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An Initial Framework for Analyzing Students’ Reasoning
with Equivalence Across Mathematical Domains

The concept of equivalence is foundational in mathematics and is pervasive in the K-16
curriculum. Though much research has focused on equivalence, nearly all of it is domain-
specific, and it is therefore unclear how students’ reasoning about equivalence in one domain
might influence their reasoning about it in another, if at all. This highlights a need for increased
theoretical unity and coherence. In this theoretical paper, we propose an initial framework for
analyzing students’ reasoning about equivalence across domains. We use the framework to
highlight commonalities amongst the ways in which equivalence is interpreted with respect to
fractions, K-12 algebra, modular arithmetic, and linear algebra. We demonstrate the
framework’s strength as an analytical tool by using it to conduct detailed analyses of student
data from already-published studies in combinatorics and abstract algebra. We conclude by
suggesting ways in which this framework lays a rich foundation for future research.

1: Introduction

“Equivalence,” wrote the eminent mathematician Paul Halmos (1982), “is one of the basic

building blocks out of which all mathematical thought is constructed” (p. 246). Indeed,
equivalence is one of the most fundamental, far-reaching concepts in mathematics, and it
emerges in a variety of content areas across the K-16 spectrum. There is ample evidence in the
literature and in policy documents that highlights the centrality and ubiquity of equivalence in K-
12 mathematics (e.g., Carpenter, Franke, & Levi, 2003; Herscovics & Kieran, 1980; Kara,
Simon, & Placa, 2018; Kieran & Sfard, 1999; Knuth et al., 2006; McNeil & Alibali, 2005;
National Governors’ Association Center for Best Practices & Council of Chief State School
Officers, 2010; Ni, 2001; J.P. Smith, 1995; Steffe, 2004; Wong & Evans, 2007). As one

example, Charles (2005) argued that equivalence is one of the ‘big ideas’ at the K-8 level that

“links numerous mathematical understandings into a coherent whole” (p. 10). In postsecondary



mathematics, equivalence plays a key role in learning about such concepts as angle measure
(e.g., Moore, 2013), logic (e.g., Stylianides et al., 2004), number theory (e.g., Smith, 2006),
linear algebra (e.g., Berman et al., 2013), combinatorics (e.g., Lockwood & Reed, 2020), and
abstract algebra (e.g., Cook, 2018; Larsen, 2013). Equivalence and its many manifestations also
have important implications for teacher preparation (e.g., AMTE, 2017; NCTM, 2020). For
example, it is generally agreed upon that future K-12 teachers should come to “understand the
critical importance of equivalence and approach the teaching of algebraic concepts by explicitly
attending to equivalence,” (AMTE, 2017, p. 97, emphasis added).

However, in spite of the importance of equivalence across the K-16 curriculum, research
suggests that students at all levels experience considerable difficulty with equivalence (e.g.,;
Carpenter, Franke, & Levi, 2003; Chick, 2003; Chesney et al., 2013; Godfrey & Thomas, 2008;
Kieran, 1981; McNeil et al., 2006; Pomerantsev & Korostoleva, 2003; Stephens, 2006;
Weinberg, 2009). Moreover, while the literature emphasizes the importance of equivalence with
respect to a variety of topics, there is a need for more overall coherence: characterizations of
equivalence are often either implicit, underspecified, or domain-specific. This is notable given
that, for students, “equivalence has had many different faces and [...] many different names”
(Asghari, 2019, p. 4675). As a result, it is currently unclear how the understandings of
equivalence students develop in one domain might influence their reasoning about equivalence in
another. Each time students encounter equivalence in a new context, we as a field have no
theoretical recourse but to assume that they are encountering the concept for the first time. We
therefore interpret that the equivalence literature as a whole is currently less than the sum of its
parts. That is, potential ways in which equivalence may be framed in a unifying, overarching
manner have not been leveraged in the literature so far. This highlights the need for a coherent

theoretical approach to equivalence that researchers could leverage across multiple domains.



In this theoretical paper, we propose an initial attempt at such a framework. The framework
takes the form of a conceptual analysis (Thompson, 2008), in which we explicitly articulate three
key interpretations of equivalence that are common across mathematical domains. In addition to
describing these three interpretations in detail, our primary objective is to illustrate that these
interpretations (1) capture aspects of productive reasoning with equivalence, and (2) account for

students’ reasoning with equivalence in a variety of domains.

2: Background Literature

A 1948 article by Burington provided the motivating, central idea that underpins our
objectives here: “the literature abounds in such phrases as A is equivalent to B, which, unless
properly defined, are often meaningless or misleading” (p. 1). This sentiment harmonizes with
the calls of researchers throughout the equivalence literature who have underscored the need to
be explicit about what equivalence entails (Kieran, 1981; Knuth et al., 2006; McNeil & Alibali,
2005; McNeil et. al., 2006; Ni, 2001; J.P. Smith; 1995; Solares & Kieran, 2013; Stephens, 2006).
Indeed, what does it mean to say that ““A is equivalent to B”? In considering this question, we
situate our work within a particular domain that has received substantial attention in the
equivalence literature: the equivalence of expressions in algebra. Our primary intention here is
not to examine the equivalent expressions literature per se, but to use this substantial body of
literature to generate hypotheses about the general concept of equivalence. We focus here on
three such insights that informed our development and use of the conceptual analysis that follows
in Section 3.2.

First, we note that there are several forms of equivalence that are prominent in algebra, each
of which depends on the types of objects that are being related. To illustrate this point, we

consider two fundamental algebraic objects: expressions and equations (with at most one



variable). We find it useful to distinguish between expressions that are numerical (numbers only,
no variables) or algebraic (with variables). Numerical expressions are equivalent! when they
correspond to the same value (e.g., Liebenberg, Linchevski, Sasman, & Oliver, 1999; Saldana &
Kieran, 2005), and algebraic expressions are equivalent if “for any admissible number that
replaces x, each of the expressions gives the same value” (Saldanha & Kieran, 2005, p. 3). We
note that these characterizations are undeniably similar — they both, for example, focus on the
value of the expressions in question — yet are ultimately different in subtle ways. Thus,
reasoning productively with equivalence requires explicit attention to the objects involved and
the warrants and interpretations by which one establishes that two objects are equivalent.
Second, these forms of equivalence necessarily build upon one another. For example, the
characterization of the equivalence of algebraic expressions implicitly depends on the
equivalence of numerical expressions, as illustrated in the following reformulation: algebraic
expressions f(x) and g(x) are equivalent if they are equivalent as numerical expressions for
each admissible value of x (Solares & Kieran, 2013). Additionally, understanding the concept of
equations first requires understanding the equivalence of expressions. For example, equations
can be conditional (i.e., for a proper subset of the set of all possible admissible values for x, the
two expressions are equivalent as numerical expressions) or identical (i.e., the two expressions
are equivalent as algebraic expressions) (Godfrey & Thomas, 2008). This key distinction is
important for such fundamental tasks as solving linear equations. For instance, verifying that x =
8 is a solution to the conditional equation 2(x + 1) = 18 requires attention to the equivalence of
numerical expressions (e.g., the solution set {8} is precisely the set of values for which both sides

of 2(x + 1) and 18 are equivalent as numerical expressions). Similarly, understanding why it is

! Some researchers refer to this form of equivalence as ‘equality’ or ‘numerical equality’ (e.g., Molina & Castro,
2009; Saldanha & Kieran, 2005). We follow these researchers in viewing equality as a specific form of equivalence.



acceptable to replace 2(x + 1) with 2x + 2 to obtain 2x + 2 = 18 requires recognizing that the
two are equivalent algebraic expressions — put another way, 2(x + 1) = 2x + 2 is an identical
equation (in the sense of Godfrey & Thomas, 2008). This kind of reasoning requires careful
attention to both the objects and the form of equivalence in question. Reasoning in this way is
not a trivial endeavor; rather, it is complex, multi-layered, and interrelated.

A final point that highlights the complexity of equivalence is that it can (and should) be
understood in various ways (e.g., Harel, 2008; Kieran & Sfard, 1999; Solares & Kieran, 2013;
Zwetzschler & Prediger, 2013). For simplicity, in the preceding paragraphs we intentionally
focused on characterizations of equivalence in terms of a shared numerical value (or set of
numerical values); these characterizations all stem from a numeric interpretation of equivalence
(e.g., Saldanha & Kieran, 2005). Previous efforts to identify coherence in the many
manifestations of equivalence in the K-8 curriculum have emphasized the potential productivity
of this view — for example, Charles (2005) highlighted the centrality of recognizing that “any
number, measure, numerical expression, algebraic expression, or equation can be represented in
an infinite number of ways that have the same value” (p. 10, emphasis added). In addition to this
numeric interpretation, researchers have called attention to two other key interpretations: a
transformational (e.g., Solares & Kieran, 2013) and a descriptive (e.g., Zwetzschler & Prediger,
2013) interpretation of equivalence. We elaborate all three of these interpretations in Table 1 and
Section 3.2.2 The fact that equivalence can and should be interpreted in various ways provided
the basis on which we developed the cross-domain conceptual analysis. Specifically, the

numeric, descriptive, and transformational interpretations of equivalence — which previously had

2 All three of these constructs appear under different names. For example, some researchers refer to a numeric
interpretation as insertion equivalence (e.g., Zwetzschler & Prediger, 2010). Additionally, a transformational
interpretation is referred to by some as a syntactic interpretation (e.g., Solares & Kieran, 2013). Though the names
are different, the meanings are compatible.



only been applied within the domain of K-12 algebra — form the foundations of our cross-domain
theory.

3: A framework for characterizing productive interpretations of equivalence across
domains

3.1: Theoretical underpinnings

Our framework takes the form of a conceptual analysis (Thompson, 2008). At its core, a
conceptual analysis is a form of theory that explicitly articulates “what students might
understand when they know a particular idea in various ways” (Thompson, 2008, p. 43). A
conceptual analysis can be used to analyze and address the fit and coherence of mathematical
meanings expressed in an instructional sequence, curriculum, or, in this case, body of literature.
As noted by O’Bryan (2018), “supporting students in seeing the coherence within and across
mathematics courses demands that curriculum designers and instructors first clearly articulate for
themselves the general ways of reasoning mathematics instruction should support” (p. 123,
emphasis added). The conceptual analysis we propose below seeks to address the fragmented
nature of the equivalence literature by explicitly articulating detailed descriptions of three
interpretations of equivalence that, we claim, capture key aspects of equivalence that are
common across mathematical domains (this is the focus of the mathematical examples we
present in Section 3).

A conceptual analysis also provides researchers with a means by which to explicitly account
for, articulate, and understand students’ reasoning about a particular mathematical idea. That is,
it can be used to create models of students’ thinking (e.g., Clement, 2000; Steffe & Thompson,
2000). By ‘model,” we refer to the inferences that researchers make about the cognitive
structures — in this case, the interpretations of equivalence — that might underlie and inform

students’ language and actions. Thus, in addition to addressing issues of coherence, we will



illustrate the utility of our framework by using it to build models of students’ thinking that
capture meaningful aspects of their reasoning about equivalence (this is the purpose of the
detailed analyses of students’ activity we present in Section 4). We situate each interpretation
within relevant literature, and for each interpretation we describe criteria — in the form of
characterizations of students’ language and actions — to use to determine if a student is enacting a
particular understanding.

3.2: A cross-domain framework for analyzing students’ reasoning with equivalence

In this section we present our framework for students’ interpretations of equivalence. From
our perspective as researchers, we specify the scope of mathematical situations to which this
framework applies by operationalizing the formal, abstract notion of an equivalence relation’.
Such a relation partitions a given set S into subsets (equivalence classes); two elements of a set S
are equivalent if they belong to the same equivalence class. This is consistent with what
Hamdan (2006) called a global view of equivalence, which (implicitly) underlies all of its
manifestations in the primary, secondary, and postsecondary mathematics curriculum. These
manifestations include (but are certainly not limited to) the equivalence of fractions, numerical
expressions, algebraic expressions, algebraic equations, and integers (modulo k).

Thompson (2002) noted that a conceptual analysis should be grounded in students’
conceptual experiences. Thus, while the notion of equivalence relation specifies the scope of
mathematical situations that we (as researchers) associate with this framework, we intend for the
framework to explicate the various ways in which students might interpret equivalence in these
situations. The interpretations that we set forth therefore all follow from a /ocal, element-to-

element view of equivalence (Hamdan, 2006), primarily because this is the predominant view of

* Formally, an equivalence relation on a set S is a relation ~ that is reflexive (i.e., for all x € S, x~x), symmetric
(i.e., forall x,y € S, if x~y then y~x), and transitive (i.e., for all x,y,z € S, if x~y and y~z, then x~z).



equivalence in students’ experiences and is therefore, we argue, better suited to capture

meaningful aspects of students’ reasoning about equivalence across domains. These

interpretations are based upon those in the literature on algebraic expressions that we briefly

previewed in Section 2: common characteristic (a generalization of numeric), descriptive, and

transformational interpretations of equivalence. While these components were initially

articulated in terms of numerical and quantitative contexts in K-12 algebra, we have adapted

them here to address students’ reasoning about equivalence in a wide variety of mathematical

domains. We note that we do not presume that these interpretations comprehensively account for

all aspects of students’ reasoning about equivalence. Instead, we propose that these

interpretations can capture key aspects of students’ activity with equivalence across domains.

Table 1. A framework for analyzing students’ reasoning about equivalence.

determining that
objects are
equivalent because
they describe the
same quantity or
serve the same
purpose with respect
to a given situation

descriptors like same,
common, similar,
identical, invariant, or
shared

Criterion D2: sameness is
explained by referencing
an aspect of the given
mathematical situation or
task setting

Interpretation Description Associated observable Example
of equivalence behaviors (criteria)
Common Interpreting or Criterion C1: use of Viewing two systems of
characteristic determining descriptors like same, linear equations as
equivalence based common, similar, equivalent because they
upon a perceived identical, invariant, or share the same solution
attribute that the shared set (Harel, 2008).
objects in question
have in common Criterion C2: sameness is
explained by identifying
an attribute that the
objects themselves share
Descriptive Interpreting or Criterion D1: use of Proving combinatorial

identities by using two
different counting
processes to count the
same set of outcomes
(Lockwood, Caughman,
& Weber, 2020).




Transformational

Interpreting or
determining
equivalence based
upon the relationship
between objects in
terms of the actions
by which one object
has been or might be
transformed into
another

Criterion T: a sequence of
actions (either already
performed or imagined)
by which one object
might or can be changed

into another is enacted or
described.

Solving the equation
5x+1=3x+5by
“undoing”: subtracting
1 from both sides (to
obtain 5x = 3x + 4),
then subtracting 3x
from both sides (to
obtain 2x = 4), then
dividing both sides by 2
(to obtain x = 2) (de
Lima & Tall, 2008).

A common characteristic interpretation of equivalence involves interpreting or determining

equivalence on the basis of a perceived attribute that the objects in question share. The term

common characteristic was used by Piaget (1997) — and subsequently by Hamdan (2006) — to

describe how a person classifies objects based upon that person’s perceptions of similarity?,

however informal or intuitive, amongst the objects. In this context, it serves as an adaptation of

the previously mentioned numeric view of the equivalence of algebraic expressions, in which

two expressions are seen as equivalent if they have the same value for all admissible values of

the relevant variable(s) (Saldanha & Kieran, 2005; Solares & Kieran, 2013; Zwetzschler &

Prediger, 2013). We consider a student to be employing a common characteristic interpretation

of equivalence if both of the following criteria are satisfied.

= Criterion C1 (recognition of sameness): in referring to the objects in question, descriptors
like same, common, similar, identical, invariant, or shared (or a reasonable synonym) are

used.

= Criterion C2 (explanation of sameness): the sameness of the objects in question is
explained by identifying an attribute that the objects themselves share.

To exemplify this interpretation, we note that Hamdan (2006) reports on a classroom episode

in which the instructor asks students to consider a situation in which lines are equivalent if they

4 This characterization intentionally emphasizes the importance of attending to how an individual might intuitively
or informally perceive similarity. While we believe this is a generally productive approach to analyzing students’
reasoning and supporting students’ learning, certainly not all perceptions of common characteristics are productive.
See the Appendix (Section 6) to see how we, as researchers, formally define the scope of the common characteristic
interpretation using equivalence relations.




are parallel®. A student reformulates the notion of parallel by noting that equivalent lines a
common “direction, of course, or slope. The common property will be the slope” (p. 143). As
another example, in linear algebra, two linear systems are equivalent if they “have the same
solution sets” (Poole, 2014, p. 60), or, analogously, if their corresponding coefficient matrices
“have the same reduced row echelon form” (Berman et al., 2013, p. 4). Here we note the use of
the word “same” (criterion C1) as well as an indication of the shared attribute® (“solution sets,”
“reduced row echelon form,” criterion C2).

A descriptive interpretation of equivalence involves viewing objects as equivalent on the
basis that they describe the same quantity or serve the same purpose in a given external situation.
Descriptive interpretations of equivalence differ from common characteristic interpretations on
the grounds that, whereas a common characteristic interpretation focuses on an attribute of the
objects themselves, a descriptive interpretation focuses on an attribute of a given situation. This
is reflected in our criteria; the first focuses on the recognition of some kind of sameness, whereas
the second clarifies that the recognition of sameness must be based upon aspects of the given
situation:

= Criterion D1 (recognition of sameness): in referring to the objects in question, descriptors

like same, common, similar, identical, invariant, or shared (or a reasonable synonym) are
used.

= Criterion D2 (explanation of sameness): the sameness of the objects in question is

explained by referencing an aspect of the given mathematical situation or task setting.

Descriptive interpretations of equivalence are particularly useful when reasoning about

measurement. For example, consider the equation “1 week = 7 days.” A productive way to

5 For example, lines of slope 2 can be viewed as equivalent classes with respect to the following equivalence relation
on R%: (x;,y,)~(x,, V,) whenever —2x; +y; = —2x, + y,. .

® We note, however, that a focus on the sequence of row operations by which the matrices in question are
manipulated into reduced row echelon form would be classified as transformational activity related to equivalence.
The constructs in the framework are not disjoint and can supplement each other. We elaborate further on the nature
of transformational activity related to equivalence below.



interpret this equality is to view both expressions as measurements of the same magnitude of
time: “1” is the measurement when measuring in weeks, and “7” is the measurement when
measuring in days. From this perspective, the equivalence of 1 week and 7 days “makes explicit
[use of] the fact that the magnitude of a quantity is invariant with respect to a change of unit”
(Thompson et al., 2014, p. 5). This is descriptive in nature because the two expressions describe
an invariant (recognition of sameness, criterion D1) magnitude as measured in different units (an
aspect of the situation or task setting, criterion D2). As another example, consider combinatorial
proofs of binomial identities. A common strategy is to reason that “if two different combinatorial
expressions can be represented as different ways of counting the same set of objects, then the two
combinatorial expressions are equal” (Lockwood, Caughman, & Weber, 2020, p. 179, emphasis
added). We consider this a use of a descriptive interpretation because two different yet legitimate
counting processes (attributes of an external situation, criterion D2) are used to count the same

set of outcomes and are therefore equal (explicit references to sameness, criterion D1).

A transformational interpretation’ of equivalence involves viewing the relationship between
objects in terms of the actions by which one object has been or might be transformed into
another, according to a set of rules. Rather than focusing exclusively on the fact that two objects
are in some way the same, transformational activity focuses on how one object can be changed
into another. This typically involves “a sense of the actions needed in order to reach a desired
[...] form” (Harel, 2008, p. 15). Transformational activity has been identified across the
equivalence literature as one that supports productive reasoning, largely because it enables one to

generate equivalent representations of objects that are easier to work with or serve an explicit

7 See the Appendix for a discussion of how informal notions of transformations on objects align with the formal
equivalence relation concept.



purpose. And yet, despite its benefits, researchers have also cautioned that over-relying on
transformational activity can preclude the necessary emphasis on equivalence (e.g. Alibali et al.,
2007; Carpenter, Franke, & Levi, 2003; Kieran, 1981). Said another way, an overemphasis on
change overshadows an emphasis on sameness. For example, de Lima and Tall (2008) reported
that
many students respond to the general principle of ‘doing the same thing to both sides’ in
specific terms in which the +1 in 5x+1=3x+5 is shifted over the other side with a ‘change in
sign’ and the 3 in 3x = 6 is ‘moved over the other side and ‘put underneath’. [This] may be
seen as moving symbols with a kind of additional ‘magic’ to get the correct solution (p. 4).
The key distinction between whether or not one’s transformational activity is productive
ultimately hinges on the extent to which one recognizes that the transformations that are applied
preserve some key feature of the object or related context (e.g., Alibali et al., 2007; Carpenter et
al., 2003). Harel (2008) encapsulated this idea well by arguing that a hallmark of productive
transformational activity is “changing the form of an entity without changing a certain property
of the entity” (p. 16) — this is at the heart of what he calls an algebraic invariance way of
thinking. Through the lens of our framework, we frame “a certain property” in terms of the other
two interpretations: common characteristic and descriptive. For instance, Harel pointed out that
solving ax? + bx + ¢ = 0 by using familiar actions (e.g., adding the same element to both
sides, completing the square) to transform it into the more tractable (x + T)? = L requires an
awareness that one is changing the appearance of the equation but “maintaining the solution set
unchanged” (p. 14). In the language of our framework, we observe that Harel is suggesting that
such transformational activity be paired with a common characteristic interpretation: the focus is
on the solution set, a common attribute of the equations themselves (criterion C2) that remains
unchanged (criterion C1). Additionally, regarding the pairing of transformational activity with a

descriptive interpretation, consider again the aforementioned ‘duration of time’ scenario. If



asked how many days are in 12 weeks, a transformational approach might focus on changing 12
weeks into the appropriate number of days by multiplying by a conversion factor: 12 weeks -

7 days/week = 12 - 7 days = 84 days. Supplementing with a descriptive approach, “12” is the
measurement when the given duration of time is measured in weeks. The duration of time as
measured in days can be productively visualized as a partitioning of each of the 12 weeks into 7
days, so that “84” is the measurement of the given duration of time in days. 12 weeks and 84
days are equivalent, then, because they are measurements of the same, invariant magnitude
(recognition of sameness, criterion D1) in different units (reference to an aspect of the task

setting, criterion D2).

We therefore propose that transformational activity can indeed be productive when reasoning
about equivalence because generating equivalent forms is a fundamental mathematical strategy.
But it is more productive and less constrained when it is accompanied by a notion of what these
transformations preserve. This could include supplementing one’s transformational activity with
a common characteristic interpretation (as in the quadratic equation example, in which it is the
solution set that is preserved) and/or a descriptive interpretation (as in the measurement example,
in which it is the given duration of time that is preserved). For the purposes of our framework,
then, we distinguish between transformational activity that is accompanied by an explicit
recognition of sameness (such as those described in the common characteristic and descriptive
interpretations) and transformational activity that is enacted without an explicit recognition of

sameness. We reflect this distinction as follows:

=  We reserve the term transformational interpretation of equivalence to refer to instances
in which the student recognizes that the new forms being generated by the

transformations are equivalent in some way — that is, the student is aware that the



transformations preserve some aspect of sameness. To specify the aspect of sameness,
we supplement our descriptions with one (or both) of the other interpretations as
appropriate in order to specify the relevant form of sameness in question.

=  We use the term transformational activity to refer to instances in which we (as
researchers) recognize that the transformations the student applies do indeed produce
new, equivalent forms, but the student does not explicitly attend to such notions. In this
way, the term transformational activity is more general than transformational

interpretation.

This approach has two immediate benefits: it coheres with and respects the findings regarding
transformational activity in previous research (i.e., students who are engaging in transformational
activity are not necessarily attentive to equivalence), and it also provides more details about how
students are interpreting the accompanying notion of sameness, if at all (see Table 2). As such,
we require only a single criterion for the identification of transformational activity (and leave
open the possibility that it could be paired with notions of sameness as specified in one of the
other interpretations):

= Criterion T: a sequence of actions (either already performed or imagined) by which one
object might or can be changed into another is enacted or described.



Table 2. Possible ways in which a transformational interpretation of equivalence might appear in
conjunction with a common characteristic or descriptive interpretation

Terms that describe
how transformations
might manifest in
students’ reasoning
about equivalence

Corresponding description of
the student’s reasoning

Example

Transformational
activity only

A student applies transformations
that generate new, equivalent
forms of an object but does not
necessarily recognize or attend to
the fact that these forms are
equivalent.

Transforming 5x + 1 = 3x +
5 into 3x = 6 via “moving
symbols with a kind of
additional ‘magic’ to get the
correct solution” (de Lima &
Tall, 2008, p. 4).

Transformational
interpretation
(supplemented with a
common characteristic

A student is aware that the forms
produced by the transformations
she is applying share a common

attribute — that is, the

Adding L to both sides of (x +
T)? — L = 0 to obtain (x +

T)? = L and recognizing that
the solution set does not change

interpretation) transformations preserve a key (e.g., Harel, 2008).

aspect of these objects.
Transformational A student is aware that the forms Supplementing the
interpretation produced by the transformations transformation 12 weeks -
(supplemented with a | she is applying both describe the 7 days/week = 84 days by
descriptive same quantity or serve the same reasoning that “12 weeks” and
interpretation) purpose in a given situation. “84 days” are equivalent

because they are measurements
of the same magnitude of time
in different units (e.g.,
Thompson et al., 2014).

3.3: Examples of the three interpretations from the literature on fraction equivalence and

modular congruence

To illustrate how the framework captures meaningful aspects of reasoning with equivalence

across domains as well as how these three interpretations might work in tandem within domains,

we now use our framework to consider examples from the literature — including interpretations

from both researchers and students — on fraction equivalence and modular congruence. We

summarize our discussion of the three interpretations of equivalence in these two domains in

Table 3.




In the case of fractions, consider 1/2 and 3/6. As noted by Ni (2001), “in many classrooms
the acquisition of the concept of equivalent fraction is [...] reduced to the mastery of the rule
‘multiply or divide the numerator and denominator of a fraction by the same number’” (p. 413).
Using this interpretation, 1/2 and 3/6 are equivalent because multiplying the numerator and
denominator of 1/2 by 3 yields 3/6. In this way, this interpretation focuses on “[altering] the
numerical representation of fractions” (Smith, 1995, p. 20). This is an example of a
transformational activity because the central focus is on changing (i.e., altering) one fraction into
another (criterion T). Another way to interpret the equivalence of these two fractions is to reason
that “they have the same value” (Martinez & Yeong, 2018, p. 48) or, analogously, that their
respective quotients are invariant (e.g., Behr, Harel, Post, & Lesh, 1992). Smith (1995) also
identified this as a common student interpretation, associating it with a procedure in which
students “divide the numerator of each fraction by its denominator. If the resulting decimals are
identical, the original fractions are equal” (p. 47). From this perspective, 1/2 and 3/6 are
equivalent because they both have the same quotient of .5. This is an example of a common
characteristic interpretation because explicit reference is made to sameness (e.g., same,
invariant, identical) (criterion C1), and the attribute on which sameness is focused (the quotient)
is framed as an attribute of the fractions 1/2 and 3/6 themselves (criterion C2).

Lastly, the equivalence of 1/2 and 3/6 can be warranted via reference to the preservation of a
quantity (e.g., Steffe, 2004). For example, Simon & Tzur (2004) presented a learning trajectory
based upon such as tasks as: “Draw a rectangle with 1/2 shaded. Draw lines on the rectangle so
that it is divided into sixths. Determine how many sixths are in 1/2” (p. 97). From this
perspective, students might interpret that 1/2 and 3/6 are equivalent because “the areas of a
whole and shaded part never change, but the number of equal parts into which the whole is

divided can alter dramatically” (Wong & Evans, 2007, p. 827) — see Figure 1. Interpreting



equivalence in this way leads to the conclusion that 1/2 and 3/6 are equivalent because they both
describe the same amount of shaded area. This interpretation is inherently descriptive because it
attends to the fact that the two fractions represent the same amount of shaded area — that is, the
shaded areas across each diagram “never change” (criterion D1). Shaded area is an attribute of
the external task setting and not, as in the case of the invariant quotient interpretation above, of

the fractions themselves (criterion D2).

Figure 1. Illustrating a descriptive interpretation of equivalence: 2 and 3/6 are equivalent
because they represent the same amount of shaded area in relation to the area of the whole
rectangle.

In the domain of modular arithmetic, consider a comment made by one of Smith’s (2006)
participants, who conceptualized equivalence modulo 11 as follows: “we’re looking for the set of
numbers such that when you divide them by 11, you’re left with a remainder of 17 (p. 271). This
interpretation relies upon the idea that two integers are equivalent because they “leave the same

remainder upon division by »” (Smith, 2006, p. 260). This is an example of a common
characteristic interpretation because it attends to the sameness (criterion C1) of two integers
based upon a common attribute of those integers — specifically, that they have the same
remainder (criterion C2). The researcher also noted that many students immediately associated
equivalence with “a computation or a transformation that had occurred” (p. 260). For example,
one participant she interviewed interpreted the equivalence of ®ia and b modulo %n as

follows: “if I take » and I multiply it with a whole number and then I add 5 to it, I should get a”

(p- 262). This student is exhibiting transformational activity because she is interpreting the



relationship between a and b in terms of the sequence of actions by which one might be changed

into the other (criterion T). Lastly, we consider an example from Cook’s (2012) study of how

students might develop formal notions of algebraic structure. The study initiated by having

students — who had no formal exposure to modular congruence — solve equations using their

intuitive notions of clock arithmetic. When solving the linear equation x + 3 = 9, the students

began discussing the additive inverse of 3 (so that they could add it to both sides in order to

isolate x). Their discussion led them to conclude that “-3=9" (p. 103) on the grounds that both -3

and 9 function as the additive inverse of 3. They eventually extrapolated this idea and identified

other such pairs (such as —1 = 11 and —2 = 10) en route to more formal notions of modular

congruence. We claim that this is a descriptive interpretation. The students claim that two

elements are equivalent (“-3=9,” satisfying Criterion D1) because they both function as an

additive inverse for 3. In this context, additive inverse was a key component of the external task

setting in which they were engaged (criterion D2). Put another way, both -3 and 9 served the

same purpose in the situation of solving x + 3 = 9.

Table 3. Illustrating the components of the framework in the domains of fraction equivalence

and modular congruence.

Interpretation of
equivalence

Fraction equivalence

Modular congruence

Common characteristic

2 and 3/6 are equivalent
because their respective
quotients are the same (e.g.
Behr, Harel, Post, & Lesh,
1992; Martinez & Yeong,
2018).

Integers —3 and 9 are
congruent modulo 12 because
they share the same
remainder (i.e. 9) when
divided by 12 (e.g. J.C.
Smith, 2006).

Descriptive

2 and 3/6 are equivalent
because they both represent
the same amount of shaded
area in relation to the area of
the whole rectangle (e.g.
Simon & Tzur, 2004; Wong
& Evans, 2007).

Integers —3 and 9 are
congruent modulo 12 because
they both function as the
additive inverse of 3 when
solving equations (e.g. Cook,
2012).




Transformational 2 and 3/6 are equivalent Integers —3 and 9 are
because multiplying both the | congruent modulo 12 because
numerator and denominator adding the modulus, 12, to -3
of 2 by 3 yields 3/6 (e.g. Ni, | yields 9 (e.g. J.C. Smith,
2001; J.P. Smith, 1995). 2006).

4: Detailed Analyses of Students’ Reasoning about Equivalence in Abstract Algebra and
Combinatorics

We now show the utility of the framework by conducting detailed analyses of students’
activity from two previous studies in undergraduate mathematics: one in abstract algebra (Cook,
2018), and one in combinatorics (Lockwood & Reed, 2020). We use the framework to classify

students’ reasoning with equivalence and demonstrate the usefulness of the three interpretations.

4.1: Equivalence in abstract algebra

The examples of student activity in 4.1.1 and 4.1.2 comes from a study (Cook, 2018)
designed to investigate abstract algebra students’ reasoning with the zero-product property (i.e.,
for all elements a and b inaring R, if a - b = Og, then a = 0z or b = 0p). The instructional
tasks centered on leveraging the properties needed to solve basic polynomial equations to gain
insight into abstract algebraic structures. For example, the zero-product property functions both
as a key tool for solving polynomial equations and as the defining characteristic of integral
domains, one of the foundational structures of abstract algebra.

These episodes focus on the activity of one student, Matt (pseudonym), a junior mathematics
education major who had completed linear algebra but had no formal exposure to abstract
algebra, as he solved equations. Matt leveraged equivalence (in the form of the equivalence of
equations) as a means to explain his general inattention to the structural implications of his
algebraic manipulations. In this context, a common characteristic interpretation involves viewing

that equations are equivalent when they share the same solution set. For example, the equations



(x+2)(x+3) =0and (x + 2)>(x + 3)> = 0 are equivalent because they share the solution
set {—2, —3} — the solution set is a common characteristic. Transformational activity in this
context would focus on the algebraic manipulation of one equation into another, such as the fact
that (x + 2)°(x + 3)®> = 0 can be generated by raising both sides of (x + 2)(x + 3) = 0 to the
fifth power. A transformational interpretation would involve accompanying this kind of activity
with an awareness of the feature that these transformations preserve (in this case, the
transformations preserve the solution set, which is central to the aforementioned common

characteristic interpretation).

4.1.1: Episode 1: Employing transformational activity

One of the first equation-solving tasks Matt was given prompted him to solve the pre-
factored quadratic equation (x + 2)(x + 3) = 0. In response, he distributed the left-hand side of
the equation to obtain x? + 5x + 6 = 0 and (correctly) applied the quadratic formula to obtain
x = —2 and x = —3. Hoping to necessitate use of the zero-product property, the researcher
designed a follow-up task prompting Matt to solve the polynomial equation (x + 2)°(x + 3)° =
0. Instead, however, Matt began a series of unsuccessful attempts to solve the equation, one of
which, for example, involved expanding the (x + 2)° term into (x + 2)?(x + 2)?(x + 2) and
then dividing both sides by (x + 3)° (see Figure 2). Upon deciding that this approach was not
productive, he considered taking “log base 5 of either side.” Ultimately, Matt decided to take the
fifth root of both sides of the equation to obtain (x + 2)(x + 3) = 0, and then applied the
quadratic formula (again) to obtain the (correct) solutions x = —2 and x = —3. Subsequently,
when prompted to solve the equation (x + 2)°(x + 3)7 = 0 (another task designed to incentivize

use of the zero-product property), Matt tried a host of similar approaches (e.g., expanding the



polynomial, taking roots of both sides), before coming to an impasse where he did not know how

to proceed (see Figure 3).
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Figure 2. Matt’s initial attempt to solve (x + 2)°(x + 3)°> = 0 in R.
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Figure 3. Matt’s initial attempt to solve (x + 2)°(x + 3)” = 0 in R.

In Cook’s (2018) original analysis, the primary explanation for Matt’s activity focused on
Matt's preference for expansion and algebraic manipulation instead of a more efficient route via
the zero-product property. Here, we focus on the interpretations of equivalence that Matt was
exhibiting. We claim that Matt was relying on transformational activity because he focused
exclusively on the sequence of actions by which he was generating new equations (criterion T).
We consider his commentary while working on these tasks — such as his earlier mention of
“taking log base 5” — as evidence in support of this claim. As additional evidence, we consider
the following excerpt in which Matt explained what he saw as the path to eventually finding a

solution to (x + 2)°(x + 3)” = 0.



Matt: I mean I’ve tried foiling it, and I’ve tried taking the roots of that beast
[...]. If I had kept with this ... I think it would have just fallen out. I
would have had to have worked with it a little bit, but [...] if [ had, justa
little further and I could have gotten it.

Researcher:  So, if you stuck, if you had stuck with the algebraic manipulation,
then ...

Matt: We would have been here all night, but, yeah, I think I would have
gotten something.

Notice that he focused exclusively on the actions he performed (e.g., “foiling it”, “taking the
roots”) and how he viewed continued effort with these manipulations as the key to eventually

solving the equation (e.g., when “it would have just fallen out”, “worked with it a little bit”).

4.1.2: Episode 2: Absence of a common characteristic interpretation

Matt exhibited some initial signs that he was unaware of the invariance of the solution set
when he was asked to verify that x = —2 and x = —3 were both solutions to (x + 2)(x + 3) =
0 (the researcher asked this in hopes of focusing Matt's attention on the original equation and,
thus, the potential use of the zero-product property as an efficient way to identify solutions).
Curiously, Matt responded by using x? + 5x + 6 = 0 to verify the solutions. Matt explained that
“that's where I got my solutions. From the quadratic formula. So that's where I wanted to put
them back. [...] It seemed like the right thing to do. Since I got [the solutions] from the expanded

version.” The following excerpt provides additional insight into Matt’s thinking:

Researcher:  Are -2 and -3 solutions to the original equation as well?

Matt: I don't ... I don't think so. It's, um, well it's different now, it's just
not the same at this point.

Researcher:  Okay, um, why is it not the same? Or in what way is it, is it
different?

Matt: Well, here I foiled it, so now we have this x squared term and this
5x plus 6 and so they, they don't, they don't seem to be the same
equation anymore.
[...]

Researcher:  Okay, so, in your view, you’re saying that these solutions, -2 and -3, are
solutions to, um, the most recent one, or the expanded one, but not the
original?



Matt: Yes. They’re solutions to the expanded, but not the original.
Matt’s belief that solutions solve only the ‘most recent’ equation that has emerged was consistent
across tasks. When, for example, he was asked by the researcher whether or not x = =2 is a
solution to (x + 3)°(x + 2)7 = 0, he substituted x = —2 into the most recent equation he had

generated, x(x + 3)7 + 2(x + 3)° = 0 (see Figure 3).
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Figure 3. Matt justifies that x = —2 is a solution by substituting it back into the equation he
most recently produced via manipulations (instead of the original equation).

As a result, we claim that Matt had not yet developed a common characteristic interpretation
of equivalence. Consider Matt's comment in the above excerpt that -2 and -3 are “solutions to the
expanded, but not the original.” Here, “the original” referred to (x + 2)(x + 3) = 0 and “the
expanded” referred to x2 + 5x + 6 = 0. As we argued previously, Matt seemed to see these
equations as related via the transformations he had applied, which was evidenced in this case by
his comment that “I foiled it.” Consider, however, his comment that “they’re solutions to the
expanded, but not the original,” which we took to mean that Matt was viewing -2 and -3 as
solutions to x? + 5x + 6 = 0 but not (x + 2)(x + 3) = 0. An immediate implication of this
view is that the solution set of x? + 5x + 6 = 0 is not the same as the solution set of
(x + 2)(x + 3) = 0 and, thus, Matt was not viewing the solution set as a common characteristic

of both equations (because his activity does not satisfy criterion C2). Additionally, Matt’s



comment that “they don’t seem to be the same equation anymore” makes it clear that criterion
C1 (explicit recognition of sameness) is not satisfied.

Matt’s claims were challenged shortly thereafter when he was asked to prove that the
solutions to the expanded version were, as he previously asserted, not solutions to the original
equation. When attempting to prove that this was indeed the case, he paused before exclaiming

"’

“x is a solution to the original equation!” He repeated this procedure — substituting the solutions
back into the original equation — for all of the equations he had previously solved. Though we do
not assert that Matt had fully developed a common characteristic interpretation of equivalence at
this point, what is clear is that Matt showed signs of a shift in thinking, focusing more and more
on the original equation and how it shared the same solutions as the most recent equation he had
generated (that is, he showed initial signs related to criterion C2). The benefits of this shift were
immediately noticeable, as Matt was able to solve equations similar to those which he had
previously been unable to solve. For example, when given (x — 1)°(x — 4)2?3 = 0, an equation
similar to (x + 3)°(x + 2)7 = 0 that would have been quite cumbersome (if not impossible) to

solve by expansion, he immediately identified x = 1 and x = 4 as solutions by reasoning only

with the original equation itself.

4.1.3: Episode 3: Extending notions of equivalence to Z,

The shift in Matt’s thinking that resulted in an increased focus on the original equation and
its solutions remained stable across different algebraic contexts as well. Later in the teaching
experiment he was asked to solve equations in Z;,. One of these tasks involved the equation
3(x — 2) = 0, an equation that, because 3 is a zero-divisor, has multiple solutions. After
inspecting the original equation and immediately identifying x = 2 as a solution, however, he

expressed uncertainty about how to proceed. Matt, aware by this point of the existence of zero-



divisors in Z, ,, stated that he knew “there are other solutions” to 3(x — 2) = 0 but that he did
not “know how you would get those other numbers.” We claim that the uncertainty he was
expressing indicates a desire for a process to employ to find these elusive solutions. As evidence,
consider language he used to express his uncertainty: he stated “I don’t know how to go from
here to there,” “I just don’t know how to use that information,” and “I don’t know how you
would get those other numbers.” All of these statements involve Matt’s admission that he did not
know how to perform the actions necessary to find the other solutions. These statements also
highlight his focus on determining a sequence of actions to apply to the equation (criterion T).
Indeed, this was exactly the function that Matt’s transformational activity served earlier, enabling
him to find solutions to a variety of polynomial equations in R. Now operating in a different
algebraic structure, however, Matt appeared to be unsure which transformations are admissible
and which were not. Thus, even though he was showing signs of developing a common
characteristic interpretation of equivalence, in this situation he did not solve the equation
completely because he was not sure of how to operationalize his transformational activity to find
the remaining solutions.

4.1.4: On the importance of a common characteristic and a transformational interpretation of
equivalence

We have thus far used the framework to illuminate facets of Matt’s reasoning about
equivalence as he solved equations in an abstract algebra setting. We now argue that these facets
are an integral part of reasoning productively about equivalence. Matt’s initial activity was
primarily transformational — his overemphasis on change precluded his attention to sameness.
Although far from the most efficient approach he could have used, his transformational activity
was in some ways beneficial. For example, it contributed to his correct identification of the

solutions to each equation in R he was given except for (x + 2)>(x + 3)” = 0.



Matt’s transformational activity, though undeniably useful, was not accompanied by a
common characteristic interpretation and was ultimately insufficient for solving equations and
attending to the underlying algebraic structure. Interestingly, Matt asserted that the original
equation was ‘not the same’ as the equations he was generating with his transformations. We
would have expected a student who had developed a common characteristic interpretation to
perhaps recognize that the equations differ in appearance but have the same solution set. The fact
that Matt had not yet developed a common characteristic interpretation led to a situation in which
he had indeed found the correct solutions to the original equation but did not realize it (and, in
fact, explicitly asserted otherwise). Once Matt had started to show initial signs of developing a
common characteristic interpretation (e.g., his focus on the original equation towards the end of
the Episode 2), he was able to make quick work of the equations he was given, including some
equations (e.g. (x + 1)*°(x + 4)?3 = 0) similar to those he had struggled to solve earlier (e.g.

(x + 2)°(x + 3)7 = 0). In addition to illustrating these interpretations in a student’s activity, our
analysis here therefore provides some empirical support for our claim in Section 3.2 that
transformational activity can be more productive and less constrained when accompanied by a

common characteristic interpretation or a descriptive interpretation.

4.2: Equivalence in Combinatorics

The examples in 4.2.1 and 4.2.2 come from a study (Lockwood & Reed, 2020) of the
mathematical activity of novice counters® as they engaged in combinatorial tasks. The particular
episodes presented were from sessions wherein two undergraduate students (pseudonyms Rose

and Sanjeev) developed understandings of four basic counting formulas as well as what

8 By “novice counter” we mean undergraduate students who have not received formal combinatorial instruction
beyond what can be expected from high school algebra.



Lockwood & Reed (2020) called an equivalence way of thinking in combinatorics. Our focus
here, however, is on using the examples of students’ activity from previous studies to illustrate
aspects of our framework and its utility for illuminating key aspects of students’ reasoning about
equivalence.

We focus on instances of activity in which the students began to determine certain outcomes
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in a counting process as being “duplicates,” “redundant,” or “the same,” depending on the
constraints they imputed to the set of outcomes from their interpretations of the problem being
solved. We focus on illustrating and showcasing the utility of a descriptive interpretation of
equivalence; this both helps us clarify our characterization of descriptive equivalence and
demonstrates the utility of the framework.

Lockwood and Reed (2020) inferred that Rose and Sanjeev employed an equivalence way of
thinking from observing the students’ regular propensity to identify initially perceived disparate
outcomes as “duplicates” and to then adjust their enumeration of an outcome set accordingly.
Here, we draw from episodes highlighted in that paper to suggest that the students’ development
of equivalence ways of thinking is supported by descriptive interpretations of equivalence.

We begin with their use of equivalence in two qualitatively different ways while solving the
“Subsets” problem, which states How many 4 element subsets are contained in the set 0, 1, 2, 3,
4,5,6,7, 8 92. We highlight their attention to the “sameness” of particular outcomes as onset by

their interpretations of the mathematical context, particularly the constraints the students put on

to the outcome set from the counting problem itself. In working on the Subsets problem, Rose

10!
and Sanjeev quickly and correctly determined Z—" to be an enumeration of the outcome set. In

their description of their solution (in the following exchange), we see that their two-stage



division was intentional, and indicated two different ways they engaged in interpretations from
descriptive equivalence. Below is Sanjeev’s description of their first step (16—(:!).

Sanjeev: ... So let’s say you have 10 numbers, and you have 10 spots. And you want to
look for all the possible combinations of numbers, well, then you’d continue this
all the way down to your last spot where you have one number left [Sanjeev drew
10 dashes on the board, writing the numbers 10 to 1 under the dashes in
descending order from left to right]. And that would give you all the possible
arrangements you could make with 10 numbers.

Int.: Uh-huh.

Sanjeev: But now, say, you’re just looking for 4 of those numbers, well, then you’d
isolate these 4 numbers and ignore anything here [referring to the last 6 positions],
because any numbers you place here could mean whatever arrangement —
you want them to be. And so these numbers [refers to the last 6 positions], it
doesn’t matter how they’re arranged, because you’re all looking for a group
of 4 [refers to the first 4 positions].

Int.: Uh-huh.

Sanjeev: And so then you ended up with 10 factorial, and then you divide out 6 factorial,
because this portion right here, 6 factorial, and so that — that’s basically saying
you have 10 factorial total combinations possible with 10 numbers, but
you’re dividing by 6 factorial combinations, because those are the numbers
that are irrelevant, because it doesn’t matter how they’re arranged.

Int.: Okay.

Sanjeev: It’s only the first 4 that you care about that are arranged.

We note that Sanjeev considered arrangements of the final 6 numbers in a 10-number set to
be “irrelevant” following arrangement of 4 numbers. We interpret from this statement that “some
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arrangements are ‘irrelevant’” is the complementary version of Sanjeev attributing “sameness” to
arrangements of 10 numbers where the first four numbers are fixed. Sanjeev said as much by
describing that, ““...these numbers [refers to the last 6 positions], it doesn’t matter how they’re
arranged, because you’re all looking for a group of 4.” Sanjeev envisioned a process of first
arranging 10 numbers and then using division by 6! to account for “duplicate” outcomes
(language they used throughout the teaching experiment), where the duplication came from

rearrangement of the final 6 numbers in the set of 10 numbers. Lockwood & Reed (2020)

discussed the sameness here in terms of Sanjeev’s equivalence way of thinking, but they did not



specify a particular interpretation in terms of our framework. We elaborate this point to
demonstrate the framework’s potential to highlight additional aspects of students’ reasoning
about equivalence.

Sanjeev’s words and actions satisfy criterion D1 for a descriptive interpretation of
equivalence. Specifically, Sanjeev contended that once 4 numbers from a 10-number set were
arranged, further arrangements of the final 6 numbers would all be equivalent to each other.
Moreover, we also suggest that Sanjeev viewed the equivalence of the outcomes as determined
by the problem constraints, specifically “It’s only the first 4 that you care about that are
arranged,” and “you’re just looking for 4 of those numbers.” That is, he seemed to perceive that
whether or not two outcomes were equivalent was determined by particular problem he was
solving — in the Subsets problem, he only cared about arrangements of 4 and not 10 numbers.
The distinguishing feature of descriptive equivalence (criterion D2) draws from interpretations of
the mathematical context or task to determine objects as similar or dissimilar. In this case,
Sanjeev described that he “cared” only about ordering of the first four, thus conceiving of other
possible counting situations where further arrangement of up to 10 numbers might be desired. It
is unlikely that Sanjeev saw “sameness” as intrinsic to the particular objects being counted, but
rather that he viewed “sameness” as a flexible property to be imputed to outcomes depending on
the problem — here, arrangements of 10 numbers.

We continue with the rest of the students’ explanation of the Subsets problem, focusing on
Rose’s contribution, again providing an instance of a descriptive interpretation of equivalence,
but from a new attribution of “sameness”. In describing the final division by 4!, Rose said the
following as a direct continuation of what Sanjeev had done:

Rose: Because when you’re arranging the first 4 digits you could end up with 0, 1, 2, 3

or 3,2, 1,0. And it — without the division it — those would be treated as
separate results even though they’re the same thing. And if they’re the same



4 element subset, so we divided by 24, because there would be 24 subsets that
are essentially the same, [...] so divided by 24 we’re left with just unique
subsets.
Rose provides a clear statement of “sameness,” thus satisfying criterion D1. This is an
example of a tendency that Rose and Sanjeev developed when solving counting problems to

routinely check whether outcome construction produced “duplicate” outcomes (See Lockwood &

Reed, 2020; Reed & Lockwood, 2021). Moreover, in this excerpt Rose compared two possible
outcomes resulting from their 16—(:! process, and considered whether the constraints of the problem

dictated that they should instead be counted as the same (this was typical of their counting
activity in the teaching experiment). Rose then completed the problem by explaining that the
division by 24 (4!) ensured that they counted only a single 4-element subset rather than the 24
that result from arrangement. We interpret her activity and explanation as also satisfying
criterion D2, as Rose interpreted that she was counting 4-element subsets, and that different
orderings of elements within a subset do not make for distinct outcomes. Her interpretation of a
feature of the desired final outcome stems from her interpretation of the counting problem, which
situated her mathematical setting.

We conclude this section by noting that the students operationalized “sameness” in two
distinct ways. First, the students determined how many elements they sought to arrange after
imagining an arrangement of the entire set, thus creating duplicates via arrangement of the
remaining “undesirable” set elements, once the “desirable” elements had been arranged. Then,
the students determined whether arrangement of their chosen set elements created duplicate
outcomes as described by the counting problem. In each case, they employed division as a means
of creating a single desired outcome from among the duplicate outcomes. This is akin to

reasoning with a representative element of an equivalence class (see Lockwood & Reed, 2020).



S: Discussion

In this paper, we have proposed a theoretical framework — specifically, a conceptual analysis
— for analyzing students’ activity with equivalence across mathematical domains. Although we
specify the scope of mathematical situations for which our framework is relevant using the
formal equivalence relation concept, our framework is intended to capture the more informal
ways in which students interpret equivalence. In our framework, we have tried to demonstrate
both that these interpretations each capture relevant aspects of students’ activity with equivalence
across mathematical domains, and that these interpretations are an essential part of reasoning
productively with equivalence. To do this, we illustrated how these interpretations highlighted
commonalities amongst the various characterizations of equivalence across multiple domains
spanning primary to postsecondary mathematics. For example, in Sections 3.2 and 3.3 we
pointed out that the three interpretations — which emerged in and had previously only been
applied within the domain of K-12 algebra — each feature prominently in the literature on
fractions, modular arithmetic, combinatorics, and linear algebra. In section 4, we used the
framework to conduct a detailed analysis of students’ activity in abstract algebra and
combinatorics, specifically linking these interpretations to students’ successful reasoning with
tasks in these two mathematical domains. Importantly, we note that the framework extends yet
maintains coherence with the equivalence-related findings in these domains.

The primary contribution of the framework is that it provides researchers with a theoretical
means with which to account for students’ activity with equivalence across mathematical
domains. This contribution is particularly notable because, as we have previously stated, the
equivalence literature, while substantial, is largely context-specific. In other words, the literature

provides little insight into how interpretations of equivalence in one domain might relate to (and



perhaps influence) those in another. This framework has also incorporated, maintained
consistency with, and extended previous efforts to identify coherence amongst the many
manifestations of equivalence. For example, Charles (2005) pointed out that the equivalence of
fractions, numerical expressions, and algebraic expressions could all be framed in terms of a
common numerical value — in our framework, this is classified as a common characteristic
interpretation. We therefore see this framework as an important initial step toward specifying
ways in which to consider equivalence more broadly across domains.

We suggest that the framework can be used to gain additional, refined insight into students’
thinking about equivalence. Recall Burington’s (1948) question (in Section 2), which spurred us
to ask: what does it really mean to say that ‘A is equivalent to B’? Answering this question
afforded insights into the nature of equivalence itself and the ways in which students reason
about it. This can be seen in our analyses of the examples of students’ activity provided in this
paper. For example, Cook (2018) originally argued that viewing the equations one is generating
via algebraic manipulation as equivalent is a necessary precursor to attending to the underlying
algebraic structure that is so often the focus of abstract algebra. The framework provides a
mechanism with which further refine this analysis: Matt initially related the equations he was
generating purely in terms of the transformational activity that produced them; he then gradually
shifted to interpreting the relationship between equations in terms of the common characteristic
(i.e., the solution set) that they all share. Lockwood and Reed’s (2020) example of students’
activity in combinatorics similarly illustrates the utility in accounting for students’ descriptive
interpretations of equivalence.

In the introduction to this paper, we also highlighted how important it is for pre- and in-
service teachers to explicitly attend to the meanings of equivalence that are manifest in their

instruction. We see the cross-domain framework presented here as a valuable tool in this regard



because it provides a mechanism that can support “the grounding of a teacher’s mathematics
content knowledge and their teaching practices” (Charles, 2005, p. 9) upon a coherent, unifying
notion of equivalence. We also see it as a useful tool for connecting the advanced mathematics
coursework required for secondary teacher preparation with secondary mathematics itself.
Noting that it is far from certain that teachers will make these connections (e.g., Zazkis & Leikin,
2010), Wasserman (2018) argued that “the study of advanced mathematics does not appear to be
inherently beneficial to secondary teachers. [...] But that is not the same as claiming that it
cannot be beneficial” (p. 6, emphasis in original). He suggested that, rather than relying on broad
assumptions that advanced mathematics is beneficial, we as a field should be much more explicit
about connections we want future teachers to make between advanced and secondary
mathematics. One way to do this is to conduct cognitive analyses of content-related connections,
which involve identifying understandings of advanced mathematics content that mirror the
understandings needed to reason productively in school mathematics. Indeed, the equivalence
framework proposed in this paper highlights that the interpretations of equivalence needed to
reason productively in abstract algebra and combinatorics mirror those needed to reason
productively about, for example, fractions and equations in K-12 mathematics. In other words,
the framework provides a vehicle for connecting two areas that researchers have in general
struggled to connect: advanced mathematics and school mathematics. In this way, the cross-
domain framework of equivalence interpretations that we presented here can “help depict the
kinds of rich mathematical understandings that need to be developed by secondary mathematics
students, and help inform how the study of [advanced mathematics] might enrich secondary
teachers’ mathematical knowledge” (Wasserman, 2018, p. 11). We expect that investigating

these claims directly could be a fruitful topic for further research.



This cross-domain framework opens up many productive avenues for future research. For
example, it can inform the design of instructional sequences — by, for example, informing the
identification of desirable targets of instruction — involving equivalence in various mathematical
domains. It could also inform analyses of how interpretations of equivalence that students
develop in one context might influence their reasoning about equivalence in another or how
students might develop and enact a context-independent understanding of equivalence. In a
related vein, the framework could be used to identify the specific interpretations of equivalence
that can support the learning of other concepts. That is, it could be used to gain insight into the
question: which interpretations are advantageous for learning about and reasoning with certain
concepts or in certain mathematical domains? The examples of students’ activity in this paper
certainly illustrate the essential supporting role that equivalence can play when learning about
other concepts. In the case of zero-divisors in Cook (2018), for example, the common
characteristic and transformational interpretations were essential. In the combinatorial example
from Lockwood and Reed (2020), a descriptive interpretation featured prominently in the
students’ success. There is much room for future research in this regard.

We acknowledge that this framework is not exhaustive; we do not expect it to account
comprehensively for all aspects of students’ activity with equivalence in all contexts. We also
note that our analyses of students’ activity in this paper were entirely retrospective. These
limitations, we believe, offer several additional opportunities for expansion of the ideas
presented here. The interpretations in the framework could, for example, be elaborated and
refined within specific domains, or applied to other domains to which we have not explicitly
attended (such as calculus). There is also room for extension to additional topics within abstract

algebra and combinatorics (such as isomorphism and quotient groups).



Finally, future research could identify other cross-domain interpretations of equivalence. As
we pointed out in Section 3.2, the framework is exclusively concerned with students’ local,
element-wise reasoning (Hamdan, 2006) about equivalence. Though we used the notion of an
equivalence relation to specify the mathematical scope of the framework, the framework is not
intended to (immediately) apply to students’ reasoning about this more global, equivalence class-
based perspective (Hamdan, 2006). Future research could therefore examine how the
interpretations in this local framework might be adapted to account for students’ global
reasoning about equivalence, as well as, perhaps, the reasoning involved in moving flexibly
between a local and a global perspective on equivalence. One promising possibility in this regard
comes from research on substitution-based meanings for the equal sign (e.g. Bishop et al., 2016;
Jones & Pratt, 2012; Musgrave, Hatfield, & Thompson, 2015), which are not directly accounted
for in our framework. Substitution-based meanings involve interpreting “statements such as
i? = —1[...] as a rule for substitution” (Jones & Pratt, 2012, p. 4). We consider substitution to
be particularly related to the transitive property of equivalence relations (e.g., if a~b and b~c,
then a~c), and thus it could play an important role in bridging the gap and examining the

relationship between local and global thinking about equivalence.
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7: Appendix: more formal treatments of the common characteristic and transformational
interpretations via the equivalence relation concept

In our framework, we note that the notion of a ‘common characteristic’ can be based upon a
students’ intuitive, informal perception of similarity amongst objects. However, there is a direct
analog with the formal equivalence relation concept. It is based upon a key theorem: a relation
~ on a set A4 is an equivalence relation if and only if there exists a function f with domain A such
that a~b if and only if f (a) = f(b). Now, as explained by Hamdan (2006):

R classifies the elements of 4 into equivalence classes according to certain characteristics
that they have in common (e.g. integers are classified into even and odd numbers). The
function f'is then constructed based on these characteristics, in the sense that it will map an
element to that identified characteristic (continuing the example: f maps numbers divisible by
2 onto “even” and numbers not divisible by 2 onto “odd”). Consequently, it will naturally
follow that elements in A4 that are in the same class are mapped to the same image. In a way,
this construction relies on the range since we are considering that f ~!(characteristic x ) = the
set of those elements of 4 which possess the characteristic x. (p. 134)



We can also define a ‘transformation’ in a more formal way that is broadly compatible with our
transformational interpretation as described in the framework and the equivalence relation
concept: a transformation on a set 4 is an invertible function T: A — A. This enables us to
define a relation as follows: a~b if and only if there exists a transformation T: A — A such that
T(a) = b. We note that a relation ~ is indeed an equivalence relation because it is:

»  Reflexive: a~a because the identity functioni: A - A givenby i(a) =aisa
transformation on A

»  Symmetric: if a~b then there exists a transformation T on A such that T(a) = b. Since
T is invertible, T~ is also a transformation on A and, by definition, T~1(b) = a.
Therefore b~a.

»  Transitive: if a~b and b~c then there exist transformations T; and T, on A such that
T,(a) = b and T,(b) = c. Since T; and T, are transformations on 4, T, o T;: A — A is
also a transformation on A. Now, observe that ¢ = T,(b) = T, (Ty(a)) = (T, ° T;)(a).
Therefore a~c.

Though not a centerpiece of our framework, we believe these treatments are useful for two
reasons. First, they specify in greater detail what is meant by ‘common characteristic’ and
‘transformational.” Second, they highlight how intuitive, informal interpretations of equivalence
can anticipate and mirror formal aspects of the equivalence relation concept.



