ways in which equivalence may be framed in a unifying, overarching 

manner have not been leveraged in the literature so far. This highlights the need for a coherent 

theoretical approach to equivalence that researchers could leverage across multiple domains. 



In this theoretical paper, we propose an initial attempt at such a framework. The framework 

takes the form of a conceptual analysis (Thompson, 2008), in which we explicitly articulate three 

key interpretations of equivalence that are common across mathematical domains. In addition to 

describing these three interpretations in detail, our primary objective is to illustrate that these 

interpretations (1) capture aspects of productive reasoning with equivalence, and (2) account for 

students’ reasoning with equivalence in a variety of domains.   

 

2:  Background Literature 

 

A 1948 article by Burington provided the motivating, central idea that underpins our 

objectives here: “the literature abounds in such phrases as A is equivalent to B, which, unless 

properly defined, are often meaningless or misleading” (p. 1). This sentiment harmonizes with 

the calls of researchers throughout the equivalence literature who have underscored the need to 

be explicit about what equivalence entails (Kieran, 1981; Knuth et al., 2006; McNeil & Alibali, 

2005; McNeil et. al., 2006; Ni, 2001; J.P. Smith; 1995; Solares & Kieran, 2013; Stephens, 2006). 

Indeed, what does it mean to say that “A is equivalent to B”?  In considering this question, we 

situate our work within a particular domain that has received substantial attention in the 

equivalence literature: the equivalence of expressions in algebra. Our primary intention here is 

not to examine the equivalent expressions literature per se, but to use this substantial body of 

literature to generate hypotheses about the general concept of equivalence. We focus here on 

three such insights that informed our development and use of the conceptual analysis that follows 

in Section 3.2.   

 First, we note that there are several forms of equivalence that are prominent in algebra, each 

of which depends on the types of objects that are being related. To illustrate this point, we 

consider two fundamental algebraic objects: expressions and equations (with at most one 



variable). We find it useful to distinguish between expressions that are numerical (numbers only, 

no variables) or algebraic (with variables). Numerical expressions are equivalent1 when they 

correspond to the same value (e.g., Liebenberg, Linchevski, Sasman, & Oliver, 1999; Saldana & 

Kieran, 2005), and algebraic expressions are equivalent if “for any admissible number that 

replaces x, each of the expressions gives the same value” (Saldanha & Kieran, 2005, p. 3).  We 

note that these characterizations are undeniably similar – they both, for example, focus on the 

value of the expressions in question – yet are ultimately different in subtle ways.  Thus, 

reasoning productively with equivalence requires explicit attention to the objects involved and 

the warrants and interpretations by which one establishes that two objects are equivalent.   

Second, these forms of equivalence necessarily build upon one another. For example, the 

characterization of the equivalence of algebraic expressions implicitly depends on the 

equivalence of numerical expressions, as illustrated in the following reformulation: algebraic 

expressions 𝑓(𝑥) and 𝑔(𝑥) are equivalent if they are equivalent as numerical expressions for 

each admissible value of x (Solares & Kieran, 2013). Additionally, understanding the concept of 

equations first requires understanding the equivalence of expressions. For example, equations 

can be conditional (i.e., for a proper subset of the set of all possible admissible values for 𝑥, the 

two expressions are equivalent as numerical expressions) or identical (i.e., the two expressions 

are equivalent as algebraic expressions) (Godfrey & Thomas, 2008). This key distinction is 

important for such fundamental tasks as solving linear equations. For instance, verifying that 𝑥 =

8 is a solution to the conditional equation 2(𝑥 + 1) = 18 requires attention to the equivalence of 

numerical expressions (e.g., the solution set {8} is precisely the set of values for which both sides 

of 2(𝑥 + 1)	and 18 are equivalent as numerical expressions). Similarly, understanding why it is 

 
1 Some researchers refer to this form of equivalence as ‘equality’ or ‘numerical equality’ (e.g., Molina & Castro, 

2009; Saldanha & Kieran, 2005).  We follow these researchers in viewing equality as a specific form of equivalence.  



acceptable to replace 2(𝑥 + 1) with 2𝑥 + 2 to obtain 2𝑥 + 2 = 18 requires recognizing that the 

two are equivalent algebraic expressions – put another way, 2(𝑥 + 1) = 2𝑥 + 2 is an identical 

equation (in the sense of Godfrey & Thomas, 2008). This kind of reasoning requires careful 

attention to both the objects and the form of equivalence in question. Reasoning in this way is 

not a trivial endeavor; rather, it is complex, multi-layered, and interrelated.   

A final point that highlights the complexity of equivalence is that it can (and should) be 

understood in various ways (e.g., Harel, 2008; Kieran & Sfard, 1999; Solares & Kieran, 2013; 

Zwetzschler & Prediger, 2013). For simplicity, in the preceding paragraphs we intentionally 

focused on characterizations of equivalence in terms of a shared numerical value (or set of 

numerical values); these characterizations all stem from a numeric interpretation of equivalence 

(e.g., Saldanha & Kieran, 2005). Previous efforts to identify coherence in the many 

manifestations of equivalence in the K-8 curriculum have emphasized the potential productivity 

of this view – for example, Charles (2005) highlighted the centrality of recognizing that “any 

number, measure, numerical expression, algebraic expression, or equation can be represented in 

an infinite number of ways that have the same value” (p. 10, emphasis added). In addition to this 

numeric interpretation, researchers have called attention to two other key interpretations: a 

transformational (e.g., Solares & Kieran, 2013) and a descriptive (e.g., Zwetzschler & Prediger, 

2013) interpretation of equivalence. We elaborate all three of these interpretations in Table 1 and 

Section 3.2. 2 The fact that equivalence can and should be interpreted in various ways provided 

the basis on which we developed the cross-domain conceptual analysis. Specifically, the 

numeric, descriptive, and transformational interpretations of equivalence – which previously had 

 
2 All three of these constructs appear under different names. For example, some researchers refer to a numeric 
interpretation as insertion equivalence (e.g., Zwetzschler & Prediger, 2010).  Additionally, a transformational 

interpretation is referred to by some as a syntactic interpretation (e.g., Solares & Kieran, 2013). Though the names 

are different, the meanings are compatible.  



only been applied within the domain of K-12 algebra – form the foundations of our cross-domain 

theory.    

 

3:  A framework for characterizing productive interpretations of equivalence across 

domains 

 

3.1:  Theoretical underpinnings  

  

Our framework takes the form of a conceptual analysis (Thompson, 2008). At its core, a 

conceptual analysis is a form of theory that explicitly articulates “what students might 

understand when they know a particular idea in various ways” (Thompson, 2008, p. 43). A 

conceptual analysis can be used to analyze and address the fit and coherence of mathematical 

meanings expressed in an instructional sequence, curriculum, or, in this case, body of literature. 

As noted by O’Bryan (2018), “supporting students in seeing the coherence within and across 

mathematics courses demands that curriculum designers and instructors first clearly articulate for 

themselves the general ways of reasoning mathematics instruction should support” (p. 123, 

emphasis added). The conceptual analysis we propose below seeks to address the fragmented 

nature of the equivalence literature by explicitly articulating detailed descriptions of three 

interpretations of equivalence that, we claim, capture key aspects of equivalence that are 

common across mathematical domains (this is the focus of the mathematical examples we 

present in Section 3).  

A conceptual analysis also provides researchers with a means by which to explicitly account 

for, articulate, and understand students’ reasoning about a particular mathematical idea. That is, 

it can be used to create models of students’ thinking (e.g., Clement, 2000; Steffe & Thompson, 

2000). By ‘model,’ we refer to the inferences that researchers make about the cognitive 

structures – in this case, the interpretations of equivalence – that might underlie and inform 

students’ language and actions. Thus, in addition to addressing issues of coherence, we will 



illustrate the utility of our framework by using it to build models of students’ thinking that 

capture meaningful aspects of their reasoning about equivalence (this is the purpose of the 

detailed analyses of students’ activity we present in Section 4). We situate each interpretation 

within relevant literature, and for each interpretation we describe criteria – in the form of 

characterizations of students’ language and actions – to use to determine if a student is enacting a 

particular understanding.   

3.2:  A cross-domain framework for analyzing students’ reasoning with equivalence 

 

 In this section we present our framework for students’ interpretations of equivalence. From 

our perspective as researchers, we specify the scope of mathematical situations to which this 

framework applies by operationalizing the formal, abstract notion of an equivalence relation3. 

Such a relation partitions a given set 𝑆 into subsets (equivalence classes); two elements of a set 𝑆 

are equivalent if they belong to the same equivalence class.  This is consistent with what 

Hamdan (2006) called a global view of equivalence, which (implicitly) underlies all of its 

manifestations in the primary, secondary, and postsecondary mathematics curriculum.  These 

manifestations include (but are certainly not limited to) the equivalence of fractions, numerical 

expressions, algebraic expressions, algebraic equations, and integers (modulo 𝑘).   

 Thompson (2002) noted that a conceptual analysis should be grounded in students’ 

conceptual experiences. Thus, while the notion of equivalence relation specifies the scope of 

mathematical situations that we (as researchers) associate with this framework, we intend for the 

framework to explicate the various ways in which students might interpret equivalence in these 

situations. The interpretations that we set forth therefore all follow from a local, element-to-

element view of equivalence (Hamdan, 2006), primarily because this is the predominant view of 

 
3 Formally, an equivalence relation on a set 𝑆 is a relation ~ that is reflexive (i.e., for all 𝑥 ∈ 𝑆, 𝑥~𝑥), symmetric 

(i.e., for all 𝑥, 𝑦 ∈ 𝑆, if 𝑥~𝑦 then 𝑦~𝑥), and transitive (i.e., for all 𝑥, 𝑦, 𝑧 ∈ 𝑆, if 𝑥~𝑦 and 𝑦~𝑧, then 𝑥~𝑧).   



equivalence in students’ experiences and is therefore, we argue, better suited to capture 

meaningful aspects of students’ reasoning about equivalence across domains. These 

interpretations are based upon those in the literature on algebraic expressions that we briefly 

previewed in Section 2: common characteristic (a generalization of numeric), descriptive, and 

transformational interpretations of equivalence. While these components were initially 

articulated in terms of numerical and quantitative contexts in K-12 algebra, we have adapted 

them here to address students’ reasoning about equivalence in a wide variety of mathematical 

domains. We note that we do not presume that these interpretations comprehensively account for 

all aspects of students’ reasoning about equivalence. Instead, we propose that these 

interpretations can capture key aspects of students’ activity with equivalence across domains. 

Table 1.  A framework for analyzing students’ reasoning about equivalence. 

Interpretation 

of equivalence 

Description Associated observable 

behaviors (criteria) 

Example 

Common 

characteristic 

Interpreting or 

determining 

equivalence based 

upon a perceived 

attribute that the 

objects in question 

have in common 

Criterion C1: use of 

descriptors like same, 

common, similar, 

identical, invariant, or 

shared  

 

Criterion C2: sameness is 

explained by identifying 

an attribute that the 

objects themselves share   

 

Viewing two systems of 

linear equations as 

equivalent because they 

share the same solution 

set (Harel, 2008). 

Descriptive Interpreting or 

determining that 

objects are 

equivalent because 

they describe the 

same quantity or 

serve the same 

purpose with respect 

to a given situation   

Criterion D1: use of 

descriptors like same, 

common, similar, 

identical, invariant, or 

shared  

 

Criterion D2: sameness is 

explained by referencing 

an aspect of the given 

mathematical situation or 

task setting 

 

Proving combinatorial 

identities by using two 

different counting 

processes to count the 

same set of outcomes 

(Lockwood, Caughman, 

& Weber, 2020). 



Transformational Interpreting or 

determining 

equivalence based 

upon the relationship 

between objects in 

terms of the actions 

by which one object 

has been or might be 

transformed into 

another 

Criterion T: a sequence of 

actions (either already 

performed or imagined) 

by which one object 

might or can be changed 

into another is enacted or 

described. 

 

Solving the equation 

5𝑥 + 1 = 3𝑥 + 5	by 

“undoing”: subtracting 

1 from both sides (to 

obtain 5𝑥 = 3𝑥 + 4), 
then subtracting 3𝑥 

from both sides (to 

obtain 2𝑥 = 4), then 

dividing both sides by 2 

(to obtain 𝑥 = 2) (de 

Lima & Tall, 2008).    

 

A common characteristic interpretation of equivalence involves interpreting or determining 

equivalence on the basis of a perceived attribute that the objects in question share. The term 

common characteristic was used by Piaget (1997) – and subsequently by Hamdan (2006) – to 

describe how a person classifies objects based upon that person’s perceptions of similarity4, 

however informal or intuitive, amongst the objects. In this context, it serves as an adaptation of  

the previously mentioned numeric view of the equivalence of algebraic expressions, in which 

two expressions are seen as equivalent if they have the same value for all admissible values of 

the relevant variable(s) (Saldanha & Kieran, 2005; Solares & Kieran, 2013; Zwetzschler & 

Prediger, 2013). We consider a student to be employing a common characteristic interpretation 

of equivalence if both of the following criteria are satisfied.   

§ Criterion C1 (recognition of sameness): in referring to the objects in question, descriptors 

like same, common, similar, identical, invariant, or shared (or a reasonable synonym) are 

used. 

§ Criterion C2 (explanation of sameness): the sameness of the objects in question is 

explained by identifying an attribute that the objects themselves share.   

 

To exemplify this interpretation, we note that Hamdan (2006) reports on a classroom episode 

in which the instructor asks students to consider a situation in which lines are equivalent if they 

 
4 This characterization intentionally emphasizes the importance of attending to how an individual might intuitively 

or informally perceive similarity.  While we believe this is a generally productive approach to analyzing students’ 
reasoning and supporting students’ learning, certainly not all perceptions of common characteristics are productive.  

See the Appendix (Section 6) to see how we, as researchers, formally define the scope of the common characteristic 

interpretation using equivalence relations. 



are parallel5. A student reformulates the notion of parallel by noting that equivalent lines a 

common “direction, of course, or slope. The common property will be the slope” (p. 143). As 

another example, in linear algebra, two linear systems are equivalent if they “have the same 

solution sets” (Poole, 2014, p. 60), or, analogously, if their corresponding coefficient matrices 

“have the same reduced row echelon form” (Berman et al., 2013, p. 4). Here we note the use of 

the word “same” (criterion C1) as well as an indication of the shared attribute6 (“solution sets,” 

“reduced row echelon form,” criterion C2).   

A descriptive interpretation of equivalence involves viewing objects as equivalent on the 

basis that they describe the same quantity or serve the same purpose in a given external situation. 

Descriptive interpretations of equivalence differ from common characteristic interpretations on 

the grounds that, whereas a common characteristic interpretation focuses on an attribute of the 

objects themselves, a descriptive interpretation focuses on an attribute of a given situation. This 

is reflected in our criteria; the first focuses on the recognition of some kind of sameness, whereas 

the second clarifies that the recognition of sameness must be based upon aspects of the given 

situation:  

§ Criterion D1 (recognition of sameness): in referring to the objects in question, descriptors 

like same, common, similar, identical, invariant, or shared (or a reasonable synonym) are 

used. 

§ Criterion D2 (explanation of sameness): the sameness of the objects in question is 

explained by referencing an aspect of the given mathematical situation or task setting.   

Descriptive interpretations of equivalence are particularly useful when reasoning about 

measurement. For example, consider the equation “1 week = 7 days.” A productive way to 

 
5 For example, lines of slope 2 can be viewed as equivalent classes with respect to the following equivalence relation 

on ℝ!:   (𝑥", 𝑦")~(𝑥!, 𝑦!) whenever −2𝑥" + 𝑦" = −2𝑥! + 𝑦!.  . 
6 We note, however, that a focus on the sequence of row operations by which the matrices in question are 
manipulated into reduced row echelon form would be classified as transformational activity related to equivalence.  

The constructs in the framework are not disjoint and can supplement each other.  We elaborate further on the nature 

of transformational activity related to equivalence below. 



interpret this equality is to view both expressions as measurements of the same magnitude of 

time: “1” is the measurement when measuring in weeks, and “7” is the measurement when 

measuring in days. From this perspective, the equivalence of 1 week and 7 days “makes explicit 

[use of] the fact that the magnitude of a quantity is invariant with respect to a change of unit” 

(Thompson et al., 2014, p. 5). This is descriptive in nature because the two expressions describe 

an invariant (recognition of sameness, criterion D1) magnitude as measured in different units (an 

aspect of the situation or task setting, criterion D2). As another example, consider combinatorial 

proofs of binomial identities. A common strategy is to reason that “if two different combinatorial 

expressions can be represented as different ways of counting the same set of objects, then the two 

combinatorial expressions are equal” (Lockwood, Caughman, & Weber, 2020, p. 179, emphasis 

added). We consider this a use of a descriptive interpretation because two different yet legitimate 

counting processes (attributes of an external situation, criterion D2) are used to count the same 

set of outcomes and are therefore equal (explicit references to sameness, criterion D1).  

A transformational interpretation7 of equivalence involves viewing the relationship between 

objects in terms of the actions by which one object has been or might be transformed into 

another, according to a set of rules. Rather than focusing exclusively on the fact that two objects 

are in some way the same, transformational activity focuses on how one object can be changed 

into another. This typically involves “a sense of the actions needed in order to reach a desired 

[…] form” (Harel, 2008, p. 15). Transformational activity has been identified across the 

equivalence literature as one that supports productive reasoning, largely because it enables one to 

generate equivalent representations of objects that are easier to work with or serve an explicit 

 
7 See the Appendix for a discussion of how informal notions of transformations on objects align with the formal 

equivalence relation concept.  



purpose. And yet, despite its benefits, researchers have also cautioned that over-relying on 

transformational activity can preclude the necessary emphasis on equivalence (e.g. Alibali et al., 

2007; Carpenter, Franke, & Levi, 2003; Kieran, 1981). Said another way, an overemphasis on 

change overshadows an emphasis on sameness. For example, de Lima and Tall (2008) reported 

that 

many students respond to the general principle of ‘doing the same thing to both sides’ in 

specific terms in which the +1 in 5x+1=3x+5 is shifted over the other side with a ‘change in 

sign’ and the 3 in 3x = 6 is ‘moved over the other side and ‘put underneath’. [This] may be 

seen as moving symbols with a kind of additional ‘magic’ to get the correct solution (p. 4).   

The key distinction between whether or not one’s transformational activity is productive 

ultimately hinges on the extent to which one recognizes that the transformations that are applied 

preserve some key feature of the object or related context (e.g., Alibali et al., 2007; Carpenter et 

al., 2003). Harel (2008) encapsulated this idea well by arguing that a hallmark of productive 

transformational activity is “changing the form of an entity without changing a certain property 

of the entity” (p. 16) – this is at the heart of what he calls an algebraic invariance way of 

thinking. Through the lens of our framework, we frame “a certain property” in terms of the other 

two interpretations:  common characteristic and descriptive. For instance, Harel pointed out that 

solving 𝑎𝑥! + 	𝑏𝑥	 + 	𝑐	 = 	0 by using familiar actions (e.g., adding the same element to both 

sides, completing the square) to transform it into the more tractable (𝑥 + 𝑇)! = 𝐿 requires an 

awareness that one is changing the appearance of the equation but “maintaining the solution set 

unchanged” (p. 14). In the language of our framework, we observe that Harel is suggesting that 

such transformational activity be paired with a common characteristic interpretation: the focus is 

on the solution set, a common attribute of the equations themselves (criterion C2) that remains 

unchanged (criterion C1). Additionally, regarding the pairing of transformational activity with a 

descriptive interpretation, consider again the aforementioned ‘duration of time’ scenario.  If 



asked how many days are in 12 weeks, a transformational approach might focus on changing 12 

weeks into the appropriate number of days by multiplying by a conversion factor: 12	weeks ⋅

7	days/week = 12 ⋅ 7	days = 84	days.  Supplementing with a descriptive approach, “12” is the 

measurement when the given duration of time is measured in weeks.  The duration of time as 

measured in days can be productively visualized as a partitioning of each of the 12 weeks into 7 

days, so that “84” is the measurement of the given duration of time in days.  12 weeks and 84 

days are equivalent, then, because they are measurements of the same, invariant magnitude 

(recognition of sameness, criterion D1) in different units (reference to an aspect of the task 

setting, criterion D2).   

We therefore propose that transformational activity can indeed be productive when reasoning 

about equivalence because generating equivalent forms is a fundamental mathematical strategy. 

But it is more productive and less constrained when it is accompanied by a notion of what these 

transformations preserve. This could include supplementing one’s transformational activity with 

a common characteristic interpretation (as in the quadratic equation example, in which it is the 

solution set that is preserved) and/or a descriptive interpretation (as in the measurement example, 

in which it is the given duration of time that is preserved). For the purposes of our framework, 

then, we distinguish between transformational activity that is accompanied by an explicit 

recognition of sameness (such as those described in the common characteristic and descriptive 

interpretations) and transformational activity that is enacted without an explicit recognition of 

sameness.  We reflect this distinction as follows: 

§ We reserve the term transformational interpretation of equivalence to refer to instances 

in which the student recognizes that the new forms being generated by the 

transformations are equivalent in some way – that is, the student is aware that the 



transformations preserve some aspect of sameness.  To specify the aspect of sameness, 

we supplement our descriptions with one (or both) of the other interpretations as 

appropriate in order to specify the relevant form of sameness in question.   

§ We use the term transformational activity to refer to instances in which we (as 

researchers) recognize that the transformations the student applies do indeed produce 

new, equivalent forms, but the student does not explicitly attend to such notions.  In this 

way, the term transformational activity is more general than transformational 

interpretation.   

This approach has two immediate benefits: it coheres with and respects the findings regarding 

transformational activity in previous research (i.e., students who are engaging in transformational 

activity are not necessarily attentive to equivalence), and it also provides more details about how 

students are interpreting the accompanying notion of sameness, if at all (see Table 2). As such, 

we require only a single criterion for the identification of transformational activity (and leave 

open the possibility that it could be paired with notions of sameness as specified in one of the 

other interpretations): 

§ Criterion T: a sequence of actions (either already performed or imagined) by which one 

object might or can be changed into another is enacted or described. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.  Possible ways in which a transformational interpretation of equivalence might appear in 

conjunction with a common characteristic or descriptive interpretation 

 

Terms that describe 

how transformations 

might manifest in 

students’ reasoning 

about equivalence 

Corresponding description of 

the student’s reasoning 

Example 

Transformational 

activity only 

A student applies transformations 

that generate new, equivalent 

forms of an object but does not 

necessarily recognize or attend to 

the fact that these forms are 

equivalent.   

Transforming 5𝑥 + 1 = 3𝑥 +
5	into 3𝑥 = 6 via “moving 

symbols with a kind of 

additional ‘magic’ to get the 

correct solution” (de Lima & 

Tall, 2008, p. 4).   

Transformational 

interpretation 

(supplemented with a 

common characteristic 

interpretation) 

A student is aware that the forms 

produced by the transformations 

she is applying share a common 

attribute – that is, the 

transformations preserve a key 

aspect of these objects. 

Adding 𝐿 to both sides of (𝑥 +
𝑇)! − 𝐿 = 0 to obtain (𝑥 +
𝑇)! = 𝐿 and recognizing that 

the solution set does not change 

(e.g., Harel, 2008). 

Transformational 

interpretation 

(supplemented with a 

descriptive 

interpretation) 

A student is aware that the forms 

produced by the transformations 

she is applying both describe the 

same quantity or serve the same 

purpose in a given situation.   

Supplementing the 

transformation 12	weeks ⋅
7	days/week = 84	days by 

reasoning that “12 weeks” and 

“84 days” are equivalent 

because they are measurements 

of the same magnitude of time 

in different units (e.g., 

Thompson et al., 2014). 

 

 

3.3:  Examples of the three interpretations from the literature on fraction equivalence and 

modular congruence 

 

To illustrate how the framework captures meaningful aspects of reasoning with equivalence 

across domains as well as how these three interpretations might work in tandem within domains, 

we now use our framework to consider examples from the literature – including interpretations 

from both researchers and students – on fraction equivalence and modular congruence. We 

summarize our discussion of the three interpretations of equivalence in these two domains in  

Table 3.  



In the case of fractions, consider 1/2 and 3/6. As noted by Ni (2001), “in many classrooms 

the acquisition of the concept of equivalent fraction is […] reduced to the mastery of the rule 

‘multiply or divide the numerator and denominator of a fraction by the same number’” (p. 413). 

Using this interpretation, 1/2 and 3/6 are equivalent because multiplying the numerator and 

denominator of 1/2 by 3 yields 3/6. In this way, this interpretation focuses on “[altering] the 

numerical representation of fractions” (Smith, 1995, p. 20). This is an example of a 

transformational activity because the central focus is on changing (i.e., altering) one fraction into 

another (criterion T). Another way to interpret the equivalence of these two fractions is to reason 

that “they have the same value” (Martinez & Yeong, 2018, p. 48) or, analogously, that their 

respective quotients are invariant (e.g., Behr, Harel, Post, & Lesh, 1992).  Smith (1995) also 

identified this as a common student interpretation, associating it with a procedure in which 

students “divide the numerator of each fraction by its denominator. If the resulting decimals are 

identical, the original fractions are equal” (p. 47). From this perspective, 1/2 and 3/6 are 

equivalent because they both have the same quotient of .5. This is an example of a common 

characteristic interpretation because explicit reference is made to sameness (e.g., same, 

invariant, identical) (criterion C1), and the attribute on which sameness is focused (the quotient) 

is framed as an attribute of the fractions 1/2 and 3/6 themselves (criterion C2).  

Lastly, the equivalence of 1/2 and 3/6 can be warranted via reference to the preservation of a 

quantity (e.g., Steffe, 2004). For example, Simon & Tzur (2004) presented a learning trajectory 

based upon such as tasks as: “Draw a rectangle with 1/2 shaded. Draw lines on the rectangle so 

that it is divided into sixths. Determine how many sixths are in 1/2” (p. 97). From this 

perspective, students might interpret that 1/2 and 3/6 are equivalent because “the areas of a 

whole and shaded part never change, but the number of equal parts into which the whole is 

divided can alter dramatically” (Wong & Evans, 2007, p. 827) –  see Figure 1.  Interpreting 





relationship between 𝑎 and 𝑏 in terms of the sequence of actions by which one might be changed 

into the other (criterion T). Lastly, we consider an example from Cook’s (2012) study of how 

students might develop formal notions of algebraic structure. The study initiated by having 

students – who had no formal exposure to modular congruence – solve equations using their 

intuitive notions of clock arithmetic. When solving the linear equation 𝑥 + 3 = 9, the students 

began discussing the additive inverse of 3 (so that they could add it to both sides in order to 

isolate 𝑥). Their discussion led them to conclude that “-3=9” (p. 103) on the grounds that both -3 

and 9 function as the additive inverse of 3. They eventually extrapolated this idea and identified 

other such pairs (such as −1 = 11	and	−2 = 10) en route to more formal notions of modular 

congruence. We claim that this is a descriptive interpretation. The students claim that two 

elements are equivalent (“-3=9,” satisfying Criterion D1) because they both function as an 

additive inverse for 3. In this context, additive inverse was a key component of the external task 

setting in which they were engaged (criterion D2). Put another way, both -3 and 9 served the 

same purpose in the situation of solving 𝑥 + 3 = 9.   

 

Table 3.  Illustrating the components of the framework in the domains of fraction equivalence 

and modular congruence. 

Interpretation of 

equivalence 

Fraction equivalence Modular congruence 

Common characteristic ½ and 3/6 are equivalent 

because their respective 

quotients are the same (e.g. 

Behr, Harel, Post, & Lesh, 

1992; Martinez & Yeong, 

2018). 

Integers −3 and 9 are 

congruent modulo 12 because 

they share the same 

remainder (i.e. 9) when 

divided by 12 (e.g. J.C. 

Smith, 2006). 

Descriptive ½ and 3/6 are equivalent 

because they both represent 

the same amount of shaded 

area in relation to the area of 

the whole rectangle (e.g. 

Simon & Tzur, 2004; Wong 

& Evans, 2007). 

Integers −3 and 9 are 

congruent modulo 12 because 

they both function as the 

additive inverse of 3 when 

solving equations (e.g. Cook, 

2012). 



Transformational ½ and 3/6 are equivalent 

because multiplying both the 

numerator and denominator 

of ½ by 3 yields 3/6 (e.g. Ni, 

2001; J.P. Smith, 1995).  

Integers −3 and 9 are 

congruent modulo 12 because 

adding the modulus, 12, to -3 

yields 9 (e.g. J.C. Smith, 

2006).   

 

 

4: Detailed Analyses of Students’ Reasoning about Equivalence in Abstract Algebra and 

Combinatorics 

 

We now show the utility of the framework by conducting detailed analyses of students’ 

activity from two previous studies in undergraduate mathematics: one in abstract algebra (Cook, 

2018), and one in combinatorics (Lockwood & Reed, 2020). We use the framework to classify 

students’ reasoning with equivalence and demonstrate the usefulness of the three interpretations. 

 

4.1:  Equivalence in abstract algebra 

 

The examples of student activity in 4.1.1 and 4.1.2 comes from a study (Cook, 2018) 

designed to investigate abstract algebra students’ reasoning with the zero-product property (i.e., 

for all elements 𝑎 and 𝑏 in a ring 𝑅, if 𝑎 ⋅ 𝑏 = 0", then 𝑎 = 0" or 𝑏 = 0"). The instructional 

tasks centered on leveraging the properties needed to solve basic polynomial equations to gain 

insight into abstract algebraic structures. For example, the zero-product property functions both 

as a key tool for solving polynomial equations and as the defining characteristic of integral 

domains, one of the foundational structures of abstract algebra.   

These episodes focus on the activity of one student, Matt (pseudonym), a junior mathematics 

education major who had completed linear algebra but had no formal exposure to abstract 

algebra, as he solved equations. Matt leveraged equivalence (in the form of the equivalence of 

equations) as a means to explain his general inattention to the structural implications of his 

algebraic manipulations. In this context, a common characteristic interpretation involves viewing 

that equations are equivalent when they share the same solution set. For example, the equations 



(𝑥 + 2)(𝑥 + 3) = 0 and (𝑥 + 2)#(𝑥 + 3)# = 0 are equivalent because they share the solution 

set {−2,−3} – the solution set is a common characteristic. Transformational activity in this 

context would focus on the algebraic manipulation of one equation into another, such as the fact 

that (𝑥 + 2)#(𝑥 + 3)# = 0 can be generated by raising both sides of (𝑥 + 2)(𝑥 + 3) = 0 to the 

fifth power. A transformational interpretation would involve accompanying this kind of activity 

with an awareness of the feature that these transformations preserve (in this case, the 

transformations preserve the solution set, which is central to the aforementioned common 

characteristic interpretation).      

 

4.1.1:  Episode 1: Employing transformational activity 

 

One of the first equation-solving tasks Matt was given prompted him to solve the pre-

factored quadratic equation (𝑥 + 2)(𝑥 + 3) = 0.  In response, he distributed the left-hand side of 

the equation to obtain 𝑥! + 5𝑥 + 6 = 0 and (correctly) applied the quadratic formula to obtain 

𝑥 = −2 and 𝑥 = −3. Hoping to necessitate use of the zero-product property, the researcher 

designed a follow-up task prompting Matt to solve the polynomial equation (𝑥 + 2)#(𝑥 + 3)# =

0. Instead, however, Matt began a series of unsuccessful attempts to solve the equation, one of 

which, for example, involved expanding the (𝑥 + 2)# term into (𝑥 + 2)!(𝑥 + 2)!(𝑥 + 2) and 

then dividing both sides by (𝑥 + 3)# (see Figure 2). Upon deciding that this approach was not 

productive, he considered taking “log base 5 of either side.” Ultimately, Matt decided to take the 

fifth root of both sides of the equation to obtain (𝑥 + 2)(𝑥 + 3) = 0, and then applied the 

quadratic formula (again) to obtain the (correct) solutions 𝑥 = −2 and 𝑥 = −3. Subsequently, 

when prompted to solve the equation (𝑥 + 2)#(𝑥 + 3)$ = 0 (another task designed to incentivize 

use of the zero-product property), Matt tried a host of similar approaches (e.g., expanding the 





Matt:  I mean I’ve tried foiling it, and I’ve tried taking the roots of that beast 

[…].  If I had kept with this … I think it would have just fallen out.  I 

would have had to have worked with it a little bit, but […] if I had, just a 

little further and I could have gotten it. 

 Researcher: So, if you stuck, if you had stuck with the algebraic manipulation,   

   then … 

 Matt:  We would have been here all night, but, yeah, I think I would have   

   gotten something. 

 

Notice that he focused exclusively on the actions he performed (e.g., “foiling it”, “taking the 

roots”) and how he viewed continued effort with these manipulations as the key to eventually 

solving the equation (e.g., when “it would have just fallen out”, “worked with it a little bit”).   

 

4.1.2:  Episode 2: Absence of a common characteristic interpretation 

 

 Matt exhibited some initial signs that he was unaware of the invariance of the solution set 

when he was asked to verify that 𝑥 = −2 and 𝑥 = −3 were both solutions to (𝑥 + 2)(𝑥 + 3) =

0 (the researcher asked this in hopes of focusing Matt's attention on the original equation and, 

thus, the potential use of the zero-product property as an efficient way to identify solutions). 

Curiously, Matt responded by using 𝑥! + 5𝑥 + 6 = 0 to verify the solutions. Matt explained that 

“that's where I got my solutions. From the quadratic formula. So that's where I wanted to put 

them back. [...] It seemed like the right thing to do. Since I got [the solutions] from the expanded 

version.” The following excerpt provides additional insight into Matt’s thinking: 

 

 Researcher: Are -2 and -3 solutions to the original equation as well? 

 Matt:  I don't ... I don't think so. It's, um, well it's different now, it's just  

   not the same at this point. 

 Researcher: Okay, um, why is it not the same?  Or in what way is it, is it  

   different? 

 Matt:  Well, here I foiled it, so now we have this x squared term and this  

   5x plus 6 and so they, they don't, they don't seem to be the same   

   equation anymore. 

   […] 

 Researcher: Okay, so, in your view, you’re saying that these solutions, -2 and -3, are  

solutions to, um, the most recent one, or the expanded one, but not the 

original? 





comment that “they don’t seem to be the same equation anymore” makes it clear that criterion 

C1 (explicit recognition of sameness) is not satisfied.  

Matt’s claims were challenged shortly thereafter when he was asked to prove that the 

solutions to the expanded version were, as he previously asserted, not solutions to the original 

equation. When attempting to prove that this was indeed the case, he paused before exclaiming 

“x is a solution to the original equation!” He repeated this procedure – substituting the solutions 

back into the original equation – for all of the equations he had previously solved. Though we do 

not assert that Matt had fully developed a common characteristic interpretation of equivalence at 

this point, what is clear is that Matt showed signs of a shift in thinking, focusing more and more 

on the original equation and how it shared the same solutions as the most recent equation he had 

generated (that is, he showed initial signs related to criterion C2). The benefits of this shift were 

immediately noticeable, as Matt was able to solve equations similar to those which he had 

previously been unable to solve. For example, when given (𝑥 − 1)%&(𝑥 − 4)!' = 0, an equation 

similar to (𝑥 + 3)#(𝑥 + 2)$ = 0 that would have been quite cumbersome (if not impossible) to 

solve by expansion, he immediately identified 𝑥 = 1 and 𝑥 = 4 as solutions by reasoning only 

with the original equation itself. 

   

4.1.3:  Episode 3: Extending notions of equivalence to ℤ%! 

 

The shift in Matt’s thinking that resulted in an increased focus on the original equation and 

its solutions remained stable across different algebraic contexts as well. Later in the teaching 

experiment he was asked to solve equations in ℤ%!. One of these tasks involved the equation 

3(𝑥 − 2) = 0, an equation that, because 3 is a zero-divisor, has multiple solutions. After 

inspecting the original equation and immediately identifying 𝑥 = 2 as a solution, however, he 

expressed uncertainty about how to proceed. Matt, aware by this point of the existence of zero-



divisors in ℤ%!, stated that he knew “there are other solutions” to 3(𝑥 − 2) = 0 but that he did 

not “know how you would get those other numbers.” We claim that the uncertainty he was 

expressing indicates a desire for a process to employ to find these elusive solutions. As evidence, 

consider language he used to express his uncertainty: he stated “I don’t know how to go from 

here to there,” “I just don’t know how to use that information,” and “I don’t know how you 

would get those other numbers.” All of these statements involve Matt’s admission that he did not 

know how to perform the actions necessary to find the other solutions. These statements also 

highlight his focus on determining a sequence of actions to apply to the equation (criterion T).  

Indeed, this was exactly the function that Matt’s transformational activity served earlier, enabling 

him to find solutions to a variety of polynomial equations in ℝ. Now operating in a different 

algebraic structure, however, Matt appeared to be unsure which transformations are admissible 

and which were not. Thus, even though he was showing signs of developing a common 

characteristic interpretation of equivalence, in this situation he did not solve the equation 

completely because he was not sure of how to operationalize his transformational activity to find 

the remaining solutions. 

4.1.4:  On the importance of a common characteristic and a transformational interpretation of 

equivalence 

 

We have thus far used the framework to illuminate facets of Matt’s reasoning about 

equivalence as he solved equations in an abstract algebra setting. We now argue that these facets 

are an integral part of reasoning productively about equivalence. Matt’s initial activity was 

primarily transformational – his overemphasis on change precluded his attention to sameness.  

Although far from the most efficient approach he could have used, his transformational activity 

was in some ways beneficial. For example, it contributed to his correct identification of the 

solutions to each equation in ℝ he was given except for (𝑥 + 2)#(𝑥 + 3)$ = 0.  



Matt’s transformational activity, though undeniably useful, was not accompanied by a 

common characteristic interpretation and was ultimately insufficient for solving equations and 

attending to the underlying algebraic structure. Interestingly, Matt asserted that the original 

equation was ‘not the same’ as the equations he was generating with his transformations. We 

would have expected a student who had developed a common characteristic interpretation to 

perhaps recognize that the equations differ in appearance but have the same solution set. The fact 

that Matt had not yet developed a common characteristic interpretation led to a situation in which 

he had indeed found the correct solutions to the original equation but did not realize it (and, in 

fact, explicitly asserted otherwise). Once Matt had started to show initial signs of developing a 

common characteristic interpretation (e.g., his focus on the original equation towards the end of 

the Episode 2), he was able to make quick work of the equations he was given, including some 

equations (e.g. (𝑥 + 1)%&(𝑥 + 4)!' = 0) similar to those he had struggled to solve earlier (e.g. 

(𝑥 + 2)#(𝑥 + 3)$ = 0). In addition to illustrating these interpretations in a student’s activity, our 

analysis here therefore provides some empirical support for our claim in Section 3.2 that 

transformational activity can be more productive and less constrained when accompanied by a 

common characteristic interpretation or a descriptive interpretation. 

 

4.2: Equivalence in Combinatorics 

The examples in 4.2.1 and 4.2.2 come from a study (Lockwood & Reed, 2020) of the 

mathematical activity of novice counters8 as they engaged in combinatorial tasks. The particular 

episodes presented were from sessions wherein two undergraduate students (pseudonyms Rose 

and Sanjeev) developed understandings of four basic counting formulas as well as what 

 
8 By “novice counter” we mean undergraduate students who have not received formal combinatorial instruction 

beyond what can be expected from high school algebra.  



Lockwood & Reed (2020) called an equivalence way of thinking in combinatorics. Our focus 

here, however, is on using the examples of students’ activity from previous studies to illustrate 

aspects of our framework and its utility for illuminating key aspects of students’ reasoning about 

equivalence.   

We focus on instances of activity in which the students began to determine certain outcomes 

in a counting process as being “duplicates,” “redundant,” or “the same,” depending on the 

constraints they imputed to the set of outcomes from their interpretations of the problem being 

solved. We focus on illustrating and showcasing the utility of a descriptive interpretation of 

equivalence; this both helps us clarify our characterization of descriptive equivalence and 

demonstrates the utility of the framework.  

Lockwood and Reed (2020) inferred that Rose and Sanjeev employed an equivalence way of 

thinking from observing the students’ regular propensity to identify initially perceived disparate 

outcomes as “duplicates” and to then adjust their enumeration of an outcome set accordingly. 

Here, we draw from episodes highlighted in that paper to suggest that the students’ development 

of equivalence ways of thinking is supported by descriptive interpretations of equivalence.   

We begin with their use of equivalence in two qualitatively different ways while solving the 

“Subsets” problem, which states How many 4 element subsets are contained in the set 0, 1, 2, 3, 

4, 5, 6, 7, 8, 9?. We highlight their attention to the “sameness” of particular outcomes as onset by 

their interpretations of the mathematical context, particularly the constraints the students put on 

to the outcome set from the counting problem itself. In working on the Subsets problem, Rose 

and Sanjeev quickly and correctly determined 

#$!

&!

(!
 to be an enumeration of the outcome set. In 

their description of their solution (in the following exchange), we see that their two-stage 



division was intentional, and indicated two different ways they engaged in interpretations from 

descriptive equivalence. Below is Sanjeev’s description of their first step L%*!
+!
M.  

Sanjeev: … So let’s say you have 10 numbers, and you have 10 spots. And you want to 

look for all the possible combinations of numbers, well, then you’d continue this 

all the way down to your last spot where you have one number left [Sanjeev drew 

10 dashes on the board, writing the numbers 10 to 1 under the dashes in 

descending order from left to right]. And that would give you all the possible 

arrangements you could make with 10 numbers. 

Int.:  Uh-huh. 

Sanjeev: But now, say, you’re just looking for 4 of those numbers, well, then you’d 

isolate these 4 numbers and ignore anything here [referring to the last 6 positions], 

because any numbers you place here could mean whatever arrangement – 

you want them to be. And so these numbers [refers to the last 6 positions], it 

doesn’t matter how they’re arranged, because you’re all looking for a group 

of 4 [refers to the first 4 positions]. 

Int.:  Uh-huh. 

Sanjeev: And so then you ended up with 10 factorial, and then you divide out 6 factorial, 

because this portion right here, 6 factorial, and so that – that’s basically saying 

you have 10 factorial total combinations possible with 10 numbers, but 

you’re dividing by 6 factorial combinations, because those are the numbers 

that are irrelevant, because it doesn’t matter how they’re arranged. 

Int.:  Okay.   

Sanjeev: It’s only the first 4 that you care about that are arranged. 

 	 
We note that Sanjeev considered arrangements of the final 6 numbers in a 10-number set to 

be “irrelevant” following arrangement of 4 numbers. We interpret from this statement that “some 

arrangements are ‘irrelevant’” is the complementary version of Sanjeev attributing “sameness” to 

arrangements of 10 numbers where the first four numbers are fixed. Sanjeev said as much by 

describing that, “…these numbers [refers to the last 6 positions], it doesn’t matter how they’re 

arranged, because you’re all looking for a group of 4.” Sanjeev envisioned a process of first 

arranging 10 numbers and then using division by 6! to account for “duplicate” outcomes 

(language they used throughout the teaching experiment), where the duplication came from 

rearrangement of the final 6 numbers in the set of 10 numbers. Lockwood & Reed (2020) 

discussed the sameness here in terms of Sanjeev’s equivalence way of thinking, but they did not 



specify a particular interpretation in terms of our framework. We elaborate this point to 

demonstrate the framework’s potential to highlight additional aspects of students’ reasoning 

about equivalence. 

Sanjeev’s words and actions satisfy criterion D1 for a descriptive interpretation of 

equivalence. Specifically, Sanjeev contended that once 4 numbers from a 10-number set were 

arranged, further arrangements of the final 6 numbers would all be equivalent to each other. 

Moreover, we also suggest that Sanjeev viewed the equivalence of the outcomes as determined 

by the problem constraints, specifically “It’s only the first 4 that you care about that are 

arranged,” and “you’re just looking for 4 of those numbers.” That is, he seemed to perceive that 

whether or not two outcomes were equivalent was determined by particular problem he was 

solving – in the Subsets problem, he only cared about arrangements of 4 and not 10 numbers. 

The distinguishing feature of descriptive equivalence (criterion D2) draws from interpretations of 

the mathematical context or task to determine objects as similar or dissimilar. In this case, 

Sanjeev described that he “cared” only about ordering of the first four, thus conceiving of other 

possible counting situations where further arrangement of up to 10 numbers might be desired. It 

is unlikely that Sanjeev saw “sameness” as intrinsic to the particular objects being counted, but 

rather that he viewed “sameness” as a flexible property to be imputed to outcomes depending on 

the problem – here, arrangements of 10 numbers.  

We continue with the rest of the students’ explanation of the Subsets problem, focusing on 

Rose’s contribution, again providing an instance of a descriptive interpretation of equivalence, 

but from a new attribution of “sameness”. In describing the final division by 4!, Rose said the 

following as a direct continuation of what Sanjeev had done: 

Rose:  Because when you’re arranging the first 4 digits you could end up with 0, 1, 2, 3 

or 3, 2, 1, 0.  And it – without the division it – those would be treated as 

separate results even though they’re the same thing.  And if they’re the same 



4 element subset, so we divided by 24, because there would be 24 subsets that 

are essentially the same, […] so divided by 24 we’re left with just unique 

subsets. 

 

Rose provides a clear statement of “sameness,” thus satisfying criterion D1. This is an 

example of a tendency that Rose and Sanjeev developed when solving counting problems to 

routinely check whether outcome construction produced “duplicate” outcomes (See Lockwood & 

Reed, 2020; Reed & Lockwood, 2021). Moreover, in this excerpt Rose compared two possible 

outcomes resulting from their 
%*!

+!
 process, and considered whether the constraints of the problem 

dictated that they should instead be counted as the same (this was typical of their counting 

activity in the teaching experiment). Rose then completed the problem by explaining that the 

division by 24 (4!) ensured that they counted only a single 4-element subset rather than the 24 

that result from arrangement. We interpret her activity and explanation as also satisfying 

criterion D2, as Rose interpreted that she was counting 4-element subsets, and that different 

orderings of elements within a subset do not make for distinct outcomes. Her interpretation of a 

feature of the desired final outcome stems from her interpretation of the counting problem, which 

situated her mathematical setting.   

 We conclude this section by noting that the students operationalized “sameness” in two 

distinct ways. First, the students determined how many elements they sought to arrange after 

imagining an arrangement of the entire set, thus creating duplicates via arrangement of the 

remaining “undesirable” set elements, once the “desirable” elements had been arranged. Then, 

the students determined whether arrangement of their chosen set elements created duplicate 

outcomes as described by the counting problem. In each case, they employed division as a means 

of creating a single desired outcome from among the duplicate outcomes. This is akin to 

reasoning with a representative element of an equivalence class (see Lockwood & Reed, 2020).  



 

5:  Discussion 

 

In this paper, we have proposed a theoretical framework – specifically, a conceptual analysis 

– for analyzing students’ activity with equivalence across mathematical domains. Although we 

specify the scope of mathematical situations for which our framework is relevant using the 

formal equivalence relation concept, our framework is intended to capture the more informal 

ways in which students interpret equivalence. In our framework, we have tried to demonstrate 

both that these interpretations each capture relevant aspects of students’ activity with equivalence 

across mathematical domains, and that these interpretations are an essential part of reasoning 

productively with equivalence. To do this, we illustrated how these interpretations highlighted 

commonalities amongst the various characterizations of equivalence across multiple domains 

spanning primary to postsecondary mathematics. For example, in Sections 3.2 and 3.3 we 

pointed out that the three interpretations – which emerged in and had previously only been 

applied within the domain of K-12 algebra – each feature prominently in the literature on 

fractions, modular arithmetic, combinatorics, and linear algebra. In section 4, we used the 

framework to conduct a detailed analysis of students’ activity in abstract algebra and 

combinatorics, specifically linking these interpretations to students’ successful reasoning with 

tasks in these two mathematical domains.  Importantly, we note that the framework extends yet 

maintains coherence with the equivalence-related findings in these domains.  

The primary contribution of the framework is that it provides researchers with a theoretical 

means with which to account for students’ activity with equivalence across mathematical 

domains. This contribution is particularly notable because, as we have previously stated, the 

equivalence literature, while substantial, is largely context-specific. In other words, the literature 

provides little insight into how interpretations of equivalence in one domain might relate to (and 



perhaps influence) those in another. This framework has also incorporated, maintained 

consistency with, and extended previous efforts to identify coherence amongst the many 

manifestations of equivalence.  For example, Charles (2005) pointed out that the equivalence of 

fractions, numerical expressions, and algebraic expressions could all be framed in terms of a 

common numerical value – in our framework, this is classified as a common characteristic 

interpretation.  We therefore see this framework as an important initial step toward specifying 

ways in which to consider equivalence more broadly across domains.    

We suggest that the framework can be used to gain additional, refined insight into students’ 

thinking about equivalence. Recall Burington’s (1948) question (in Section 2), which spurred us 

to ask: what does it really mean to say that ‘A is equivalent to B’? Answering this question 

afforded insights into the nature of equivalence itself and the ways in which students reason 

about it. This can be seen in our analyses of the examples of students’ activity provided in this 

paper. For example, Cook (2018) originally argued that viewing the equations one is generating 

via algebraic manipulation as equivalent is a necessary precursor to attending to the underlying 

algebraic structure that is so often the focus of abstract algebra.  The framework provides a 

mechanism with which further refine this analysis: Matt initially related the equations he was 

generating purely in terms of the transformational activity that produced them; he then gradually 

shifted to interpreting the relationship between equations in terms of the common characteristic 

(i.e., the solution set) that they all share. Lockwood and Reed’s (2020) example of students’ 

activity in combinatorics similarly illustrates the utility in accounting for students’ descriptive 

interpretations of equivalence.   

In the introduction to this paper, we also highlighted how important it is for pre- and in-

service teachers to explicitly attend to the meanings of equivalence that are manifest in their 

instruction.  We see the cross-domain framework presented here as a valuable tool in this regard 



because it provides a mechanism that can support “the grounding of a teacher’s mathematics 

content knowledge and their teaching practices” (Charles, 2005, p. 9) upon a coherent, unifying 

notion of equivalence. We also see it as a useful tool for connecting the advanced mathematics 

coursework required for secondary teacher preparation with secondary mathematics itself.  

Noting that it is far from certain that teachers will make these connections (e.g., Zazkis & Leikin, 

2010), Wasserman (2018) argued that “the study of advanced mathematics does not appear to be 

inherently beneficial to secondary teachers. [...] But that is not the same as claiming that it 

cannot be beneficial” (p. 6, emphasis in original). He suggested that, rather than relying on broad 

assumptions that advanced mathematics is beneficial, we as a field should be much more explicit 

about connections we want future teachers to make between advanced and secondary 

mathematics. One way to do this is to conduct cognitive analyses of content-related connections, 

which involve identifying understandings of advanced mathematics content that mirror the 

understandings needed to reason productively in school mathematics. Indeed, the equivalence 

framework proposed in this paper highlights that the interpretations of equivalence needed to 

reason productively in abstract algebra and combinatorics mirror those needed to reason 

productively about, for example, fractions and equations in K-12 mathematics. In other words, 

the framework provides a vehicle for connecting two areas that researchers have in general 

struggled to connect:  advanced mathematics and school mathematics. In this way, the cross-

domain framework of equivalence interpretations that we presented here can “help depict the 

kinds of rich mathematical understandings that need to be developed by secondary mathematics 

students, and help inform how the study of [advanced mathematics] might enrich secondary 

teachers’ mathematical knowledge” (Wasserman, 2018, p. 11). We expect that investigating 

these claims directly could be a fruitful topic for further research. 



This cross-domain framework opens up many productive avenues for future research. For 

example, it can inform the design of instructional sequences – by, for example, informing the 

identification of desirable targets of instruction – involving equivalence in various mathematical 

domains.  It could also inform analyses of how interpretations of equivalence that students 

develop in one context might influence their reasoning about equivalence in another or how 

students might develop and enact a context-independent understanding of equivalence. In a 

related vein, the framework could be used to identify the specific interpretations of equivalence 

that can support the learning of other concepts. That is, it could be used to gain insight into the 

question: which interpretations are advantageous for learning about and reasoning with certain 

concepts or in certain mathematical domains? The examples of students’ activity in this paper 

certainly illustrate the essential supporting role that equivalence can play when learning about 

other concepts. In the case of zero-divisors in Cook (2018), for example, the common 

characteristic and transformational interpretations were essential. In the combinatorial example 

from Lockwood and Reed (2020), a descriptive interpretation featured prominently in the 

students’ success. There is much room for future research in this regard.   

We acknowledge that this framework is not exhaustive; we do not expect it to account 

comprehensively for all aspects of students’ activity with equivalence in all contexts. We also 

note that our analyses of students’ activity in this paper were entirely retrospective. These 

limitations, we believe, offer several additional opportunities for expansion of the ideas 

presented here. The interpretations in the framework could, for example, be elaborated and 

refined within specific domains, or applied to other domains to which we have not explicitly 

attended (such as calculus). There is also room for extension to additional topics within abstract 

algebra and combinatorics (such as isomorphism and quotient groups).  



Finally, future research could identify other cross-domain interpretations of equivalence.  As 

we pointed out in Section 3.2, the framework is exclusively concerned with students’ local, 

element-wise reasoning (Hamdan, 2006) about equivalence. Though we used the notion of an 

equivalence relation to specify the mathematical scope of the framework, the framework is not 

intended to (immediately) apply to students’ reasoning about this more global, equivalence class-

based perspective (Hamdan, 2006). Future research could therefore examine how the 

interpretations in this local framework might be adapted to account for students’ global 

reasoning about equivalence, as well as, perhaps, the reasoning involved in moving flexibly 

between a local and a global perspective on equivalence. One promising possibility in this regard 

comes from research on substitution-based meanings for the equal sign (e.g. Bishop et al., 2016; 

Jones & Pratt, 2012; Musgrave, Hatfield, & Thompson, 2015), which are not directly accounted 

for in our framework.  Substitution-based meanings involve interpreting “statements such as 

𝑖! = −1 […] as a rule for substitution” (Jones & Pratt, 2012, p. 4).  We consider substitution to 

be particularly related to the transitive property of equivalence relations (e.g., if 𝑎~𝑏 and 𝑏~𝑐, 

then 𝑎~𝑐), and thus it could play an important role in bridging the gap and examining the 

relationship between local and global thinking about equivalence.   
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7:  Appendix:  more formal treatments of the common characteristic and transformational 

interpretations via the equivalence relation concept 

 

In our framework, we note that the notion of a ‘common characteristic’ can be based upon a 

students’ intuitive, informal perception of similarity amongst objects. However, there is a direct 

analog with the formal equivalence relation concept.  It is based upon a key theorem:  a relation 

~ on a set 𝐴 is an equivalence relation if and only if there exists a function 𝑓 with domain 𝐴 such 

that 𝑎~𝑏 if and only if 𝑓(𝑎) = 𝑓(𝑏).  Now, as explained by Hamdan (2006): 

R classifies the elements of A into equivalence classes according to certain characteristics 

that they have in common (e.g. integers are classified into even and odd numbers). The 

function f is then constructed based on these characteristics, in the sense that it will map an 

element to that identified characteristic (continuing the example: f maps numbers divisible by 

2 onto “even” and numbers not divisible by 2 onto “odd”). Consequently, it will naturally 

follow that elements in A that are in the same class are mapped to the same image. In a way, 

this construction relies on the range since we are considering that 𝑓,%(characteristic x ) = the 

set of those elements of A which possess the characteristic x.  (p. 134) 



We can also define a ‘transformation’ in a more formal way that is broadly compatible with our 

transformational interpretation as described in the framework and the equivalence relation 

concept:  a transformation on a set 𝐴 is an invertible function 𝑇: 𝐴 → 𝐴.  This enables us to 

define a relation as follows:  𝑎~𝑏 if and only if there exists a transformation 𝑇: 𝐴 → 𝐴 such that 

𝑇(𝑎) = 𝑏.  We note that a relation ~ is indeed an equivalence relation because it is: 

 

§ Reflexive:  𝑎~𝑎 because the identity function 𝑖: 𝐴 → 𝐴 given by 𝑖(𝑎) = 𝑎 is a 

transformation on 𝐴 

§ Symmetric:  if 𝑎~𝑏 then there exists a transformation 𝑇 on 𝐴 such that 𝑇(𝑎) = 𝑏.  Since 

𝑇 is invertible, 𝑇,% is also a transformation on 𝐴 and, by definition, 𝑇,%(𝑏) = 𝑎.  

Therefore 𝑏~𝑎. 

§ Transitive:  if 𝑎~𝑏 and 𝑏~𝑐 then there exist transformations 𝑇% and 𝑇! on 𝐴 such that 

𝑇%(𝑎) = 𝑏 and 𝑇!(𝑏) = 𝑐.  Since 𝑇% and 𝑇! are transformations on 𝐴, 𝑇! ∘ 𝑇%: 𝐴 → 𝐴	is 

also a transformation on 𝐴.		Now, observe that 𝑐 = 𝑇!(𝑏) = 𝑇!(𝑇%(𝑎)) = (𝑇! ∘ 𝑇%)(𝑎).  
Therefore 𝑎~𝑐. 

Though not a centerpiece of our framework, we believe these treatments are useful for two 

reasons.  First, they specify in greater detail what is meant by ‘common characteristic’ and 

‘transformational.’  Second, they highlight how intuitive, informal interpretations of equivalence 

can anticipate and mirror formal aspects of the equivalence relation concept.   

 


