PHASE RETRIEVAL BY BINARY QUESTIONS:
WHICH COMPLEMENTARY SUBSPACE IS CLOSER?
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ABsTrRACT. Phase retrieval in real or complex Hilbert spaces is the task of recovering a vector, up
to an overall unimodular multiplicative constant, from magnitudes of linear measurements. In this
paper, we assume that the vector is normalized, but retain only qualitative, binary information
about the measured magnitudes by comparing them with a threshold. In more specific, geometric
terms, we choose a sequence of subspaces in a real or complex Hilbert space and only record
whether a given vector is closer to the subspace than to the complementary subspace. The
subspaces have half the dimension of the Hilbert space and are independent, uniformly distributed
with respect to the action of the orthogonal or unitary groups. The main goal of this paper is
to find a feasible algorithm for approximate recovery based on the information gained about the
vector from these binary questions and to establish error bounds for its approximate recovery.
We provide a pointwise bound for fixed input vectors and a uniform bound that controls the
worst-case scenario among all inputs. Both bounds hold with high probability with respect to the
choice of the subspaces. For real or complex vectors of dimension n, the pointwise bound requires
m > C§~2nlog(n) and the uniform bound m > C§~2n?log(§~n) binary questions in order to
achieve an accuracy of §. The accuracy ¢ is measured by the operator norm of the difference
between the rank-one orthogonal projections corresponding to the normalized input vector and
its approximate recovery.

1. INTRODUCTION

This paper is concerned with approximate phase retrieval from measuring qualitative, binary
measurements. Phase retrieval is the task of recovering a vector in a real or complex Hilbert
space up to an overall multiplicative unimodular constant from magnitudes of linear quantities.
Motivated by applications from diffraction imaging [19,26,35], or from studying properties of the
Fourier transform [2, 3], results on phase retrieval first focused on the case where measurements
consist of magnitudes of linear functionals [7,8,17]. Phase retrieval with quantized measurements
was studied as well [27,30], see also the preceding works [1,11,29]. In this context, quantization
means the magnitudes are replaced by values from a finite alphabet. Coarse, one-bit quantization
represents the extreme case, for example when only qualitative information is obtained such as how
each measured magnitude compares to a single given threshold. Another example in which coarsely
quantized measurements appear is quantum state tomography, where the outcomes of experiments
are recorded in order to estimate the state of a quantum system [21,33]. In this case, the probability
of an outcome is given by the squared norm of the projection of a (normalized) state vector onto
a subspace associated with the outcome. Estimating this quantum state is then, up to the known
normalization, equivalent to phase retrieval for the state vector. Phase retrieval based on norms of
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projections onto subspaces has also been studied outside of the context of quantum theory [6,13,16].
It may be viewed as a fusion-frame version of phase retrieval, where higher rank maps replace linear
functionals and the norm replaces the absolute value. The recovery of matrices rather than vectors
is yet another higher rank generalization of phase retrieval [14, 30].

The main goal of the present paper is to combine coarse quantization with phase retrieval from
norms of projections under the assumption that the input vector x is normalized. In our setup, each
measured quantity is the answer to a binary question: Is the input vector x closer to a given subspace
or to its orthogonal complement? Hence, a measurement results in a binary string that encodes
the orientation of x in terms of the answers to the binary questions associated with a collection
of subspaces. This reduction to binary quantities is a dramatic loss of information compared to
phase-insensitive, real-valued measurements. Since the outcome of a measurement is unchanged by
rescaling the input vector, we are only obtaining information about the one-dimensional subspace
spanned by it. The restriction of x being a unit vector permits us to perform phase retrieval from
its proximity to subspaces. In analogy with the unresolvable ambiguity in phase retrieval, we only
seek to recover the one-dimensional subspace spanned by z, or equivalently, the orthogonal rank-one
projection X onto the span of x.

The motivating practical setting for the type of signal acquisition and recovery considered here
is performing phase retrieval with an optical device related to the so-called single-pixel camera [18].
This camera has a lens and a segmented mirror array that can selectively reflect part of a light
beam. The reflected portion is then captured by a photomultiplier. Mathematically, the lens
approximately implements a Fourier transform and the mirror array is modeled by a mask that is
applied to the Fourier transform of the image. The photomultiplier integrates the intensities, the
squared amplitudes of the masked light wave, to obtain each measured quantity. This integrated
intensity can indeed be interpreted as the norm of a signal that has been projected by applying the
mask. The binary measurements we consider could be generated from the intensities by comparing
the photomultiplier output with a threshold value for each choice of the mask. The single-pixel
camera was developed to produce images of light intensities reflected by an object [18]. To retrieve
phase information, one could replace the lens with an optical implementation of fractional Fourier
transforms [24,25]. In our paper, we do not consider fractional Fourier transforms but apply random
unitaries before measuring the norm of a vector projected onto a subspace. We leave it to future
work to see if the techniques developed here can be adapted to a more realistic, optics-related
setting.

To achieve phase retrieval, we use measure concentration arguments and show that measurements
coming from randomly selected subspaces allow approximate recovery via a semidefinite program.
The recovery strategy in this paper can be outlined as follows: We specialize to even-dimensional
real or complex Hilbert spaces and to randomized one-bit measurements based on subspaces of half
the dimension. For each random subspace V; in a sequence {V1, Vs, ..., V,,}, we determine whether
the given input vector x is closer to Vj or to its orthogonal complement VjL. The outcome of the

binary measurement is thus encoded in a sequence of orthogonal projections {I:’l, ]32, ey Pm} such
that the range of each P; is the subspace V; € {V}, VJJ-} that is closest to . The answer to each

binary question is equivalently determined by comparing the squared norm ||P]:c||§ = tr [Pjzz*] to
a threshold. For the approximate recovery of the subspace spanned by x we then simply average
over these orthogonal projections {Pj};-”:l and find the eigenspace corresponding to the largest

eigenvalue of this average. We denote the orthogonal projection onto this eigenspace by X. This

operator is, in fact, the solution of a semidefinite program which maximizes Z;nzl tr [PjY} in the
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convex set of all positive semidefinite Y with tr [Y] < 1 [22, Section 4.2]. This strategy is motivated
by earlier results of Plan and Vershynin in the more general setting of one-bit low rank matrix
recovery [30].

Randomized constructions and associated algorithms for recovery based on measure concentra-
tion have been studied previously in the contexts of matrix recovery, compressed sensing, and other
problems in phase retrieval [1,6,11,15,20,23,29,30]. In contrast to the low-rank matrix recovery
treated by Plan and Vershynin [29,30], we use measure concentration in operator norm to achieve
our error bounds. For a related result based on measure concentration in operator norm but without
a low-rank prior, see the work by Guta and others [21] on approximate quantum state tomography
from measurements associated with projections onto subspaces.

In this paper, we show results that control the accuracy of the approximate recovery, in particular
the decay of the error as the number of random subspaces grows. There are two types of error
estimates, pointwise and uniform in the input vector.

Pointwise Bound. For a rank-one orthogonal projection X on a real or complex 2n-dimensional
Hilbert space and a desired recovery accuracy ¢ > 0, we show that using

m > C6 *nlog(n)

random subspaces for a binary measurement and the algorithm we described yields X such that
the operator norm difference is bounded by HX - X H < ¢ with high probability. Here C' is a

constant independent of n and §. See Theorem 2.3.3 for the exact statement and proof of this
result, along with an exact value for C'. One may compare this to a similar result from one-
bit compressed sensing which says that m = C6~*n random one-bit measurements (of the form
X + sign(tr [G; X]) for {G;}7L, independent matrices with independent standard normal entries)

are sufficient to recover X with nuclear norm tr HXH =1 and tr UXX*

2
] < 1 such that the

N . 27\ 2
Hilbert-Schmidt norm HX - XHHS = (tr UX - X‘ }) < ¢ [30, Section 3.3]. Another result on

one-bit phase retrieval [27] also gives comparable asymptotics when using measurements based on
rank-two Gaussian random matrices.

Uniform Bound. We also establish an error bound that holds uniformly for all rank-one projec-
tions as input with one fixed choice of subspaces for measurement. For a desired recovery accuracy
0 > 0, we show that using

m > 05 *n?log(6~'n)
random subspaces for a binary measurement ensures with high probability that for each rank-one
orthogonal projection X we obtain X such that HX — XH < §. See Theorem 3.3.1 for details.

We note that for fixed n, the asymptotic dependence of m on ¢ improves on results derived
by Plan and Vershynin in a more general setting. To compare the results, we recall that their
bounds are formulated for the squared error norm. In our units, even their pointwise result for
1-bit phase retrieval requires m to be proportional to 6. The fact that Plan and Vershynin use
the Hilbert-Schmidt norm and not the operator norm as in the present paper is a minor difference,
because the error in the rank-one case is computed as the norm of a Hermitian of rank two, so
changing between the two types of norms only introduces a factor of v/2. Our improvement in the
asymptotics can be attributed to our choice of measurements which are constructed with random
orthogonal projections, not Gaussian matrices. One expects that the Lipschitz regularity of the
function X — tr[PX] is better than that of X — tr [GX], at least in a set of large measure among
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all rank-one projections. This is advantageous, in particular in combination with perturbation
arguments as in Section 3.2.

We also include pointwise and uniform error bounds for faulty measurements. In this case, up to
a fixed fraction of the answers to the binary questions have been flipped, possibly in an adversarial
manner. For fixed dimension n, the faulty measurements contribute with an additional term in the
bound for the recovery error that is proportional to the fraction of bit flips. We hope to improve the
n-dependence of our bound further, but at least with our current technique the goal of achieving
overwhelming success probability for recovering all inputs with a uniform accuracy using a fixed
measurement architecture whose measured quantities grow proportionally to n is not within reach.

The remainder of this paper is organized as follows: After fixing some notation, the remainder
of Section 1 describes our one-bit phaseless measurement model in more detail; we explain how
we generate random projections for each binary measurement, and how we approximately recover
a signal based on such a binary measurement of it. In Section 2 we prove the error bound for
our pointwise recovery, Theorem 2.3.3. Lastly, in Section 3 we establish the uniform accuracy for
recovery, Theorem 3.3.1. Each of the main theorems in Sections 2 and 3 is followed by a corollary
that provides error bounds in the presence of faulty measurements. Both error bounds are also
illustrated with plots showing empirical data from reconstruction using (PEP) in R'6.

Notation: Since we are interested in both real and complex signals, we let F stand for either R
or C, and define g = % when F = R and 8 = 1 when F = C in order to simplify some expressions
which depend on the underlying field. We consider only unit norm signals, and so denote the unit
sphere in F¢ by Sg_l. As mentioned previously, both our input signals and binary measurement
can be defined in terms of orthogonal projections, so we let Projg(k, d) denote the space of rank-k
orthogonal projections on F?. For a vector = € S%fl, xx* € Projp(1,d) is the rank-one projection
onto the span of x. We write ||z|| for the euclidean norm of a vector x € F¢ and ||A|| for the operator
norm of a matrix A € F4*¢,

1.1. One-Bit Phaseless Measurement Model. Our measurements are constructed from quali-
tative information about the proximity of z € Sﬁf*l to subspaces in F?. We formulate the measure-
ments in terms of the orthogonal projections onto these subspaces.

For a projection P € Projp(k,d), we define its associated binary question as the map ¢p :

St — {0,1} given by
1 if |Pzfs> %
@P(x) — | H2 d
0 else.

The choice of k/d as the cut-off value for quantization is natural since it is the average of
x — ||Px||§ over all unit vectors. Equivalently, k/d is the average of P — HPa:Hg when z is a
fixed unit vector and P is chosen uniformly at random in Projz(k,d), as discussed further below in
Section 1.2.

These binary questions are in fact phaseless, since pp(z) = pp(ax) for any o € F with |a] = 1.
Additionally, for any such a and any = € S¢~" we have ax(ax)* = zz*, and ||Px||§ = tr [Pxz*], so
these binary questions can be recast as maps on the set of rank-one orthogonal projections. In this
framework — thinking of input signals as rank-one projections — the binary question associated
to P is the map ¢p : Projp(1,d) — {0,1} defined by

. E
1 if tr[PX] >3

0 else.

¢P(X):{
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Reformulating ¢pp as ¢p encapsulates the fact that the map ¢p is constant on the set of unit
vectors that differ from = by a unimodular multiplicative constant. Henceforth, we will use this
latter framework and speak of measuring and reconstructing rank-one orthogonal projections rather
than unit vectors.

The binary question ¢p measures qualitative proximity information about the input signal. For
projections P € Projg(k,d) and X € Projg(1,d), tr [PX] = cos?(6), where 6 is the principal angle
between the one-dimensional subspace Ran(X) and the k-dimensional subspace Ran(P). Thus,
¢p(X) = 1if and only if Ran(X) is closer to Ran(P) than the average for a random one-dimensional
subspace, and if this occurs we say P is proximal to X.

Our goal is to achieve accurate phase retrieval with the qualitative proximity information gained
from a sufficiently large set of these binary questions from projections { P; };":1 For such a collection,
we define a corresponding binary measurement map.

Definition 1.1.1. Given a sequence of orthogonal projections P = {Pj};”zl on F?, the binary
measurement map associated with P is ®p : Proj(1,2n) — {0,1}"™ defined by

Pp(X) := (¢p, (X)L -
We also define the measurement Hamming distance (associated with P) between X and Y to be
dp(X,Y) :=du(Pp(X), 2p(Y))
where dy denotes the normalized Hamming distance on {0,1}™.

In other words: ®p(X) is a binary vector where each one-bit entry encodes the proximity of X
to a projection in P. The value dp(X,Y) gives the relative frequency of measurement projections
that separate X and Y, i.e. the number of binary questions in the measurement that yield different
answers for X and Y as inputs.

1.2. Measurement by Random Projections. In the absence of an intuitive way to construct
“optimal” collections of projections for our one-bit measurements, we instead consider projections
chosen uniformly at random. The uniform probability measure on Projz(k,d) is induced by the
Haar measure of the unitary group Ur(d), and is characterized by the property of being rotationally

invariant, see [6]. In other words, if P is uniformly distributed in Projg(k, d) then for any U € Up(d)

we have UPU* 2 p (where D denotes equality in distribution).

In practice, there are many equivalent ways to generate a uniformly distributed rank-k projection.
For example, one can take k Gaussian random vectors in F? and then form the projection onto their
span. A second way is to take a fixed rank-k projection and conjugate it by a Haar distributed
random unitary U € Ur(d). It can be helpful to think of a “uniformly distributed rank-k projection”
as just a “projection onto a uniformly distributed k-dimensional subspace”.

For most of the paper, we work with the binary measurement map associated to a collection
P = {P;}}L, of independent uniformly distributed projections in Projg(n,2n). The reason for
using half-dimensioned projections is because their associated one-bit measurements ¢p have a
geometrically intuitive meaning: for a fixed X € Projp(1,2n), ¢p(X) = 1 if and only if tr [PX] >
1 >tr[(I — P)X], i.e. the subspace Ran(X) is closer to Ran(P) than to its orthogonal complement
Ran(I — P).

1.3. Approximate Phase Retrieval by Semidefinite Programming. A main goal of this
paper is to use the outcomes of a random binary measurement to estimate the input accurately.
Suppose we have measured an unknown vector = € S?F"_l with the binary measurement map
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®p associated with a random collection of projections P C Projg(n,2n) and obtained the binary
vector ®p(zz*). The information we gain from these measurements will not in general completely
determine the rank-1 projection X = zz* corresponding to the input vector x, but with enough
measured quantities we can deduce a projection X which approximates X in some metric. A
consistent reconstruction would seek an element X in the feasible set, that is, the set of all ¥
consistent with the binary measurement in the sense that ®»(Y) = ®p(X) [12]. A natural error
bound for such a reconstruction strategy would then result from the diameter of the feasible set,
which intuitively will be small if P is suitably large.

In this paper, we relax the perfect consistency condition, but still achieve approximate recovery
with a computationally feasible, semidefinite programming algorithm investigated in other works
[22, Section 4.2]. The approximate recovery of X is conveniently described in terms of projections
obtained from the binary measurement ®p(X).

Definition 1.3.1. Given X € Projyp(1,d) and P € Projg(k,d) we define the proximally flipped
projection
N P if tr[PX] >
P(X) = i tr[PX] 2
I-P iftr[PX]|<
Next, for a sequence of orthogonal projections P = {P; };»”:1, the empirical average of the proxi-
mally flipped projections is

IS ESEWES

The recovery algorithm we study takes the binary measurement ®p(X) and produces X that
solves the semidefinite program
maximize tr [ )p(X Y]
(PEP) i1 Qr(X)
subject to Y > 0,tr[Y] < 1.

We call this the Principal Eigenspace Program (PEP) because it amounts to maximizing the
Rayleigh quotient [22, Section 4.2] for Qp(X). This special class of semidefinite programs can be
implemented efficiently [28, Chapter 4].

Since Qp (X) is a positive self-adjoint operator, it may be decomposed according to the spectral
theorem as a linear combination of mutually orthogonal rank-1 projections QP(X ) = 222:1 AN E;,
where A\;1 > Ao > ... > Ao, > 0. Thus, any positive self-adjoint trace normalized operator with
range contained in the principal eigenspace of Qp (X) is a solution to (PEP). If in addition A; is
strictly larger than As (which happens with probability 1 for our random measurement model),
then its principal eigenspace is one-dimensional, and so X = E is the unique solution to (PEP).
Proposition 2.1.2 will show that E [QAP(X)} =mX + po(I — X) with py > po, and so for large m
we might expect X~X by a measure concentration argument.

Section 2 of this paper shows the following pointwise result: for any fixed X € Proj(1,2n) and
any § > 0, we can choose m large enough so that a collection of independent uniformly distributed
half-dimensioned projections P = {P;}7*; will, with high probability, yield a measurement ®»(X)
for which the solution X to (PEP) satisfies HX — XH < §. See Theorem 2.3.3 for details.

Much of the effort in Section 3 is directed toward getting uniform results from the above pointwise
one. The uniform result we derive says: for any 4 > 0, we can choose m large enough so that a
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collection of independent uniformly distributed half-dimensioned projections P = {Pj};":l will,
with high probability, yield measurements ®p(X) for every X € Proj(1,2n) for which the solution

X to (PEP) satisfies HX — XH < §. See Theorem 3.3.1 for details.

According to the uniform result, we can generate a collection of projections for which every signal
is approximately recoverable up to an error of § from the one-bit questions using those projections.
The pointwise result can be thought of as an averaged performance guarantee, whereas the uniform
bound controls even the worst case input.

2. ERROR BOUND FOR THE APPROXIMATE RECOVERY OF FIXED INPUT SIGNALS

We begin deriving results on the statistics of signal recovery using (PEP) and our one-bit phase-
less measurement model by considering a fixed unit-norm input vector z € F?" while the binary
measurement map ®p is chosen randomly. As outlined before, we identify vectors that differ by a
unimodular multiplicative constant, and when considering only unit-norm vectors as input signals
we represent these equivalence classes by rank-one projection matrices. The random binary mea-
surement map is determined by a sequence of random projections P = {P; };”:1 whose rank is half
the dimension of the signal space, and provides information whether the input signal is closer to
the range of each projection or to its orthogonal complement. The main goal of this section is to
prove that (PEP) provides accurate recovery of an input signal X € Projg(1,2n) when sufficiently
many random projections are used for the binary measurement, i.e. when m is large enough. The
derivation of the results proceeds in three steps:

(1) If the orthogonal projections for the measurement of X are chosen uniformly at random and
proximally flipped, then their empirical average has the expectation Q(X) := E [QP(X )} =

1 X + po(f — X) where 0 < pug < pq are constants. In particular, X is the projection onto
the eigenspace corresponding to the largest eigenvalue of Q(X).

(2) The empirical average Qp(X) concentrates near its expectation Q(X).

(3) The eigenspace of Qp(X) corresponding to its largest eigenvalue concentrates near X.

2.1. Expectation of Qp(X). Before we can investigate the accuracy of (PEP), we need a simple
fact about the distribution of the principal angle between a random n-dimensional subspace and a
fixed one-dimensional subspace in F27,

Lemma 2.1.1. Let X € Projg(1,2n) be fixred and P € Projr(n,2n) be uniformly distributed. Then
tr [PX] ~ Beta(fn, n), i.e. tr [PX] has probability density function

p(t) = B (Bn, fn) " (11— )],
where B(a,b) = fol t*1(1 — t)>~1 dt is the Beta function. In particular, E [tr [PX]] = § and the
distribution of tr [PX] is symmetric about .
Proof. Recall that if U € Up(2n) is uniformly distributed and E is the orthogonal projection onto
the first n standard basis vectors, then UEU* @ P. Thus

tr[PX] Y tr [UBU*X] = tr [EU* XU .

Observe that U* XU is a uniformly distributed rank-1 projection, which has the same distribution

@

as uu* where u € S]%"_l is a uniformly distributed unit vector. Furthermore, u = T where
2
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g ~ N(0, I,) is the standard Gaussian random vector in F?". So we have

E 2 n 2
(1) i B0 XU] D tr [Bune] = | Bu)2 @ 1B _ 2o 06l
lgll2 k=1 |9%]

If F = R, then the g;’s are independent standard Gaussian random variables, so the right hand
side of equation (1) has the form A_‘:%B where the random variables A, B ~ x?(n) are independent.

Thus, Equation (1) is a Beta (%, %) random variable.
If F = C, then each gy = ap + iby where all the a; and by’s are independent standard random
variables. In this case, since |gi|® = |ax|”> + |bx|?, the right hand side of Equation 1 has the form
A

Trp Where A, B ~ x%(2n) are independent, and thus is a Beta(n, n) random variable. O

Next we compute the expectation of the empirical average of the proximally flipped projections.

Proposition 2.1.2. Let X € Projg(1,2n) and P = {P;}7., be an independent sequence of uni-
formly distributed projections in Projgp(n,2n), then

Q(X) = X + o (I — X),
where
_1. 1 1 1
M T BnaPnB (Bn, Bn)” M T 27 Bn(2n - 1)4P B (Bn, Bn)’
Proof. We begin with some manipulation and reasoning that does not depend on whether F is R
or C, which only makes a difference when computing the values of u; and us.
Since the P;’s are identically distributed, we know that E [PZ(X )} =E [Pj(X )} for all 4 and j.

Thus, by linearity of expectation we have Q(X) =E {Pl (X)}
Also, the distribution of P (X) is invariant under conjugation with a unitary that fixes X. In

other words, for a unitary U € Ug(2n) such that UXU* = X, then UP, (X )U* @ P1(X). To verify

this, we use the rotational invariance of P; and the cyclic property of the trace to obtain

vb(x)U* Y U0 PU)X) U = PLUXU*) = P(X).

Using the linearity of expectation once more, it follows that Q(X) is also invariant under con-
jugation by unitaries that fix X. This implies that every eigenspace of Q(X) is preserved under
rotations by all such unitaries, hence Ran(X) and Ran(X)' are the eigenspaces of Q(X). Letting
w1 and po denote the respective eigenvalues, we write

QX)) =mX + p2(I — X).
In order to determine the value of uq, we use linearity of expectation to see
i = tr[Q(X)X] = E [tr [Pl(X)XH .

By the law of total probability we have,

E [tr {Pl(X)XH —E {tr {Pl(X)X} ‘ tr [P X] > }P{tr [PLX] >

|
}

[N R N
[N ORI

+E [tr [Pl(X)X} ’ tr[P1X] < }P{tt [PLX] <
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so by the definition of P;(X) and the symmetry of the distribution of tr [P X] — a consequence of
Lemma 2.1.1 — it follows that

E {tr {Pl(X)XH =E {tr [PX]

[PX] > ﬂ .

We can compute this conditional expectation using integration by parts with the probability
density function given in Lemma 2.1.1, yielding

1 1 1

11 = 2B (571,571)*1/ (b1 — )Pt at = 3t B DL

2

Since tr [Q(X)] = n by linearity of expectation, we know p1 + (2n — 1)uz2 = n, from which we get
the desired expression for ps.
]

2.2. Concentration of Qp (X) near Q(X). Since the empirical average of the proximally flipped
projections Qp (X) is, after all, an empirical average, by the law of large numbers it should concen-
trate tightly around its expectation Q(X) as the number of measurements m goes to infinity. To
make this precise, we use the Matrix Bernstein Inequality [34, Theorem 1.6.2].

Lemma 2.2.1. Let X € Projg(1,2n) and P = {P;}7., be an independent sequence of uniformly
distributed projections in Projg(n,2n), then

[l ool < 252

P{||Qr(x) - Qx)|| = t} < dnexp <—6im> .
In particular, if m > Zt=2(log(4n) + D) then
P{||@r(x) - Q0| 2 t} <exp (-D).

Proof. Let S; = %(PJ(X) —Q(X)). Then E[S;] =0 and ||S;|| < L for all j =1,...,m. Note that
Z = Z;nzl S; = Qp(X) - Q(X). Additionally, since P;(X) is a projection and E {PJ (X)] =Q(X)
for all j, we may bound the matrix variance

and for any t > 0,

- 1 1
Z) = E[S7]]| = — [[Q(X) - Q(X)?|| < —.
v(2) g [S7]][ = — Q) - (X)*|| < 1~
The expectation bound and tail bound now follow from applying the Matrix Bernstein Inequality
as in [34, Theorem 1.6.2]. Additionally, if m > £t~2(log(4n)+ D) then log(4n) — @ < —D, which
yields (2.2.1). O

2.3. Concentration of X near X (Pointwise Result). From Lemma 2.2.1 we know that, with
enough measurement projections, with high probability Qp (X) is close to Q(X) in operator norm.
When it is sufficiently close, then the eigenspace of Qp(X ) corresponding to its maximum eigenvalue
will also be close to X. To see this, we first need the following lemma. It is based on the fact that
for two rank-one projections X and Y, the difference X — Y is a zero-trace self-adjoint operator of
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rank two, and hence has a spectral representation of the form X —Y = || X — Y| (A — B) with two
mutually orthogonal rank-one projections A and B.
Lemma 2.3.1. Let X,Y € Projg(1,2n), then

X =Y = (1 — p2) " tr[Q(X)(A ~ B)]

where A, B € Projp(1,2n) are the mutually orthogonal projections in the spectral decomposition
X-Y=|X-Y|(A-DB).

Proof. Let 6 be the principal angle between the subspaces associated to X and Y. Then we can
pick z,y,z € S]%”_l with 2 L 2z such that X = za*, Y = yy* and y = cos()zx + sin(f)z. Then

Y = yy* = cos?(0)zz* + sin(0)zz* + sin(f) cos(A) (z2* + zz*).
Since Q(X) = 11 X + po(I — X),
tr[QUX)(X = V)] = 1 — cos2(B)yu1 — sin(0)piz = (pn — piz) sin2(0).

Lastly, since sin(f) = || X — Y|, rewriting the left hand side using the spectral decomposition
X -Y = || X-Y]||(A - B) and cancelling the common factor of || X — Y| yields the desired
equality. (|

The spectral gap 1 — us of Q(X) appears in the sufficient number of binary questions in both
our pointwise and uniform result. The following lemma bounds this quantity in in terms of the
dimension n.

Lemma 2.3.2. Let py and po be as in Proposition 2.1.2, then for fn > 2

(n—1)/28n -1 < 4(n—1)v2Bn -1
V2mBn(2n —1) e = eN2mfn(2n — 1)

In particular, (1 — p2)~t = O(y/n).

Proof. From the expressions derived in Proposition 2.1.2 we have

2(n—1)
2 — g = .
2) M2 = e (9n — 1)4Pn B(Bn, Bn)
Since B(ag, ) = %, we may use Stirling’s formula to approximate the Beta function. In

particular, from [32] we have for all real numbers k > 2
1 L'(k) 1
exp (1% — 11) < NoT 1)k_% exp (—(k— 1) < exp (M) .
In particular, when Sn > 2 these inequalities for the Gamma function yield the bounds
ngnﬁ < B(Bn, n) < 4[,71\2/\2/%.

Using these bounds for the Beta function in (2) gives the desired inequalities for py — uo. O

3)

Now we have the tools to prove the pointwise error bound for approximate recovery of a fixed
input signal using (PEP).
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Theorem 2.3.3. Let X € Projgp(1,2n) and § > 0 be fized. If

14

m > = (i — p2)*0"*(log(4n) + D),

and P = {P;}*, is an independent sequence of uniformly distributed projections in Projg(n,2n),
then with probability at least 1 — exp (—D)

(4) HXfXH <,

where X is the solution to (PEP) with input ®p(X).

Proof. From Lemma 2.3.1, we know that

= (1 = p2) 7 1 [Q(X)(A = B)],

where A, B € Projy(1,2n) are the orthogonal projections from the spectral decomposition of the
difference X — X = HX — X||(A-B).

Since X is the projection onto the principal eigenspace of Qp (X), we see

tr [Qp(X)(X = X)| 20 = (1 — )" 1 [Qp(X)(B - 4)] >0,

|- x

and so
() ||% = x| < G - ) e [(QX) - QUOYA - B)] < 20 — o)™ @) - Q(x)| -

We have chosen m such that m > Zt=2(log(4n) + D) for t = £ (u1 — p2)d, so the tail bound in
Lemma 2.2.1 says with probability at least 1 — exp (—D) we have HQp(X) - Q(X)H < t. If this

occurs, then from (5) we see

| = x]| < 200 = 2) " @ () - QXY <.

O

See Figure 1 for a plot showing how our bound on the sufficient number of measurements to
achieve an accuracy of § relates to experimental results.

Our proof lets us fine tune the probability of successful recovery by adjusting the value of D in
(4). By increasing D we increase the probability of success, but also increase the sufficient number
of measurements. In particular, we can take D = alog(n) to ensure success with high probability,
i.e. the failure rate decays on the order of n=. To do so, we gain a constant factor that depends
on « in the number of sufficient measurement projections m.

Corollary 2.3.4. Let X € Projg(1,2n) and 6 > 0 be fized. If « > 0, m > Cod 2nlog(n), and

P = {P;}J, is an independent sequence of uniformly distributed projections in Projg(n,2n), then
with probability at least 1 — n™%

HX - X H <4,
where X is the solution to (PEP) with input ®p(X) and C is a constant that only depends on o.

We can also take D = n in (4) to ensure success with overwhelming probability, i.e. the failure
rate decays on the order of exp (—n). In this case, we gain an additional factor of n in the number
of sufficient measurement projections m.
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FIGURE 1. Plot showing the accuracy of recovery using (PEP) for a fixed input
and 7200 independent collections of up to 10® measurement projections on R'6.
The single line separate from the cluster represents the upper bound on é given by
Theorem 2.3.3.

Corollary 2.3.5. Let X € Projg(1,2n) and § > 0 be fivzed. If m > C6>*n*log(n) and P = {P;}7-,
is an independent sequence of uniformly distributed projections in Projg(n, 2n), then with probability
at least 1 — exp (—n)

HX - X H <4,
where X is the solution to (PEP) with input ®p(X) and C is a constant.

The pointwise accuracy guarantee of Theorem 2.3.3 can also be thought of as an “average case”
error bound with respect to the random sequence of measurement projections P. The following
corollary makes this explicit.

Corollary 2.3.6. Let X € Projg(1,2n) and § > 0 be fizred. If m > C5 2nlog(n) and P = {P
is an independent sequence of uniformly distributed projections in Projg(n,2n), then

Bl -x[] <4
where X is the solution to (PEP) with input ®p(X) and C is a constant.

Proof. Take the expectation on both sides of (5) with respect to the random sequence of projections
P and use the expectation bound from Lemma 2.2.1. O

We also remark that recovery using (PEP) is robust to bit-flip errors in the binary measurement,
which can be seen via a small addition to the proof of Theorem 2.3.3. To this end, we consider
a faulty measurement ®p with the property that the normalized Hamming distance between the
faulty and correct measurements is bounded by a fixed fraction dg (®p(X), ®p(X)) < 7.

Corollary 2.3.7. Let X, &, m, and {P;}72, be as in Theorem 2.5.3, and fir 0 < 7 < 1. Then with
probability at least 1 — exp (= D), for all ®p(X) € {0,1}™ such that

di(®p(X), 0p(X)) <7,
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we have .
HX - XH <64 2(p1 — p2) "',

where X denote the solution to (PEP) with input ®p(X) and 1 — o is controlled by Lemma 2.3.2.

Proof. Let Qp(X) denote the empirical average of the (faulty) flipped projections, i.e. flipped using
®p(X) rather than ®p(X). Then as before, we have

% = x| < 20m - n2) 7 ||@r () - QX))
By the triangle inequality, it follows that
|or(X) - ()| < [ @r(x) = Gp(X) | + ||@r(x) - @)
Since the normalized Hamming distance between ®»(X) and ®p(X) is bounded by 7, we see
HQP(X) - QP(X)H <T

Since HQp (X) - Q(X)H < ¢ with probability at least 1 — exp (—D) by the same proof as in Theo-
rem 2.3.3, the result follows. O

We expect that a deeper analysis will reveal a better dependence on the error rate, or perhaps

eliminate the dimension dependent factor (uy — o)~ t.

3. FROM POINTWISE TO UNIFORMLY ACCURATE RECOVERY

In this section we extend the result from Theorem 2.3.3 to show that the recovery error using
(PEP) is small uniformly across all input vectors X € Projg(1,2n) for a single random binary
measurement ®p. Our strategy consists of the following steps:

(1) Using sufficiently many random projections, Qp (X)) concentrates near Q(X) for all X in
an e-net of Projg(1,2n).

(2) With high probability the measurement Hamming distance between a pair X,Y € Projp(1, 2n)
is not much larger than || X — Y'||, uniformly for all such pairs.

(3) The eigenspace of Qp(X ) corresponding to its largest eigenvalue concentrates near X uni-
formly for all X € Projg(1,2n).

3.1. Concentration of QP(X) near Q(X) uniformly on a net. First, we show an inequality
relating the Euclidean distance between unit vectors to the operator norm distance between their
associated rank-one projections.

Lemma 3.1.1. Let d € N. Then for all x,y € S%fl,
lzz® —yy*|| < llz —yll, .
Proof. Let 6 be the principal angle between the subspaces associated to xz* and yy*, and recall
|lzz* — yy*|| = sin(#). Thus
e = ylly = (& — g,z —y) =2 = 2R(z,) 2 2~ 2|(z,y)| =2~ 2cos(6).

Since 6 € [0, 5] we know 0 < cos(f) < 1 and so

2 — 2cos(f) = 2(1 — cos) > (1 + cos(8))(1 — cos(8)) = sin?(0) = ||zz* — yy*||*.
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Next, we use Lemma 3.1.1 to prove the existence of e-nets of Projy (1, 2n) with explicit cardinality
bounds. This follows from the analogous results for e-nets of S]%”*l.

Lemma 3.1.2. For any € > 0, there exists an e-net N for Projp(1,2n) with respect to the operator
norm with cardinality satisfying

log | V.| < 4Bnlog(1 +2¢ ).

Proof. By the standard volume bound for the covering number of the sphere in real euclidean
space [9], and the fact that S%”fl is naturally isometric to Sﬁl@”*l, for every € > 0 there exists an
e-net N for SIQF"*l (with respect to the Euclidean distance) with cardinality satisfying

9 48n
W< (1+2)

By Lemma 3.1.1, N, := {zz* : z € N/} is an e-net for Projp(1,2n) with the desired cardinality
bound. O

Now that we have existence of epsilon-nets with control on their cardinality, we use a union
bound and Lemma 2.2.1 to show that with sufficiently many measurements, Qp(X) concentrates
near Q(X) uniformly for all X in an epsilon-net of Projp(1,2n).

Lemma 3.1.3. Let e > 0 and N, be an e-net of Projg(1,2n) such that log |N;| < 48nlog(1+2¢e1).
Also, let § >0, m > 2672 [log(4n) + 4Bnlog(1 + 2¢~') + D], and P = {P;}7L, be an independent
sequence of uniformly distributed projections in Projg(n,2n). Then with probability at least 1 —
exp (—D) we have

Proof. By Lemma 2.2.1 and our assumption on m, for each X € N, we know

P {HQP(X) - Q(X)H > 5} < exp (—4Bnlog(1 + 2¢~1) — D).

By taking a union bound over all X € N it follows that

Qp(X) - Q(X)|| <4
for all X € N.

IF’{HQP(X) - Q(X)H <tforall X € /\/E} > 1— N exp (—4Bnlog(1 +2¢Y) — D).
The claim follows from our upper bound on |N¢|. O

3.2. Relation between the measurement Hamming distance and operator norm dis-
tance. The main goal of this section is to prove our guarantee for uniformly accurate recovery,
Theorem 3.2.10: With sufficiently many measurements, with high probability the measurement
Hamming distance between any pair X,Y € Projp(1l,2n) is not much larger than the operator
norm of their difference. It is relatively simple to show that this happens for fixed X and Y, but
showing that it holds uniformly for all such pairs requires more complicated techniques. To this
end, we will define the t-soft Hamming distance similarly as in Plan and Vershynin’s Dimension
reduction by random hyperplane tessellations [31]. We establish a continuity property and concen-
tration results for the ¢-soft Hamming distance, which allow us to show uniform concentration of
the measurement Hamming distance near its expected value over all of Projg(1,2n). We then show
that E [dp(X,Y)] can be bounded in terms of || X — Y|, after which Theorem 3.2.10 follows.
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3.2.1. The t-soft Hamming distance and its continuity properties. For any X,Y € Projp(1,2n) let
Sx,y = {P € Projp(n,2n) : ¢p(X) # ¢p(Y)}, i.e. the set of projections that yield different
measurements of X and Y. If P € Sxy, then we bay that P separates X and Y. For a sequence
= {P;}}JL; C Projg(n,2n), notice that dp(X,Y) = Zj 1 Lsy v (Pj).
Wlth thlb expression for the measurement Hammlng distance in mind, we define

1
Sky = {P € Projg(n,2n) : tr [PX] + ¢ < 5 <tr[PY] -t}
1
U{P € Projp(n,2n) : tr [PY] +t < 5 <tr[PX]—t}
forall t € R, and if P € Sg(’y then we say P t-separates X and Y.

Definition 3.2.1. Given a sequence of orthogonal projections P = {P;}.; in Projg(n,2n) and
t € R, we define the t-soft Hamming distance between input projections X,Y € Projg(1,2n) to be

di(X,Y) Z]ls

Ultimately we want to prove uniform results for the measurement Hamming distance, but its
discontinuity causes problems with standard e-net arguments. The t-soft Hamming distance helps
us work around this discontinuity, where the parameter ¢t determines how strict the criteria should
be for determining if the measurements of two vectors are different. This is reflected in the fact
that for t; < 0 <ty we have S;‘(ZAY CSxy C Sgg’y.

The addition of this extra parameter lets us formulate a type of continuity for d%(X,Y") where
both ¢t and the projections X and Y are allowed to vary. If we want to perturb the projections X,Y
by a small amount in operator norm, then we can make up for it by slightly increasing/decreasing
the parameter t.

Proposition 3.2.2. Let P = {Pj}§":1 be a sequence of projections in Projp(n,2n), t € R, ¢ > 0,
and Xo, Y0, X, Y € Projyp(1,2n) such that || X — Xo|| < € and ||Y — Y| < ¢, then

A (X, Y) < dp(Xo, Yo) < diy (X, )
Proof. Suppose P € S?'; Then, without loss of generality, we may assume that
w[PY] 4t +e< % <tr[PX]—t—-c
Since P is a projection we have |tr [P(Yy —Y)]| < ||Y — Yol <, so
tr[PYp]+t=tr [PY] —tr [P(Y = Yo)] +¢t <tr[PY]+t+e< %

and also

tr[PXo]—t:tr[PX]—tr[P(X—Xo)]—tZtr[PX]—t—€>%.

Thus S5 C 8%, v, and so d“(X,Y) < di(Xo, Yo).
The second inequality follows from above by swapping the roles of X, Y with X, Y and replacing
t with t — e. O
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3.2.2. Concentration of t-soft Hamming distance. In this section, we state a basic concentration
result for for the t-soft Hamming distance between two fixed vectors, and then extend it to a
uniform result over an e-net.

Lemma 3.2.3. Let P = {F; };”:1 be an independent sequence of uniformly distributed projections
in Projp(n,2n), t € R, 6 > 0, and X,Y € Projp(1,2n) be fized, then

P{|dp(X,Y) —E [d5(X,Y)]| > 6} < 2exp (—26%m) .
Proof. From the way that we defined the t-soft Hamming distance, m-d%(X,Y) ~ Bin(m, p) where

p = E[d5(X,Y)]. The result then follows from a standard Chernoff bound for binomial random
variables (see [4]). O

We can now use Proposition 3.2.3 and the bounds on the size of e-nets of Projz(1,2n) from
Lemma 3.1.2 to take a union bound. The result is a bound for the probability that the ¢-soft
Hamming distance is close to its expectation for all pairs of projections in an e-net simultaneously.

Proposition 3.2.4. Let € > 0 and N, be an e-net of Projp(1,2n) such that log |N¢| < 48nlog(l +
2¢71). Also, lett € R, 6 > 0, m > %5’2 (Sﬁn log(1 4 2¢71) + D), and P = {P;}7L, be an
independent sequence of uniformly distributed projections in Projg(n,2n). Then with probability at
least 1 — exp (—D) we have
|d5(X,Y) —E [dp(X,Y)]| <0
for all XY € N..
Proof. By Proposition 3.2.3 and taking a union bound over all (sze‘) < % |J\/'6\2 pairs in NV, x N,
we have that
P{|d5(X,Y) —E [d5(X,Y)]| <6, Y(X,Y) € Ve x o} > 1 — [N [Pexp (—25%m) .
Using our bound on the cardinality of |N| and our assumption about m we have
|N|* exp (—20°m) < exp (88nlog(1l +2¢') — 26°m) = exp (—D).
|

The following proposition addresses how varying ¢ affects the expected difference of the t-soft
Hamming distance from the measurement Hamming distance.

Proposition 3.2.5. Let P = {F; }’]”:1 be an independent sequence of uniformly distributed projec-
tions in Projp(n,2n), t € R, and X,Y € Proj(1,2n) be fived, then

32v/20n —1

It
evV2r

|E [dp(X,Y) —dp(X,Y)]|| = |P{PL€Sky} —P{P €Sxy}| <

Proof. Because the t-soft and regular Hamming distances are linear combinations of indicator func-
tions, and the fact that the P; are i.i.d., we have

i

B [dh(X,Y) = dp(X,7)]] = [E [Lsy , (P1) = Loy (P1)]
and by Jensen’s inequality it follows that
(6) ’IE [1133(’y(P1) - ]ngYY(Pl)} ’ <E H]lsé(ﬁy(Pl) - 11SX’Y(P1)H —P{P € SkyASxy}.
We break up this symmetric difference into two disjoint pieces
P{P € SxyASxy}=P{P € Sg(,y \Sxy}+P{PieSxy\Sky}
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and look at two cases. First, if ¢ > 0 then S% 3 \ Sx vy is empty, and

tr[PlX];‘ <t}U{tr[P1Y]; <t}.

Similarly, if t < 0 then Sx y \ 8%y is empty and again

tr [P X] — ;’ < —t}U{ tr[PY] — % < —t},
()

Since tr [Py X] = tr[P1Y], in both cases we have

SX,Y \SE(,Y C {

Sg(’y \ SX’Y C {

7) PP, € Sy ASxy) < 21@{

1
tr[PlX]—2‘ <|t|}.

By Lemma 2.1.1 we know tr [P; X| ~ Beta(fn, fn), and so we can bound this probability using
the the probability density function of the beta distribution. To begin with, we see

8) P {

PX] - 1 2 Prel(1—a)fmtd
[Py }2’<'t'}3wn,ﬁn)/§ P11 = ) do

) [t] 1 Bn—1
sl (i7°) @

2 /It R
< ——— - X
- B(ﬁn,ﬁn) 0

8t

4P B(Bn, fn)’
Using the lower bound for the Beta function in (3) then yields

1 164/28n — 1
(9) P{tr[PlX]—‘<t|}§ﬁn|t|.
2 ev2m
The result follows from combining equation (6) with inequalities (7) and (9). O

3.2.3. Uniform concentration of Hamming distance. We now have all the tools we need to prove
that with sufficiently many measurements the Hamming distance concentrates near its expected
value for all pairs in Projp(1,2n).

Theorem 3.2.6. Let § > 0, m > 2072 (8,8nlog (1 + 128 V;\B/%:lé_l) +log(2) + D), and P =

{P;j}7Ly be a collection of independent uniformly distributed projections in Projg(n,2n). Then with
probability at least 1 — exp (—D) we have

dp(X,Y) ~ E [dp(X,Y)]| < 6
for all X, Y € Projp(1,2n).

Proof. Let € = %5 and let A be an e-net of Projg(1,2n) with log [NV,| < 48nlog(1 + 2¢1)

as in Lemma 3.1.2. By our assumption on m, Proposition 3.2.4 says that

]P’{|dfp(X, Y)-E[dp(X,Y)]| > g for some X,Y € M} < exp (—log(2) — D)
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and also
P{|d7;€(X, Y) —E [dp°(X,Y)]| > g for some X,Y € NE} <exp (—log(2) — D),

and so with probability at least 1 — exp (—D) we have ’d%e(X, Y)-E [d%e(X, Y)]| < 6 for all
X,Y € N, (call this event A).

Suppose that A occurs. Consider an arbitrary pair X,Y € Proj(1,2n) and let Xy, Yy € N, such
that || X — Xo|| < eand |Y — Yy|| < e. By Proposition 3.2.2 we know that dp(X,Y) < d%(Xo,Ys) <
d%(X,Y). These inequalities together with A holding imply

)
dp(X,Y) < dp(Xo,Ys) < E[dp(Xo, Yo)] + B <E [d¥(X,Y)] +

| 9

By Proposition 3.2.5 we have |E [d%(X,Y)] —E [dp(X,Y)]| < 327;2’822_1 e[ = 2, hence
dp(X,Y) <El[dp(X,Y)] +4.
Similarly, using Proposition 3.2.2 again shows that dp(X,Y) > dp(Xo,Ys) > d;QE (X,Y), and

since 4 holds we have
—€ —e 4 —2e¢ g
Ap(X,Y) 2 d5 (X, ) 2 B [ (X0, ¥0)] — 5 2 B [ (X, )] - 5,
Using Proposition 3.2.5 as above but for ¢t = —e yields
dP(X7 Y) >E [d'P(X7 Y)] — 0.
|

We have just shown that when the measurement projections are chosen uniformly and indepen-
dently, then dp(X,Y) concentrates near E [dp(X,Y)] =P{P € Sx vy} for all X,Y € Projg(1,2n),
where P is a single uniformly distributed projection in Projg(n, 2n). Whenn =1, thenP{P € Sx vy }
29 < sin(f) = || X — Y|, where 6 is the principal angle between Ran(X) and Ran(Y). In the re-
mainder of section, we show that this upper bound holds for arbitrary n, see Proposition 3.2.9. To
achieve this, we need to investigate the joint distribution of (tr [PX], tr [PY]).

By rotational invariance of the distribution of P we may assume that Ran(X) and Ran(Y") are
in the two-dimensional subspace spanned by e; and es, the first two standard basis vectors. Viewed
as matrices, this means that all entries of X and Y are zero outside of the top-left 2 x 2 submatrix.
Furthermore, if P, X, and Y are the top-left 2 x 2 submatrices of their respective matrices then

(tr[PX],tr [PY]) = (tr [PX} ,tr []5}7]) We study the joint distribution of (tr [PX],tr[PY])

through the submatrix P acting on F2.

Since P is Hermitian, so is P. Thus we may write P = ME1 + Ay Ey where Ay > Ay are
the eigenvalues of P and E; L Fs are the projections onto their corresponding eigenspaces. We
write A(P) := (A1, \2), and E(P) := (E), E,). By the rotational invariance of P, F; is uniformly
distributed in Proj,(1,2) and Ey = I — F; since Hermitian matrices have mutually orthogonal
eigenspaces. Note also that A\(P) and E(P) are independent of each other. The distribution of

A(P) is given in the following lemma.

Lemma 3.2.7. Letn > 2 and P € Projg(n, 2n) be uniformly distributed. Then \(P) has probability
density function p, on D := {(x,y) € [0,1]? : y < x} defined by

pn(x,y) = M;l(z _ y)2ﬁ [2(1 — 2)y(1 — y)]ﬁ(n—l)_1 :
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with the normalization constant
—2.B(n—1,n—-1) ifF=R

n—1
M, =
L _B(n—1,n—1?2 ifF=C.

8n—4

Proof. The probability density functions are given by [5, Proposition 4.1.4] with p = 2, ¢ = 2n — 2,
r=n—2and s =n — 2. It only remains to compute the normalization constants M,,.

Suppose F = R. Then p,(z,y) = M, (z —y) [z(1 — z)y(1 — y)]nT_s Define the functions
n=3 n—1

fulir,y) = = a1 = )T [y~ )T
-2 1 -y

With these definitions, we have p,, = Mn_l(%i — %) on D. So by Green’s theorem,

n
x

1::/D/z»xx,y>dxdyzzﬂ4;1j[ Fuda + gudy
D oD

where 0D is the boundary of D. Note that f,, and g, both vanish on the boundary of D except
for the diagonal A := {(x,y) € D : x = y}, so we only need to compute the line integral over A.
Parameterizing A by z(t) = y(t) =1 —t for ¢t € [0, 1], we see

gn(xa y) =

M, = nm+%@:—/[nmwmm+%mwwmwt
oD 0
1
- ni . / t"2(1 — )" 2dt
2

Next, we consider the case when F = C. Then p,(z,y) = M (z —y)? [z(1 — z)y(1 — y)]" "
By symmetry, 1 = %ff[o 12 pn(x,y)dzdy, so by expanding this integral and facts about the Beta
distribution, we see

1
1= f// pu(2,y)dedy = M, " var(b) - B(n — 1,n — 1)?,
2 [0’1]2
where b ~ Beta(n — 1,n — 1). This beta-distributed random variable has variance var(b) = m,
which determines M,,. O

Let Dsep := {(2,y) € D:y < & < a}. Then A\(P) € Ds,, if and only if there exist projections
A,B € Projg(1,2) such that P € Sy p. This is true because A\; = maxaseproj(1,2) tr [PA’] and

A2 = MaXpscproj(1,2n) tr [PB’]. In particular, P € Sx y requires A\(P) € Dsep. For this reason, we
compute the probability that A(P) € Dgep.

Lemma 3.2.8. Let n > 2, and P € Projg(n,2n) be uniformly distributed, then

B Lfl7n71 .
2n1(3(72;—1,;—2) - % ifF=R

}P’{A(P) € DSep} -

1 8n—4 1 1 ; _
2 + (n—1)2247"-3B(n—1,n—1)2 3 + T Zf]F =C
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Proof. First, suppose F = R, 50 p,(z,y) = M, (z — y) [2(1 — 2)y(1 — y)]%3 Then,
IP’{)\(P) eDs,cp =M, / / z—y) [z(1 = 2)y(1 —y)]"T dady.

By linearity and Fubini’s theorem, we get

T I RO HCE S

where b ~ Beta (71, "T) Calculating these conditional expectations we get

1 1 1
Elb|b>>|-E|b|b<-|=
{ | _2] { | _2] (n—1)2n=2B (234, 251

and combining this with Lemma 3.2.7 yields

B (2t 2
2"B(n —1,n—1)

P {A(P) c DSep} _

Next, suppose F = C, s0 py(z,y) = M (z —y)? [#(1 — 2)y(1 — )] >. Then,

P {\P) € Doy } = M / / v — )2 o1 — 2)y(1 — )" 2 dady.

Expanding (r — y)? and rewriting integrals in terms of expectations of beta-distributed random
variables, we see

/ / 2=y)? [e(1 — 2)y(1 - y)]" "> dady = % [JE [¥*] -E [b | b> ﬂ ‘E [b b < ;” B(n—1,n—1)2,

where b ~ Beta(n — 1,n — 1). We know that E [bz] =5 = i + Snl 1> and also

1 1 1 1 1
Eb|b>=|-E|b|b<-|=|= -
{| 2} [' 2} (2+( —1)22n2B(n—1,n—1) ( (n—1)227— 23(n—1n—1)>
1

1
T4 (n—12%4Bn—1,n— 1)

Putting this all together yields

- 1 8n —4
P{A(P) € Dgep b = = :
{ (P) € SP} 2 T - 122" 3B — Ln 1)

The asymptotic limit of ]P’{)\(}B)} as n — oo follows from Stirling’s approximation as in (3),
see [32]. |
Now we are prepared to bound P{P € Sx,y} in terms of the operator norm distance || X — Y.
Proposition 3.2.9. Let P € Projgp(n,2n) be uniformly distributed, then
P{PeSxy}<[X-Y]|.
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Proof. The case when n = 1 is simple and was mentioned previously, so we consider here n > 2.
Further, without loss of generality, assume Ran(X),Ran(Y) C Ran(F) where E is the orthogonal

projection onto span{es,es}. By conditioning, P{P € Sxy} =E {]P’ {P €Sxy | )\(15)}] By the
definition of Dge, we see that P {P €Sxy | )\(]3)} =0if \(P) € D§,,,- Hence

E[P{PecSxy | XP}| =E[P{Pesxy | NP)} 1., (AP))].

Suppose now that A\(P) € Dsep, and first consider the case when F = R. Then Projg(1,2) can
be viewed as S} with its opposite points identified, and E (15) is a (uniformly distributed) random
pair of antipodal points in this quotient space. Letting Fq = viv] and Ey = wvovy where v; and
vy are normalized eigenvectors corresponding to eigenvalues A; and Ay of P, we may parameterize
Projg(1,2) by ¢ € [—5, 5] via ¢ — Zy := (cos(¢)v1 +sin(¢)vz)(cos(@)vy +sin(¢)ve)* = cos®(¢)Er +
sin?(¢) By +sin(¢)(cos(¢) (v1v5 +vav}). We see that tr []BZ¢] = A1 cos?(¢) + Mg sin?(¢) = A — (A —

A2) sin?(¢). Since tr [1520} = A1 > % and tr []SZ%} = Ay < 3, there exists some ¢, € (0, %) such

72

A1 —A2

6 € (=n,n), and tr [PZ,] < } for 9 € [=5, ~9n) U (¢n. 3]

All of this goes to show that A(P) determines ¢y, which along with the orientation of E; de-
termines which rank-1 projections in Ran(FE) that P separates. In the quotient space picture, the
open arc between EFy, and E_,, containing E; represents the rank-1 projections with measure-
ments greater than %, and the complementary arc represents those with measurements less than %
Let w = min{2¢p,, 7 — 2¢ }, which is the length of the smallest of these two arcs. If w < 6, then

]P’{P €Sxy | )\(]3)} =20 < 20 Tf g > 0, then IP’{P €Sxy | )\(]3)} =2 g

that tr [15Z¢h] = tr [PZ_@J = 1. In fact, ¢, = arcsin < Mg > We see that tr [PZ¢] > 1 for

E [p {p €Sxy | A(P>} HDSEP(A(P»] <E ﬁf RDSSP(MP))}

20 .
- ?]P’{A(P) € DSep}
<X =Y.

Next, we consider the case when F = C, in which case Projc(1,2) can be identified with the

Bloch sphere [10]. By rotational invariance, E(P) is a pair of (uniformly distributed) antipodal
points on the sphere, and A\(P) determines which pairs of projections are separated by P. If v; and
P ¢

vy are eigenvectors of P as above, Fy = v1v] and Ey = v9v3, and vy y = cos(§)111 + e sin(%)vg

for ¢ € [0,7],% € [0,2x], then Z, , = Vg,V 4 lies on the circle of points in the Bloch sphere at
an angle of ¢ from E;. Moreover, this representation shows that tr {PZWM} =tr {PZ(M,Q} for all
¢, 11, and 1y. By continuity, there must exist some ¢p € [0, 7] such that tr {f’Z@“lp} = 4 for all

1
¥ € [0,27x]. In fact, we can calculate ¢}, = 2arcsin( ;‘11_ % ). The open spherical cap centered at

E; of angle ¢, consists exactly of those projections Z € Projq(1,2) such that tr [152} > %, and the

complementary cap consists of those for which tr [IBZ] < %
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‘.““‘ E,

FIGURE 2. The 2 x 2 principal submatrix P of P divides Projp(1,2) into two
disjoint sets based on whether the Hilbert-Schmidt inner product of a rank-one
orthogonal projection with P is greater or less than % (Left: F = R; Right: F = C).
If P separates two points X and Y, then P = M Ey + Ao Es with eigenvalues
A1 > 1/2 > Ay and mutually orthogonal eigenprojectors E; and F5. The subset
shaded in darker gray contains the points for which the Hilbert-Schmidt inner
product with P is greater than 1/2.

Conditioning on /\(15) determines the opening angles of these two spherical caps, which are

oriented along a random diameter determined by E(P). The projections X,Y are two fixed points
on the Bloch sphere at an angle of 26, and are separated if and only if they are not in the same
cap. Let w = min{¢y, ™ — ¢p, }, which is the smallest opening angle of these two caps. If w < 6,

then any cap of angle w containing X cannot contain Y (and vice versa), so P {P €Sxy | /\(]5)}
is just twice the normalized area of a cap of angle w (which is just its normalized height), i.e.

IP’{P €Sxy | )\(15)} =1 cos(w) < 1 — cos(d) <sin(d) = ||X — Y.

If w > 6, then it is possible for both X and Y to be in a cap of opening angle w. In this case,
P {P €Sxy | )\(]5)} is just the normalized area of the symmetric difference of spherical caps of

angle w centered at X and Y. The intersection of these two caps contains a spherical cap of angle
w — 6 centered at the geodesic midpoint of X and Y, so for this case

IP’{P €Sxy | )\(]5)} < cos(w — 0) — cos(w) <sin(f) = || X =Y.
where the last inequality follows since w < 5. Thus we have

E[B{PeSxy | NP} 1., (MP)] < X - Y|P {A(P) € Dsey }
<X =Y.
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O

The uniform bound for the measurement Hamming distance in terms of the operator norm
distance now follows directly by combining Theorem 3.2.6 with Proposition 3.2.9.

Theorem 3.2.10. Let 6 > 0, m > 2§72 (85n log (1 + 128 V;@%lé_l) +log(2) + D), and P =

{P;j}Lq be a collection of independent uniformly distributed projections in Projg(n,2n). Then with
probability at least 1 — exp (—D)

dp(X,Y) < |[X = Y| +8
for all X, Y € Projg(1,2n).

3.3. Uniform guarantees for accurate recovery. With the results from Sections 3.1 and 3.2
we are ready to extend the pointwise result given in Theorem 2.3.3 to a uniform result that controls
the behavior of our recovery procedure for all input vectors simultaneously.

Theorem 3.3.1. Let § > 0 and set ¢ = wd If

V20n —1
B”e—1> +2log(2) + D)
2v/2m
and P = {P; };”:1 is an independent sequence of uniformly distributed projections in Projgp(n,2n),
then with probability at least 1 — exp (—D)

(10) m > 22 <86n log (1 + 128

HX - X H <9
for all X € Proj(1,2n), where X is the solution to (PEP) with input ®p(X).
Proof. Let N; be an e-net for Projg(1,2n) such that log [NV| < 48nlog(1+2¢~1) as in Lemma 3.1.2.
By our choice of m, Lemma 3.1.3 says that with probability greater than 1 — exp (—log(2) — D)
we have HQP(X) - Q(X)H < € for all X € AN, (call this event A). Also by our choice of m,

Theorem 3.2.10 says that with probability at least 1 — exp (—log(2) — D) we have dp(X,Y) <
|X =Y +e€for all X,Y € Projp(1,2n) (call this event B).

Suppose that .4 and B both occur, which happens with probability at least 1 — exp (—D), and
consider an arbitrary X € Projp(1,2n). We know from (5) that

(11) | = x]| < 200 = )" @ (%) - @)

To bound the right-hand side of this last inequality we pass to the e-net N, by picking Xq € N,
with || X — Xo|| < €. Then

(12) [ @r(x) - Q0| < |[@r(X) - @r(x0)| + | @r(X0) — Q(X0) | + IQ(X0) ~ QX

Next, we examine each of the three terms on the right side of (112). To bound the first term,
note that H] : Pj (X) # Pj(XO)}‘ =m - dp(X, Xp). Using this and the assumption that .4 holds
yields

Q%) - Qrx)| =[5 Y B0 - B < de(x.X0) < 2
3:P3 (X)#B; (Xo)
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F1GURE 3. Plot showing the accuracy for the recovery of 15000 random inputs
using (PEP) with a fixed collection of measurement projections on R'®. The single
line separate from the cluster represents the upper bound on ¢ given by Theo-
rem 3.3.1.

Since B holds, we can bound the second term by HQp(XO) — Q(XO)H < e. Lastly, using Proposi-
tion 2.1.2 gives Q(X) — Q(Xo) = (11 — p2)(X — Xp), and so we can bound the third term by
1Q(Xo) — QIX)[| = (1 — p2) [[X — Xol| < (11 — p2)e.
Using these three bounds together in (12) gives

Qr(X) = QUX)|| < Be-+ (i — e < & (11 — w2)s

which combined with (11) yields HX - XH <. O

See Figure 3 for a plot showing how our bound on the sufficient number of measurements to
achieve a uniform accuracy of § relates to experimental results.

As in the pointwise case, our proof allows us to fine tune the probability that a sequence of
measurement projections provides uniformly accurate recovery by adjusting the value of D in (10).
In particular, we can take D = n to ensure success with overwhelming probability, i.e. the failure
rate decays exponentially in n. In the pointwise case, this resulted in gaining an additional factor
of n in the number of measurement projections, see Corollary 2.3.5. In the uniform case, however,
the asymptotics remain the same.

Corollary 3.3.2. Let§ > 0. If o >0, m > C6~*n?log(6~'n), and P = {P;}-, is an independent
sequence of uniformly distributed projections in Projg(n,2n), then with probability at least 1 —
exp (—n)

HX -X H <4
for all X € Proj(1,2n), where X is the solution to (PEP) with input ®p(X) and C is a constant.

As in the pointwise case, we can modify the proof of Theorem 3.3.1 to show that uniform recovery
using (PEP) is robust to bit-flip errors occurring in a faulty measurement ®p.
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Corollary 3.3.3. Let 0, m, and {P;}J_, be as in Theorem 3.3.1, and additionally let 0 < 7 < 1.
Then with probability at least 1 —exp (—D), for all X € Projp(1,2n) and all &)'p(X) € {0,1}™ with

A (®p(X), &p(X)) <7

we have

HX - XH <6+ 2(u1 — p2) 7',

where X is the solution to (PEP) with input ®p(X) and juy — po is bounded by Lemma 2.3.2.

Proof. Let Qp(X) denote the empirical average of the (faulty) flipped projections, i.e. flipped using
®p(X) rather than ®p(X). As before, for all X € Projy(1,2n) we have

% = x]| < 200 = 2) " @ () - @)

Using the triangle inequality, we expand

|@r(x0) = @x)| = |@r(x) = Q)| + | @r(x) - @) | = 7 + | @r(x) - @)

Bounding HQp (X) - Q(X)H with high probability proceeds exactly as in Theorem 3.3.1. |
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