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ABSTRACT

This paper evaluates a questionnaire-based risk attitude as-
sessment method to quantify individual risk attitudes for strate-
gic, multi-actor design decisions. A lottery-equivalence ques-
tionnaire elicits a utility curve for risky payoffs which is fit to a
Constant Absolute Risk Aversion (CARA) model. Secondary data
from a multi-actor design experiment provides observations of
strategic decisions in two-actor design games for validation. 124
participants complete the risk attitude questionnaire and a series
of 29 experimental tasks. Assuming participants follow the risk
dominance equilibrium selection criterion, a risk-neutral utility
function accurately predicts 62.2% of decisions. Incorporating
risk attitudes elicited from the questionnaire only increases the
accuracy to 63.3% while incorporating risk attitudes inferred
from observations increases the accuracy to 77.5%. While par-
ticipants exhibit differential risk attitudes in design tasks, results
show the lottery-equivalent questionnaire does not provide risk
attitudes consistent with strategic design decisions. Results sup-
port findings that risk in the engineering domain is contextual.
This paper concludes that risk attitude is an important factor in
understanding strategic decisions in interactive engineering de-
sign settings and understanding risk attitudes can help create
more efficient design processes.
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1 INTRODUCTION

Technological innovations contribute to the design, manu-
facture, and operation of increasingly complex products in to-
day’s world. The increased complexity incentivizes groups of
engineers and stakeholders, who might have different interests,
to work together simultaneously to reach multiple objectives [/1].
Collaboration enables two or more actors to work together to
achieve a goal that is beyond the capabilities of any one mem-
ber if they work individually [I]. Collaborative engineering is
a human-centered process in which engineers and engineering
companies aim to align efforts to maximize individual gains.

Information systems and tools can support collaborative de-
sign processes. For example, companies like Canon report sig-
nificant reductions in design iterations, total costs, and lead time
by using a collaborative design tool to more efficiently exchange
design information [2]. Technical solutions can improve design
efficiency; however, it must be borne in mind that social and hu-
man dynamics influence decisions in collaborative design pro-
cesses [[1]]. Collaborative design processes are human-centered
activities where the actions of one affect the gains of others, mak-
ing risk inseparable from the design process. Engineers can rec-
ognize and take certain precautions when there is a quantifiable
or physical risk; however, there is no universally correct decision
because the normative decision for each designer changes based
on their risk attitudes [3H0|.

In engineering design, risk is characterized by the likelihood
and consequences of an undesirable scenario [7|] and risk man-
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agement aims to reduce the probability of occurrence and mag-
nitude of loss in these situations [8|]. However, as identified by
Van Bossuyt et al., risk analysis methods fail to consider risk
attitudes of engineers in design processes [6]]. Including risk atti-
tude in the risk analysis and management process would help to
fit normative decisions to each designer [9].

Strategic sources of risk in collaborative design focus on
specific types of uncertainty across organizational boundaries,
namely, comparing the upside potential of successful collabo-
ration with the downside risk of coordination failure. Designers
qualitatively assess risk based on their experience, provided in-
formation, and beliefs about other designers’ actions. Further,
they may employ strategic behaviors such as retaining essential
technical information or distorting information about their inten-
tions to guard against potential threats. Limitations to available
information across organizational boundaries makes identifying
the normative choice even more challenging in collaborative set-
tings [10]. In general, collaborative solutions benefit from align-
ing strategic decisions; however, the potential for coordination
failure generates risk. In this type of scenario, engineering firms
need to make strategic decisions considering possible gains and
losses depending on their objectives. Understanding differential
risk attitudes prior to these strategic decision-making processes
can improve risk-informed decision-making.

In collaborative design processes, decision-makers could
benefit from communicating their risk attitudes to better under-
stand differences in perception and objectives and build more ef-
fective collaborative designs tailored to each actor [7]]. For exam-
ple, a risk-seeking actor perceives relatively higher upside poten-
tial and lower downside risk to uncertain collaboration compared
to a risk-neutral perspective. In contrast, a risk-averse actor per-
ceives relatively lower upside potential and higher downside risk.
Management and psychological literature show that actors can
perceive situations as less risky by changes in the context and
framing of the problem [4}/11}[12]], which can potentially help to
achieve successful collaboration. Accordingly, focusing on risk-
averse actors and decreasing their perceived risk levels can max-
imize gains for all actors. Understanding risk attitudes can also
help conduct training to normalize risk experts’ opinions with
peers, harmonizing an engineer’s professional perception of risk
with the organization’s risk perception and expectations [6].

This paper measures risk attitudes using a lottery-style ques-
tionnaire assessment method and compares results to observed
risk attitudes in secondary data from a multi-actor strategic de-
sign experiment. The questionnaire adopts a lottery-equivalent
risk attitude assessment from management science [4] to quantify
designer risk attitudes. Participants complete the questionnaire
prior to the experiment, and their responses are analyzed to form
a utility curve to fit a Constant Absolute Risk Aversion (CARA)
model. Analysis follows a risk dominance criterion to determine
normative choice and compares observed and expected strategies
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FIGURE 1: An example of payoffs for three risky alternatives
with equal mean (0) and variance (100)

with risk attitudes obtained from the questionnaire and risk atti-
tudes obtained from the experimental tasks to understand the va-
lidity of the lottery-style questionnaire in capturing risk attitude.

2 LITERATURE REVIEW
2.1 Risk Preference and Risk Perception

Risk perception is not stable and individuals can perceive
different levels of risk in the same situation. The example in
Fig.[T]shows probabilistic payoff outcomes for risky alternatives
of X, Y and Z with equal expected value E[X] =E[Y] =E[Z] =0
and equal variance Var[X] = Var[Y]| = Var[Z] = 100. However
many people do not consider these options as equally risky; many
judge alternative Z as the least risky. Changing the scale of pay-
offs can also influence risk perception; for example, people per-
ceive gaining or losing 10 pennies less risky compared to gaining
or losing 10 dollars.

People perceive riskiness of an alternative differently de-
pending on their reference point, and this perception can be ma-
nipulated in ways such as outcome framing [11]. Changes in
risk perception and risk preference are not the same thing and
can cause different choice behavior [4]]. From management lit-
erature, Hausch et al. give the example of betting behavior in
racetracks [[12]. A risk-return decomposition of changing utility
functions allows for an alternative interpretation that the percep-
tion of what constitutes a risky option may change as a function
of outcome feedback. According to this interpretation, betting
behavior changes not because of changes in risk preference but
because of changes in the perception of what constitutes a risky
horse. A person’s risk preference may remain the same over the
racing day, but the perception of what constitutes a risky horse
will change. Cooper et al. show that differentiating risk percep-
tion and risk attitude is important. For instance, the decision-
making behavior difference between entrepreneurs and managers
is not caused by entrepreneurs’ greater preference of risks but in-
stead their overly optimistic perception of the risks involved [[13]].

The relative emphasis put on probability versus magnitude
of outcomes when judging risk can vary as a function of demo-
graphic characteristics associated with wealth levels [4]. Weber
and Milliman question if different people can perceive risk dif-
ferently in the same situation, then it may also be possible for a
given individual to perceive the risk of the same alternative dif-
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ferently at different times or in different contexts.

2.2 Risk Attitude

People judge the riskiness of a situation by considering
both the probability and magnitude of adverse effects [[14]. In
economic theory, a utility function U(x) expresses a decision-
maker’s preference for alternative x. For uncertain or risky
outcomes, the expected utility hypothesis states that decision-
makers choose the alternative with highest expected utility com-
puted as E[U(x)] = ¥ prU (xx) where outcome x; occurs with
probability p; [15]. While the utility function models each
decision-maker’s preferences, the expected utility hypothesis
does not accurately model observed human behavior under all
conditions but rather models normative decisions only for the
given utility function. Thus, it is essential to identify the right
utility function for each actor.

A decision-maker’s preferences among risky alternatives re-
veals their utility function U (x) [3]] and the shape of this model
describes their risk attitude [S[]. Risk averse preferences form
a concave curve while risk seeking preferences form a convex
curve [4]. More specifically, the Arrow—Pratt measure of abso-
lute risk aversion R(x) = —U"(x)/U’(x) measures the concav-
ity of U at the point x, representing risk aversion of a decision-
maker [5]]. A constant absolute risk aversion (CARA) model

U(x)—{

assumes constant risk aversion R(x) = a for risk seeking (a < 0),
risk avoiding (a > 0), or risk neutral (¢ = 0) preferences.

Dyer and Sarin introduce the notion of strength of prefer-
ence referring to the intensity of an individual’s preference for an
alternative or a consequence [16|]. They explain that a decision-
maker’s strength of preference can show variations based on their
starting point and reward. Dyer and Sarin give the example of a
decision-maker who has the same strength of preference for ac-
quiring three oranges when they have none and acquiring five
more oranges when they have three. Then decision-maker’s in-
difference between receiving three oranges for sure and a lot-
tery can be explained by the decreasing marginal value that they
place on oranges, meaning the introduction of risk in the form
of a lottery has no impact on decision-makers preferences. For
explaining these risk attitudes, Dyer and Sarin introduce the term
relative risk attitude, suggesting the decision-maker in the exam-
ple should be described as a relative risk neutral individual rather
than a risk averse individual. A decision-maker’s preferences for
risky alternatives, relative to their strength of preference for these
certain consequences, are neutral to the introduction of risk [16].
They state that there are at least two identified factors affecting
decision-makers’ decisions in risk involving situations, first vary-

(1—exp(—a-x)) a#0
otherwise

)

= -

ing preference differences for incremental changes in the amount
of the attribute and second, the attitude toward risk-taking.

2.3 Risk in Engineering

In engineering, risk is defined by the effect of uncertainty
on objectives [[17]]. Martin further defines risk as the probability
of occurrence of an event multiplied by the severity of the con-
sequences [18]. NASA guidelines define risk as the likelihood
and consequences of an undesirable scenario that could endan-
ger the mission objectives [7]]. Based on these descriptions, risk
can be represented with three variables: an undesirable scenario,
its probability of occurrence, and its severity or consequences.

Literature shows that an acceptable risk threshold varies for
different engineers; this is also true for different engineering or-
ganizations [9]. While some companies are more risk-taking
(and this attitude is necessary for their creative, innovative struc-
ture), others are risk-averse. Accordingly, risk attitude varies for
different companies and engineers and analyses should be han-
dled differently depending on each organization. Furthermore,
literature shows engineering risk attitude is domain-specific and
suggests risk attitudes are multifaceted and cannot be captured
by a single index [6]. Toh and Miller suggest the risk attitude of
team members affects creative concept selection in engineering
design settings [|19]]. Literature also shows engineering decision-
makers incorporate feedback into decisions under objective risk
conditions [20].

Van Bossuyt et al. uses a single criterion decision-based
design approach adapted from risk attitude utility functions to
transform engineering risk data in the expected value domain into
risk attitude domain [21f]. They develop a model E-DOSPERT
to quantify decision-maker’s risk decisions, differentiating ap-
propriate uses of E-DOSPERT-derived risk-utility functions and
lottery-derived risk-utility functions. They conclude that while
lottery methods are suitable for later stages of the complex
conceptual design process and beyond into physical design, E-
DOSPERT-derived risk-utility functions based on an exponential
utility function can be used in the early phases of complex con-
ceptual design where practitioners are hypothesized to exhibit
constant risk aversion. Van Bossuyt et al. test the scale with the
six predicted domains of engineering risk including engineering
practice and processes, product functionality, legal, engineering
ethics, product testing, and training [22]. They conclude that
the scale is suitably reliable to measure engineering risk attitude
in two domains, including processes, procedures, and practices.
For the other domains, it is marginally suitable or not statistically
significant.

2.4 Research Objective
Previous papers in engineering design identify risk attitude
assessment methods [6}/21,[22] but focus on early phases of de-
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sign processes when new designs are created. In the early phases
of the design processes, where the focus is on investigating de-
sign options, risk mainly arises from technical sources such as
capabilities and resources. However, collaborative design pro-
cesses require multiple actors working together, resulting in fre-
quent interaction. As each actor concentrates on their gains,
decision-makers can choose to retain some essential information,
adding another level of uncertainty to the process. In collabo-
rative engineering design processes, designers need to evaluate
both technical and social risks to make a strategic decision. This
paper differs from previous studies by investigating a suitable in-
strument to understand the impacts of risk attitudes of designers
in the strategic decision-making phase when gain of an actor de-
pends on actions of other actors. Identifying such an instrument
could help understand how designers’ preferences for collabora-
tion change based on their risk attitude.

The paper adapts a risk attitude assessment questionnaire
from management science [4] to reveal risk attitude as utility
function curvature in the strategic decision-making stage of the
engineering design process when actors are choosing whether to
pursue uncertain collaboration with a partner. The questionnaire
uses a lottery-equivalence method to assess utility functions in
both gain and loss domains. Assuming strategic decisions follow
the risk dominance equilibrium selection criterion, analysis in-
vestigates if a lottery-based risk attitude assessment method can
provide insights to understand strategic decisions in engineering
design tasks. A lottery-based risk attitude assessment method as-
sesses strategic risk and provides a numerical value in the risk at-
titude scale, helping to differentiate attitudes of decision-makers.

This paper hypothesizes that risk attitudes of designers af-
fect their strategic decisions in a bi-level collaborative engineer-
ing design process. The paper tests this hypothesis by adapting a
questionnaire specifically for a collaborative engineering design
experiment and uses secondary data to compare strategic deci-
sions of participants in the experiment with the obtained individ-
ual utility functions from the questionnaire.

3 STUDY METHODOLOGY
3.1 Design Experiment

This paper uses secondary data from a design experiment
constructed to study strategic design decision-making [23]] that
includes 29 two-player bi-level design tasks conducted between a
human participant and a computer agent. Participants earn exper-
imental currency units (ECUs) from the outcomes of each task,
aiming to maximize their earnings.

The experiment is similar to a two-actor version of an earlier
problem studied by Stern et al. [24]] which considers a network of
system actors in a technology transition problem who each have
a choice between strategies s; in the space S; = {¢;, ¥;}, where
¢; and y; are actor i’s “existing technology” and “new technol-

Survey inputs recorded.
Task Progress: 0/29 tasks complete.

This is task 1. Your partner is Generic Corp.

Your decision space: Your profits if:

Strategy Design Generic Corp chooses existing tech. Generic Corp chooses new tech.

Mew Tech.

Design | Junior Badger~

FIGURE 2: Screenshot of lower-level design decisions initially
available to participants. Each alternative gives different payoffs
contingent on the partner’s selected strategy.

ogy” strategies respectively. The “existing technology” option
provides low (or no) risk and low reward outcomes while the
“new technology” option provides high risk and high reward out-
comes. Nash equilibria ¢ = (¢1,¢2) and y = (y1, y,) represent
the “independent” and “collaborative” strategy sets, canonically
referred to as “stag hunting” and “hare hunting” in game theory.

Table [1|displays normal form payoffs V;"" for an example
stag hunt game modeled in Ref. [24] with “existing” and “new”
strategy labels [23]]. Strategic sources of risk arise from the un-
certain strategy selected by each actor. While the new technology
option provides upside potential for both actors under success-
ful collaboration (i.e., V,""*” is the payoff maximizing outcome),
it also exhibits downside risk due to coordination failure (i.e.,
‘/in’¢j is the payoff minimizing outcome). In contrast, the exist-
ing technology option provides a low- or no-risk outcome.

For each task, participants first make a lower-level decision
by selecting a design from three different possible implementa-
tion options of a new wireless communication technology shown
in Fig. 2] Payoff values quantify the ECUs earned under dif-
ferent strategic contexts. All tasks have static payoffs for exist-
ing technology alternatives (‘/i¢i’¢j = Vid)"’% =50). The downside
payoffs corresponding to the three new technology options under
failed collaboration (i.e., the partner chooses existing technology,

\/I-W”q}j ) vary for each task, whereas all tasks have consistent up-
side payoffs under successful collaboration (i.e., the partner also
chooses new technology, Vl-w""% ={60,70,80}).

Next, participants make an upper-level strategic decision (s;)
shown in Fig. 3|between implementing the selected new technol-
ogy design (s; = ;) or the existing technology (s; = ¢;). At this
stage, participants can also see their partner’s conditional payoff
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TABLE 1: Normal form payoffs for a symmetric two-actor technology transition game from [24]).

Actor 2 (s2)

Uy =uy = % Existing (¢») New (y»)
R=0.69
Existing (¢;) V2¢2’¢‘ =5 Vzlllz,(m -1
Vl¢17¢2 -5 V1¢1-,II/2 -5
Actor 1 (s1) 5
yo:vi _ 5 yyav _ 4
New (y) 2 >
V1W1’¢2 -1 VIV/l-,ll/z -7

Design selected.

Task Progress: 0/29 tasks complete

This is task 1. Your partner is Generic Corp.

Generic Corp’s decision space Generic Corp’s profits if:

Strategy Design You choose existing tech. You choose new tech,

New tech

Your decision space Your profits if:

Strategy Design  Generic Corp chooses existing tech. Generic Corp chooses new tech.

Strategy | Existing tech. v

Partner will select new technology: Never s Always
05

FIGURE 3: Screenshot of upper-level strategy decisions avail-
able to participants. The partner’s payoff table is also visible.

table (V;Dj ’¢i,Vj¢j ’%,Vj% ’¢i7V]-l’/j ¥y which is pre-selected to pro-
duce a range of collaborative dynamics. After selecting a strat-
egy, participants provide their belief about their partner’s (com-
putational agent) cooperation probability. The computational
agent selects a strategy (s;) based on the weighted-average log
measure of risk dominance (R) assuming both players are risk
neutral. Finally, the participant earns the corresponding number
of ECUs based on joint strategic decisions (s;,s;). ECUs earned
from each task are hidden from participants until the end of the
experiment when cumulative score and percentile are revealed.

3.2 Risk Attitude Assessment

The risk attitude assessment adapts a questionnaire from
Weber and Milliman [4] to the design experiment. Partici-
pants complete lottery-style questions to estimate their CARA-
modeled risk attitude a before the experimental design tasks. The
method does not use the relative risk attitude and directly uses
risk attitude because participants have constant wealth as in each
question. The questionnaire asks participants to select a proba-
bility g from a slider that would make them indifferent to earn-
ing or losing a stated amount of ECUs (Ax;) relative to a status
quo (xp) compared to an alternative Ax, with given probability p.
Sample questions in the gain and loss domain include:

e Gain domain (Question 1): “Your current design earns a
baseline of 50 ECUs and has an opportunity for improve-
ment. Following process a) has an 80% chance of earning
5 extra ECUs. Following process b) has a Q% chance of
earning 40 extra ECUs. Select the value Q from the slider
below that makes both options equivalent to you.”

e Loss domain (Question 8): “Your current design earns a
baseline of 50 ECUs but faces a crisis. Following process
a) carries an 80% chance of decreasing value by 20 ECUs.
Following process b) carries a Q% chance of decreasing
value by 100 ECUs. Select the value Q from the slider below
that makes both options equivalent to you.”

The questionnaire includes eight questions listed in Table[2]
four in the gain domain and four in the loss domain. The ex-
pected utility hypothesis in Eq. [2 equates the expected utility of
alternatives a) obtaining x, = xo + Ax, with probability p or xg
with probability 1 — p and b) obtaining x;, = xo + Ax;, with prob-
ability g or xo with probability 1 —gq.

P-Ulxa)+(1=p)-Ulxo) =q-Ulxy) +(1-q)-Ulxo) (2
From this equilibrium, Eq. calculates the U (x,) values from the

elicited probability ¢ and given probability p, assuming U (50) =
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TABLE 2: List of Risk Attitude Lottery Question Parameters

Question  xg P Axg X4 Axy, Xp
1 50 0.8 5 55 40 90
2 50 0.8 15 65 40 90
3 50 0.8 25 75 40 90
4 50 0.8 35 85 40 90
5 50 08 -8 -—-30 —100 —50
6
7
8

50 08 —-60 —-10 —-100 —=50
50 0.8 —40 10 —-100 —-50
50 0.8 -—-20 30 —100 —-50

50, U(90) = 90, and U (—50) = —50.

U(xa) — (p_q>U(x0)+qU(xb) (3)

p

Calculations provide estimates of utility function points U (x,)
for each question, forming a utility curve U (x) for values from
—30 to 85 for each participant. Analysis fits the elicited utility
curves to a CARA utility function to quantify the risk aversion a
for each participant.

3.3 Participant Demographics

Prior to the experiment, demographic questionnaire items
collect participant information of age, gender, English language
ability, and academic status. A total of 124 participants (44 fe-
male and 80 male) completed the questionnaire and finished the
experiment. Participants ranged from 18 to 44 years of age. 107
participants reported they are native/fluent English speakers, 16
participants reported TOEFL (> 90) or IELTS scores (> 7.5) and
one participant reported a Duo-Lingo score (=125). 92 of the
participants are first-year students and 32 participants are junior
year or above undergraduate, graduate, or have already graduated
from a STEM field.

4 ANALYSIS AND RESULTS
4.1 Equilibrium Selection

Harsyani and Selten’s theory of equilibrium selection crite-
ria [25]] identifies Nash equilibria as payoff dominant (the equi-
librium that generates higher payoffs for all actors) and risk dom-
inant (the equilibrium that appears less risky under strategic un-
certainty) [25,/26]]. Selten frames the normative strategy for each
actor based on an indifference point, the normalized deviation

loss (u;) in Eq. ] which is the minimum probability of coopera-
tion (p ) required to pursue the payoff-dominant strategy subject
to the decision-maker’s utility function U;.

Ui (Vi¢i~¢j) —U (Vi%(bj)

Ui (Vi¢1~¢_;‘> —U <Vi%¢j) +U; (Vill/hll{/) —U (Vl_¢1~14/_/>

uj =

Selten formulates a global risk dominance measure (R) in Eq. [3]
as a weighted average logit of u for each player [27,[28].

1 ui 1 uj
R=-1 o1 5
2"(1u1)+2“<1u2) ®)

This paper uses R as a normative strategy selection criterion, i.e.,
R > 0 indicates ¢ = (¢, ¢,) should be selected as the risk dom-
inant equilibrium while R < 0 indicates ¥ = (W1, ) should be
selected based on both risk and payoff dominance.

4.2 Normative Strategies with Elicited Risk Attitudes

Analysis first fits the participant utility functions elicited
from the risk attitude assessment questionnaire in Eq. [3| to the
CARA model in Eq.[T]to model a risk-aware utility function with
a single parameter, a. Equation [6] applies a positive affine trans-
formation with scale parameter s > 0 and translation parameters
Xmin = min(x) = —30 and U,y,;, = min, U (x) for each participant.

Venra(s) = {;<1—exp(—a-(x—xmm>>>+umm a0
s otherwise

(6)
Analysis uses the scipy.optimize package and the curve_fit
function to perform a non-linear least squares to find the optimal
value of a and s to fit the CARA curve to the obtained utility
curves from the questionnaire responses. Example Fig. 4| shows
the utility curve obtained from the questionnaire and the model
CARA fit for one participant.

Next, Eq. [] calculates normalized deviation loss (;) val-
ues using the fitted CARA parameter a for each participant and
the observed payoffs (Vl-‘pi & ,\/iq)i’l”j ,\/iWi"Pj VYY1 for each task.
The same calculation computes normalized deviation loss for the
computational agent using a = 0 and the payoffs revealed to the
participant (Vj)" '¢",V;)'/ ’Wi7\{]yf ’¢[,Vjo '%). Finally, Eq. |5| obtains
risk dominance values (R) for each task using the u; values com-
puted for the participant and agent. The normative strategy for
R < 01is y whereas, the normative decision for R > 0 is ¢.

The analysis first obtains R values assuming risk-neutral be-
havior for each participant to predict the expected strategic de-
cision (S,) for each task. S, is then compared with the observed
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FIGURE 4: Plot shows utility curve obtained from the question-
naire and the CARA fit for one participant.

strategic decisions of participants (S,). Results show 2238 of
3596 cases (62.2%) match the risk dominance expected strategy.
Then, R values are re-computed using each participant’s risk at-
titude (as measured by the questionnaire) to obtain risk-informed
expected strategic decision (S,). Comparison of S), and S, shows
that risk attitude informed R-values only explain 2278 of 3596
cases (63.3%). Consequently, risk attitudes obtained from the
questionnaire do not substantially help explain the participants’
strategic decisions.

4.3 Observed Strategies and Implied Risk Attitudes
Risk attitudes can also be implied by experiment tasks fol-
lowing an inference procedure to fit a values to the participant’s
observed strategy selection behavior. The analysis process first
calculates R values and obtains an expected strategy (S.(a)) pa-
rameterized by unknown a for the 29 tasks completed by each
participant. Then the process compares observed strategies (S))
from the experiment tasks with the expected ones and aims to
minimize the root mean square deviation (RMSD) in Eq.

):(Sp_Se(a))Z

N (M

a* = argmin
a

Results typically give one or more ranges of a* values that
minimize RMSD because of the binary response variable for
each task and finite number of observations. Analysis consid-
ered values of a between —0.5 and 1.0. The following proce-
dure selects a single value of a for each participant. For partici-
pants that could not be distinguished from extreme risk avoiders
(i.e., @ = 1.0 minimized RMSD), the smallest value in a* was se-
lected. Similarly, for participants that could not be distinguished
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FIGURE 5: Plot shows comparison of g-values obtained from
the experiment and a-values obtained from the questionnaire for
each participant.

from extreme risk seekers (i.e., a = —0.5 minimized RMSD),
the largest value in a* was selected. For all other participants,
the median value in ¢* was selected.

The expected strategies are calculated using R values based
on obtained a values from the experimental data. Results show
2787 of 3596 cases (77.5%) align with the risk dominance ex-
pected strategy which is substantially better than the risk-neutral
assumption (62.2%). Figure [5] compares the a values obtained
from the questionnaire and from the experiment.

5 DISCUSSION
5.1 Comparing Elicited and Observed Risk Attitudes

Results show that CARA risk attitudes elicited from the
questionnaire mostly range in a narrow region between a €
[-0.06,0.00]. Only two participants show positive (risk-
avoiding) a values. Results suggest that the participants cluster
on the risk-seeking scale, but after considering the scale of the
obtained a values, many results are close to risk-neutral. Indeed,
when comparing to a risk-neutral model, results indicate that the
created lottery-style questionnaire only slightly explains strate-
gic decisions made by the participants in the experiment (=~ 1%
improvement in accuracy).

Analysis of observed strategic decisions in the experiment
tasks can also imply risk attitudes of participants. The ob-
served risk attitudes range from a € [—0.3,0.8], capturing more
diverse risk attitudes than those obtained through the question-
naire. Based on the a-values obtained from the experiment, most
participants made more risk-neutral and slightly risk-seeking
strategic decisions. However, a few participants made extremely
risk-averse strategic decisions, clustering between a value range
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between 0.6 and 0.8.

Comparing the elicited risk attitudes from the questionnaire
with the observed risk attitudes in Fig.[5|shows nearly zero corre-
lation (Pearson’s r = 9.43-10~*, p = 0.955). In other words, the
risk attitudes elicited from the questionnaire have almost no re-
lationship to the risk attitudes implied from observations. There
are several potential explanations for why the risk attitudes ob-
tained from the questionnaire cannot capture the strategic deci-
sions of participants during the experiment.

First, the questionnaire frames decisions from a static lottery
perspective, presenting exogenous uncertainty to participants. In
contrast, experimental participants engage with a more interac-
tive and potentially endogenous uncertainty during the design
tasks because their payoff depends also on the agent’s decisions.
Participant internal belief of more (less) “collaborative” agent be-
havior would contribute to smaller (larger) observed risk aversion
values as seen in some participants.

Second, the questionnaire responses may suffer from instru-
ment bias due to social desirability effects. Participants were
aware they were answering a risk attitude assessment question-
naire and could potentially provide risk-neutral answers by cal-
culating expected values from the numeric payoff and proba-
bility values provided. A risk-neutral attitude could be seen as
a socially-desirable behavior, especially in technical disciplines
such as engineering. This effect would explain the clustering of
questionnaire responses close to the a = 0 risk-neutral point on
the scale.

Third, the questionnaire uses separate items to elicit partic-
ipant utility functions in the gain and loss domains. However,
the experimental tasks are more complex and include both gain
and loss domains in each decision, e.g., participants often con-
sider trading a modest potential gain under successful collabora-
tion with a large potential loss under coordination failure. Par-
ticipants may exhibit more extreme risk attitudes for problems
combining gain/loss domains compared to independent effects
measured in the questionnaire.

Finally, the questionnaire items are presented as abstract de-
cision problems with a short text narrative. In contrast, the exper-
imental tasks are more contextual with staged decisions between
the participant and the computer agent. The lack of context in
the questionnaire items may present a barrier to eliciting the type
of information useful to understand later decisions.

5.2 Limitations

Results from this study are subject to several limitations.
First, analysis uses the risk dominance criterion to identify
the normative strategy choice for a prescribed utility function.
Risk dominance both evaluates the effectiveness of risk attitudes
elicited from the questionnaire in Sec.[d.2]and infers the risk atti-
tudes from participant decisions in Sec..3] Some alternative de-

cision policies, such as “always collaborate” or “always defect”
will manifest as small or large risk attitudes, respectively. Other
decision policies, such as maximizing expected value assuming
a fixed probability of agent collaboration or even random selec-
tion, add noise to the results. Even assuming risk-neutral utility
functions, participants follow risk dominance in 62.2% of tasks
which provides greater accuracy than trivial policies such as “al-
ways collaborate” (56.6% accuracy) and is similar to the global
policy of “maximize expected value assuming a 50% chance of
agent collaboration” (62.7% accuracy).

Second, analysis in this paper only considers the CARA util-
ity function to model risk attitudes with a scalar parameter, a.
The CARA model was selected based on its simplicity. While
there is a significant body of literature that differentiates between
absolute and relative risk attitude (e.g., to distinguish from di-
minishing marginal value) and more complex utility functions
resulting from prospect theory, these factors are mitigated some-
what by the experimental design. All of the questionnaire items
and experimental tasks adopt a “status quo” value of 50 ECUs
and participants do not know the results of prior tasks until the
end of the experiment to obfuscate wealth effects.

Further, the experiment task payoffs range between —175
and 80 to cover a fuller range of strategy dynamics; however, the
questionnaire only evaluates the utility function shape over a nar-
rower range of payoffs between —30 and 85. The narrow range
was elicited using only eight questions due to time limitations.
Considering a wider range of elicited utility function points, es-
pecially with replication to mitigate response variation, would
help to better represent participant preferences.

Finally, the population sampling frame poses a limitation
for this study because most (74%) of the participants are first-
year students while the others (26%) are junior year or above un-
dergraduate, graduate, or have already graduated from a STEM
field. Due to institute policies, the first-year students were not
eligible for performance-based compensation which may limit
the accuracy of the questionnaire and task responses to true pref-
erences. While this paper does not highlight differences across
sub-populations, Stern and Grogan find some differences in deci-
sion policy: first-year students more frequently follow noisy de-
cision policies while the other participants more frequently fol-
low risk dominance [23|]

6 CONCLUSION AND FUTURE WORK

Risk attitude is an important factor in understanding strate-
gic decisions in interactive engineering design settings. Lottery-
style questionnaires have been used in the literature [4]; however,
the risk attitudes obtained from the questionnaire implemented
for this paper did not match the implied risk attitudes, which
might be due to fundamental differences between dynamic and
static uncertainty or simply due to the implementation.
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A lottery-style questionnaire is able to capture different risk
attitudes; however, it is not effective to model strategic decisions
in the multi-actor engineering design tasks considered. Risk at-
titudes obtained directly from experiment tasks provide more re-
liable information to explain strategic decisions of participants.
These results support claims that risk in the engineering domain
is contextual, not a fixed property, which is supported by findings
of Van Bossuyt et al. [22].

Future work can revisit the adaption or implementation of
a questionnaire with items that can more closely capture the
dynamics of a strategic problem. Rather than directly eliciting
a utility curve via lottery-equivalence questions, further studies
can investigate if existing assessments such as E-DOSPERT can
provide more accurate correlation results for explaining strategic
decisions. Future questionnaires should be contextual and also
consider whether risk attitudes are a function of a partner in en-
gineering design settings.

From these results, it can also be discussed that rather than
adopting questionnaires for risk attitude assessments, training
tasks that include the same dynamics and context can be included
in the design processes for obtaining the risk attitudes of design-
ers prior to the design tasks. This approach also has limitations,
such as leveraging the learning curve of individuals and the ad-
ditional cost of having more tasks; however, this method would
provide valid risk attitude assessment results, as shown in this
paper.

Future work can focus on developing a method that can
accurately assess risk attitudes prior to the strategic decision-
making process. Further understanding risk attitudes prior to
strategic decisions can help actors make more reliable decisions
with the provided information and create more efficient engi-
neering design collaborations. In collaborative design processes,
communication of risk attitudes would help to understand and
anticipate other actors’ perceptions, identify design options that
are of mutual interest, and provide more clarity on the actor’s
preferences.

ACKNOWLEDGEMENTS

This material is based upon work supported in part by the
National Science Foundation under Grant No. 1943433. The
view expressed in this paper are those of the authors and do not
represent the policy of the U.S. Space Force, the U.S. Depart-
ment of Defense, or the U.S. Government.

REFERENCES
[1] Lu, S.-Y., ElMaraghy, W., Schuh, G., and Wilhelm, R.,
2007. “A Scientific Foundation of Collaborative Engi-
neering”. CIRP Annals-Manufacturing Technology, 56(2),
pp. 605-634.

[2] Smith, S. S.-F., 2004. “An evaluation of internet-based cad
collaboration tools”. Journal of Technology Studies, 30(2),
pp. 79-85.

[3] Keller, L. R., 1985. “An empirical investigation of relative
risk aversion”. IEEE Transactions on Systems, Man, and
Cybernetics, 15(4), pp. 475-482.

[4] Weber, E. U., and Milliman, R. A., 1997. “Perceived risk
attitudes: Relating risk perception to risky choice”. Man-
agement Science, 43(2), pp. 123-144.

[5] Pratt, J. W., 1978. “Risk aversion in the small and in the
large”. In Uncertainty in Economics. Elsevier, pp. 59-79.

[6] Van Bossuyt, D., Carvalho, L., Dong, A., and Tumer, I. Y.,
2011. “On measuring engineering risk attitudes”. In ASME
2011 International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Con-
ference, pp. 425-434.

[7] Farhang Mehr, A., and Tumer, 1. Y., 2006. “Risk-based
decision-making for managing resources during the design
of complex space exploration systems”. Journal of Me-
chanical Design, 128(4), pp. 1014-1022.

[8] Abbasi, G. Y., 2009. “A comprehensive project risk man-
agement framework for today’s dynamic environment”. In
ASME 2009 International Design Engineering Technical
Conferences and Computers and Information in Engineer-
ing Conference, pp. 1473-1481.

[9] Van Bossuyt, D. L., Wall, S. D., and Tumer, 1. Y., 2010.
“Towards risk as a tradeable parameter in complex system
design trades”. In ASME 2010 International Design Engi-
neering Technical Conferences and Computers and Infor-
mation in Engineering Conference, pp. 1271-1286.

[10] Grogan, P. T., and Valencia-Romero, A., 2019. “Strategic
risk dominance in collective systems design”. Design Sci-
ence, 5(e24), pp. 1-28.

[11] Schurr, P. H., 1987. “Effects of gain and loss decision
frames on risky purchase negotiations”. Journal of Applied
Psychology, 72(3), pp. 351-358.

[12] Hausch, D. B., Ziemba, W. T., and Rubinstein, M., 1981.
“Efficiency of the market for racetrack betting”. Manage-
ment Science, 27(12), pp. 1435-1452.

[13] Cooper, A. C., Woo, C. Y., and Dunkelberg, W. C., 1988.
“Entrepreneurs’ perceived chances for success”. Journal of
Business Venturing, 3(2), pp. 97-108.

[14] Sarin, R. K., and Weber, M., 1993. “Risk-value models”.
European Journal of Operational Research, 70(2), pp. 135—
149.

[15] Mongin, P., 1998. “Expected utility theory”. In Handbook
of Economic Methodology, J. B. Davis, D. W. Hands, and
U. Miki, eds. Edward Elgar London, pp. 342-350.

[16] Dyer, J.S., and Sarin, R. K., 1982. “Relative risk aversion”.
Management Science, 28(8), pp. 875-886.

[17] ISO, 2009. Risk management — principles and guidelines.
Standard ISO 31000, International Organization for Stan-

Copyright © 2022 by ASME



(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

dardization.

Martin, J. D., and Simpson, T. W., 2006. “A methodology
to manage system-level uncertainty during conceptual de-
sign”. Journal of Mechanical Design, 128(4), pp. 958-968.
Toh, C. A., and Miller, S. R., 2016. “Creativity in design
teams: the influence of personality traits and risk attitudes
on creative concept selection”. Research in Engineering
Design, 27(1), pp. 73-89.

Arezoomand, M., and Austin-Breneman, J., 2017. “An
experimental study of feedback and risk in engineering
decision-making”. In ASME 2017 International Design
Engineering Technical Conferences and Computers and In-
formation in Engineering Conference, American Society of
Mechanical Engineers, pp. 1-10.

Van Bossuyt, D., Hoyle, C., Tumer, 1. Y., Dong, A., Doolen,
T., and Malak, R., 2012. “Toward considering risk at-
titudes in engineering organizations using utility theory”.
In ASME 2012 International Design Engineering Techni-
cal Conferences and Computers and Information in Engi-
neering Conference, American Society of Mechanical En-
gineers, pp. 693-704.

Van Bossuyt, D. L., Dong, A., Tumer, I. Y., and Carvalho,
L., 2013. “On measuring engineering risk attitudes”. Jour-
nal of Mechanical Design, 135(12), p. 121001.

Stern, J. L., 2022. “Strategically robust system-of-systems
design”. PhD thesis, Stevens Institute of Technology,
Hoboken, NJ.

Stern, J. L., Valencia-Romero, A., and Grogan, P. T., 2022.
“Strategic robustness in Bi-level System-of-systems de-
sign”. Design Science, 8(e6), pp. 1-31.

Harsanyi, J. C., and Selten, R., 1988. A General Theory of
Equilibrium Selection in Games. MIT Press, Cambridge,
MA.

Schmidt, D., Shupp, R., Walker, J. M., and Ostrom, E.,
2003. “Playing safe in coordination games: the roles of
risk dominance, payoff dominance, and history of play”.
Games and Economic Behavior, 42(2), pp. 281-299.
Selten, R., 1995. “An axiomatic theory of a risk dominance
measure for bipolar games with linear incentives”. Games
and Economic Behavior, 8(1), pp. 213-263.

Grogan, P. T., 2019. “Stag hunt as an analogy for systems-
of-systems engineering”. Procedia Compututer Science,
153, pp. 177-184.

10

Copyright © 2022 by ASME



	INTRODUCTION
	LITERATURE REVIEW
	Risk Preference and Risk Perception
	Risk Attitude
	Risk in Engineering
	Research Objective

	STUDY METHODOLOGY
	Design Experiment
	Risk Attitude Assessment
	Participant Demographics

	ANALYSIS AND RESULTS
	Equilibrium Selection
	Normative Strategies with Elicited Risk Attitudes
	Observed Strategies and Implied Risk Attitudes

	DISCUSSION
	Comparing Elicited and Observed Risk Attitudes
	Limitations

	CONCLUSION AND FUTURE WORK

