D2R: Policy-Compliant Fast Reroute

Kausik Subramanian
University of Wisconsin-Madison
Madison, WI, USA
sskausik08@cs.wisc.edu

Loris D’Antoni
University of Wisconsin-Madison
Madison, WI, USA
loris@cs.wisc.edu

CCS Concepts

« Networks — Network reliability; Programmable networks.

Keywords
Programmable switches, data plane algorithms, network routing

ACM Reference Format:

Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya
Akella. 2021. D2R: Policy-Compliant Fast Reroute. In The ACM SIGCOMM
Symposium on SDN Research (SOSR) (SOSR °21), October 11-12, 2021, Virtual
Event, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3482898.3483360

Abstract-In networks today, the data plane handles forwarding—
sending a packet to the next device in the path—and the control
plane handles routing—deciding the path of the packet in the net-
work. This architecture has limitations. First, when link failures
occur, the data plane has to wait for the control plane to install new
routes, and packet losses can occur due to delayed routing conver-
gence or central controller latencies. Second, policy-compliance
is not guaranteed without sophisticated configuration synthesis
or controller intervention. Fast reroute mechanisms in the data
plane cannot provide both connectivity and policy-compliance
guarantees. We take advantage of the recent advances in fast pro-
grammable switches to perform policy-compliant route compu-
tations entirely in the data plane, thus providing fast and pro-
grammable reactions to failures. D2R provides the illusion of a
hierarchical network fabric that is always available and policy-
compliant under failures. We implement our data plane in P4 and
show its viability in real world topologies.

1 Introduction

With a plethora of performance-sensitive distributed applications
running on datacenter, enterprise and wide-area networks, the

*Currently works at ByteDance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SOSR °21, October 11-12, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9084-2/21/10...$15.00
https://doi.org/10.1145/3482898.3483360

Anubhavnidhi Abhashkumar

University of Wisconsin-Madison*
Madison, W1, USA
abhashkumar@wisc.edu

Aditya Akella

University of Wisconsin-Madison
Madison, WI, USA
akella@cs.wisc.edu

requirements on the underlying network fabric have become ex-
tremely stringent [51]. In particular, because the fabric intercon-
nects applications’ end-points, there is a push toward making it
highly available.

A key factor that impacts fabric availability from the perspective
of applications is failures. Even in the most well-managed net-
works, link/switch failures are common [19]. A variety of factors
ranging from device crashes/reboots, cabling, buggy hardware/-
firmware, power supply issues, etc., can conspire to constantly
induce link/switch failures.

The fabric’s behavior under failures critically determines its per-
ceived availability. When a failure occurs in today’s network fabrics,
network forwarding attempts to reconverge to re-establish paths.
When the network is still in an unconverged state, traffic destined
to certain endpoints will have no valid route and will be dropped.
This leads to a precipitous performance degradation for critical
applications. Unfortunately, networks can remain in unconverged
states for unreasonable amounts of time [30]. Local fast reroute
(FRR) approaches [2, 3, 12, 33] can help mitigate packet losses when
the network is unconverged by sending packets on alternate active
ports. However, without any global state or advanced computation
capabilities, FRR does not provide any guarantees about end-to-end
paths under failures.

The other major consideration for networks is policy compliance.
For example, Network Function Virtualization (NFV) [18, 39], a
popular use-case, allows tenants and operators to specify middlebox
chains that traffic between a set of endpoints must traverse for
security and performance considerations. Because a non-trivial
fraction of such middleboxes are now part of network fabrics [13,
16], the network is also tasked with ensuring correct middlebox
traversal. As another example, operators may desire to employ
various network load-balancing schemes—e.g., WCMP [50]—so that
the network can effectively spread load across multiple available
paths to avoid queuing and congestion drops. While operators can
use various frameworks for policy compliance [6, 7, 15, 40, 46—
48], ensuring that policies always hold when reacting to failures is
something that no state-of-art approach achieves.

Thus, our primary goal is to design a network fabric which under
failures can provide the illusion of being always available and policy-
compliant. We define this as: if, under a failure scenario, there exist
active policy-compliant paths between a source-destination pair, then
the fabric must route packets only through a policy-compliant path
without inducing any drops.

SOSR ’21, October 11-12, 2021, Virtual Event, USA

We observe that the main obstacle in realizing an “always avail-
able, policy-compliant” network under failures is that recomput-
ing new policy-compliant routes under failures is unreasonably slow.
Traditionally, recomputation is performed by a centralized or dis-
tributed control plane; in both cases, the computation is off the
fast path of packet forwarding, and therefore slow. The data plane,
which lies on the fast path, was only equipped to perform for-
warding based on the control plane route computations. While fast
reroute (FRR) mechanisms can sidestep the control plane limitation
and quickly re-establish connectivity in the data plane, these mech-
anisms cannot provide policy-compliance guarantees, and do not
always guarantee reachability.

Thus, to meet our goals, we argue for the data plane to take
more responsibility under failures and perform route computation
without waiting for the control plane. Our paper shows that, with
technology available today;, it is possible to realize such data plane-
only routing that can instantaneously react to failures in a policy-
compliant manner. The network uses either distributed protocols
like OSPF/BGP or a centralized SDN controller to install the primary
forwarding rules; our data-plane routing mechanism kicks in when
the primary rule on a switch is invalid (similar to FRR). Our network
mechanism, D2R!, leverages recent programmable data planes to
this end. Given a view of the network topology and current state of
the links, D2R implements graph traversal algorithms—e.g., Breadth-
first Search and Iterative-Deepening Depth-first Search—completely
in the data plane; our implementation can compute paths to any
destination at near line rates.

Because programmable switches today have limited processing
stages, they may not be able to compute the route to the destination
in one pass through the switch. We address this limitation using
the recirculation capabilities of modern switches that allow packets
to be fed back to the switch for additional processing. However,
recirculations can cause latency and throughput degradation. Thus,
we propose a hierarchical dataplane routing scheme that signifi-
cantly reduces recirculations by splitting route computation across
multiple switches. We evaluate our routing scheme on different
topologies from the Internet Zoo dataset [29], and we are able
to provide end-to-end routing in the data plane with less than 2
recirculations on average.

To achieve policy-compliance under failures, we augment our
data plane traversal algorithms with support for different policies
like middlebox traversals, local preferences and weighted load bal-
ancing. For quick rerouting under failures, we develop a policy
plane which uses the end hosts to tag packets with policy headers,
and our data plane’s traversal algorithms use the policy to find com-
pliant routes under failures. D2R shows the promise of enhanced
data plane routing in current hardware switches. We envision D2R
to complement current SDN systems by providing a mechanism
for policy-compliant reroute under failures.

2 Routing under Failures

In this section, we present the challenges faced today w.r.t providing
guarantees of connectivity under failures while complying with
high-level policies. We examine the role of the control plane and

IPronounced “detour”.

Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

data plane in different settings and make the case for general data
plane routing under failures.

2.1 Control Plane Challenges

Network control planes primarily come in two flavors: using dis-
tributed routing protocols like OSPF/BGP, and centralized software-
defined controllers. We discuss the limitations of both types of con-
trol planes in achieving always availability and policy-compliance.
Distributed control planes fall short. Many networks use dis-
tributed routing protocols that rely on routers exchanging protocol
messages to convey changes in the network topology, for instance,
when link failures occur. Each router uses these messages to re-
compute new forwarding tables to react to its perceived new state
of the network. Until the information about failures propagates to
all routers in the network, and the network has become quiescent,
forwarding tables may not be consistent across routers. During this
convergence period—which can last very long—severe packet losses
occur when routes become unavailable [30].

Information about failures is passed via advertisements that are
generated and processed by router software control planes. Francois
et. al [17] study the behavior of IS-IS protocol convergence times
for a 21 node topology geo-distributed in Europe and USA. They
observe high convergence times of over 200-1000ms depending on
different control plane parameters—for instance, how the control
plane updates the FIB can vastly change convergence times. In other
words, switch/router control plane software design can further
delay convergence, leading to higher loss rates.

Modern SDNs also fall short. Another approach to mitigate the
impact of convergence is to leverage SDNs. In existing SDNs, a
logically central controller manages a network of programmable
switches. The controller detects failures, centrally computes for-
warding rule changes, and pushes new rules to switches. However,
this approach cannot be used to build a fabric which is always
available. First, the controller must learn about the failure from
network switches, which can incur high latency depending on the
placement of the controller in the network, especially for wide-area
networks (SDWAN) [22, 24]. Second, the controller may have to up-
date the rules of multiple switches using complex update schedules
so that intermediate network states do not lead to inconsistencies
like packet loops and drops [35, 38, 41]. State-of-art SDN update
mechanisms can take around 300ms to order of minutes [38] to
compute and install the update across a network. Further, He et.
al [20] measure the latency for programming rules in OpenFlow
switches: it can take 10-100ms to add/modify/delete a single rule in
the OpenFlow switch tables and such switch rule delays, mainly
due to inefficient switch control plane software, make consistent
updates even slower. Overall, even with SDNs, packets encoun-
tering failed links may be dropped for extended periods of time
until failure notification and consistent update installation have
completed.

Policy Compliance Challenges. In addition to ensuring avail-
ability under failures, we desire that packets always obey policies:
routing around failures to reach a destination should not violate
policies that pertain either to communicating with that destination
or resource management.

In SDN, the centralized controller has to compute new sets of
policy-compliant paths for different flows (identified by packet

D2R: Policy-Compliant Fast Reroute

headers), which can be time-consuming. Determining the appro-
priate distributed control plane configurations where high-level
policies are met (using techniques such as [7, 14, 48, 49]) is even
harder. Thus, we cannot rely on the control plane to provide policy-
compliance guarantees during failures.

2.2 Data Plane Challenges

To sidestep the control plane limitations, the data plane can employ
various fast reroute (FRR) mechanisms, e.g., LFA-FRR [3], BGP-
PIC [2], DFS/BFS on Openflow [8], PURR [12] and DDC [33] to
forward packets on alternate paths when the primary path has
failed. At a high level, these mechanisms are stateless (LFA-FRR,
PURR) or maintain small state (DDC), and try different active ports
on a switch which lead to the destination. FRR implementations are
efficient and have very low state and processing overhead. However,
the major drawback of these approaches is that they are built to
work on switches which have limited computational abilities and
cannot run complex algorithms. Hence, these approaches perform
different distributed graph-search algorithms, where each switch
performs simple operations and the network as a whole provides
reachability guarantees. Packets may physically traverse to mul-
tiple switches in the network before it finds a path to reach the
destination - which causes increased bandwidth utilization and
higher chances of network congestion. Furthermore, due to limited
visibility of the network topology, FRR mechanisms cannot always
find an active policy-compliant path. With new switch architec-
tures with enhanced processing capabilities [10], we can design
FRR mechanisms which can avoid active exploration of packets in
the network.

Consider LFA-FRR (Loop-Free Alternate Fast Reroute) [3] which
can be used to protect 1-link failure by pre-computing and installing
backup paths. However, LFA-FRR is not necessarily guaranteed to
provide connectivity for certain topologies [42]. We performed an
empirical analysis of using LFA-FRR for protection of every 1-link
failure on topologies from the Internet Zoo dataset [29], and we
observe that 2-20% source-destination pairs are disconnected until
convergence under 2 and 3 link failure scenarios. Moreover, protec-
tion of multiple failures can lead to increased switch memory usage.
PURR is a state-of-art FRR primitive for P4 programmable switches
that can be used to implement general FRR sequences — a sequence
of ports specified by some FRR mechanism [11]. Using PURR, the
data plane can efficiently send traffic on the first active port in a
sequence: FRR sequences can be used to provide connectivity even
under multiple failures. PURR is a very efficient reroute mechanism-
it uses less resources and does not incur recirculations. However,
it can be difficult to encode different policies in the form of these
FRR sequences.

Borokhovich et. al [8] propose local fast failover mechanisms,
which are implemented on OpenFlow switches and provide prov-
able connectivity guarantees under arbitrary link failures. They
propose different flavors of BFS and DFS algorithms, which can be
implemented using OpenFlow by tagging information on packet
headers and using different tables such that packets physically ex-
plore the network in a depth-first or breadth-first fashion. Another
state-of-art fast reroute mechanism is DDC [33] which uses fast
link reversal algorithms in the data plane to provide provable con-
nectivity guarantees. DDC maintains dynamic state on switches

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Policy information . Network
forpackft_s ______ Policy Controller "& Operator
O

/
:
N

+\3?
Pkt
o ilure

+ E?m
Route(d)

Policy
Pkt

Data Plane

Figure 1: D2R architecture

and updates the state when packets are received. Dynamic state
cannot be implemented on OpenFlow switches, and requires spe-
cial register memory on P4 switches. Both these approaches do not
have visibility of the entire network topology. They are difficult to
extend to support network-wide policies.

3 D2R Architecture

D2R tackles the challenges mentioned in §2 and provides always
availability and policy-compliance. We illustrate the D2R architec-
ture in Figure 1. We partition the network topology into multiple
domains (which are connected components) and construct a do-
main graph from inter-domain links. In D2R, the network control
is divided into:

(1) Policy Plane: The centralized policy controller is used by op-

erators to specify the network topology and policy requirements
for different flows. The policy plane also sends the policy (e)
to the end-hosts which are then included in the packet headers
(@). Operators can choose enhanced guarantees for certain
flows (encoded as a policy bit), while relying on local FRR for
other flows to reduce the overhead on the data plane.

(2) Data Plane: The data plane uses programmable ASICs to run

hierarchical graph traversal algorithms, atop the network topol-
ogy encoded in the dataplane rules. When a failure occurs and
the primary path fails, D2R is triggered and does not rely on the
control plane or policy plane on the critical path (€)-@). The
data planes encode link failure information in the packet header,
which is used for traversal (€)). The data plane does not store
global link failure state.
Control Plane: D2R can co-exist with any distributed/SDN
control plane (not shown in Fig. 1). The network control plane
is responsible for the primary forwarding rules on the switch
(@). The control plane is also responsible for monitoring link-
up events in the switch (@)

We describe the flow of a packet in Figure 1: @ The packet is

tagged at the end-host with the policy header specified by the policy

plane. In this case, we tag a firewall policy in the packet header. @

When the packet enters the network, the primary forwarding rules

are active, and hence, forwarding happens based on the converged

network state, @ The packet reaches a switch where the link is
failed, and the primary forwarding rule is disabled (network has
not converged to a new state yet). The D2R data plane first finds

a domain path through the network (DRoute), and then computes

a route through its domain (route(d)) to the firewall taking into

3

~

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

Policy API Description

(Middlebox addMboxChain(flow f, switch[] | Chain of middlebox arrays where one middlebox is traversed in each]
Chaining ml, switch[] m2 ...) array Can be coupled with BFS/IDDFS.
Next-hop addPreference(flow f, switch n1, | From switch n1, prefer next hop n2 if n1 — n2 is active. Can be coupled
Preference switch n2) only with IDDFS.
Weighted Cost addWeightedLB(flow f, switch n, | At switch n, choose next-hop next[1] with probability weightsi]

Load Balancing switch[] next, int[] weights)

Y weights

Can be coupled only with IDDFS.

Table 1: D2R Packet Policy Support

account the failed links, and stores both routes as source routes in
the packet. The failure information is also included in the packet. @)
The switch removes the firewall policy from the header, and then
forwards to the next domain d’. @ The switch computes a new
route inside the domain d’ to the destination (which is within the
domain, so domain path is removed). @ The packet is forwarded
to the destination.

3.1 D2R Data Plane

Modern programmable switching ASICs let developers write com-
plex packet processing pipelines that can run at very high speeds.
For instance, the state-of-the-art Barefoot Tofino switch can pro-
cess packets at an aggregate line rate of 6.5Tbps. Thus, in D2R, we
move away from the conventional model where the data plane just
forwards packets and the control plane runs sophisticated routing
algorithms. Instead, the data plane runs hierarchical traversal al-
gorithms like breadth-first search (BFS) and iterative-deepening
depth-first search (IDDFS) to compute a route from the switch to the
destination. Thus, each switch data plane has two components: a
primary forwarding table (populated by the network control plane)
and the D2R data plane routing mechanism. A packet is forwarded
normally if the primary forwarding table has an active valid rule
for the packet. D2R is triggered in the data plane if: (1) the primary
outgoing port is disabled (failure), or (2) the primary outgoing port
is the same as the input port (indicating transient forwarding loop).
Thus, when a packet arrives at a switch (€), @), D2R computes a
route to the next domain/destination and stores the route in the
packet header. D2R also updates one of the unused fields in the
packet IP header to indicate that D2R has computed a route for the
packet. For reachability guarantees before the network has con-
verged, once D2R is triggered for a packet, subsequent switches
(@. @) will not use the primary forwarding rules (which could be
inconsistent), and instead use the D2R mechanism for routing the
packet. We describe our P4 [9] implementation of the data plane in
§5.

Modern programmable ASICs can detect when a connected link
is down and trigger a special packet indicating that the link/port is
down (O) As soon as the failure is detected, the D2R data plane
stores this information in a register. When a packet arrives, the
data plane uses this updated local link-state and computes a route
which does not use the failed link, avoiding any packet drops. This
approach solves the problem faced by SDNs, in which failures cause
the centralized controller to react and add new forwarding rules
in a consistent manner. Our approach is more general than local
FRR mechanisms, as the data plane can compute a valid end-to-end
network path based on the current state of the links connected to
the switch.

For correct routing in the network, we need to know the state of
links in the entire network. However, we cannot wait for distributed
link-state advertisements because this leads to convergence issues
and packet losses. We eliminate routing convergence periods by
extending the Failure Carrying Packets (FCP) protocol [31]. In FCP,
each packet carries information about all the link failures it has
encountered in its path (€). The switch data plane uses this in-
formation to find a route that avoids failed links without actually
storing the current global link-failure state in the switch. FCP pro-
vides provable guarantees of connectivity under failures without
the need for a distributed routing protocol. We describe the FCP
protocol and implementation in §4.

3.2 D2R Control Plane

D2R can operate with any centralized/distributed network control
plane which influences network forwarding behavior based on dif-
ferent considerations (service chaining, traffic engineering, access
control etc.). When a failure occurs, the network control plane is
responsible for installing the new primary forwarding rules in the
switches. Between a failure and the subsequent convergence, the
switch control plane plays no part in the critical path for end-to-end
forwarding, and thus, it is not a bottleneck for always availability
and policy-compliance.

The switch control plane also programs the D2R data plane with
rules provided by the policy plane. These are not forwarding rules
and instead they encode the network topology and any changes
that occur to it in the long term, such adding/removing switches
and links.

Some modern ASICs may not generate a packet for when the
link has come back up. The switch control plane uses mechanisms
like BFD [28] to monitor the status of links and notify the switch
data plane of link up events (@)

3.3 D2R Policy Plane

D2R provides support for switch and network-wide policies under
different failure scenarios. We restrict our support to per-packet
policies in the data plane, i.e., computing a packet’s route is inde-
pendent from other packet routes. To support hyperproperties (a
policy constraining the routing behavior of two or more flows),
we would need to store routing state of different flows in the data
plane, which would consume scarce switch memory resources.
Even for per-packet policies, we need to store the policy infor-
mation for different flows. We could store the policy state in the
switches, but if we needed to change the policies, we would need to
reprogram switches, which can lead to down time (§2). Moreover,
policy churn is significantly higher and can trigger frequent expen-
sive network updates. Instead, we develop a policy plane which

D2R: Policy-Compliant Fast Reroute

Fails: {2-4}

o o Route: 2-1-3-4
Fails: {} /

Route: 1-2-4

Figure 2: Example of FCP protocol in action when link 2-4 is down.

sends the policy information to end-hosts (e) which are responsi-
ble for adding the policy in the packet header (€)). The data plane
uses the policy header to generate policy-compliant paths when
failures occur (€)).

The policy plane can also request the current state of network
links from switch control planes to generate new policies. Crucially,
for the policies D2R supports, policy updates will not trigger repro-
gramming of the data plane. We describe D2R’s policy support in
Table 1 and the data plane implementation in §6.

4 Failure Carrying Packets

Failure Carrying Packets (FCP) [31] is a distributed routing par-
adigm designed to eliminate convergence periods altogether—a
packet is guaranteed to reach the destination if a path to the desti-
nation exists in the network. FCP takes advantage of the fact that
permanent network topology change (in terms of provisioning/de-
provisioning links and switches) happens at the timescales of week-
s/months and is well-planned. The only changes for which opera-
tors are not prepared for are links and routers failing and coming
back up at smaller timescales [19]. Thus, each router has a consistent
topology description which indicates all switches and adjacencies
between them.

The intuition behind FCP is that if the switch knows the list of
failed links in the network, it can successfully route a packet to the
destination using the network topology and failure information.
However, knowledge of all link failures will require a link-state ad-
vertisement protocol, which can lead to convergence issues. Instead,
in FCP, each packet header carries information about all failed links
it has encountered, and the switch simply uses the topology and fail-
ure information to route the packet to the destination. The packet
on the route may again encounter a failed link to the next-hop, in
that case, the failed links is added to the packet header and route is
once again recomputed at the new router, and so on. We illustrate
an example of the FCP protocol in Figure 2. Switch 1 computes the
route 1 — 2 — 4 (€D) to the destination as it does not have any
information about the failed 2 — 4 link. When the packet reaches
switch 2, the failure information in the packet is updated and switch
2 computes the new route to the destination2 - 1 — 3 — 4 ().
Switch 1 receives the packet once again, but it will not send the
packet to 2 as the switch knows that 2 — 4 is failed, and thus, sends
it to 3 and so on. Algorithm 1 describes the FCP algorithm.

FCP is able to guarantee reachability if a path exists by the
following intuition: at every switch in the network, the packet will
monotonically increase the set of failed links in the packet?. Thus

2ECP does not consider link flapping—i.e., the packet encountered a failure and updated
its header, but the link came back up before the packet reached the destination.

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Algorithm 1 Failure Carrying Packet Protocol

1: procedure FCP(dst, router)

2 pkt.failed_links (U= router.failed_links

3 path = ComputePath(topo - pkt.failed_links)
4 if path == null then

5: ‘ // No path to destination

6 ‘ router.drop();

7 else

8

‘ router.forward(pkt, path.next_hop)

eventually, the packet would get information about all failed links
in the network, and any router would be able to route the packet
to the destination if a path exists. The only failure state maintained
by an FCP router is the failure state of links connected to the router.
FCP learns about the state of remote links solely from the packet
headers, and importantly, it does not store this information. Thus,
FCP routers do not need to advertise failures unlike OSPF. Thus,
while FCP can incur additional stretch, we can avoid the link-state
flooding overhead during failures.

With programmable switch architectures, realizing a FCP-like
protocol is more practical than when FCP was actually introduced.
One of the major deployment challenges for FCP was changing the
router hardware to support a new protocol header to incorporate
information about link failures. With P4, we can easily define our
custom protocol header and parsers, which can be efficiently run on
hardware at line rates. We store the failure information in the header
as a bit-vector where each bit represents the state of a particular
link in the topology.

5 Hierarchical Data plane routing

Our hierarchical routing algorithm is inspired by OSPF’s idea of
dividing the network into areas to avoid large link-state databases
on routers. We divide the network into n domains such that each do-
main is fully connected —i.e., there exists a path between each pair
of switches in the domain. The choice of n determines the trade-
off between the processing on a switch (smaller domain means
lesser stages used for routing) and stretch of the path (more do-
mains mean we find sub-optimal paths due to limited visibility).
We construct a domain graph based on the domain adjacencies—
ie., if there is a switch n; of domain d; connected to switch ny
of domain dy, we add an edge between d; and dp in the domain
graph. Hierarchical routing works as follows: (1) The source switch
computes the domain path to the destination domain and stores
the path in the packet header. (2) The source switch then computes
the intra-domain network path to a switch that belongs to the next
domain in the domain path, and sends the packet to that domain,
and so on till we reach the destination domain. (3) The switch in
the destination domain finds a path to the destination. In summary,
instead of finding the complete network path in a single switch,
we split the computation across multiple domains, and the first
switch is also responsible for finding a path in the domain graph.
D2R can use either IDDFS or BFS (this choice is made by the policy
plane as certain policies are only compatible with IDDES). In this
section, we first present a primer on programmable switches and
P4, the state-of-art language used to program these switches. We

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Programmable
Programmable Ingress Pipeline Programmable
Parser r A ~ Deparser

AN

Match-Action
Table (Stage)

Recirculate

Figure 3: Ingress pipeline in programmable switches

then present the non-hierarchical flavor of two graph traversal
algorithms we implement in D2R: breadth-first search (BFS) in §5.2
and iterative-deepening depth-first search (IDDFS) in §5.3. We then
present how we can implement our hierarchical routing logic in
§5.4.

5.1 Programmable Switches and P4

Modern programmable switching ASICs [10] contains three main
components: the ingress pipeline, the traffic manager, and the egress
pipeline. A switch can have multiple ingress and egress pipelines
serving multiple ingress and egress ports. Packet processing is
performed primarily at the ingress pipelines (Figure 3) which com-
prises of three programmable components: a parser, a match-action
pipeline, and a deparser. To support complex packet processing,
each pipeline has multiple stages which process packets in a sequen-
tial fashion. Each stage contains dedicated resources (e.g., match-
action tables and registers) to process packets at high rates. For
instance, the state-of-the-art Barefoot Tofino switch can process
packets at an aggregate line rate of 6.5Tbps.

Packet processing can be abstracted as a control flow graph
of match-action tables, where each table matches a set of header
fields, and performs actions based on the match results. While
processing a packet, the stages of the ASIC share the packet header
and metadata fields (can be thought of as global memory), and
stages can pass information in the pipeline by modifying these
headers. The number of stages in programmable switches is limited,
and the packet processing logic may not finish at the pipeline. In
such scenarios, the packet can be recirculated back into the ingress
pipeline with updated headers for further processing. Recirculating
a packet multiple times consumes switch bandwidth resources
(ports are set up in loopback mode for recirculations and cannot be
used for physical links) and results in increased latency. Note that
we will only incur these recirculations for packets whose primary
forwarding rule has been affected by a failure which triggers D2R
- hence, packets are not recirculated if either primary forwarding
path is unaffected. However, to avoid overhead due to D2R, our
data plane algorithms must reduce the number of recirculations
required for packet processing.

P4 [9] is the most widely used domain-specific language to pro-
gram these ASICs. While P4 is a programming language, it closely
mimics the architecture of programmable ASICs—i.e., we cannot
express any general algorithm as a P4 program. Thus, we need to
take into account the P4 semantics for designing our graph tra-
versal algorithms and express steps of the routing algorithms as
match-action tables.

Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

Algorithm 2 Stack-based Breadth First Search

procedure BFS(src, dst)
: Initialize array of Stacks[MaxDepth]

1:
2
3 depth = 0
4 curr = src
5: while curr != dst and Stack array is not empty do
6 for next in Neighbors(curr) do
7 if (curr, next) is not visited or failed then
8 ‘ // Add valid neighbor to stack of depth + 1
9 ‘ Stack[depth + 1].push(next)
10: ‘ Mark all incoming edges to next as visited
11: ‘ Parent[next] = curr
12: ‘ goto While
13: if Stack[depth] is not empty then
14: ‘ // Explore next switch at current depth
15: ‘ curr = Stack[depth].pop();
16: else
17: // Explored all switches at current level. Move to depth + 1
18: depth++
19: curr = Stack[depth].pop();
20: Traverse Parent map from dst—src to compute path

5.2 Breadth First Search

We now present the algorithm and P4 implementation for perform-
ing breadth-first search (BEFS) in the network using the FCP header
such that the computed route does not traverse any of the failed
links in the FCP header. BFS has the advantage of finding paths with
the least number of hops. Traditionally, BFS explores the switches
of the graph using a first-in-first-out (FIFO) queue. However, since
currently P4 only supports stack data structures, we implement a
modified BFS algorithm in P4 which uses only stacks and preserves
the following invariant: a switch at a lower depth (number of hops
from the source) is explored before any switch at a higher depth. The
only difference from a queue-based implementation will be the
relative ordering of explored switches at each depth. We present
our stack-based BFS algorithm in Algorithm 2 and in the rest of the
section.

P4 implementation. In programmable switches, the amount
of memory to store packet headers and metadata is limited. Since
the BFS stacks need to be processed by every stage, we need to store
it as a header field®, thus, we must limit the number of used stacks.
Our BFS algorithm uses two stacks for odd (Stack[1]) and even
depth (Stack[0]) switches, respectively— when we are exploring
switches of odd depth d, we push the neighbors at depth d + 1 in
Stack[1] and vice-versa, eliminating the need of more than two
stacks. We now break down how we translate Algorithm 2 to P4.
The building block of our BFS algorithm is the bfs P4 match-action
table.

Initialization. We initialize curr to the switch that is com-
puting a path to the destination. visited is a bitvector whose
size is equal to the number of bidirectional links. For each link;,
visited[i]* is set to 1 if link; has been visited or has failed, and
to 0 otherwise. We set all failed links obtained from the FCP header
to 1. Consider Figure 4, if 1 — 2 has failed, then we set the 15¢ and
2" bits of visited—0000 0011. We also set all incoming links to
curr to 1, so that BFS does not visit curr later in the algorithm. For

3We will not emit these stacks in the deparser as they are not required for correct
forwarding in the network.
“The indices start from 1 from the rightmost bit of the vector.

D2R: Policy-Compliant Fast Reroute

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Algorithm 3 Iterative Deepening Depth First Search

: procedure DFS(src, dst)
: Initialize empty Stack
curr = src

len=0

1

2

3

4

5: max_len = 4
6 while curr != dst do
7

8

9

if len < max_len then

: ‘ for next in Neighbors(curr) do

: ‘ ‘ if (curr, next) is not failed or visited then
10: | | | // Goto valid neighbor
11: | | | Markall incoming edges to next as visited
12: ‘ ‘ ‘ Stack.push(curr)
13: ‘ ‘ ‘ Parent[next] = curr
14: ‘ ‘ ‘ curr = next
15: ‘ ‘ ‘ len=1len-1

16: | | goto While

17: // No valid neighbor. Backtrack

18: curr = Stack.pop()

19: len =len-1

20: else

21: // current length exceeds max length. Backtrack
22: curr = Stack.pop()

23: len=len-1

24: if curr == NULL and Stack is empty then

25: // Explored all switches within max_len distance
26: // Increase max_len exponentially

27: max_len = max_len X 2

28: curr = src

29: Reset visited state

30: Traverse Parent map from dst—src to compute path

table bfs { key={
hdr.curr : exact;
hdr.visited : ternary;
hdr.stack: exact;
} actions =
{push_neighbor; pop_stack; change_stack;}

1 \4 curr | visited_vec Action parameters
2 1 ¥¥¥¥¥%%¥0 | n=2, n_visited |= 00001001
6 7 —@ | 1 | ***0**** |n=3,n_visited |= 10010000
5\‘ S 2 *¥¥¥¥XQ*¥* | n =4, n_visited |= 01000100
3 *¥Q¥***** | n=4, n_visited |= 01000100

Figure 4: Example topology of 4 switches and the subset of BFS table
rules.

our 2-stack implementation, we denote switches at odd depth with
stack = 1, and switches at even depth with stack = 0.

Let m be a switch at odd depth. BFS explores a neighbor n which
is unvisited and connected (line 9) by an active link and puts in
Stack[1] (line 9). To map our algorithm into the P4 programming
model, we translate the if condition to a table match rule, and the

code executed based on the if condition as one of the table actions.

If the link ID of m — n is id, then we will only explore n from m
if visited[id] = 0. Consider the example in Figure 4. If m = 1, we
will only explore 1 — 2 if visited[1] = ©; P4 supports ternary
match kind for bitvectors where we can specify exact values (0/1)
or wildcard for each bit; we use the ternary match to check the
id'" bit in visited. Thus, the match fields for exploring the edge
m — n would be as follows (depending on if m is at odd or even
distance from source):

match = curr: m=1, visited: *xxxxxxQ, stack:0
curr: m=1, visited: *xx**xx@, stack:1
action push_neighbor(n, n_visited) {
Stack[~hdr.stack].push(n);
hdr.visited = hdr.visited|n_visited;}

If the above match succeeds, we need to push n = 2 onto Stack[1].

We also set all the bits corresponding to incoming edges to n as

1in visited; thus, BFS will not explore n again. push_neighbor
action implements the lines 9-10 °.

Figure 4 shows the action parameters when we explore the edge
1 — 2. Once, all neighbors of m are explored, the BFS algorithm
will pop the next element from the stack of the current depth (odd
or even) and repeat the process of exploring the neighbors (lines 13-
15). To check if all neighbors of m have been explored, we again
use the ternary match to check if all bits corresponding to outgoing
links of m are 1. If so, we update curr to the top switch of the stack.
For example, if m = 1, the links with ID 1 and 5 must be explored:

match = curr: m=1, visited:*xxT1xx%x1, stack:0Q
curr: m=1, visited:**x1#xx1, stack:1
action pop_stack() {
hdr.curr = Stack[hdr.stack].pop();2}

Finally, once we have explored all switches in the stack, we
need to proceed to the switches at the next level. To match for this
condition, we place a special switch "0" at the bottom of stack and
swap stacks when once curr = 0. After switching stacks, we pop
the top element of the new stack to start exploring its neighbors.

match = curr:0, visited:*x*x*x*x stack:@
curr:Q, visited:*xx*xxxx%x stack:1}
action change_stack() {
hdr.stack = ~ hdr.stack;
hdr.curr = Stack[hdr.stack].pop();}

Ingress implementation. According to the P4 semantics, only
one match-action rule will be triggered per table application. The
match condition depends on the current packet headers, priorities
and ordering of rules in the table. In the ingress pipeline, when
a table is applied, the switch will execute the action code corre-
sponding to the matched rule. Thus, a single bf's table application
cannot perform the entire traversal. We apply multiple bf's tables
to perform BFS from the source till curr is the destination switch.

The bf's tables cannot be placed in the same stage due to Read-
After-Write (RAW) dependencies [27]. Current off-the-shelf switches
only have a bounded number of stages (~10) in the ingress pipeline.
Therefore, our BFS algorithm may not reach the destination in

5P4 targets may not support specifying header fields as indices— we define two action
push_neighbor_0 and push_neighbor_1 to push onto Stack[0] and Stack[1] respectively.
We elide these details for simplicity.

SOSR ’21, October 11-12, 2021, Virtual Event, USA

those stages. To overcome the limitation of bounded number of
stages, we can repeatedly recirculate the packet back into the ingress
pipeline with the headers at the end of the pipeline. This effectively
resumes the BFS algorithm, and we keep applying the bf's table till
we find the destination in the algorithm. Note that the amount of
recirculations is affected by the number of stages— a switch with
more stages will incur lesser recirculations. We implement a source
routing flavor of BFS— the route is stored in the packet headers
and downstream switches can use the source route and avoid un-
necessary route recomputations (thus, avoid extra recirculations).
The scalability of our system is tied inherently to the number of
stages in the switch. However, given that recirculation is local to
the switch, D2R with multiple recirculations (in the order of us)
would be able to react much faster than mechanisms which require
communication across network links (which are of order of ms).
Also note that D2R can be run in conjunction with other data plane
functionalities. Modern programmable switches contain support
to run multiple pipelines in parallel, thus, switches can run other
functions in parallel to the D2R tables which is only responsible for
computing paths and does not manipulate other packet headers.

5.3 Iterative Deepening Depth First Search

Another form of graph traversal is Depth-first Search (DFS). How-
ever, without bounds on the path length, DFS can produce very long
paths compared to BFS. This is not ideal, especially in wide-area
settings. We implement a variant of DFS called Iterative Deepen-
ing DFS (IDDFS), which explores switches in a manner similar to
DFS while imposing bounds on the length of the discovered paths,
and iteratively increases the bound when needed. We present our
IDDFS algorithm in Algorithm 3.

IDDFS works similarly to DFS with one major modification: we
keep track of the length of the current path from src (1len) and
will not explore neighbors if the length of the path exceeds the
max length. Thus, IDDFS provides bounds on the path length and
will eventually find a path if one exists within the bound. If a path
within the bound does not exist, we perform DFS with an increased
bound. IDDEFS is linear in complexity. In the worst case, it explores
2N switches.

P4 Implementation. Similar to BFS, we create a P4 table which
acts as the building block of our IDDFS algorithm.

table iddfs {
key = {
hdr.curr : exact;
hdr.visited : ternary;
hdr.len: exact;
hdr.max_len: exact;
} actions =
{goto_neighbor; backtrack; increase_length;}
default action = backtrack();

Similar to BFS, we add table rules to check if certain edges are visit-
ed/failed (using ternary match) and explore neighbors. Backtracking
occurs when we have no neighbor to visit from a switch. Finally,
we increase the maximum path length when the stack is empty—
i.e., when we have explored all switches at the specified maximum
length but did not reach the destination. The P4 Implementation
details are in the appendix of the supplementary material.

Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

As with BFS, each invocation of the iddf's table can lead to one
action execution. Thus, we add n tables staged one after the other
(due to the RAW dependency). At the last stage, if we have not found
the destination, we recirculate the packet again. Similar to BFS, we
implement source routing for IDDFS. IDDFS requires source routing
for correctness purposes as it does not compute the shortest path to
the destination. Consider the topology in Figure 4. Switch 1 uses
IDDFS and computes the route 1 — 2 — 4 (but does not store it in
the packet) and sends to switch 2. Switch 2 now performs IDDFS
to compute route 2 — 1 — 3 — 4, and sends it back to 1, and
thus, the packet will keep oscillating. Oscillation is circumvented
by source routes: switch 2 will simply use the source route to send
to 4.

5.4 Hierarchical Routing

We extend our graph algorithms to perform a traversal over the
domain graph and store the domain path in the header, which is then
used by the switches to find a path through each of the domains. We
use the BFS/IDDFS tables defined in §5 for finding both the domain
path and the network path, and differentiate between the two modes
using a header field in the table match conditions: hdr.hierarchy
= 1 means we are finding a domain path, and hdr.hierarchy =
0 means we are finding a path inside the domain. We implement
the switching logic between inter- and intra-domain routing in our
ingress table actions (details omitted for brevity).

Routing Inside Domains. A switch has to find a route to one
of the switches in the next domain. We modify the topology of
each domain to add a special switch for each neighboring domain.
We take all inter-domain links and connect them to the special
domain switch. We illustrate this augmentation in Figure 5. Thus,
to find a path to the next domain d, we set hdr.destination = d
and perform BFS/IDDFS on the modified topology—thus, finding
a valid path to the next domain. Consider a packet from S to T in
Figure 5. Switch 1 will first compute the domain path to T which is
128 — 129. Then, it will perform intra-domain BFS/IDDFS to 129
in the augmented intra-domain graph and will reach either switch
4 or 5 (based on if route is computed through 2 or 3, respectively).
Switch 2 and 3 will have forwarding rules to send the packet to 4
and 5, respectively. Once the packet has reached a switch in domain
129, the switch can perform intra-domain routing to reach the
destination.

Hierarchical Routing under failures. We modify the FCP
failure vectors to account for inter-domain link failures. Consider
the example in Figure 5: the domain link 128 - 129 can be marked
as failed only if both 2 — 4 and 3 — 5 links have failed. Thus, we can
create a mapping of the network failvector to domain failure vec-
tor (implemented using a match-action table)—the domain failure
vector can be then used to perform traversal on the domain graph.
However, unlike normal FCP routing, hierarchical routing does
not provide strict guarantees of reachability: if a domain becomes
internally disconnected due to multiple failures, we may not find a
route to the destination even if one exists. In such a scenario, we
could choose to the send the traffic back to the previous domain
and mark the domain link as down, so the previous domain will
try to find a new domain path through the network. Choosing a
domain assignment which minimizes the occurrence of domain

D2R: Policy-Compliant Fast Reroute

D129

Virtual
node

Figure 5: Example of hierarchical routing. For domain 128, we add
virtual switch 129 and add links corresponding to 2 — 4 and 3 — 5.

disconnections along the lines of prior work [48] would help pro-
vide stronger guarantees under failures. The diameter of a domain
impacts the length of the paths (and subsequently the number of
stages required). Choosing a good domain assignment is subject
for future work.

6 Policy Implementation

The D2R data plane can find compliant routes for the packet policies
listed in Table 1, even under failures. The operator specifies the
policies to the policy plane using the API, and the policy plane
specifies the policy information which must be sent on the packet,
which is used to guide the traversal. In this section, we present
the modifications to our IDDFS implementation to support policies.
D2R has the following failure semantics: if there exists a policy-
compliant route in the network, the data plane algorithm will find
it. One of the biggest advantages of D2R’s policy support is the
encoding of policy in the packet which ensures that any change in
policy does not require reprogramming of the network - the data
plane is intelligent to compute new paths to satisfy the new policy
in the packet.

6.1 Middlebox Chaining

With the emergence of NFV [18, 39], operators can place middle-
boxes at different locations in the network to perform different
network functions—e.g., firewall, intrusion detection, traffic op-
timizers etc., With the middlebox chaining policy, operators can
specify a chain of middleboxes m1 — m2 ... and the data plane
must compute a path from src to m1, then to m2 ... and then to
the destination. The middleboxes and destination are encoded in
the packet header, and the data plane sets hdr.dst = m1, so then
IDDFS will find a route to m1. Once, the path is found to m1, we
set hdr.destination = m2 and restart traversal from m1, and so
on until the switch computes a route to the destination. The other
switches can use the computed route for forwarding. Under failures,
a switch will be able to compute a new route through the middle-
boxes. In a non-hierarchical setting, each switch has visibility over
the entire network, however, in the hierarchical case, a switch can
only route to middleboxes within its domain. Each switch stores
the switch-domain mapping, and a switch will first find a domain
path which traverses through the domains which contain the mid-
dleboxes. Inside a domain, a switch can find a intra-domain path
traversing the middleboxes in the domain.

We also have support for specifying middlebox replicas. With
support for disjunctions in P4 conditional statements, we can end
IDDFS when hdr. curr is equal to any of the middlebox instances,
which ensures that the switch can dynamically pick one of the

SOSR ’21, October 11-12, 2021, Virtual Event, USA

curr | visited_vec | pref Action
1 *******0 * %k neXt= 2
1 ******0* * %k neXt= 3
1 *****O** * %k r‘leXt=4
1 | *eRxxxQx | 1% | pext=3
1 il Vil 11 next =4

Figure 6: Preference values for a switch with 3 next hops

reachable middleboxes on-the-fly. While FRR schemes like DDC
can be extended with IP-in-IP encapsulation schemes to support
simple waypoint routing, they will not be able to dynamically pick
one of the middlebox replicas. We add multiple fields in the header
to store the replicas and modify our ingress pipeline as follows:

control ingress {
if (curr != dst[1] && curr != dst[2]...)
// apply iddfs
else
// switch to next middleboxes/destination
// or forward to next-hop

Note that enforcing the middlebox policy will not incur any addi-
tional rules or per-flow state; the policy in the packet header will
specify the middlebox chain and replicas, which will be read by the
data plane.

6.2 Next-hop Preferences

Operators may impose the most preferred path among multiple
paths available to a destination, so that the fabric prefers or avoids
using certain paths for cost or performance reasons. Preferences can
be used by the operator to send a particular class of traffic through
a geographical domain which has higher bandwidth or is less prone
to malicious entities. D2R supports next-hop preferences (akin to
BGP local preferences), which can be used to specify at switch n
the best next-hop b for the packet. To enforce this policy in the data
plane, we need to ensure that when our traversal reaches n, it must
choose n — b if the link is active and routes to the destination. For
next-hop preference, we use the IDDFS traversal to find a route. In
IDDFS, the hop which is explored first is the most preferred hop (as
IDDFS will move to b and so on till it finds the route to destination),
thus, we need to enforce that the rule n — b is matched first in
IDDFS. We cannot use rule priorities as they will require control
plane intervention for different policies.

We add a new longest prefix match (Ipm) field to the iddf's table:
hdr.pref. For each switch and next-hop, the policy plane decides
the pref value to guide IDDFS towards the most preferred hop. We
illustrate the preferences using an example in Figure 6. Suppose the
policy specifies that 4 is the most preferred hop from 1, for which
the pref value is set to 11. By virtue of the Ipm match, the 5 h rule
will be the most preferred rule and IDDFS will explore 4. Similarly,
if we set pref = 10, the switch will match to the 41h yyle and switch
3 will be the most preferred route. Finally, if we set pref = 00, all
15¢ — 37 ryles are valid matches with equal length prefixes (**).
According to the P4 switch semantics, the first rule will be matched,
and IDDFS will explore switch 2. The policy plane is responsible

SOSR ’21, October 11-12, 2021, Virtual Event, USA

for specifying the right preference value in the packet depending
on the policy, and the data plane will explore the appropriate hop if
it is active. We do not support backup preferences in the data plane
(prefer b1, then b2 etc.). However, if the preferred link is down, we
ensure we pick an active route (to ensure high availability).

6.3 Flexible Weighted Load-Balancing

One of the key responsibilities of network routing is load-balancing—
sending different flows on different paths to manage network ca-
pacity. D2R supports flexible WCMP [50] in the data plane—i.e., the
packet will carry the WCMP weights for a switch, and the switch’s
data plane will find a route by picking a next-hop with probability
calculated by the weights specified in the packet. The data plane
logic does not depend on any particular set of weights. Thus, we
can simply change weights in the packet and the data plane would
perform load-balancing according to the new weights. In current
networks, the control plane needs to add a set of rules based on
fixed WCMP weights—if one needs to change weights, the control
plane needs to modify the data plane rules.

We illustrate how D2R avoids this problem. Consider the switch
in Figure 6. Assume the policy in the packet specifies load-balancing
weights as 1:2:1. We use preferences presented in §6.2 to load bal-
ance flows according to the weights in the packet. The data plane
should set hdr.pref = 00 with probability 1/4 for switch 2, 10
with probability 2/4 for switch 3, and finally, 11 with probability
1/2 for switch 4. Thus, flows will be load-balanced at switch 1 with
weights 1:2:1. P4 switches have support for generating hashes from
the packet header fields, which D2R uses to decide the next-hop
preference in a probabilistic manner. To support flexible WCMP, we
use Boolean operations in a preprocessing table to map the random
hash to a preference value based on the input weights. In the face
of failures, we prefer a next-hop from the active next-hops with
the same relative weights. For example, if the policy for switch 1 in
Figure 6 is 1:2:1 and link 1 — 3 is down, the links 1 —» 2and 1 — 4
will be preferred in a 1:1 ratio. We do flow-level load balancing as
our WCMP hash function uses the packet header fields, so packets
of the same flow will be sent to the same next hop. This ensures
packets in a flow are not reordered. For brevity, we elide the P4
implementation details.

Policy Support Limitations. We currently do not support next-
hop preferences and weighted load balancing policies with BFS
traversal. BFS explores multiple routes simultaneously, so choosing
one of the BFS routes which comply with the policy requires more
complicated processing in the tables and increased header state,
thus, inflating the number of stages required to find the path (thus,
more recirculations). BFS works in conjunction with middlebox
policies.

7 Implementation and Evaluation

The implementation of the D2R data plane consists of ~2000 lines of
P46 which can be run on the P4 software behavioral model [1] that
emulates the behavior of programmable switch architectures. The
policy plane (~3000 lines of Python) uses the topology specification
to generate the D2R rules for each P4 switch in the topology. The
policy plane hands off these rules to the switch control plane which
uses the switch APIs to install the table rules in the software bmv2
and hardware switch.

Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

Both of our hierarchical graph traversal algorithms (denoted as
H-BFS and H-IDDEFS) use 10 stages (configurable parameter) to run
the tables outlined in §5. In our experiments, we store 8 hops in the
header. We evaluate the effectiveness of routing using D2R using the
Internet Zoo topologies [29] (5-52 switches, 10-126 links) in terms
of recirculation overhead and path stretch. We split the network
into random contiguous domains, each domain containing 5-10
switches. We evaluate under different failures scenarios varying
between 1 and 3 links.

In hardware, switches generate a packet to indicate a link is down
and the delay between the actual link failure and packet generation
is a few microseconds. At 10Gbps, the data loss occurring between
actual failure event and the data plane reacting to the failure will
be in the order of kilobits, i.e, 1-2 packets (thus, nearly zero drops).
For the rest of the section, we assume that failure detection is
instantaneous.

7.1 Routing Effectiveness

We evaluate D2R’s ability to find routes using H-BFS and H-IDDFS,
and measure the number of recirculations and path stretch incurred
by both techniques. For these experiments, we generate packets
for all pairs of endpoints in the network and emulate the data
plane behavior using bmv2. We simulate the network by analyz-
ing the output packet from bmv2 and "forwarding" it to the next
switch. To evaluate D2R under failures, we generate 20 failure sce-
narios for each number of failed links k = {1, 2, 3}, and observe the
routing behavior for all-to-all traffic. We do not include policies
for these experiments as they do not affect recirculations or path
stretch intrinsically: middlebox policies will inflate the path and
recirculations due to longer path traversal, while preferences and
load-balancing have no effect on recirculations.

Packets undergo route computations at multiple switches (at the
start of a new domain or due to failures), thus, we report the total
network recirculation in Figure 7. We define the path stretch as the
ratio of the actual path taken by the packet in the D2R network
compared to the shortest active path in the network (computed
by an oracle using BFS). We report the stretch for the networks in
Figure 8.

D2R can find routes using few recirculations (average < 2.5) for
the different networks, and we observe more recirculations as the
network size increases. This increase is expected; we need more
processing to explore the switches and links (split across domains)
to find a route. In the presence of failures (k > 0), the FCP algorithm
kicks in and D2R needs to recompute paths on multiple switches
as packets learn about new link failures. However, this does not
significant affect recirculation, and we find average recirculation
to be consistent across different failure scenarios. This is mainly
because, failure may only affect a small subset of traffic (depending
on the topology) and traffic will not encounter all failed links. We
also observe that both H-BFS and H-IDDFS algorithms incur similar
recirculations.

We observe a similar trend with path stretch. H-BFS has low
path stretch (<1.1) and is effective in finding the shortest path,
even across domains. For our experiments, we start H-IDDFS with
maximum length as 4 and increase step size by a factor of 2. Thus,
H-IDDES incurs a higher stretch as it does not always find the

D2R: Policy-Compliant Fast Reroute

SOSR ’21, October 11-12, 2021, Virtual Event, USA

+ H-BFS e H-IDDFS + H-BFS e H-IDDFS + H-BFS e H-IDDFS
o > o * 9] -
= 24 s ° : = 24 * = 24 A
o o * g4 3]
dﬁv * ‘t ¢ “ * ’.’ dﬁv ¢ “ e ¢ ° in) ‘,“ ‘:Q‘ * o®
:ﬁ:]_~ ;¢:$‘ N :H:]_< ’Qﬂ; o . N :ﬁ:1~ * Q:; . N
o | N T L |t
< 04 , , 1 — , R E L S :
0 50 100 150 0 20 100 150 0 50 100 150
Links # Links # Links
(a) k=1 (b) k=2 (c) k=3
Figure 7: Average network # recirculations for varying networks under different k-link failure scenarios.
+ H-BFS e H-IDDFS + H-BFS * H-IDDFS + H-BFS e H-IDDFS
5 1.8, . 5 1.8 . 5 1.8 .
8 1.6 8 1.6 8161 |
P SR S ¥ I B = .
&0 1.2 g:. o 1.2 * 20" a0 1.2 coy, %, %
< 1.0 4 *§+ + < 1_0««»&%%##;}& #+ T+ < 1.01 @i;%.gff£+ "
0 50 100 150 0 50 100 150 0 50 100 150
Links # Links # Links
(a) k=1 (b) k=2 (c) k=3

Figure 8: Average stretch (ratio of length of path taken vs. shortest path) for varying networks under different k-link failure scenarios.

1.0 10— endpoints and plot the cumulative distribution of the total network
0.8 0.8+ recirculation in Figure 9(a) and path stretch in Figure 9(b) for all

w 0.61 BFS w 0.677 —— BFS strategies.

S04l H-BFS Soalf H-BFS Hierarchical routing results in a significant reduction in recircu-
0.2 IDDFS 0.2 IBDFS lation for both BFS and IDDFS, we are able to bring the maximum
0.0 - HIDDFS 0.0 7 HIDDFS recirculation to 6 in the hierarchical scheme compared to 14 in non-

0 2 4 6 8 1012 14 1 2 3 4 5 hierarchical scheme. Remarkably, hierarchical routing achieves 0
Recirculation Stretch recirculations for 50-60% of endpoints, reducing throughput and

(a) USA-Recirc (b) USA-Stretch

Figure 9: Recirculation and stretch CDF for BFS and IDDFS with and with-
out hierarchy for NetworkUsa (78 links). BFS and IDDFS represents non-
hierarchical routing.

shortest paths. H-IDDFS does not incur a very high stretch (<1.6)
for most topologies.

Packet header overhead. In our hierarchical routing scheme, each
packet only carries failure status for a subset of links. For the topolo-
gies we considered, this failure information can be stored in a 64-bit
header. The total D2R packet header overhead (for storing source
routes, policies etc.) is ~300 bits, which is small compared to the
total packet sizes (2.5%), and is only incurred during periods of
convergence.

7.2 Benefits of Hierarchy

We also evaluate the benefits of using hierarchical routing compared
to non-hierarchical routing algorithms. For clarity of exposition,
we focus on one topology from Internet Zoo - NetworkUsa with 35
switches and 78 links. We partition the network randomly into 3
domains of roughly equal size. We consider all pairs of switches as

latency degradation. Finally, most of the traffic suffers low stretch
even with hierarchical routing (80% traffic have a stretch <2 with
hierarchies).

We conclude this section by evaluating the effect that varying
the number of domains has on the number of recirculations and
path stretch (Figure 10). As the number of domains increases, the av-
erage recirculations decreases. The effect on stretch with changing
domains is harder to analyze, as the stretch depends on the topology
structure and how the domains are assigned. However, we note that
generally higher stretch is incurred when the number of domains
is > 1 because a switch computes routes on a partial topology. In
summary, hierarchical BFS and IDDEFS are able to significant reduce
recirculations for the endpoints without a significant increase in
average path stretch (1.2-1.6X).

7.3 D2R in the Real World

We run D2R on a Stordis BF606X switch which can run P4 Tofino
programs. The first aspect of running D2R on hardware is compiling
to Tofino. We use Barefoot P4 Studio [5] to compile a version of
D2R that adheres to the resource constraints of the switch. Since

SOSR ’21, October 11-12, 2021, Virtual Event, USA

—— H-BFS - H-IDDFS H-BFS ——- H-IDDFS
¢ 673
3 S
a
o 2 w 1.2
e
=0 <10l
1 2 3 4 5 6 T 2 3 1 5 6
#Domains # Domains
(a) # Recirculations (b) Stretch

Figure 10: Average recirculation and stretch for NetworkUSA (35
switches, 78 links) with varying number of domains.

we only possess a single hardware switch, we could not perform
an end-to-end routing demonstration using D2R. To understand
the viability of D2R, we study the effects of recirculation on Tofino.
By configuring adequate ports in loopback for recirculation, we
are able to run D2R on the switch and can perform 2 recirculations
with minimal degradation in throughput and additional latency
in the order of microseconds between two hosts connected to the
switch®. Note that recirculation decreases the usable bandwidth of
the switch, but routers in the topologies we considered have small
average degrees (2-4). Thus, the switch has a lot of unused ports
(for e.g., 65) whose bandwidth can be used for recirculation without
affecting the active links’ line-rate processing. While the available
switch bandwidth reduces, we would still be able to process packets
on links for these topologies at line rates.

End-to-end connectivity using Mininet. We demonstrate end-
to-end routing of D2R using an emulated Mininet [4] network of
four P4 switches and two hosts (Figure 4). The P4 switches run the
P4 software behavioral model [1]. The bmv2 CLI is used to program
the switch rules for each switch for routing and forwarding packets
in the network. We send UDP traffic from S to T with the D2R
headers as payload. We disable link 1 — 2 (using a link failure status
register in the switch). When 1 — 2 has failed, 1 successfully finds
an alternate path 1 — 3 — 4 using IDDFS without any packet
drops (assuming failure detection is instantaneous). We also verify
that switch 3 does not compute the paths, instead uses the route
installed in the packet header.

8 Related Work

PURR [12] is an efficient local fast reroute primitive to implement
general FRR sequences. The switch will try to send the packet on
the first active port in a sequence. To re-establish connectivity,
operators can implement multiple mechanisms that use the FRR
primitive to explore paths in the network using different strategies—
e.g., Rotor-Router, DFS, BFS [44], and F10 [34]. While PURR does
not incur recirculations and uses less resources, we argue that D2R
can provide enhanced routing capabilities in the data plane, e.g., by
supporting complex policies.

DDC [33] is another state-of-art data plane mechanism that
can provide provable connectivity guarantees using link-reversal
algorithms. DDC constructs a directed acyclic graph (DAG) for each
destination which marks the traffic flow under no failures. Links are
either marked as incoming or outgoing, and when a switch receives
a packet, it will try to send to an outgoing link. If the packet is

%We do not report actual numbers due to a confidentiality agreement with Barefoot.

Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

received back from the link (meaning there wasn’t a path to the
destination), DDC reverses the direction of the link and tries another
link. By performing a series of link reversals, the packet eventually
reaches the destination. Each switch only stores the direction of
it’s local links and updates the direction based on where packets
are received. Thus, DDC is very lightweight compared to D2R but
requires maintaining dynamic state of the links on the switch.

Molero et. al [37] propose a path vector protocol using pro-
grammable switches, and offloading key control plane functionali-
ties to the data plane, in the same vein as our vision. However, a
distributed path vector protocol, even one accelerated by hardware,
will suffer losses during routing convergence periods. Blink [21]
is a state-of-art data-driven data plane solution for connectivity
recovery. Blink analyzes TCP-induced signals to detect remote link
failures that disrupt end-to-end connectivity. Once Blink has de-
tected a remote link failure, it uses a very simple data-driven fast
reroute mechanism: it probes all next hops for availability and
chooses a working one. D2R could be potentially used as Blink’s
reroute mechanism.

Contra [23] is a general and programmable system that uses
P4 switches to achieve performance-aware routing. Operators can
specify routing constraints and performance objectives in a high-
level language and these constraints are translated to P4 programs
to run on switches. Contra generates periodic probes that traverse
policy-compliant paths, and switches run a form of specialized
distance-vector protocol to decide the best path for traffic based on
the performance metrics and routing constraints updated by the
probes. Contra suffers from convergence problems under failures -
the switches will require re-advertisements to learn about failures
during which packets can be dropped. D2R is orthogonal to Contra,
and can be used in conjunction with Contra to provide guarantees
till the Contra protocol converges to a policy-compliant path.

Finally, one of the major avenues of research orthogonal to work
is leveraging programmable data planes to perform various in-
network computing tasks efficiently: key-value stores [26], scale-
free coordination for distributed systems [25], stateful load bal-
ancers [36], network ordering for consensus [32], heavy hitter de-
tection [45], and distributed aggregation for machine learning [43].
We could potentially run D2R and these applications in parallel
in the same data plane with D2R performing routing while the
applications act on other packet headers.

9 Conclusion

We present D2R, a failover mechanism that leverages programmable
switching technologies to perform routing completely in the data
plane using P4. D2R is able to provide always-availability and policy-
compliance under failures. We show how D2R can perform graph
traversals while suffering a small number of recirculations. How-
ever, this is not instrinsic to our mechanism, rather dependent on
the number of stages. If the number of stages doubled, recircula-
tions would get halved. New programmable switches are getting
more powerful, for instance, the new Barefoot Tofino 2 supports
12.8 Tbps line rate and has more stages for packet processing. Our
work opens up a vast avenue of interesting open problems: Can
we increase the coverage of policies we can implement in the data
plane? Can we design hardware optimized for graph traversal to
perform routing efficiently?

D2R: Policy-Compliant Fast Reroute

References

[1

[10

[11

(13

[14

[15

[16

[17

[18

=

]

]

[nd]. BEHAVIORAL MODEL REPOSITORY. https://github.com/palang/
behavioral-model.

[n.d.]. BGP PIC Edge for IP and MPLS-VPN. https://www.cisco.com/c/en/us/
td/docs/ios-xml/ios/iproutey, gp/configuration/xe-16/irg-xe-16-book/bgp-pic-
edge-for-ip-and-mpls-vpn.html.

[n.d.]. IPv4 Loop-Free Alternate Fast Reroute. https://www.cisco.com/c/en/
us/td/docs/ios-xml/ios/iproutepi/configuration/xe-3s/iri- xe-3s-book/iri-ip-1fa-
frr.html.

[n.d.]. Mininet. http://mininet.org/.

[n.d.]. P4Studio. https://barefootnetworks.com/products/brief-p4-studio/.
Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations
for Networks. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (San Diego, California, USA) (POPL ’14).
ACM, New York, NY, USA, 113-126. https://doi.org/10.1145/2535838.2535862
Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitu Padhye, and David Walker.
2016. Don’t Mind the Gap: Bridging Network-wide Objectives and Device-
level Configurations. In Proceedings of the ACM SIGCOMM 2016 Conference on
SIGCOMM (SIGCOMM ’16).

Michael Borokhovich, Liron Schiff, and Stefan Schmid. 2014. Provable Data Plane
Connectivity with Local Fast Failover: Introducing Openflow Graph Algorithms.
In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking
(Chicago, Illinois, USA) (HotSDN °14). Association for Computing Machinery,
New York, NY, USA, 121-126. https://doi.org/10.1145/2620728.2620746

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87-95.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Meta-
morphosis: Fast Programmable Match-action Processing in Hardware for SDN.
In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM (Hong
Kong, China) (SIGCOMM ’13). ACM, New York, NY, USA, 99-110. https:
//doi.org/10.1145/2486001.2486011

Marco Chiesa, Andrei Gurtov, Aleksander Madry, Slobodan Mitrovic, Ilya Niko-
laevskiy, Michael Shapira, and Scott Shenker. 2016. On the resiliency of random-
ized routing against multiple edge failures. In 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael Borokhovich, Andrzej
Kamisiundefinedski, Georgios Nikolaidis, and Stefan Schmid. 2019. PURR: A
Primitive for Reconfigurable Fast Reroute: Hope for the Best and Program for the
Worst. In Proceedings of the 15th International Conference on Emerging Networking
Experiments And Technologies (Orlando, Florida) (CoNEXT ’19). Association for
Computing Machinery, New York, NY, USA, 1-14. https://doi.org/10.1145/
3359989.3365410

Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman
Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
James Alexander Docauer, et al. 2018. Andromeda: performance, isolation, and
velocity at scale in cloud network virtualization. In 15th { USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 18). 373-387.
Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev. 2017.
Network-wide Configuration Synthesis. In 29th International Conference on Com-
puter Aided Verification, Heidelberg, Germany, 2017 (CAV’17).

Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeffrey C Mogul. 2013.
FlowTags: enforcing network-wide policies in the presence of dynamic middlebox
actions. In Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking. ACM, 19-24.

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure
Accelerated Networking: SmartNICs in the Public Cloud. In Proceedings of the 15th
USENIX Conference on Networked Systems Design and Implementation (Renton,
WA, USA) (NSDI'18). USENIX Association, Berkeley, CA, USA, 51-64. http:
//dl.acm.org/citation.cfm?id=3307441.3307446

Pierre Francois, Clarence Filsfils, John Evans, and Olivier Bonaventure. 2005.
Achieving sub-second IGP convergence in large IP networks. ACM SIGCOMM
Computer Communication Review 35, 3 (2005), 35-44.

Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. 2014. OpenNF: Enabling innovation
in network function control. In ACM SIGCOMM Computer Communication Review,
Vol. 44. ACM, 163-174.

[19

[20

[
-

[22

[23

™
=)

[25

[26

~
=

(28]

[29

[30

@
=

[32

[33

[34

[35

SOSR ’21, October 11-12, 2021, Virtual Event, USA

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
Network Failures in Data Centers: Measurement, Analysis, and Implications. In
Proceedings of the ACM SIGCOMM 2011 Conference (Toronto, Ontario, Canada)
(SIGCOMM °11). ACM, New York, NY, USA, 350-361. https://doi.org/10.1145/
2018436.2018477

Kegiang He, Junaid Khalid, Aaron Gember-Jacobson, Sourav Das, Chaithan
Prakash, Aditya Akella, Li Erran Li, and Marina Thottan. 2015. Measuring
Control Plane Latency in SDN-enabled Switches. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research (Santa
Clara, California) (SOSR ’15). ACM, New York, NY, USA, Article 25, 6 pages.
https://doi.org/10.1145/2774993.2775069

Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,
Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast Connectivity Recov-
ery Entirely in the Data Plane. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 161-176.
https://www.usenix.org/conference/nsdil9/presentation/holterbach

Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving High Utilization with Software-
driven WAN. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM
(Hong Kong, China) (SIGCOMM ’13). ACM, New York, NY, USA, 15-26. https:
//doi.org/10.1145/2486001.2486012

Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, and David Walker.
2020. Contra: A Programmable System for Performance-aware Routing. In 17th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
20). USENIX Association, Santa Clara, CA, 701-721. https://www.usenix.org/
conference/nsdi20/presentation/hsu

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:
Experience with a globally-deployed software defined WAN. In ACM SIGCOMM
Computer Communication Review, Vol. 43. ACM, 3-14.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-
tion. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). USENIX Association, Renton, WA, 35-49. https://www.usenix.org/
conference/nsdi18/presentation/jin

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium on Operating
Systems Principles (Shanghai, China) (SOSP ’17). ACM, New York, NY, USA, 121-
136. https://doi.org/10.1145/3132747.3132764

Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. 2015. Compiling
Packet Programs to Reconfigurable Switches. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15). USENIX Association,
Oakland, CA, 103-115. https://www.usenix.org/conference/nsdil15/technical-
sessions/presentation/jose

D. Katz and D. Ward. [n.d.]. Bidirectional Forwarding Detection (BFD). RFC 5880.
https://tools.ietf.org/html/rfc5880

S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. 2011. The
Internet Topology Zoo. Selected Areas in Communications, IEEE Journal on 29, 9
(october 2011), 1765 -1775. https://doi.org/10.1109/JSAC.2011.111002

Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. 2000. Delayed
Internet routing convergence. ACM SIGCOMM Computer Communication Review
30, 4 (2000), 175-187.

Karthik Lakshminarayanan, Matthew Caesar, Murali Rangan, Tom Anderson,
Scott Shenker, and Ion Stoica. 2007. Achieving Convergence-free Routing Using
Failure-carrying Packets. In Proceedings of the 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (Kyoto,
Japan) (SIGCOMM ’07). ACM, New York, NY, USA, 241-252. https://doi.org/
10.1145/1282380.1282408

Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and Dan RK Ports.
2016. Just Say {NO} to Paxos Overhead: Replacing Consensus with Network
Ordering. In 12th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16). 467-483.

Junda Liu, Baohua Yan, Scott Shenker, and Michael Schapira. 2011. Data-driven
network connectivity. In Proceedings of the 10th ACM Workshop on Hot Topics in
Networks. ACM, 8.

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.
2013. F10: A Fault-Tolerant Engineered Network. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 13).
USENIX, Lombard, IL, 399-412. https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/liuyincent

Jedidiah McClurg, Hossein Hojjat, Pavol Cerny, and Nate Foster. 2015. Efficient
Synthesis of Network Updates. In Proceedings of the 36th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (Portland, OR,
USA) (PLDI ’15). ACM, New York, NY, USA, 196-207. https://doi.org/10.1145/
2737924.2737980

SOSR ’21, October 11-12, 2021, Virtual Event, USA

[36]

[37

[38

w
X

[40]

[41]

[42]

[43]

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
Silkroad: Making stateful layer-4 load balancing fast and cheap using switching
asics. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. ACM, 15-28.

Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever. 2018. Hardware-
Accelerated Network Control Planes. In Proceedings of the 17th ACM Workshop
on Hot Topics in Networks (Redmond, WA, USA) (HotNets '18). ACM, New York,
NY, USA, 120-126. https://doi.org/10.1145/3286062.3286080

Thanh Dang Nguyen, Marco Chiesa, and Marco Canini. 2017. Decentralized
Consistent Updates in SDN. In Proceedings of the Symposium on SDN Research
(Santa Clara, CA, USA) (SOSR ’17). ACM, New York, NY, USA, 21-33. https:
//doi.org/10.1145/3050220.3050224

Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia
Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: a framework for NFV
applications. In Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 121-136.

Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement Using SDN. In
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM (Hong Kong,
China) (SIGCOMM °’13). ACM, New York, NY, USA, 27-38. https://doi.org/
10.1145/2486001.2486022

Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
2012. Abstractions for Network Update. In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (Helsinki, Finland) (SSIGCOMM ’12). ACM, New York,
NY, USA, 323-334. https://doi.org/10.1145/2342356.2342427

G. Rétvari, J. Tapolcai, G. Enyedi, and A. Cséaszar. 2011. IP fast ReRoute: Loop
Free Alternates revisited. In 2011 Proceedings IEEE INFOCOM. 2948-2956. https:
//doi.org/10.1109/INFCOM.2011.5935135

Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-Network Computation is a Dumb Idea Whose Time Has Come.
In Proceedings of the Sixteenth ACM Workshop on Hot Topics in Networks.

Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

[44] Roshan Sedar, Michael Borokhovich, Marco Chiesa, Gianni Antichi, and Stefan

[45

[46

[47

[48

[49

[50

[51

]

Schmid. 2018. Supporting Emerging Applications With Low-Latency Failover in
P4. In Proceedings of the 2018 Workshop on Networking for Emerging Applications
and Technologies (Budapest, Hungary) (NEAT ’18). ACM, New York, NY, USA,
52-57. https://doi.org/10.1145/3229574.3229580

Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukr-
ishnan, and Jennifer Rexford. 2017. Heavy-hitter detection entirely in the data
plane. In Proceedings of the Symposium on SDN Research. ACM, 164-176.

Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert
Kleinberg, Emin Gun Sirer, and Nate Foster. 2014. Merlin: A Language for
Provisioning Network Resources. In Proceedings of the 10th ACM International
on Conference on Emerging Networking Experiments and Technologies (Sydney,
Australia) (CoNEXT °14). ACM, New York, NY, USA, 213-226. https://doi.org/
10.1145/2674005.2674989

Kausik Subramanian, Loris D’Antoni, and Aditya Akella. 2017. Genesis: Synthe-
sizing Forwarding Tables for Multi-tenant Networks. In POPL. ACM.

Kausik Subramanian, Loris D’Antoni, and Aditya Akella. 2018. Synthesis of
Fault-Tolerant Distributed Router Configurations. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 2, 1 (2018), 22.

Stefano Vissicchio, Olivier Tilmans, Laurent Vanbever, and Jennifer Rexford.
2015. Central Control Over Distributed Routing. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (London,
United Kingdom) (SIGCOMM °15). ACM, New York, NY, USA, 43-56. https:
//doi.org/10.1145/2785956.2787497

Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Arjun
Singh, and Amin Vahdat. 2014. WCMP: Weighted cost multipathing for improved
fairness in data centers. In Proceedings of the Ninth European Conference on
Computer Systems. ACM, 5.

Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, Neelakandan
Manihatty-Bojan, Gianni Antichi, Marcin Wojcik, and Andrew W Moore. 2017.
Where has my time gone?. In International Conference on Passive and Active
Network Measurement. Springer, 201-214.

