
Containerization of Model Fitting Workloads over
Spatial Datasets

Menuka Warushavithana
Department of Computer Science

Colorado State University
Fort Collins, CO, USA
menukaw@colostate.edu

Saptashwa Mitra
Department of Computer Science

Colorado State University
Fort Collins, CO, USA
sapmitra@colostate.edu

Mazdak Arabi
Department of Civil & Environmental Engineering

Colorado State University
Fort Collins, CO, USA

mazdak.arabi@colostate.edu

Jay Breidt
Department of Statistics
Colorado State University
Fort Collins, CO, USA
fjay.breidt@colostate.edu

Sangmi Lee Pallickara
Department of Computer Science

Colorado State University
Fort Collins, CO, USA
sangmi@colostate.edu

Shrideep Pallickara
Department of Computer Science

Colorado State University
Fort Collins, CO, USA
shrideep@colostate.edu

Abstract—Spatial data volumes have grown exponentially over
the past several years. The number of domains that spatial
data are extensively leveraged include atmospheric sciences,
environmental monitoring, ecological modeling, epidemiology,
sociology, commerce, and social media among others. These data
are often used to understand phenomena and inform decision-
making by fitting models to them. In this study, we present
our methodology to fit models at scale over spatial data. Our
methodology encompasses segmentation, spatial similarity based
on the dataset(s) under consideration, and transfer learning
schemes that are informed by the spatial similarity to train
models faster while utilizing fewer resources. We consider several
model fitting algorithms and execution within containerized
environments as we profile the suitability of our methodology.
Our benchmarks validate the suitability of our methodology to
facilitate faster, resource-efficient training of models over spatial
data.

Index Terms—spatial data, model fitting tasks, containers,
resource management

I. INTRODUCTION

Data volumes generated in several commercial, research,
and academic domains have grown exponentially. These data
provide opportunities to extract insights. Modeling, via fitting
models to the data, is a dominant way to accomplish this.
Models allow researchers to extract and discern patterns from
the data. These models encompassing multiple variables (of
features) of interest allow researchers and planners to under-
stand phenomena and inform decision-making.

Model building is resource-intensive and involves the entire
resource hierarchy encompassing the CPU, RAM, and network
I/O. There are several contributing factors to this resource-
intensive nature of modeling. The model building process is
iterative as parameters are tuned to best fit the data. The
dimensionality of the data and data volumes exacerbate these
challenges. Depending on the complexity of the model fitting
algorithm, the number of parameters that need to be tuned also
increases. All these are further compounded by the required

tuning of model hyperparameters that govern learning rates,
regularization schemes, loss functions, etc.

A. Goals and Objectives

The crux of this effort involves leveraging containers to
manage the orchestration of model training workloads. Con-
tainerization offers several advantages. Besides providing iso-
lation between processes, containers are lightweight compared
to virtual machines. Containers also allow us to specify
thresholds for resources such as CPU, memory, and network
I/O. However, containers are also subject to provisioning
issues. Containers that are overprovisioned claim increasingly
more resources that can impact other co-located processes and
containers. On the other hand, when containers are under-
provisioned the encapsulated tasks hit their resource limits
(CPU, memory, etc.) impeding their forward progress. Task
complete, albeit much slower, because most of the time is
spent making incremental progress as the containerized task
receives a smaller of the CPU and relies increasingly on the
paging subsystem to ensure memory-residency of relevant data
within the specified thresholds.

In this study, we focus on spatial modeling. To capture sub-
tle variability in phenomena and to ensure accuracy of models,
rather than build an all-encompassing model often a collection
of models are built (one for each spatial extent). This allows
individual model instances to capture variability patterns that
are unique to the spatial extent under consideration.

B. Challenges

Our model training workloads encompass voluminous data
and a large number of model instances. Combined with the
resource-intensive nature of the model fitting process this
introduces several challenges.

1) Model fitting tasks occur in shared clusters. As such,
there is a high probability of interfering with other
colocated processes or containers.



2) Model building is resource-intensive: The process is
iterative involving tuning model coefficients and weight
vectors alongside hyperparameters and regularizations
schemes that inform overall model characteristics.

3) Data is voluminous and high-dimensional: Brute force
model fitting operations are computationally expensive.

C. Research Questions

To effectively containerize model fitting tasks over spatial
data we explore the following research questions.

RQ-1: How can we segment the data space?
RQ-2: How can we leverage this segmentation to inform

spatial similarity?
RQ-3: How can we leverage segmentation to inform the

sizing of containers?
RQ-4: How can we reduce cumulative resource require-

ments (and consumption) for containers to complete model
fitting tasks?

D. Approach Summary

Our containerization of model training workloads are based
on the nature of the model fitting workloads. We posit that
characteristics of the data space over which the particular class
of models are being built can be used to inform sizing of
containers. To capture subtle regional variations in phenomena,
we build models for individual spatial extents. Given that a
large number of model training tasks need to be container-
ized, our methodology extracts efficiencies at several levels:
(1) minimize duplicate work, (2) reduce resource overheads
relating to computing, memory, and disk accesses, and (3)
right sizing the containers.

Containers allow us to specify resource thresholds. Our
methodology targets effective provisioning of these contain-
ers to avoid situations where the model fitting process may
interfere with other co-located processes on that machine.

Container sizing is different based on the model fitting
algorithm and spatial extent.

Rather than have a one-size-fits-all solution that leads to all
containers being sized identically, our container sizing scheme
is aligned with models being fitted to the data. Even within
a particular model fitting algorithm, we ensure that containers
can be sized differently. We achieve this using a mix of
features.

Our goal is to partition spatial extents based on their data
similarity. Spatial similarity is then used to inform how models
are containerized during training.

A key step in the model building process is identifying
the set of independent variables (or features) over which the
model is being built. Once this set of features is available, we
construct a surrogate model.

The surrogate model (based on random forests) is used
to estimate feature importance and ranking. The normalized
ranking is then used to select a subset of features, M, to
cluster spatial extents. Only a subset of the features are
chosen to avoid the curse of dimensionality that arises in high
dimensional spaces – for example, the ratio of the pairwise

distances between the closest points and the farthest points
approaches one.

Each spatial extent is represented using an M -dimensional
vector. Next, we cluster these spatial extents to produce a set of
k clusters. Each cluster represents spatial extents with similar
data characteristics that are similar based on the features of
interest.

We use this similarity based on data characteristics to
further extract efficiencies by significantly reducing duplicate
processing within containers. Within each cluster, we train one
model rigorously and then use the trained final parameters of
those models as starting points for other points within the
cluster. Because the data characteristics of points within the
cluster are similar, the final parameters of rigorously trained
models allow the modeling tasks to complete faster.

This allows us to minimize processing overheads for model
convergence. We reduce processing and memory requirements
within containers by warm-starting model training tasks with
parameters from rigorously trained models that allow tasks to
complete faster while consuming fewer resources.

We do more with less: the number of rounds, memory
residency, etc. are all reduced.

E. Paper Contributions

In this study, we describe our novel scheme to containerize
model training workloads over voluminous spatial datasets.
Our methodology

1) Reduces resource requirements significantly.
2) Is agnostic of the model-fitting algorithm.
3) Includes design of segmentation schemes to identify

spatial similarities that are deeply aligned with the model
fitting tasks.

Our methodology allows lower-latency, high-throughput
completion of tasks with reduced resource requirements al-
lowing us to do more with less.

II. RELATED WORK

Transfer learning involves the process of transferring knowl-
edge gained from one learning task to another, provided the
source domain and the target domain have similar data distri-
bution [1], [2]. Using knowledge learned in the source domain
to train a model in the target domain has been shown to require
lesser training data, along with having faster convergence
rates, greater accuracy, and fewer resource requirements [3].
Machine learning models built over geospatial data (which
includes a time and space component) provide new avenues
for transfer learning schemes since similarities in data linked
to time and space dimensions can be leveraged to reduce the
number of computations [4].

Containerization provides a lighter and faster alternative
to virtual machines. Containers have transformed software
engineering practices and deployments especially relating to
microservice architectures [5]. Containerization of applications
introduces new challenges relating to how to manage multiple
containers that need to interact with each other in a distributed



system. Popular container orchestration engines such as Ku-
bernetes [6] and Docker Swarm [7] address these challenges
by introducing controller nodes to manage deployments of
multiple containers. Containerization and container orchestra-
tion has been used in studies to model systems to achieve
faster results as containers allow fast deployment on highly
scalable environments [8]. Zhou et al. [9] have attempted
to use Kubernetes to orchestrate deep learning workloads
by deploying Convolutional Neural Networks (CNNs) on
containers launched in edge devices on Internet-of-Things
(IoT) environments. Deep learning workloads are dominated
by GPUs; containerization of these resources is still in early
phases and given the comparably smaller size of GPU RAMs,
not typically shared across multiple containerized processes.
This study does not target deep learning workloads and is
focused on algorithms that leverage CPUs and CPU RAMs.

Machine learning workloads are resource-intensive. Addi-
tionally, concurrent model-building in cases of a multi-user en-
vironment adds to the complexity of this problem [9]. To avoid
resource contention in parallel model building in distributed
clusters, efficient resource management and scheduling are
crucial factors in ensuring good throughput [10]. Cloud in-
frastructures have recently gained popularity with their ability
to deploy disjoint machine learning jobs over containers [11]–
[13], mainly due to containers being lightweight, with low
resources requirements, and having the capability to rapidly
scale up/down based on workload constraints.

In this work, we couple the lightweight scalability of a con-
tainerized environment with transfer learning over segmented
data domains to further improve the resource utilization and
throughput of such parallel machine learning workflows in
cases of spatiotemporal datasets.

III. METHODOLOGY

To achieve our objective of effectively utilizing a con-
tainerized environment to train regression models, we start
by segmenting the multi-dimensional data space to identify
spatial similarity in geographical areas. We then leverage the
segmented data space to calibrate computational and memory
resources needed to fit models using machine learning algo-
rithms over a particular dataset; this then informs the sizing
of containers. This process is explained in the following sub-
sections.

A. Segmentation

We bucket observations into their smallest administrative
units. Each administrative limit has a hierarchical prefix asso-
ciated with it. Prefix matching can be used to aggregate smaller
administrative spatial extents into larger ones. For example,
Census tracts can be aggregated into cities/towns, which in
turn can be aggregated into counties, states, etc.

The data is sharded so that data from a prefix are co-
located on the same machine. The process is deterministic
and ensures that all data can be funneled to the correction
machine. The deterministic sharding scheme also ensures data
locality during model fitting operation. When building models

for larger spatial extents, the data is hosted on a smaller subset
of machines.

B. Partitioning and Segmenting Spatial Extents

Each data item is represented as an N-dimensional feature
vector. We use a ranked subset of these features to segment
spatial extents.

To ensure our transfer learning scheme functions well, we
start by building reliable source models. Since exhaustive
training is resource-intensive, we initiate training by selecting
1% sampling of the data representing all spatial extents.
Then we rank the feature importance using the Random
Forests algorithm, after which we select features based on a
normalized ranking that add up to 85% of cumulative variance.
Isolating the most important features helps get rid of the curse
of dimensionality. After selecting the features, we perform an
aggregation of columns based on each spatial extent. Then we
cluster the spatial extents using a popular clustering algorithm
such as K-Means Clustering. The results of the clustering
operations inform the spatial extents that are closest to the
cluster centroids, and the distance to each spatial extent from
its own cluster centroid.

C. Rigorous Training of Models

We use the spatial extents associated with cluster centroids
to perform hyperparameter tuning. Root Mean Squared Error
(RMSE) is used as the stopping criterion i.e. when the RMSE
improvements do not meet the specified thresholds.

Each algorithm has its own set of hyperparameters. We
selected a subset of parameters available for each algorithm
to perform a grid search, in order to find the optimal set of
parameters for each centroid (parent) model. In this study,
we considered four model-fitting algorithms that we discuss
below. We note that our methodology is broadly applicable
and does not preclude using other model-fitting algorithms.

Gradient Boosting: Hyperparameters that we considered
for Gradient Boosting included the loss function to be op-
timized, learning rate (that shrinks the contribution of each
tree), the number of estimators, and the maximum depth (of
the individual regression estimator) [14].

Linear Regression: The hyperparameters considered for
Linear Regression were whether to calculate the intercept
for the model (boolean), whether to normalize the regressors
before regression, and the number of jobs to be used for the
computation [15].

Support Vector Regression: We used a multi-class logistic
regression algorithm to predict labels in the datasets we used.
The hyperparameters considered for the grid search were the
kernel which could be one of linear, poly, sigmoid, the degree
of the polynomial kernel function poly, and the regularization
parameter C [16].

Time-Series Regression: Hyperparameters in a time-series
model belong to two major classes: changepoint and season-
ality. Changepoints are the points in data where there is a
sudden change in the trend. Seasonlity can be either additive
or multiplicative. Thus, the key hyperparameters are (1).



Fig. 1. Partitioning of spatial extents based on their distance from the cluster
centroid.

The number of changepoints or n changepoints, (2). change-
point prior scale which captures how flexible the chanpgoints
are, (3). seasonality, and (4). seasonality prior scale which
captures the flexibility of seasonality in data [17].

D. Sizing containers based on distance from Centroids

For a given cluster, we assign each spatial extent a sampling
percentage that is proportional to the distance to the spatial
extent from the cluster centroid. First, a percentage distance
is calculated. The coordinates of a random data point i, the
centroid, the point farthest from the centroid, the point closest
to the centroid are represented as λi, λC , λmax, and λmin

respectively, the normalized distance of i calculated using
formula 1.

NormalizedDistance(i) =
λi − λmin

λmax − λmin
(1)

Then, we use the calculated normalized distance to assign
a sampling percentage for i. A minimum and (Smin) a
maximum (Smax) sampling percentage is pre-determined for
each dataset. Sampling percentage is calculated using formula
2.

SamplingPercentage(i) = Smin+

(Smax − Smin) ·NormalizedDistance(i) (2)

The calculated sampling percentage can be used to segment
the spatial extents into multiple classes (See Fig. 1). For
instance, class Y will represent spatial extents that are assigned
a 5-15% sampling rate, and Z will represent spatial extents that
use a 15-25% sampling rate. The centroid models (represented
in X) are rigorously trained using 50-100% of the data based
on progressive sampling and RMSE thresholds, as they are
our source models. The objective of this segmentation is to
identify spatial extents that can be trained using containers that
are sized differently from each other. We can use containers

with maximum resource allocation for training points in class
X as they need to be rigorously trained. Class Y will be trained
with lightweight containers, and class Z will be trained using
moderately-sized containers (both Y and Z points are trained
with transfer-learned weights from X models).

E. Warm-starting model training tasks via transfer learning

To implement our transfer learning scheme, instead of
naively training spatial extents (using randomly initialized
hyperparameters), we initialize the hyperparameters for child
models based on the identified during hyperparameter tuning
for the parent models (models associated with cluster cen-
troids). Additionally, we use a different data sampling rate for
each spatial extent calculated using the formula mentioned in
section III-D.

F. Inferring Suitable Container Sizes

For a given model-fitting algorithm on a particular dataset,
and based on the categorization-based sampling percentage,
we use a heuristic method to infer how resources should be
allocated for the containers (workers).

First, we use a single spatial extent (this could be a state,
county, or census tract) belonging to the category Y or Z (Fig.
1). Then, we train the selected spatial extent on containers
and run the modeling algorithm within a single container-
ized worker (single Kubernetes pod) to capture the total
convergence time, memory, and CPU usage. We iteratively
reduce the container sizes while noting the convergence time
in each case. The goal of this process is to identify the
amount of resources that are needed to perform the modeling
task while keeping the resource allocations at a minimum.
When the convergence time starts to increase, we stop the
iterative process. The container size at that point identifies the
effective sizing/allocation of resources for the containers. We
proceed to train the entire dataset using the identified container
configuration.

IV. PERFORMANCE BENCHMARKS

Our benchmarks profile the suitability of our methodology
by assessing its impact on (1) completion times, (2) resource
utilization, (3) and throughput. Further, these benchmarks are
performed with diverse model fitting algorithms over multiple
datasets to demonstrate applicability to a broad class of
problems.

A. Datasets

We evaluated three datasets in our experiments.
1) Multivariate Adaptive Constructed Analogs Applied to

Global Climate Models (Macav2) [18]: a collection
of outputs from 20 climate models which covers the
continental United States

2) North American Mesoscale Forecast System Dataset
(NOAA NAM) [19]: is a collection of weather forecasts
encompassing multiple meteorological variables over the
North American continent at a multiplicity of resolutions

3) COVID-19 Dataset [20]: A collection of records for that
United States that include the daily number of confirmed



COVID-19 cases and mortality within each county, from
the beginning of the pandemic to date.

B. Experimental Setup

In this study, we leveraged Dask [21], a framework for
scalable analytics using Python and the MongoDB [22] dis-
tributed, data store. We used a cluster of 25 physical nodes
to set up a Dask cluster where we would launch all our
model fitting tasks. MongoDB was deployed on a cluster of 50
nodes; Each node (8 x 2.1 GHz HP-dl60, 64 GB RAM, and
4 SATA hard disk drives) running CentOS (version 8.4.2105).
We use version 3.8 of Python, 20.10.7 of Docker, and 1.20.8 of
Kubernetes. Additionally, we used version 2.28 of Prometheus
[23] to monitor resource utilization of individual containers.

We used Scikit-Learn [24] to implement Linear Regression,
Gradient Boosting, and Support Vector Regression. Time-
series were models were built using Facebook’s Prophet li-
brary [17]. Facebook Prophet consists of APIs implemented
in Python and R. In their basic form, both Scikit-Learn
and Facebook Prophet runs primarily on a single machine.
However, by integrating Scikit-Learn and Facebook Prophet
with Dask, we were able to distribute model fitting workloads
over a cluster of nodes, and use a containerized environment.

C. Assessing the Transfer Learning scheme

Here, we focus on profiling the suitability of our transfer
learning scheme for model fitting tasks over spatio-temporal
data. These experiments were conducted on a Dask cluster
with 25 worker nodes (not containerized).

Linear Regression: In the case of Linear Regression,
non-transfer-learned models took 7.15 seconds on average to
converge while it took 0.62 seconds for the transfer-learned
models to converge, resulting in a decrease of 91.33% in aver-
age convergence time (Fig. 2); this substantiates the suitability
of our transfer learning scheme for Linear Regression.

Fig. 2. Percentage decrease in convergence time for Linear Regression (over
Macav2 dataset) with Transfer Learning.

Gradient Boosting: When fitting models using gradient
boosting, non-transfer-learned models took 385.48 seconds on
average to converge while it only took 10.54 seconds for the
transfer-learned models to converge; (Fig. 3). In particular,

our transfer-learned models converged 36.57 times faster com-
pared to traditional cold-start training.

Fig. 3. Percentage decrease in convergence time for Gradient Boosting (over
Macav2 dataset) with Transfer Learning

Time-Series Regression: Time-series models built (using
Facebook Prophet) over the COVID-19 dataset took on av-
erage 70.22 seconds to converge without transfer learning,
while the transfer-learned models converged in 2.25 seconds
on average; representing a 31.2x fold speedup (Fig. 4) with
our methodology.

Fig. 4. Percentage decrease in convergence time for Time-Series Regression
(over COVID-19 dataset) with Transfer Learning.

Our empirical benchmarks with these three different types of
models, demonstrate the applicability of our transfer learning
schemes to regression models to achieve faster convergence.

D. Exploration of Container Sizing

Here, we assess the suitability of using differently sized
containers. We profile completion times for multiple model
fitting tasks over three containerized Dask clusters, each sized
differently. The three types of clusters were sized as follows.

• Cluster A: Memory - 64 GB, CPU - 16 cores
• Cluster B: Memory - 32 GB, CPU - 8 cores
• Cluster C: Memory - 8 GB, CPU - 1 core



TABLE II
CLUSTER SIZES

Cluster Memory (GB) CPU Cores
C1 16 8
C2 12 4
C3 8 2
C4 4 1

TABLE I
COMPLETION TIMES FOR DIFFERENT MODEL FITTING ALGORITHMS ON

DIFFERENTLY SIZED CLUSTERS

Completion Time (s)
Algorithm Cluster A Cluster B Cluster C

Gradient Boosting 600.16 570.46 603.96
Linear Regression 35.58 35.66 41.39
Support Vector Regression 382.45 391.56 392.14
Time-Series Regression 405.12 401.87 381.58

Table I shows that, for Linear Regression, Support Vector
Regression, and Time-series Regression, the completion time
increases as the size of containerized workers get smaller
i.e. when fewer resources are allocated for training. In the
case of Gradient Boosting, the lowest completion time was
observed when the data was trained using Cluster B. These
results validate our hypothesis that it is possible to find
a compromise between completion times and allocation of
resources to size containers differently to cater to different
model fitting workloads, and to make intelligent use of the
finite resources available on the physical nodes in a cluster.

E. Rigorous, Light, and Moderate training using containers

For the datasets selected in this study, we attempted to infer
the most suitable sizing of containers (workers) using cluster
settings mentioned in Table II. In the following sections, we
explain the results obtained by running different regression
algorithms using each of the aforementioned clusters.

TABLE III
MAXIMUM MEMORY UTILIZATION FOR A SINGLE SPATIAL EXTENT

Model fitting Algorithm Dataset Maximum amount of
memory utilized (MB)

Linear Regression Macav2 725
NOAA 970

Gradient Boosting Macav2 930
NOAA 955

Support Vector Regression Macav2 980
NOAA 1094

Time-series Regression COVID-19 985
NOAA 1115

Linear Regression: For Linear Regression models trained
on the Macav2 dataset, based on the lowest completion time,
the optimal sizing of containers (workers) were identified as
C1 (16GB memory, 8 CPU cores) for the 0-15% sampling
category, and C3 (8GB memory, 2 CPU cores) for 15-25%
sampling (Fig. 5).

For Linear Regression models trained over the NOAA
dataset, based on the lowest convergence times, the most
suitable sizing of containers (workers) were identified as C2

Fig. 5. Convergence times for Linear Regression over the NOAA dataset.

(12GB memory, 4 CPU cores) for both 0-15% and 15-25%
sampling categories (Fig. 5).

Fig. 6. Completion times for Linear Regression over the Macav2 dataset.

Fig. 7. Linear Regression on Macav2 data - Memory Utilization for
containerized vs. bare-metal worker nodes.

While training Linear Regression models on the Macav2
dataset (for all US counties) using the most suitably-sized
containers, we observed a 0.4% reduction in the average
memory usage (Fig. 7) and 0.15% reduction of average CPU



Fig. 8. Linear Regression over the Macav2 dataset - CPU usage for
containerized vs. bare-metal worker nodes.

Fig. 9. Linear Regression over the NOAA dataset - CPU Usage for a container.

usage (Fig. 8) compared to the same workload run on bare-
metal workers.

Fig. 9 shows the CPU usage for a Linear Regression model
trained on a single county of the NOAA dataset using a single
containerized worker. The limits set in each of the 4 cases
(4 cluster settings mentioned in Table II) are also depicted
in the graph. The CPU utilization was below 2 CPU cores
for the entirety of the training but it was above 1 core; as
such, the allocation needed for this experiment was set to 2
CPU cores. As outlined in Table III, the maximum amount
of memory utilized by the containerized worker is 970 MB,
which implies that it is possible to run this experiment by
allocating workers 1GB of memory in an environment where
resources are limited.

Gradient Boosting: For Gradient Boosting models trained
on the NOAA dataset, the most suitable sizing of containerized
workers were recognized as C1 (16GB memory, 8 CPU cores)
for 0-15% sampling category, and C4 (4GB memory, 1 CPU
core) for 15-25% sampling (Fig. 10). For Gradient Boosting
models trained on the Macav2 dataset, the most suitable
container sizes were C2 (12GB memory, 4 CPU cores) for
the 0-15% sampling and C3 (8GB memory, 2 CPU cores) for

15-25% sampling (Fig. 11).

Fig. 10. Convergence times for Gradient Boosting over the NOAA dataset.

Fig. 11. Convergence times for Gradient Boosting over the Macav2 dataset.

Fig. 12. Gradient Boosting over the Macav2 dataset - Memory Utilization
for containerized vs. bare-metal worker nodes.

For Gradient Boosting models trained on the Macav2 dataset
for all US counties, we observed a 6.46% reduction in overall
CPU usage on containerized workers (sized most suitably
based on completion times) compared to bare metal Dask
workers as depicted in Fig. 13. Furthermore, the average
memory utilization was reduced by 0.11% (Fig. 12).



Fig. 13. Gradient Boosting over the Macav2 dataset - CPU usage for
Containerized and bare-metal worker nodes.

Fig. 14. Gradient Boosting over the NOAA dataset - CPU Usage for a
container.

Fig. 14 and Fig. 15 show the CPU usage for a Gradient
Boosting model trained on a single spatial extent (county)
of the NOAA and the Macav2 dataset respectively using a
single containerized worker. The limits set in each of the 4
cases (4 cluster settings) are also depicted in the graphs. The
CPU utilization was below 2 CPU cores for the entirety of
the training but it lies above 1 core. Therefore, the precise
allocation needed for this experiment, for both datasets, should
be 2 CPU cores. Furthermore, according to Table III, the
maximum amount of memory utilized by this experiment is
955 MB. Therefore, we could limit the memory to 1GB per
worker if the resources are scarce.

Support Vector Regression: For Support Vector Regression
on the Macav2 dataset (similar to the experiments on other
regression models), the most suitable container configurations
were identified as C3 (8GB memory, 2 CPU cores) for 0-15%
sampling, and C2 (12GB memory, 4 CPU cores) for 15-25%
sampling. The most suitable sizing of containers for model-
fitting on the NOAA dataset were observed as C3 for both 0-
15% and 15-25% sampling. When we trained all US counties
using the identified configurations for most suitable containers,

Fig. 15. Gradient Boosting on Macav2 data - CPU Usage for a container.

we observed a 2.13% reduction in average CPU utilization, and
a 0.56% reduction in memory utilization. (graphs for Support
Vector Regression experiments are not included due to space
constraints)

Time-Series Regression: When implementing time-series
models, it is important to select a time period into the future
we want to predict a selected variable, based on the time-series
data available. The COVID-19 dataset contains daily records
of the number of confirmed cases and mortality spanning 15
months. Using the 15 months of data, we predicted the number
of COVID-19 cases into 1-3 months into the future. The
NOAA dataset contains hourly data recorded related to various
weather phenomena spanning multiple years. We selected the
variable Mean Sea Level Pressure (Pascal) to make predictions
for a couple of months into the future.

Fig. 16. Completion times for Time-Series Regression over the COVID-19
dataset.

For time-series models trained on the COVID-19 dataset,
the optimal sizing of containers were identified as C3 (8GB
memory, 2 CPU cores) for 0-15% sampling category, and C2
(12GB memory, 4 CPU cores) for 15-25% sampling (Fig. 16).

When the entire dataset (all US counties) was used for
predicting the number of COVID-19 cases for a selected



Fig. 17. Comparison of CPU Utilization for Time-Series Regression over the
COVID-19 dataset (Bare-metal vs. Containerized Dask).

Fig. 18. Comparison of Memory Utilization for Time-Series Regression over
the COVID-19 dataset (Bare-metal vs. Containerized Dask).

time-frame into the future (one time-series model per county)
using the most suitably sized containers, we observed a 0.21%
reduction in the overall CPU usage (Fig. 17) and a 1.1%
reduction of overall memory usage (Fig. 18) compared to bare-
metal workers.

Fig. 22 shows the CPU usage for a time-series model built
on COVID-19 data for a single county in the US, using a
single containerized worker. It can be observed that the precise
allocation of CPU cores required is 4 for this model fitting
task. According to Table III, the maximum amount of memory
utilized by the worker, in this case, is 985 MB. If we wanted
to prioritize frugal memory usage over faster convergence,
we could have allocated 1GB memory per worker for this
particular model fitting task.

We also trained time-series models on the NOAA dataset
for hourly Mean Sea Level Pressure (Pascal) values. After
identifying the most suitable sizing of containers based on
the time it took for a single time-series model (built for a
randomly selected US county), we proceeded to build time-
series models for all US counties. These workloads consumed
2.31% less CPU on average, and 3.4% less active memory
(these graphs were not included due to space constraints).

Fig. 19. Time-series Regression over the COVID-19 dataset: CPU Usage on
a single container.

Fig. 20. Time-series Regression over the COVID-19 dataset: CPU Usage on
a single container.

V. CONCLUSIONS AND FUTURE WORK

We described our methodology to orchestrate model fitting
tasks over spatial datasets in a containerized environment. Our
methodology focuses on reducing resource requirements by
sizing containers effectively and reducing processing over-
heads during model training.

RQ-1: Our data space segmentation is aligned with the
dataset under consideration and relies on both dimensional-
ity reduction and spatial similarity. We rank features based
on their importance and considering only a subset of these
features reduces dimensionality and achieves more effective
spatial segmentation.

RQ-2: Since our spatial segmentation schemes are specific
to a dataset and reduce dimensionality, we can identify spatial
similarity based on the phenomena under consideration. Fur-
ther, this allows spatial similarity considerations to be dynamic
rather than statically assigned.

RQ-3: Spatial similarity underpins our transfer learning
schemes and sizing of containers for model fitting tasks. In
particular, we train one model within each spatially similar



Fig. 21. Completion times for Time-Series Regression over the NOAA
dataset.

Fig. 22. Time-series Regression over the NOAA dataset: CPU Usage on a
single container.

cluster and transfer learn the weights of this anchor model to
spatially similar extents as starting points. Since the similarity
is based on the dataset(s) under consideration, this allows the
transfer-learned models to converge faster. As substantiated
by our benchmarks, the speeds achieved by our methodology
include 36x (for gradient boosting) and 31x for time series
models. Calibrating resource utilizations differently based on
spatial extents and transfer learning tasks allows us to make
frugal utilization of resources.

Finally, our benchmarks demonstrate that a trade-off can
be reached for convergence times and resource utilization by
leveraging effectively sized containers (in contrast to tasks
running on bare-metal) to deploy model-fitting workloads.

As part of future work, we will explore extending this
work in the context of streaming datasets. An additional
consideration here is the placement of containers to ensure the
effective sharing of data processing pipelines across spatially
similar clusters.

ACKNOWLEDGMENT

This research was supported by the National Science Foun-
dation [OAC-1931363, ACI-1553685] and the National Insti-
tute of Food & Agriculture [COL0-FACT-2019].

REFERENCES

[1] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of
the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

[2] T. Tommasi et al., “Learning categories from few examples with multi
model knowledge transfer,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 5, pp. 928–941, 2013.

[3] L. Torrey et al., “Transfer learning,” in Handbook of research on
machine learning applications and trends: algorithms, methods, and
techniques. IGI global, 2010, pp. 242–264.

[4] M. Bussas et al., “Varying-coefficient models for geospatial transfer
learning,” Machine Learning, vol. 106, no. 9, pp. 1419–1440, 2017.

[5] D. Jaramillo et al., “Leveraging microservices architecture by using
docker technology,” in SoutheastCon 2016. IEEE, 2016, pp. 1–5.

[6] “Kubernetes,” https://kubernetes.io/, (Accessed on 09/16/2021).
[7] “Swarm mode overview — docker documentation,”

https://docs.docker.com/engine/swarm/, (Accessed on 09/16/2021).
[8] V. Medel, O. Rana, J. Á. Bañares, and U. Arronategui, “Modelling

performance & resource management in kubernetes,” in Proceedings
of the 9th International Conference on Utility and Cloud Computing,
2016, pp. 257–262.

[9] L. Zhou, H. Wen, R. Teodorescu, and D. H. Du, “Distributing deep
neural networks with containerized partitions at the edge,” in 2nd
{USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 19),
2019.

[10] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq: quality-driven
scheduling for distributed machine learning,” in Proceedings of the 2017
Symposium on Cloud Computing, 2017, pp. 390–404.

[11] “Machine learning on aws,” https://aws.amazon.com/machine-learning/,
09 2021.

[12] “Vertex ai,” https://cloud.google.com/vertex-ai, 09 2021.
[13] “Azure machine learning,” https://azure.microsoft.com/en-

us/services/machine-learning/product-overview, 09 2021.
[14] “sklearn.ensemble.gradientboostingclassifier —

scikit-learn 0.24.2 documentation,” https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html, (Accessed on 09/01/2021).

[15] “sklearn.linear model.linearregression — scikit-
learn 0.24.2 documentation,” https://scikit-
learn.org/stable/modules/generated/sklearn.linear model.
LinearRegression.html, (Accessed on 09/01/2021).

[16] “sklearn.svm.svr — scikit-learn 1.0 documentation,” https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVR.html, (Accessed on
10/11/2021).

[17] S. J. Taylor et al., “Forecasting at scale,” The American Statistician,
vol. 72, no. 1, pp. 37–45, 2018.

[18] J. T. Abatzoglou and T. J. Brown, “A comparison of statistical
downscaling methods suited for wildfire applications,” International
Journal of Climatology, vol. 32, no. 5, pp. 772–780, Mar. 2011.
[Online]. Available: https://doi.org/10.1002/joc.2312

[19] R. S. Vose et al., “Improved historical temperature and precipitation
time series for u.s. climate divisions,” Journal of Applied Meteorology
and Climatology, vol. 53, no. 5, pp. 1232–1251, May 2014. [Online].
Available: https://doi.org/10.1175/jamc-d-13-0248.1

[20] T. N. Y. Times, “nytimes/covid-19-data.” [Online]. Available:
https://github.com/nytimes/covid-19-data

[21] “Dask: Scalable analytics in python,” https://dask.org/, (Accessed on
07/16/2021).

[22] “The most popular database for modern apps — mongodb,”
https://www.mongodb.com/, (Accessed on 08/28/2021).

[23] “Overview — prometheus,” https://prometheus.io/docs/introduction/overview/,
(Accessed on 10/12/2021).

[24] “scikit-learn: machine learning in python — scikit-learn 0.24.2 docu-
mentation,” https://scikit-learn.org/stable/, (Accessed on 09/01/2021).


