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Abstract

Garnet–kyanite–staurolite assemblages with large, late porphyroblasts of amphibole form garbenschists in Ordovician volcaniclastic
rocks lying immediately south of the Pearya terrane on northernmost Ellesmere Island, Canada. The schist, which together with
carbonate olistoliths makes up the Petersen Bay Assemblage (PBA), displays a series of parallel isograds that mark an increase in
metamorphic grade over a distance of 10 km towards the contact with Pearya; however, a steep, brittle Cenozoic strike-slip fault
with an unknown amount displacement disturbs the earlier accretionary relationship. The late amphibole growth, probably due to
fluid ingress, is clear evidence of disequilibrium conditions in the garbenschist. In order to recover the P–T history of the schists, we
construct isochemical phase equilibriummodels for a nearby garnet–mica schist that escaped the fluid event and compare the results
to quartz inclusion in garnet (QuiG) barometry for a garbenschist and the metapelitic garnet schist. Quartz inclusions are confined to
garnet cores and the QuiG results, combined with Ti-in-biotite and garnet–biotite thermometry, delineate a prograde path from 480
to 600◦C and 0.7 to 0.9 GPa. This path agrees with growth zoning in garnet deduced from X-ray maps of the spessartine component in
garnet. The peak conditions obtained from pseudosection modelling using effective bulk composition and the intersection of garnet
rim with matrix biotite and white mica isopleths in the metapelite are 665◦C at ≤0.85 GPa. Three generations of monazite (I, II and
III) were identified by textural characterization, geochemical composition (REE and Y concentrations) and U–Pb ages measured by ion
microprobe. Monazite I occurs in the matrix and as inclusions in garnet rims and grew at peak P–T conditions at 397±2 Ma (2σ ) from
the breakdown of allanite.Monazite II forms overgrowths onmatrix Monazite I grains that are oriented parallel to themain schistosity
and yield ages of 385±2 Ma. Monazite III, found only in the garbenschist, is 374±6 Ma, which is interpreted as the time of amphibole
growth during fluid infiltration at lower temperature and pressure on a clockwise P–T path that remained in the kyanite stability
field. These results point to a relatively short (≈12 Myr) Barrovian metamorphic event that affected the schists of the PBA. An obvious
heat source is lacking in the adjacent Pearya terrane, but we speculate it was large Devonian plutons—similar to the 390± 10 Ma Cape
Woods granite located 40 km across strike from the fault—that have been excised by strike-slip. Arc fragments that are correlative to
the PBA are low grade; they never saw the heat and were not directly involved in Pearya accretion.

Keywords: U–Pb geochronology, QuiG, Pearya, P–T pseudosection, monazite, garbenschist

INTRODUCTION
The Petersen Bay Assemblage (PBA) on northern-
most Ellesmere Island (Fig. 1) contains volcaniclastic
schists with the unusual assemblage garnet+kyanite+
staurolite+amphibole (Klaper &Ohta, 1993). The amphi-
bole commonly forms late, feathery porphyroblasts up
to 10 cm long that are characteristic of garbenschist.
Similar schists have been described from the Tauern
Window in the Austrian Alps (Selverstone et al., 1984),
the Sierra de Pie de Palo, Argentina (Casquet et al., 2001;

Mulcahy et al., 2011) and adjacent to the CoastMountains
batholith in southeastern Alaska (McClelland et al., 1991).
Subsets of this assemblage have also been reported
from amphibolites with igneous origins (e.g. Helms et al.,
1987; Kuyumjian, 1998; Tsujimori & Liou, 2004; Faryad
& Hoinkes, 2006; Scott et al., 2009). Establishing the
metamorphic evolution of garbenschist is challenging, in
part because the unoriented amphibole neoblasts clearly
grow late in the history and deciphering equilibrium
assemblages can be difficult (Steffen & Selverstone,
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Fig. 1. (a) Polar projection of the Arctic region. (b) Simplified geologic map of northern Ellesmere Island after Trettin (1998). The following fault zones
are abbreviated as: DT, Deuchars thrust; K, Kulutingwak fault; MG, M’Clintock Glacier fault; MP, Mitchell Point fault; MR, Mount Rawlinson fault; PB,
Petersen Bay fault zone; PSZ, Pearya shear zone; YT, Yelverton thrust.

2006). With the obvious disequilibrium texture and
growth of amphibole associated with late fluid influx,
thermodynamic modeling to obtain metamorphic con-
ditions is not applicable to the garbenschist (Lanari &
Duesterhoeft, 2019). Fatehi et al. (2017) propose that
hornblende in some garbenschist may even precipitate
from hydrothermal fluids, which further complicates
peak pressure (P) – temperature (T) estimates.

The PBA displays the highest grade of metamorphism
seen along the entire accretionary contact with the com-
posite, exotic Pearya terrane to the northwest. Steep,
evenly spaced isograds in the volcaniclastic schists and
adjacent turbidites require a local heat source in Pearya
to cause the metamorphism (Fig. 2a). Despite truncation
of the Tonian granitic gneiss of Pearya against the PBA
due to late, Cenozoic brittle displacement, metamor-
phism in the PBA is the best target for understanding the
timing and physical conditions of accretion. Speculation
on the age of accretion ranges from Late Silurian from
stratigraphic arguments (Trettin, 1987) to Early Carbonif-
erous (Piepjohn et al., 2013; Piepjohn & von Gosen, 2018).
The latter authors view the emplacement of the Pearya
terrane as causing the sizeable fold-and-thrust belt of
the Ellesmerian orogeny on the Laurentianmargin. There
are, however, no direct dates for this accretionary event.

The low variance volcaniclastic schists of the PBA
are good candidates for geothermobarometry. Pressure is
an important variable in the formation of the unusual
garbenschist assemblage (Arnold et al.,2000),with typical
estimates ranging from Barrovian conditions at ≈1 GPa
(Selverstone et al., 1984) to near eclogite facies (up to
1.9 GPa; Tsujimori & Liou, 2004). Determining P is fraught
with difficulty, especially when applying conventional

thermobarometry, which requires choosing the correct,
equilibriummineral compositions tomatch the proposed
metamorphic evolution. Quartz-in-garnet (QuiG) elastic
thermobarometry provides a relatively simple way to
estimate pressure independent of mineral equilibrium
(Angel et al., 2014; Kohn, 2014; Spear et al., 2014; Thomas
& Spear, 2018; Gonzalez et al., 2019; Alvaro et al., 2020)
and is widely applicable because quartz inclusions are
very common in garnet porphyroblasts. The QuiG tech-
nique is especially practical for situations with complex
metamorphic growth histories that can be gleaned from
garnet zoning (e.g. Kośmińska et al., 2020; Wolfe & Spear,
2020; Wolfe et al., 2021). QuiG is also useful in evaluat-
ing P–T estimates derived from compositional zoning in
terms of equilibrium versus metastable reaction over-
stepping (Castro & Spear, 2017; Spear & Wolfe, 2020).

Establishing the timing of metamorphism requires
dating radiometric accessory minerals that can be linked
to the P–T path in a process referred to as petrochronol-
ogy (Engi et al., 2017). Monazite is a common accessory
mineral in a variety of metamorphic rocks including
medium P schists (e.g. Spear, 2010; Engi, 2017) and one
of the main hosts of U and Th. Different generations
of monazite can be recognized based on textural and
compositional characteristics (Kohn et al., 2005; Dumond
et al., 2015); they can record multiple events and a
complex history. In-situ monazite dating allows for
preservation of textural context while targeting different
growth zones (Catlos et al., 2002; Williams & Jercinovic,
2012; Kylander-Clark et al., 2013; Hallett & Spear, 2015).
Thus, monazite has proven to be a useful mineral
for constraining time (t) on the P–T path of complex
metamorphic rocks (e.g. Štípská et al., 2015; Engi, 2017).
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Fig. 2. (a) Geological map of the Mitchell Point peninsula modified from Trettin & Frisch (1996); metamorphic isograds are from Klaper & Ohta (1993).
(b) Detailed geological map of the studied outcrop showing small-scale variation in lithology. Stars indicate sample locations. Yellow stars are samples
chosen for petrochronological studies.

Textural relationships and trace element patterns help
link the growth of monazite to the formation of other
major and accessory minerals such as garnet (Foster et
al., 2000; Pyle & Spear, 2003; Kohn et al., 2005; Rubatto
et al., 2013; Dumond et al., 2015; Mottram et al., 2014;
Petrík et al., 2019).

This study focuses on two monazite-bearing samples
to establish a P–T–t path for the unit that includes the
unusual garbenschists of the PBA. Phase equilibrium
thermodynamic modeling of a garnet-bearing and
amphibole-absent metapelite is used to establish a
partial P–T path because the garnet–kyanite–staurolite
garbenschist, with its post-tectonic, fluid-facilitated
overgrowths of large amphibole, is not suitable for
modeling. We apply the QuiG technique to both the
metapelite and the garbenschist to further establish the P
of garnet growth during a Barrovian metamorphic event.
Monazite with three different textures and compositions
can be tied to the petrology and is dated with in-
situ secondary ion mass spectrometry techniques. The
timing of the peak Barrovian metamorphism most likely
reflects the accretion of the Pearya terrane simultaneous
with subduction-related(?) magmatism in the Middle
Devonian.

GEOLOGICAL SETTING
The composite Pearya Terrane (Trettin, 1987, 1998) con-
stitutes northernmost Ellesmere Island in the Canadian
Arctic archipelago (Fig. 1). Pearya is an amalgamation of

a Tonian crystalline arc, a low-grade package of Neopro-
terozoic to Paleozoic metasedimentary rocks, an Ordovi-
cian sub-arc igneous complex and volcaniclastic units
that are unconformably overlain by middle Ordovician
to Silurian sedimentary rocks (Trettin, 1998; Malone et
al., 2014, 2017, 2019; Estrada et al., 2018). Pearya is the
only exotic element recognized along the Arctic margin
of Laurentia, and its accretionary history is enigmatic
(McClelland et al., 2022). The Pearya terrane is separated
from the Laurentian margin deep-water deposits and
platform sedimentary rocks of the Neoproterozoic to
early Paleozoic Franklinian basin (Dewing et al., 2019
and references therein) by a belt of rocks dominated
by Silurian flysch, but also containing puzzling Ordovi-
cian–Silurian volcanic rocks and metamorphic rocks of
uncertain age and affinity (Trettin, 1998). The flysch,
known as the Danish River and Lands Lokk formations
(Trettin, 1998), comprises turbiditic deposits that blanket
the underlying Franklinian basin. Isolated sedimentary
and volcanic sections with possible arc affinities, such
as the Ordovician Kulutingwak formation (Bjørnerud &
Bradley, 1992; Trettin, 1998) and the Fire Bay volcanic
assemblage (Koch et al., 2022), lie adjacent to promi-
nent strike-slip faults (Fig. 1b). The sedimentary rocks of
the Franklinian basin, Kulutingwak formation and flysch
are folded together above a proposed decollément lying
above Paleoproterzoic Laurentian basement (Piepjohn &
von Gosen, 2018).

The steep Petersen Bay fault zone marks the southern
boundary of Pearya west of Yelverton Inlet (Fig. 1b). The

Rive
r

69

67

66

65

62

63

64

68

71

70

65

65

68

Quartzofeldspathic rock
Garnet-bearing schists 
(+/- kyanite, staurolite, amphibole)
Schist with garnet megablasts, garben schist

Kyanite-bearing amphibolite

Serpentinite

Metachert

Marble

Quaternary deposits

Sample location

Legend:

69

Orientation of foliation
Orientation of lineation

65

N10 m

Cliff
s 

?

?

17-64
82°11'56'' N
82°47'24'' W

17-66
82°11'57'' N
82°47'14'' W

800

80
0

60
0

10
00

1000
 600

200

200
400
600
800

800

800

80
0

10
00

1200

1000 1200 600

1000

10
00

 200 400

200400

600

800

1000

600

800

800

80
0

Yelverton Inlet

Kulutingwak 

       Fiord

Mitc
he

ll 

Poin
t

0 2 km1

N

Pete
rse

n B
ay

fau
lt

82°30’W 82°20’W82°40’W82°50’W

82
°1

5’
N

82
°1

0’
N

glaciers
Danish River Formation
Petersen Bay Assemblage

marble
PЄ gneiss (Pearya Terrane)

(a) (b)

isograd (Klaper & Ohta 1993)

Fig. 
2b

Ctd-
ou

t
Ctd,G

rt,K
y,S

t-in

Bt-in

sample 17-10

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article/63/8/egac068/6650310 by U

niversity of Iow
a user on 24 August 2022



4 | Journal of Petrology, 2022, Vol. 63, No. 8

older, ductile shear zone has been interpreted as either a
SE-directed overturned thrust (Klaper, 1992) or a signifi-
cant translational zone formed in transpression (Trettin,
1987; McClelland et al., 2021, 2022). The current Petersen
Bay fault is a Cenozoic, brittle structure with both dextral
and sinistral strike-slip shear sense (Piepjohn et al., 2013;
Piepjohn & von Gosen, 2018). Cataclasites, locally up to
a few hundred meters thick, suggest substantial brittle
translation, although the amount of Cenozoic displace-
ment is unknown (McClelland et al., 2022). Northwest of
the fault, the Pearya terrane is characterized bymedium-
grade, polydeformed, Tonian orthogneiss and associated
paragneiss (Trettin, 1998; Malone et al., 2017; Estrada et
al., 2018). The unusual schists of this study (Fig. 2) are
part of the PBA (Klaper, 1992), which forms a 22 km long
and 1–3 kmwide layer lying immediately southeast of the
fault zone (Trettin & Frisch, 1996). The PBA is assumed to
be in depositional contact with the younger Danish River
formation to the southeast (Klaper, 1992).

The PBA consists of marble, amphibole± garnet schist,
amphibolite, serpentinite and minor psammitic and
pelitic schists. The PBA has been correlated with the
lower-grade Ordovician Kulutingwak Formation (Trettin
& Frisch, 1996; Trettin, 1998), which has been interpreted
as a carbonate-volcanic association with arc affinity
(Bjørnerud, 1991; Bjørnerud & Bradley, 1992). We retain
the original name here (i.e. PBA) to distinguish the
higher-grade metamorphic rocks of the study area from
lower grade sections along other faults. The rocks of
the PBA have a steep schistosity that is approximately
parallel to the strike of the Petersen Bay fault; stretching
lineations are uncommon in the schists (Klaper, 1992).
Klaper & Ohta (1993) estimated peak metamorphic
conditions up to 600◦C and 0.6 GPa for garnet–kyanite
schist from the PBA.They also defined a series of isograds
extending southeastward over a distance of 10 km from
amphibolite to greenschist facies (Fig. 2a). The age of
metamorphism has not been directly determined; how-
ever, 40Ar/39Ar plateau ages of 433±3 Ma on hornblende
from a PBA schist and 322±2 Ma from muscovite in a
cross-cutting pegmatite (Trettin et al., 1992) put some
limits on the timing.

Our study focuses on an outcrop of exceptionally well-
preserved PBA lithologies located in a stream that was
accessible during low meltwater conditions (Fig. 2b). In
contrast, much of the PBA along the fault zone (Fig. 2a)
is considerably altered by pervasive, late CO2-rich flu-
ids. The studied locality is a mixture of at least seven
lithologies suggestive of a deformed mélange in an arc
environment (Figs 2b and 3; Table 1). Massive amphibo-
lite with visible kyanite but no garnet occurs in the
SE part of the outcrop (samples 17-62, 17-63; Fig. 3a, b)
and serpentinite forms prominent lenses (sample 17-
65, Fig. 3c). Quartzofeldspathic psammite,metachert and
marble constitute a package of cm-thick layers (samples
17-71, 17-70; Fig. 3d). A variety of garnet-bearing schists
(samples 17-66, 17-67 and 17-69, Fig. 3f–h), locally with
garnet megablasts up to 5 cm (sample 17-68, Fig. 3e), are

common. In some places, the schistosity is overprinted
by amphibole sheaves forming garbenschist (sample 17-
64, Fig. 3f); these are typically the rocks with the lowest
variance assemblage. Two samples,metapelite 17-66 and
garbenschist 17-64, containmonazite andwere thus suit-
able for petrochronological analysis.

METHODS
Mineral and whole rock chemistry
The mineral chemistry and X-ray concentration maps
were determined by wavelength dispersive spectrome-
try using a JEOL JXA-8230 Superprobe Electron Probe
Microanalyser (EPMA) at the University of Iowa, Iowa
City, IA. The operating conditions for the spot analyses
were 20 nA beam current, 15 kV accelerating voltage and
counting times of 10 s on peaks and 5 s on background.
The beam size varies from 1 μm to 10 μm depending
on the mineral. Natural mineral standards were used
for calibration. Representative analyses are reported in
Tables 2–4. Garnet X-ray mapping of major and trace
element composition was performed with 15 kV accel-
erating voltage, 100 nA beam current and 100 ms dwell
time. Mapping of monazite used a similar routine, with a
shorter dwell time of 50ms. The pixel size for X-raymaps
varied depending on the size of the individual grains
or porphyroblasts. X-ray maps were processed using the
software ImageJ (Schneider et al., 2012). Mineral abbrevi-
ations are after Whitney & Evans (2010).

The bulk rock composition of five samples was deter-
mined by X-ray fluorescence at the Bureau Veritas Min-
eral Laboratories in Canada (Table S1). Samples were
fused with LiBO2/Li2B4O7.

Phase equilibrium modelling
Isochemical phase equilibriummodelling to produce P–T
pseudosections was performed using Perple_X software
version 6.8.4 (Connolly, 1990, 2005) with the internally
consistent thermodynamic database by Holland &
Powell (2011) in the MnO–Na2O–K2O–CaO–FeO–MgO–
Al2O3–SiO2–H2O–TiO2-O2 (MnNKCFMASHTO) system.
The amount of Fe3+ was set as 5% of total Fe based
on the pelitic character of the sample and presence
of ilmenite (e.g. Palin et al., 2016; Manzotti et al., 2018;
Forshaw & Pattison, 2021). A pseudosection with no
Fe3+ is presented for comparison as the Supplementary
Figure S1. Calculations in the range of 0–10% Fe3+ show
limited effect on phase assemblage fields. H2O was
assumed to be present in excess, which is supported
by the abundance of hydrous phases, particularly white
mica and biotite. P–T pseudosections were calculated for
the range of 0.5–1.0 GPa and 550–700◦C. The following
solution models were used in the calculations: garnet
(White et al., 2007), biotite (White et al., 2014), white mica
(White et al., 2014), plagioclase (Holland & Powell, 2003),
ilmenite (White et al., 2000) and chlorite (White et al.,
2014).
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Fig. 3. Outcrop photographs of the Petersen Bay Assemblage; stars mark sample locations, yellow stars are samples studied in detail. (a) Amphibolite
with kyanite viewed to the SW, (b) kyanite-bearing amphibolite, (c) lens of serpentinite, (d–e) garnet-bearing schist with megablasts (sample 17-68),
metachert (17-70) and marble (17-61), (f) garbenschist, (g–h) garnet-bearing schists.

Table 1: Samples, locations and mineral assemblages

Sample ID IGSN* Lithology Lat Long Grt Amp Ms Bt Pl Qz Ilm Rt Ky St Cal Ser

17-10 IEMCC001C Leucocratic dike 82◦ 13′ 25.7′′ 82◦ 37′ 50.9′′ x x x
17-62 IEMCC002J Amphibolite 82◦ 11′ 56.1′′ 82◦ 47′ 26.1′′ x x x x x x
17-63 IEMCC002K Amphibolite 82◦ 11′ 56.3′′ 82◦ 47′ 25.4′′ x x x x x x x
17-64 IEMCC002L Schist 82◦ 11′ 56.1′′ 82◦ 47′ 24.2′′ x x x x x x x x x
17-65 IEMCC002M Serpentinite 82◦ 11′ 57.0′′ 82◦ 47′ 16.8′′ x
17-66 IEMCC002N Schist 82◦ 11′ 57.4′′ 82◦ 47′ 13.6′′ x x x x x x x x
17-67 IEMCC002O Schist 82◦ 11′ 57.6′′ 82◦ 47′ 13.9′′

17-68 IEMCC002P Schist 82◦ 11′ 56.3′′ 82◦ 47′ 23.1′′ x x x x x x x x
17-69 IEMCC002Q Schist 82◦ 11′ 57.8′′ 82◦ 47′ 12.7′′ x x x x x x
17-70 IEMCC002R Chert 82◦ 11′ 56.4′′ 82◦ 47′ 22.3′′ x
17-71 IEMCC002S Limestone 82◦ 11′ 56.5′′ 82◦ 47′ 21.4′′ x

* IGSN - International Generic Sample Number

Raman spectroscopy and elastic
thermobarometry
Minerals commonly contain inclusions with significantly
different elastic properties that can be used for elastic
thermobarometry (Rosenfeld & Chase, 1961; Rosenfeld,
1969; Van der Molen & Van Roermund, 1986; Enami et
al., 2007; Angel et al., 2014; Ashley et al., 2014; Kohn,
2014; Angel et al., 2015; Thomas & Spear, 2018; Murri et
al., 2018). Elastic property differences between host and
mineral inclusions can cause strain in the inclusion/host

system that produces inclusionswith remnant pressures.
The remnant pressure in an inclusion can be related to its
entrapment P–T conditions using equations of state and a
physical model that describes volumetric changes to the
inclusion-host mineral system. We calculated inclusion
pressures (Pinc) from room temperature measurements
of the 128, 206 and 464 cm−1 Raman bands of strained
quartz inclusions in garnet. Pinc was calculated using
an elastic tensor approach, which is discussed in detail
by Bonazzi et al. (2019) and Gonzalez et al. (2019). The
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Table 2: Representative analyses of garnet

Sample ID 17-64 17-64 17-64 17-64 17-66 17-66 17-66 17-66

Text.type Rim Rim Core Core Rim Rim Core Core
Analysis 5 141 83 92 1 86 47 48
SiO2 38.63 38.65 38.31 38.44 37.26 37.64 36.97 37.55
TiO2 0.03 0.04 0.05 0.02 0.03 0.02 0.01 0.02
Al2O3 21.81 21.70 21.61 21.54 21.01 21.23 20.82 20.77
Cr2O3 0.01 0.05 0.06 0.06 0.01 0.02 0.00 0.00
FeO 27.38 27.40 24.62 24.71 36.13 34.32 32.06 32.09
MnO 2.40 2.19 6.03 5.87 1.01 0.81 4.77 4.75
MgO 7.29 6.80 6.20 6.44 2.78 3.55 2.34 2.35
CaO 2.96 3.27 3.43 3.20 2.49 3.26 3.11 2.86
Total 100.51 100.10 100.31 100.27 100.72 100.84 100.17 100.15
O 12 12 12 12 12 12 12 12
Si 2.994 3.008 2.993 3.001 2.988 2.990 2.989 3.018
Ti 0.002 0.002 0.003 0.001 0.002 0.001 0.001 0.001
Al 1.992 1.991 1.990 1.982 1.987 1.989 1.984 1.968
Cr 0.001 0.003 0.004 0.003 0.001 0.001 0.000 0.000
Fe 1.775 1.784 1.609 1.613 2.423 2.280 2.167 2.157
Mn 0.158 0.144 0.399 0.388 0.069 0.055 0.327 0.324
Mg 0.841 0.788 0.722 0.749 0.333 0.420 0.282 0.282
Ca 0.246 0.273 0.287 0.267 0.214 0.278 0.269 0.247
Cation total 8.010 7.993 8.007 8.005 8.016 8.014 7.994 8.016
XAlm 0.59 0.60 0.53 0.53 0.80 0.75 0.71 0.72
XSps 0.05 0.05 0.13 0.13 0.02 0.02 0.11 0.11
XPrp 0.28 0.26 0.24 0.25 0.11 0.14 0.09 0.09
XGrs 0.08 0.09 0.10 0.09 0.07 0.09 0.09 0.08
XFe 0.68 0.69 0.69 0.68 0.88 0.84 0.88 0.88

XAlm =Fe2+/(Fe2+ +Mg+Ca+Mn); XSps =Mn/(Fe2+ +Mg+Ca+Mn); XPrp =Mg/(Fe2+ +Mg+Ca+Mn); XGrs =Ca/(Fe2+ +Mg+Ca+Mn); XFe = Fe2+/(Fe2+ +Mg)

difference between the calculated shift of Raman bands
and unstrained quartz (�ω) was used for strain (ε) calcu-
lations in ˆstRAinMAN software (Angel et al., 2019). We
calculated stress (σ ) using the elastic tensor of quartz
(Wang et al., 2015). The Pinc was derived from the stresses
following the equation: Pinc = − σ1+σ2+σ3

3 . We used soft-
ware EoSFit-Pinc (Angel et al., 2017) to create entrapment
isomekes.

We used ∼150 μm-thick doubly polished rock
sections for Raman spectroscopic measurements at
Syracuse University, Syracuse, NY, and 30 μm-thick thin
sections at Rensselaer Polytechnic Institute, Troy, NY.
All inclusions measured were free of cracks, spherical
and >3 radii from any other interfaces (e.g. inclusions,
polished surface, etc.). Raman spectra were measured on
Bruker Senterra (Rensselaer Polytechnic Institute) and
Renishaw inVia (Syracuse University) Ramanmicroprobe
spectrometers at room conditions of 1 bar (0.1 MPa)
and 23◦C. The spectrometers were calibrated against
the Rayleigh scattered light from the 532 nm lasers,
Ne lines and the 520.5 cm−1 Raman band of a silicon
standard. Throughout analytical sessions, we also
measured the 128, 206 and 464 cm−1 Raman bands
of synthetic quartz crystals cut parallel to the c axis
as reference materials. The laser was focused on the
center of inclusions using 100× objectives (N.A.= 0.9) to
perform confocal measurements. The Raman shifted
light (180◦ backscattering geometry) was dispersed
with 1200 line/mm (Bruker) or 1800 line/mm (Ren-
ishaw) gratings onto charged-couple devices for 20 to

30 second analyses. We determined changes to the
Raman band positions of quartz inclusions (�ω128,
�ω206 and �ω464) by measuring band positions in
inclusions and subtracting the position of the same
bands of a free quartz crystal (e.g. a piece of quartz
reference material sitting on the Raman microscope
stage).

Monazite U–Pb geochronology and trace
elements
Monazite U–Pb and trace element analysis was per-
formed in-situ on polished thin sections using the
Sensitive High-Resolution Ion Microprobe with Reverse
Geometry (SHRIMP-RG) at the Stanford–USGS Micro-
Analysis Center at Stanford University, CA. Back scat-
tered electron (BSE) images of thin sections were
collected using a Hitachi S-3400 N at the University
of Iowa and a JEOL 5600 SEM at Stanford University.
The thin sections were then cut and mounted together
with natural reference materials in epoxy megamounts
(37.5 mm diameter). The primary O2

− ion beam was
accelerated at 10 kV to achieve an intensity of 2.5–
3.0 nA and focused to an 18×20 μm diameter spot.
Pit depth was approximately ∼2–3 μm. The SHRIMP-RG
was tuned for a mass resolution of ∼8500 (10% peak
height), with the energy selection window set to accept
high-energy ions into the collector in order to minimize
transmission of low-energy, complex isobaric interfer-
ences (e.g. 232Th+REE+16O++ or 232Th+REE+31P++) and
minimize the background at the Pb peak positions.
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Table 3: Representative analyses of biotite, muscovite and amphibole

17-64 17-64 17-66 17-66 17-66 17-66 17-66 17-64 17-64 17-64

Mineral Biotite Muscovite Amphibole
Text.type Matrix Matrix Matrix Matrix Matrix Matrix Matrix Core Mantle Rim
Analysis 49 51 12 7 18 11 25 17 26 37
SiO2 38.55 38.89 35.90 35.96 35.82 45.85 45.94 47.82 48.76 48.61
TiO2 1.23 0.97 2.09 2.23 1.59 0.67 0.76 0.14 0.08 0.12
Al2O3 18.26 17.98 18.90 18.78 19.01 36.78 35.91 13.79 12.05 12.29
Cr2O3 0.00 0.00 0.00 0.04 0.03 0.01 0.00 0.09 0.03 0.03
FeO 8.71 8.62 17.04 17.21 17.36 0.97 1.25 14.82 15.40 16.23
MnO 0.03 0.03 0.02 0.00 0.00 0.01 0.00 0.29 0.36 0.46
MgO 18.76 19.05 10.91 11.31 11.83 0.82 0.85 19.25 19.50 18.75
CaO 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.49 0.39 0.32
Na2O 0.59 0.50 0.38 0.38 0.37 1.55 1.36 1.30 1.30 1.18
K2O 8.46 8.29 9.26 9.40 8.69 9.54 9.54 0.01 0.00 0.02
BaO 0.10 0.16 0.05 0.00 0.10 0.21 0.15 n.a. n.a. n.a.
F 0.06 0.19 0.17 0.23 0.31 0.01 0.04 0.00 0.00 0.00
Cl 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Total 94.77 94.71 94.73 95.55 95.12 96.43 95.80 98.00 97.87 97.99
O 11 11 11 11 11 11 11 22 22 22
Si 2.778 2.804 2.720 2.707 2.703 3.012 3.039 6.665 6.821 6.822
Ti 0.067 0.053 0.119 0.126 0.090 0.033 0.038 0.015 0.008 0.014
AlIV 1.222 1.196 1.280 1.293 1.297 0.988 0.961 1.335 1.179 1.178
AlVI 0.329 0.331 0.407 0.372 0.393 1.859 1.839 0.931 0.807 0.855
Cr 0.000 0.000 0.000 0.002 0.002 0.001 0.000 0.009 0.004 0.003
Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.430 0.423 0.367
Fe2+ 0.525 0.519 1.080 1.084 1.096 0.053 0.069 1.298 1.379 1.538
Mn 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.035 0.042 0.054
Mg 2.015 2.047 1.232 1.269 1.331 0.080 0.084 4.000 4.067 3.923
Ca 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.074 0.058 0.048
Na 0.082 0.070 0.056 0.056 0.055 0.197 0.175 0.353 0.351 0.320
K 0.777 0.762 0.895 0.903 0.837 0.799 0.805 0.000 0.000 0.000
Ba 0.003 0.004 0.002 0.000 0.003 0.005 0.004 n.a. n.a. n.a.
Total 7.800 7.789 7.793 7.812 7.806 7.029 7.014 15.145 15.139 15.122
XFe 0.21 0.20 0.47 0.46 0.45 0.24 0.25 0.28

XFe = Fe2+/(Fe2++Mg)

Repeated analysis of reference material 44 069 monazite
(Concordia age=424.9±0.5 Ma; Aleinikoff et al., 2006)
was used to calculate ages of unknowns. Trace element
concentrations (Y, REE, U, Th) were calibrated using
44 069 values established through comparison with trace
element concentrations of referencematerial NAMmon-
azite (Aleinikoff et al., 2012). The estimated uncertainty
(1σ SD) for monazite trace element concentrations is 3
to 6% for U, Th, Y, La, Pr, Nd, Sm, Eu, Gd,and Dy and
∼10% for Er and Yb based on repeated analysis of 44 069
and reported reproducibility of NAM (Aleinikoff et al.,
2012).

Data processing and plotting was performed using
Squid 2.51 and Isoplot 4.15 (Ludwig, 2009, 2012).
Corrections for common Pb using compositional esti-
mates from Stacey & Kramers (1975) were based on
207Pb for 206Pb/238U ages and the measured 204Pb for
207Pb/206Pb ages. Isotopic ratios and dates are reported
with analytical uncertainties (2σ ). The 206Pb/238U and
207Pb/206Pbmodel ages are reportedwith 2σ uncertainties
that include error in external reproducibility (1σ SD) of
referencematerial 44 069 during the individual analytical
session summed in quadrature.

RESULTS
Petrography and chemistry
Thirty thin sections of the PBA were carefully exam-
ined and the mineral assemblages for samples from
the studied outcrop are given in Table 1. Bulk and trace
element chemistry for selected samples is presented in
Table S1. Amphibolite containing kyanite and staurolite
has been classified as high-Al metabasite in the liter-
ature (e.g. Helms et al., 1987). The kyanite-amphibolite
in the PBA falls short of the criteria for high-Al basalts
given by Crawford et al. (1987), i.e. SiO2 < 54 wt % and
Al2O3 >16.5 wt %, although sample 17-62 is close with
SiO2 = 55.16 wt % and Al2O3 = 16.37%. Garbenschist sam-
ple 17-64 has a very similar bulk composition as gar-
benschist 88E1118 studied by Klaper & Ohta (1993). Gar-
benschist samples 17-64 and 17-62 are characterized
by SiO2 of 57.70 and 59.09 wt %, Al2O3 of 13.97 and
15.05 wt %. The two garnet-bearing schists (17-64 and
17-66) that contain monazite, and are thus suitable for
petrochronology, are described below. Tables 2–4 present
representative analyses of their mineral chemistry.

Garbenschist 17-64 is composed of garnet, biotite,
amphibole, staurolite, kyanite, plagioclase and quartz
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Table 4: Representative analyses of plagioclase and staurolite

Sample ID 17-64 17-64 17-66 17-66 17-66 17-64 17-64

Mineral Plagioclase Staurolite
Text.type Matrix Matrix Core Rim Rim Core Rim
Analysis 38 48 7 17 18 11 13
SiO2 60.70 61.42 61.60 64.04 63.07 28.52 28.27
TiO2 0.00 0.04 0.00 0.00 0.02 0.69 0.50
Al2O3 25.24 25.06 24.14 23.55 23.84 53.96 53.77
Cr2O3 n.a. n.a. n.a. n.a. n.a. 0.31 0.30
FeO 0.10 0.50 0.07 0.04 0.01 9.82 10.48
MnO 0.00 0.00 0.00 0.00 0.00 0.13 0.13
MgO 0.00 0.02 0.00 0.00 0.00 3.31 2.96
CaO 6.79 5.74 5.46 3.94 4.76 0.00 0.01
Na2O 7.21 7.46 7.74 8.45 8.12 0.07 0.07
K2O 0.02 0.16 0.51 0.10 0.04 0.01 0.01
ZnO n.a. n.a. n.a. n.a. n.a. 1.43 1.46
Total 100.05 100.39 99.53 100.13 99.86 98.25 97.96
O 8 8 8 8 8 23 23
Si 2.692 2.713 2.743 2.811 2.782 3.899 3.890
Ti 0.000 0.001 0.000 0.000 0.001 0.071 0.052
Al 1.320 1.305 1.267 1.219 1.240 8.695 8.720
Cr 0.000 0.000 n.a. n.a. n.a. 0.033 0.032
Fe 0.004 0.019 0.003 0.002 0.001 1.123 1.206
Mn 0.000 0.000 0.000 0.000 0.000 0.015 0.015
Mg 0.000 0.001 0.000 0.000 0.000 0.675 0.607
Ca 0.323 0.272 0.260 0.185 0.225 0.000 0.001
Na 0.620 0.639 0.669 0.719 0.695 0.019 0.019
K 0.001 0.009 0.029 0.005 0.002 0.002 0.001
Zn 0.000 0.000 n.a. n.a. n.a. 0.144 0.148
Cation total 4.959 4.957 4.972 4.942 4.946 14.676 14.692
XAb 0.66 0.69 0.70 0.79 0.75
XAn 0.34 0.30 0.27 0.20 0.24
XOr 0.00 0.01 0.03 0.01 0.00
XFe 0.57 0.61

XFe = Fe2+/(Fe+Mg); XAb =Na/(Na+Ca+K); XAn =Ca/(Na+Ca+K); XOr =K/(Na+Ca+K).

(Fig. 4). The accessory phases are zircon, monazite,
allanite, xenotime, apatite, tourmaline, pyrite, ilmenite
and rutile. Garnet forms anhedral porphyroblasts up
to 5 mm in diameter and is not abundant (i.e. 1–2
porphyroblasts at the thin section scale; Fig. 4a and b).
The porphyroblasts have abundant inclusions of quartz,
ilmenite, pyrite and allanite. Garnet rims are partly
replaced by plagioclase and biotite. Garnet exhibits
prograde zoning, which is demonstrated by bell-shaped
spessartine component, varying from 0.14 in the core
to 0.05 mol % in the rim (Fig. 5). XFe = Fe2+/Fe2++Mg
decreases from core to rim. Grossular is rather constant
at ∼0.09 mol % throughout the garnet porphyroblast.
Back diffusion is observed in the garnet rim (Fig. 5),which
results in an increase of XSps and XFe in the outer rim.
The preferred shape orientation of biotite defines the
main schistosity. Biotite has XFe = Fe2+/Fe2++Mg ranging
from 0.20 to 0.21 and low Ti between 0.05–0.07 a.p.f.u
(atoms per formula unit). Plagioclase is mostly sodic and
characterized by Ab=66–70%, An=30–34% and Or=0–
1%. Amphibole grew over the foliation and developed
typical garben texture (Fig. 4c), forming randomly ori-
ented, feather-like neoblasts up to 5 cm long. Amphibole
is gedrite according to the classification of Hawthorne
et al. (2012), with Si = 6.42–7.02 a.p.f.u. and moderate to

low Na=0.27–0.36 a.p.f.u. XFe = Fe2+/Fe2++Mg is slightly
zoned and varies from 0.24 to 0.26. Amphibole is partly
replaced by chlorite and biotite, and cut by veins that
formed during late fluid influx (Fig. 4c). Staurolite
remnants in the matrix (Fig. 4d) are ferrous (XFe = 0.63–
0.67) and characterized by Zn ranging from 0.14–0.17
a.p.f.u.; Zn is higher near the rims. Kyanite is found in the
matrix, often showing resorbed rims (Fig. 4e) or helicitic
texture. Ilmenite, partially replaced by rutile, is abundant
in the matrix and as inclusions in garnet.

Metapelite 17-66 has a well-developed foliation
marked by biotite and white mica (Fig. 6a), and consists
of garnet, biotite, muscovite, plagioclase, quartz and
kyanite. Accessory minerals are zircon, monazite, allan-
ite, xenotime, apatite, tourmaline, ilmenite and rutile.
The sample contains almost no sign of retrogression.
Garnet is ∼1–2 mm in diameter and forms subhe-
dral porphyroblasts surrounded by matrix minerals
(Fig. 6a, b and c). Garnet cores are inclusion-rich, while
rims are rather inclusion free. The inclusions are mostly
quartz, ilmenite, zircon, apatite and allanite; no kyanite
was observed in the garnet. Garnet shows prograde
growth zoning and is generally almandine rich (Fig. 7).
Spessartine has a bell-shaped profile with a decrease
of XSps from 0.11 to 0.02 mol % towards the rim. A
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Fig. 4. Photomicrographs from garbenschist sample 17-64 in plane-polarized light (PPL). (a) Thin section scan; brown areas are biotite rich, dots are
monazite locations, (b) garnet porphyroblast overgrowing schistosity, (c) amphibole overgrowing the crenulated foliation, (d) relict of staurolite, (e)
kyanite in the matrix.
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Fig. 5. Chemistry of a garnet in sample 17-64. (a) Back-scattered electron (BSE) image, (d) compositional profile along the transect marked on the BSE
image, (b,c,e,f) Mn, Mg, Ca and Y compositional maps of garnet.

small increase of XSps (<0.01 mol %) is observed in the
outer rim. XFe varies from 0.88 in the core to 0.84; it
increases slightly in the outer rim (up to 0.88). Grossular
is characterized by higher values in the core (up to 0.09)
and depletion in the rim (∼0.06). The grossular X-raymap
demonstrates calcium diffusion along the bigger quartz
inclusions (Fig. 7). Up to 0.26 mol % Y is concentrated
in the garnet core and decreases below the detection
limit in the mantle and rim. Very thin, ∼1–2 μm, Y-rich
annuli occur in the garnet rims (Fig. 7). Biotite defines the
foliation, commonly forming intergrowths with white
mica (Fig. 6d). Biotite is compositionally homogenous
with XFe = 0.45–0.47 and Ti = 0.09–0.13 a.p.f.u.White mica
is muscovite with Si = 3.01–3.04 a.p.f.u. and Na varying

from 0.17–0.20 a.p.f.u. Plagioclase, mostly sodic, is
slightly zoned with a composition of Ab70-79An17-30Or0–5.
Kyanite forms grains up to 0.5mm long that lie parallel or
slightly oblique to the foliation (Fig. 6c). Kyanite rims are
rarely replaced by sericite. Ilmenite is a common phase
in the garnet and matrix. Ilmenite in the garnet rim and
in the matrix is partly replaced by rutile (Fig. 6e).

Thermodynamic modeling
Phase equilibria modeling (i.e. pseudosections) could
not be applied to most of the PBA samples. Garnet-
bearing schists typically contain late calcite and amphi-
bole overgrowing the metamorphic fabrics, making it
impossible to define the bulk composition representing
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Fig. 6. PPL photomicrographs and BSE images from metapelite 17-66. (a) Thin section scan, dots are monazite locations, (b) garnet porphyroblast with
inclusion trails marked in yellow, (c) kyanite and garnet porphyroblasts are oblique to the main foliation, (d) shape preferred orientation of biotite and
muscovite define the foliation, (e) rutile replacing matrix ilmenite.

the conditions of equilibrium. Only garnet–mica schist
17-66, a typical metapelite, is suitable for pseudosec-
tion modeling because it contains the least altered
mineral assemblage and shows no direct evidence
of late fluid influx. The P–T conditions of growth
of the garnet core were estimated using composi-
tional isopleths. The intersecting isopleths plot in the
stability field of biotite+ garnet+plagioclase+white
mica+ ilmenite+ chlorite+quartz at c. 0.76–0.82 GPa
and 585–600◦C (Fig. 8a). A second pseudosection was
calculated based on the effective bulk composition
obtained by subtracting the garnet core composition
from the whole rock chemistry (e.g. Evans, 2004;
Lanari & Engi, 2017). The modal proportion of garnet
core (2.5%) was estimated using image analysis in
ImageJ software. The isopleths of grossular from the
garnet rim were compared with isopleths of XFe in
biotite and Si number in white mica. The modelled
isopleths intersect at ∼0.79–0.85 GPa and 650–665◦C in
the stability field of biotite+ garnet+plagioclase+white
mica+kyanite+ rutile+quartz± ilmenite (Fig. 8b).These
peak P–T conditions represent garnet rim formation
and the mineral assemblage is in agreement with
petrographic observations.

QuiG thermobarometry
Garnet in both samples contains abundant quartz
inclusions. The inclusions aremostly concentrated in the
cores of garnet crystals (Fig. 6b–c, 7). All inclusions cho-
sen for Raman measurements were spherical, 5–30 μm
in diameter (Fig. 9b–c) and isolated from any interfaces
(see Methods). Inclusions with visible cracks or defects
were avoided. Forty-four quartz inclusions in garnet were
measured in metapelite 17-66 (Table S2). The repeatable

measurements of reference quartz give stable errors
on the 128, 206 and 464 cm−1 Raman bands. Quartz
inclusions from sample 17-66 give an average Pinc of
0.24±0.08 GPa (Table S2, Fig. 9). The anisotropy (A) varies
from −0.002 to −0.045, but calculated isomekes give
consistent pressures of entrapment.

A number of authors have combined QuiG thermo-
barometry with inclusion trace element thermometry
(e.g. Zirconium-in-rutile: Castro & Spear, 2017; Wolfe
& Spear, 2018; Harvey et al., 2021; Titanium-in-quartz:
Gonzalez et al., 2019); however, the PBA rocks are not
suitable for this approach. Rutile forms thin (<2 μm)
intergrowths with ilmenite (Fig. 6e) that are too small for
microprobe analysis. The chemical equilibrium between
rutile intergrowths and zircon, and between quartz and
rutile, and their associations with garnet collectively
complicate using the crossing points of QuiG isomekes
with Ti-in-quartz and/or Zr-in-rutile isopleths for ther-
mobarometry. Thus, the QuiG data have been combined
with conventional thermobarometry to estimate the P–T
conditions. Ti-in-biotite thermometry (Henry et al., 2005)
gives reliable estimates for amphibolite facies rocks
(e.g. Palin et al., 2012). The Ti-in-biotite thermometry
for sample 17-66 intersects with the average QuiG
isomeke at 0.7–0.9 GPa and 540–600◦C (Fig. 9a). Results
from the geothermometer garnet–biotite (GB, Hodges &
Spear, 1982) and geobarometer GASP (Hodges & Spear,
1982) are shown for comparison (Fig. 9a), since they
are commonly used in metapelites. The lowest XFe

in biotite was paired with the highest XFe in garnet
and the highest XFe in biotite was combined with the
lowest XFe in garnet to provide the possible range of
temperatures. GASP was applied to the garnet rim,
matrix biotite and plagioclase because kyanite occurs
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Fig. 8. P–T pseudosections for metapelite 17-66. (a) garnet cores (b) garnet rims (based on the effective bulk composition). Colored lines show constant
composition for indicated mineral components. Light gray rhombs are the estimated conditions of core and rim growth.

only in the matrix (Fig. 6c) and there is no textural
evidence for kyanite growth together with the garnet
core. GB is consistent with Ti-in-biotite results, but
yields a wider spread of temperature ranging from
450◦ to 600◦C. The GB thermometer coupled with
the GASP barometer gives the results of ∼600◦C at
0.85 GPa. Representative biotite composition and QuiG
data used for calculations are given in Tables 3 and S2,
respectively.

We applied a similar procedure to garbenschist 17-
64. Quartz inclusions (n=30) were measured in two gar-
nets. Pinc calculated for the measured inclusions gives an
average Pinc of 0.17± 0.02 GPa (A=−0.022–0.003). The Ti-
in-biotite thermometry together with the average QuiG
isomekes estimates P–T conditions at 0.7–0.8 GPa and
480–520◦C (Fig. 9a).GB yields awide temperature range of
440◦ to 530◦C. GB coupled with GASP barometry displays
lower P–T conditions of ∼540◦C at 0.66 GPa.
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Fig. 9. (a) P–T diagram with QuiG, Ti-in-biotite (Ti-in-Bt), garnet–biotite (GB) and GASP results shown for sample 17-66 and 17-64, (b) and (c)
representative PPL photomicrographs showing abundant quartz inclusions in garnet.
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Fig. 10. BSE images showing relationships among REE-bearing phases allanite, epidote, monazite and xenotime.

REE phase relationships and monazite
petrochronology
Sample 17-64 contains the REE bearing minerals xeno-
time, allanite and monazite. Xenotime occurs as small
grains (<5 μm) in the garnet and in the matrix. Allanite
forms inclusion-rich grains up to 500 μm long in the
matrix (Fig. 10a and b). The inclusions are mostly quartz.
Allanite is typically replaced by epidote (Fig. 10a and b)
with rare overgrowths of microcrystalline monazite
(Fig. 10b). Allanite also occurs as inclusions within garnet
and kyanite (Fig. 10d). Monazite forms small (<30 μm)
grains that occur only in the matrix (Fig. 11). Apatite is
a common accessory mineral both in the matrix and in
the garnet.

Xenotime, monazite and allanite are the REE bearing
phases in sample 17-66. Xenotime occurs as inclusions

<5 μm in diameter within high-Y garnet cores (Figs 7 and
10e). Allanite forms aggregates breaking down to REE-
enriched epidote and apatite, occurring as metastable
matrix grains or as inclusions in the garnet core (Fig. 10c).
Monazite occurs as inclusions in garnet rims (<30 μm)
or as grains in the matrix (<50 μm). Representative mon-
azite grains are shown in Fig. 12.

Monazite in garbenschist 17-64 is chemically zoned
with three recognizable domains. The dominant trend
shows Th and Y decreasing between populations I–
III (Fig. 13). Thorium concentration varies between
15480 and 53772 ppm, whereas Y ranges from 10780–
17 150 ppm (Fig. 13b, Table 5). The trace element sig-
nature is consistent within monazite domains and
shows enrichment in LREE, slight depletion in HREE
and a moderate negative Eu anomaly (Eu∗ =0.19 to 0.31;
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Fig. 11. BSE images, Th and Y X-ray chemical maps of selected monazite grains from garbenschist 17-64. Ellipses indicate analytical spots for U/Pb and
trace elements collected with SHRIMP-RG.
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and trace elements.

Fig. 13a, Table 5). Monazite-I defines a weighted mean
206Pb/238U age of 394± 2 Ma (n=11, MSWD=0.6, Fig. 14a,
Table 6) and is characterized by high/moderate Th

(21 025–53 773) and Y (12 863–17 150) contents. Monazite-
II yields the age of 388± 2 Ma (n=7, MSWD=0.8,
Fig. 14a). Monazite-II gives moderate Th (18 073–42 397)
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Fig. 13. Chemistry of monazite from samples 17-64 and 17-66. (a), (b) Chondrite-normalized REE patterns (Sun & McDonough, 1989); (c), (d) Y vs Th
binary diagram; (e), (f) age vs Th binary diagram; (g), (h) age vs Y binary diagram. Points excluded from age calculations are not included on Fig. 13:
sample 17-64: 7.1, 13.1, 14.1, 18.1, 25.1; sample 17-66: 10.1, 46.1, 54.1 Black dots are unclassified analyses which are most probably mixed analyses.

and Y (13 775–15 833). A younger age of 374± 6 Ma is
recorded by a more scattered Monazite-III population
(n=6, MSWD=3.1, Fig. 14a). Monazite-III yields lower
Th (15 480–30 698) and Y (10 782–13 457) compared to
other populations. Three older (> 400 Ma) monazite
dates are reported and are interpreted as a mixed age
between the detritalmonazite core and themetamorphic
rim.

Monazite in metapelite 17-66 is chemically zoned
with distinct cores and rims. Two domains were defined
based on high-contrast BSE images and X-ray maps
(Fig. 12). Domain I (Monazite-I) corresponds to high Th
(25 077–53 285 ppm) and moderate Y (2 029–11 191 ppm)
(Fig. 12f, Table 5). Monazite-I occurs within garnet
rims (Fig. 12b) or forms cores of matrix monazite
(Fig. 12a, c, d, e and g). Monazite-II is characterized by
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Fig. 14. Tera-Wasserburg plots of U/Pb data with 2σ error ellipses: (a) garbenschist 17-64 and (c) metapelite 17-66. Colored ellipses represent different
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lower Th (15 587–27 439 ppm) and moderate Y (2 951–
10 376 ppm) (Fig. 13f and h). It forms rims on Monazite-
I (Fig. 12a, c, d, e and g) or occurs as separate grains in
the matrix (Fig. 12f). Trace element patterns of dated
monazite are the same for both chemical domains
(Fig. 13b), with LREE enrichment and HREE depletion.
A moderately negative Eu anomaly (Eu∗ =0.26–0.41)
is observed. Monazite-I from sample 17-66 defines a
weighted mean 206Pb/238U age of 397± 2 Ma (n=18,
MSWD=1.6, Fig. 14c and d, Table 6), whereas Monazite-
II gives an age of 385± 2 Ma (n=19, MSWD=1.5,
Fig. 14c and d).

DISCUSSION
Phase equilibrium modeling together with conventional
and QuiG thermobarometry applied to the schists of the
PBA reveal that this complex was metamorphosed at
conditions of 480–650◦C at pressures between 0.6 GPa
and 0.9 GPa. The geochronological results demonstrate
that the rocks have experienced several episodes of mon-
azite growth in Middle to Late Devonian. The detailed

petrological studies together with in-situ monazite U–Pb
dating establish a P–T–t path for the study area, which is
summarized in Fig. 15. These results provide an impor-
tant frame of reference for understanding the metamor-
phic evolution of the PBA in relation to the accretionary
history of the Pearya terrane.

P–T–t path and monazite reaction history
The textural observations, mineral chemistry, X-ray
maps and trace element geochemistry reveal typical
features of a prograde metamorphic evolution. The
high-Y garnet core and few xenotime grains within this
chemical domain are evidence for xenotime breakdown
parallel to the garnet-in reaction. The rapid decrease
of Y from the core to the mantle suggests xenotime
consumption with garnet growth (cf., Pyle et al., 2001;
Spear & Pyle, 2002). QuiG isomekes together with Ti-in-
biotite thermometry indicate garnet cores grew at 0.7–
0.9 GPa and 540–600◦C for garnet schist 17-66 and 0.7–
0.8 GPa and 480–520◦C for garbenschist 17-64 (Fig. 15,
stage 1). The pseudosection model of 17-66 gives slightly
different P–T conditions for garnet core formation of
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0.76–0.82 GPa and 585–600◦C (Fig. 15, stage 2). The
effective bulk composition and intersecting isopleths
indicate garnet rim growth under peak conditions at
∼0.79–0.85 GPa and 650–665◦C. The garnet rims are
inclusion-poor, thus QuiG thermobarometry could not
be used for estimating P–T conditions of rim growth. Our
estimates of peak conditions are marginally hotter and
significantly higher pressure than previous work (600◦C
and 0.6 GPa; Klaper & Ohta, 1993).

Allanite and monazite occur together and their
textural relationships are in agreement with literature
examples from garnet-bearing schists (e.g. Yang &
Pattison, 2006; Spear & Pyle, 2002; Skrzypek et al.,
2018). Allanite occurs as inclusions in the garnet core,
whereas monazite is present in the rim, thus providing
additional evidence for a temperature increase during
garnet growth. The monazite forming reaction most
likely involved allanite and a P-bearing phase like apatite.
X-ray maps of Y in garnet show enrichment at the
rims, suggesting Y-bearing phase breakdown (e.g. Yang
& Pattison, 2006)—in this case allanite. The monazite
inclusions in garnet (outside the Y annuli) aswell as cores
of matrix monazite, Monazite-I, yield a weighted average

U–Pb age of 397± 2 Ma (n=18, MSWD=1.6, Fig. 14b)
for sample 17-66 and 394± 2 Ma (n=11, MSWD=0.6,
Fig. 14a) for the garbenschist 17-64. Based on the
textural observations, this age is interpreted as prograde
monazite crystallization at the expense of allanite at
peak P conditions (∼0.79–0.85 GPa and 650–665◦C, stage
2 on Fig. 15) in the Middle Devonian. Monazite-I was
rotated and followed by growth of Monazite-II parallel
to the foliation (Fig. 15). Monazite-II forms single grains
or overgrowths on rotated matrix Monazite-I cores. The
textural observations suggest that Monazite-II grew after
peak-P (<0.85 GPa and <665◦C, stage 3 on Fig. 15) in the
Middle Devonian; however, it is challenging to pinpoint
the exact P–T conditions. Monazite-II yields the age of
388±2 Ma (n=7, MSWD=0.8, Fig. 14a) for sample 17-64
and 385± 2 Ma (n=19, MSWD=1.5, Fig. 14b) for sample
17-66. The reaction responsible for the formation of
Monazite-II was most likely an allanite, apatite and/or
Monazite-I consuming reaction, since allanite is still
present in the matrix as a metastable phase. The
reason for the Monazite-II growth is unclear, but it is
probably a fluid driven reaction during deformation.
Monazite-III is present only in the garbenschist sample
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and defines the age of 374± 6 Ma (n=6, MSWD=3.1,
Fig. 14a). This domain could have grown during a late
stage of retrogression due to fluid–rock interaction,
which is demonstrated by the growth of amphibole.
Fluid availability during retrogression is consistent with
emplacement of leucocratic dikes that crosscut the
amphibolite-facies schistosity in the PBA at 369± 6 Ma
(see Supplementary Appendix 1 and Fig. S2). The lack
of Monazite-III in sample 17-66 may be evidence for
heterogenous deformation and fluid activity.

Application of quartz-in-garnet barometer to
garbenschist
The PBA apparently experienced heterogenous fluid
flow after the peak of metamorphism. Sample 17-66
does not show any retrograde features, whereas 17-64
contains abundant, randomly oriented amphibole, thus
suggesting garben growth under post-peakmetamorphic
conditions. This study acts as a natural laboratory
and testing area for further application of QuiG ther-
mobarometry. QuiG thermobarometry applied to the
garbenschist provides P estimates ofmetamorphic condi-
tions in a lithology for which conventional, equilibrium-
based techniques have limited use (i.e. the equilibrium
state is not assured). Garbenschists commonly occur
in metamorphic terranes, but most studies do not use
them for thermobarometry because of the difficulties
in obtaining P–T conditions of their formation. This
study shows that QuiG thermobarometry can be used
to estimate the early metamorphic conditions of porphy-
roblast growth in garbenschists (Figs. 9 and 15). A recent
study of Cesare et al. (2021) shows that post-entrapment
shape modifications can affect elastic thermobarometry.
However, quartz in the studied garbenschist does not
show evidence of post-entrapment adjustment (e.g.
negative crystal shapes). Additionally, the temperatures
recorded by the PBA are below 700◦C (Fig. 15). The peak P
obtained by QuiG thermobarometry for the metapelite
sample, 17-66, is slightly higher than the results of
the pseudosection modelling for the garnet core. QuiG
commonly returns crystallization pressures that are
higher than those obtained from phase equilibrium
modelling (e.g. Spear & Wolfe, 2020) that may result
from errors related to the thermodynamic modelling
and/or overstepping of the garnet-in reaction (e.g. Castro
& Spear, 2017; Wolfe & Spear, 2018; Nagurney et al., 2021).
Garnet overstepping is a plausible explanation for PBA
rocks, but requires further, extensive studies which are
beyond the scope of this contribution.

Implications for the tectonic history
The Ordovician volcaniclastic schists of the PBA, includ-
ing the unusual garnet–kyanite–staurolite garbenschist,
are characteristic of an arc environment. Fragments
of Ordovician arcs, (e.g. the Kulutingwak formation;
Bjørnerud, 1991), the Fire Bay formation (Koch et al., 2022)
and the Mount Rawlinson complex (Trettin, 1998) are
strung out along a series of east-striking strike-slip faults

south of the Pearya terrane (Fig. 1). The PBA displays the
highest grade of metamorphism seen along the southern
margin of Pearya. When taken together with the isograd
pattern, the age of the metamorphism gives the best
indication of the time of accretion of the Pearya terrane
to the Ordovician arcs and Danish River flysch, as well as
the deep water part of the Franklinian margin. The high-
grade rocks of the PBA are metamorphic equivalents
of the sub-greenschist facies Kulutingwak formation
(Fig. 1; Klaper & Ohta, 1993; Trettin, 1998), which is found
along the Kulutingwak and the Emma Fiord fault zones.
Serpentinite blocks and carbonate olistoliths mixed with
a variety of schist and amphibolite in the PBA suggest
deposition in a subduction environment. Selverstone et
al. (1984) argued for subduction zone metamorphism to
explain a similar garbenschist assemblage in the Tauern
window, Austrian Alps, but the peak temperature was
100◦C lower and the pressure was marginally higher
(1.0 GPa) than the PBA. An Eclogite Zone structurally
beneath the garbenschist unit with P=0.9–1.3 GPa points
to subduction in the Tauern window as well; however,
Smye et al. (2011) consider the possibility of a Barrovian
overprint due to later overthrusting of Austroalpine
units. Nevertheless, the peak conditions of 665◦C at
0.78–0.85 GPa for the PBA are too hot and marginally
too low pressure for metamorphism in a subduction
zone. The Devonian monazite in the PBA, which grew
on the prograde and retrograde clockwise P–T path, is
also incompatible with Ordovician subduction.

The medium temperature/medium pressure (MT/MP)
conditions of the PBA, i.e. 650◦C at ≤0.9 GPa, are more
characteristic of a Barrovian metamorphic history. Our
monazite dating shows that garnet grew on a prograde
path over a period of ≈12 Myr from 397–385 Ma. This
period falls outside Viete & Lister’s (2017) 10 Myr
threshold for short duration regional metamorphism,
but still requires a localized heat source in a time
frame much less than that required for conductive
heating in a continent-continent collision (e.g. England
& Thompson, 1984; Dewey, 2005). The closely spaced,
steep, parallel isograd surfaces (Fig. 2b) indicate a heat
source to the northwest that was applied after the main
fabric-forming event (Klaper & Ohta, 1993; Figs 4 and
6). The localized nature of the Barrovian metamorphism
of the PBA indicates either a heat source from nearby
magma emplacement or a ‘hot iron’ of obducted arc
and thin ophiolitic forearc (Ryan & Dewey, 2019). Shear
heating along the emplacement structure is unlikely
to increase the temperature much beyond 20◦C (e.g.
Platt, 2015). The lack of ophiolite and the age difference
between metamorphism and the arc fragments in the
PBA argue against a hot iron mechanism associated with
the Ordovician arc system.

The crystalline basement of the composite Pearya ter-
rane lies directly northwest of the PBA and its proximity
suggests a causal relationship between accretion and
Barrovian metamorphism (Klaper & Ohta, 1993; Tret-
tin, 1998). For example, granulite facies crust forming a
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hot orogenic root was thrust over the Moravian zone of
the Bohemian massif to produce peak Barrovian condi-
tions (Štípská et al., 2015) similar to those observed in
the PBA. The 485–440 Ma magmatic rocks and Ordovi-
cian metamorphism associated with the M’Clintock col-
lisional event within the Pearya terrane (McClelland et al.,
2012; Estrada et al., 2018; Majka et al., 2021) are too old to
be considered a viable heat source for the PBA metamor-
phism. On the other hand, evidence for metamorphism
and granitic magmatism in the Pearya basement at 365–
340 Ma (Trettin, 1998; Estrada et al., 2018) is too young
to be directly related to the PBA metamorphism. The P–
T conditions of the adjacent quartzofeldspathic gneisses
of Pearya have not been determined, but they do not
appear to exceed amphibolite facies and were probably
not hot enough to produce the metamorphic isograds
observed in the PBA. Another possible heat source may
be Devonianmagmas intruded into the Pearya terrane or
other Ordovician arc fragments and brought into contact
with a fragment of an Ordovician arc containing the PBA.
The Cape Woods pluton (Fig. 1) is a plausible example
of such a magma: it has a U–Pb titanite intrusive age of
390± 10 Ma (Trettin et al., 1987) and a contact aureole
with scattered kyanite and staurolite adjacent to the
pluton (Frisch, 1974). No intrusion similar to the Cape
Woods pluton is seen directly northwest of the PBA today,
but it could have been excised by later brittle faults in the
Cenozoic. The Bourne Complex exposed on the Kleybolte
Peninsula (Fig. 1) includes calc-alkaline intermediate vol-
canic rocks with an average age of 380± 14 Ma based on
40Ar/39Ar data (Henry, 1981; Trettin, 1998). This section
may represent remnants of a Devonian arc system, the
roots of which could result in Barrovian metamorphism
if emplaced next to the PBA. The Bourne Complex is
juxtaposed along the steep Kleybolte fault with serpen-
tinized ultramafic rocks of unknown age, the Danish
River Formation and Carboniferous units in a setting
similar to the PBA. In either scenario—magma emplace-
ment or hot iron-like juxtaposition with the deeper levels
of a Devonian magmatic complex—it is clear that the
present day juxtaposition of the Pearya terrane against
the PBA does not reflect the primary relationship at the
time of Barrovianmetamorphism.The Petersen Bay Fault
Zone experienced intense Cenozoic brittle faulting with
an unknown amount of displacement (Piepjohn et al.,
2013; Piepjohn & von Gosen, 2018). An approximately
250–300 m thick package of cataclasite, derived primar-
ily from the quartzofeldspathic gneiss of Pearya and
observed just 1 km SW of the studied outcrop, indicates
significant late displacement. Thus, the causal relation-
ship between Pearya terrane accretion and Barrovian
metamorphism of the PBA (Klaper & Ohta, 1993) requires
significant post-accretion modification to establish the
present day relationships.

Metamorphism associated with the development of
the kyanite–staurolite–garnet garbenschist appears to
be a common occurrence in collisional to accretionary
settings that involve magmatic rocks that can form a

Barrovian heat source and bulk compositions appro-
priate for the unusual low-variance assemblage. The
Tauern window garbenschist formed in response to
subduction of volcanic protoliths to 1 GPa and 530◦C,
followed by exhumation and continued heating to
0.7 GPa and 550◦C (Selverstone et al., 1984; Selverstone,
1985, 1993). Preservation of the relatively cool system can
be attributed to the absence of arc magmatism and short
duration of the subduction to exhumation cycle (Smye
et al., 2011). The kyanite–staurolite–garnet–amphibole
assemblage observed in the Pie de Palo complex,
Argentina formed at conditions ranging from 0.9–1.3 GPa
and 600–638◦C within a fore arc setting during collision
of the Precordillera terrane (Casquet et al., 2001; Mulcahy
et al., 2011). Structurally higher units that experienced
deformation at 1.2–1.3 GPa and 735–800◦C in the
presence of melt represent deeper portions of the long-
lived arc–continent collision prior to the onset of strike-
slip terrane displacement (Mulcahy et al., 2011; Tholt et
al., 2021). Similarly, garbenschist formed at 0.87 GPa and
545◦C during underthrusting of the Alexander terrane in
an intra-arc setting (McClelland et al., 1991) was followed
by margin parallel displacement on an intra-arc dextral
shear zone (McClelland & Mattinson, 2000). Metamor-
phism in the PBA appears to represent burial to 0.8–
0.9 GPa and Barrovian metamorphism associated with
the final arc-related magmatic event within the Pearya
terrane. The timing of PBA metamorphism suggests
that underthrusting of Ordovican arc fragments inboard
of the Pearya terrane within a transpressional setting
(McClelland et al., 2022) occurred after its accretion
to and before contraction of the Ellesmerian orogeny
initiated at ≈360 Ma (Latest Famenian to Tournasian;
Piepjohn et al., 2013). In all of these settings, units that
experienced burial-related Barrovian metamorphism
are rapidly exhumed and variably overprinted by post
collisional deformation at shallower crustal levels.

CONCLUSIONS
This study shows that garbenschist-type rocks that
commonly have textural evidence indicating chemical
and microstructural disequilibrium can be used for
interpreting metamorphic evolution by combining QuiG
with other thermobarometric and geochronological
approaches. Quartz in garnet Raman thermobarometry
and Ti-in-biotite thermometry produced peak MT/MP
conditions of 650◦C and≤0.9 GPa that are consistent
with results of phase equilibrium modelling of nearby
well-equilibrated and unaltered garnet–mica schists. The
QuiG results help define the prograde path leading up
to the peak temperatures recorded by the pseudosection
models from adjacent garnet–mica schists. The original P
estimates from the PBA (Klaper & Ohta, 1993) were based
on conventional thermobarometry and are considerably
lower than those provided by QuiG. We suggest that the
lower pressures were realized during exhumation, which
still took place in the kyanite stability field. QuiG has
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the potential to improve the P estimates and P–T paths
for garbenschist in general because the method is not
based on assumptions of chemical equilibrium inherent
in conventional thermobarometry or thermodynamic
modeling.

Tying geochronologic information to the P–T path
remains challenging, but garnet-bearing assemblages
containing monazite are useful because of inclusion-
matrix relationships and partitioning of REE elements
such as Y. Three different monazite domains were
identified and dated in this study. Monazite I grew at
397± 2 Ma (sample 17-66) and 394± 2 Ma (sample 17-64)
from allanite after the garnet core formed; this age is the
best approximation of the timing of accretion of Pearya to
the Ordovician arcs and Siluro-Devonian flysch. Further
allanite reaction produced Monazite II at 388± 2 Ma
(sample 17-66) and 385± 2 Ma (sample 17-66) with lower
Th that overgrew Monazite I and formed elongate matrix
grains parallel to the dominant schistosity. A late phase
of lower Y Monazite III grew at 374± 6 Ma in the matrix
of the garbenschist probably due to fluid influx during
exhumation. The in-situ dating and analysis of monazite
chemistry is essential for relating the textural position to
other important phases like garnet to establish the P–T–t
path.

Closely spaced isograds show that temperature and
pressure increased to the northwest, requiring a heat
source in the direction of the adjacent Pearya terrane.
The amphibolite facies gneiss of Pearya was probably not
hot enough to produce the progrademetamorphism seen
in the PBA over a relatively short (12 Myr) time frame.We
speculate that Devonian magmas in the Pearya terrane
caused the metamorphism and were later excised by the
Cenozoic strike-slip fault that separates the two areas.
Although there is no a priori reason to expect the tectonic
settings of the unusual garbenschist assemblages
to be the same, there are some striking similarities
among these occurrences. The garnet–kyanite–staurolite
garbenschists from Ellesmere Island, Austria, Argentina
and Alaska all record complicated MT/MP metamor-
phic histories associated with burial and exhumation
in collisional and accretionary settings. All but the
Tauern example were fragments formed in a transpres-
sional regime that was modified by significant later
translation.
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