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ABSTRACT
Geospatial data collections are now available in a multiplicity of
domains. The accompanying data volumes, variety, and diversity
of encoding formats within these collections have all continued to
grow. These data offer opportunities to extract patterns, understand
phenomena, and inform decision making by fitting models to the
data. To ensure accuracy and effectiveness, these models need to
be constructed at geospatial extents/scopes that are aligned with
the nature of decision-making — administrative boundaries such as
census tracts, towns, counties, states etc. This entails construction
of a large number of models and orchestrating their accompanying
resource requirements (CPU, RAM and I/O) within shared comput-
ing clusters. In this study, we describe our methodology to facilitate
model construction at scale by substantively alleviating resource
requirements while preserving accuracy. Our benchmarks demon-
strate the suitability of our methodology.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies.
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1 INTRODUCTION
There has been an exponential growth in data volumes over the
past decade. A majority of these data are geospatial i.e., the data are
geotagged with spatial coordinates. A large number of geospatial
data collections have been made available by state/federal agencies,
NGOs, and research labs. Domains these collections are available
for include social, ecological, environmental, atmospheric, and geo-
sciences.

These collections encapsulate observational data, model outputs,
and surveys among others. Observational data can either be col-
lected using in situ devices or are remotely sensed. Remotely sensed
observational data are available at different spatial granularities and
resolutions. Model outputs are often generated as gridded outputs
that capture variations over the terrain and at different elevation
levels. Surveys such as those conducted by the Census Bureau in-
clude a wealth of demographic information that are amenable to
aggregation at different administrative levels.

Combining economic, social, demographic, and infrastructure
data affords opportunities to identify issues from a holistic per-
spective. Models help us understand phenomena, predict risk, and
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inform decision-making. However, since each spatial extent is dif-
ferent based on its topological characteristics, atmospheric and
climatic variability, infrastructure profiles, population distributions,
and income/access disparities construction of models should ac-
count for this variability. Models should capture regional variations
at the scopes of interest. Often from the perspective of planning,
this is done based on administrative boundaries that tend to be
hierarchical. Consider for example, an analysis that attempts to
identify vulnerability to poor air quality. Such an analysis would
first identify areas where the air quality index (available from the
U.S. Environmental Protection Agency) is above a certain threshold.
Next, the U.S. Census Survey datasets would be used to identify
census tracts where demographic triggers relating to the analy-
sis exist. Examples of such demographic triggers include age and
percentage of populations without health insurance among others.
The analysis could be further supplemented by proximity to power
plants and freeways (that worsen air quality) and hospitals (where
care can be provided).

The crux of this study is to facilitate model construction at di-
verse spatial scopes at scale. In particular, the model construction
should: (1) facilitate understanding of regional variations and pat-
terns, (2) enable understanding of the spatial dynamics of phenom-
ena across disparate data collections, (3) and allow different data
collections to be used to inform understanding of phenomena and
planning.

1.1 Research Challenges
Extracting insights at scale across different spatial (and temporal)
scopes introduces several challenges. These include:
1) Data volumes and diversity. The data may be available as shape
files, point observations, gridded data, or sketches while being
encoded in diverse formats. Shape files encapsulate arbitrary N-
sided polygons representing the spatial area of interest; vertices
within these polygons are represented using <latitude, longitude>
tuples.
2) Modeling workloads are both I/O and CPU intensive: Model
fitting tasks are iterative and induce strain across the entire resource
hierarchy (CPU, memory, disk, and network). Furthermore, because
these workloads execute in shared clusters inefficiencies impact
other collocated analytic tasks.
3) Diversity of model fittings: There are combinatorially explosive
ways in which models can be realized. Models can be constructed
for different combinations of features, spatiotemporal scopes, and
using a diversity of model fitting algorithms.

1.2 Research Questions
The following research questions inform this study.
[RQ-1] How can we support spatial data wrangling operations that
are aligned with the nature of the workloads? Broadly, data wran-
gling operations are key to identifying the spatiotemporal scopes
of interest using a rich set of queries that are then subject to opera-
tions such as preprocessing, normalization, feature selection, etc.
prior to launching modeling tasks.
[RQ-2] How can we effectively orchestrate model training workloads?
[RQ-3] How can we balance and manage the I/O (disk and network)
and memory pressure?

1.3 Approach Summary
Our methodology encompasses a broad sequence of phases to fa-
cilitate model construction at scale over myriad spatiotemporal
data collections. We place no restrictions on the model fitting algo-
rithms that underpin model construction. Our methodology alle-
viates resource requirements for model training while preserving
accuracy. In particular, our methodology includes support for (1)
data wrangling, (2) identification of spatial similarity, (3) selectively
promoting spatial extents for exhaustive model training and hy-
perparameter tuning, and (4) a novel transfer learning scheme that
leverages spatial similarity by using these exhaustively trained
models (their weight vectors, coefficients, and hyperparameters) as
starting points to facilitate model training for other spatial extents.

Our data wrangling schemes support selection, preprocessing,
and partitioning data that are aligned with spatial characteristics
of the data. Our selection operators incorporate spatial geometry-
based constraints alongside traditional predicate logic. The spa-
tial geometry-based constraints include proximity, intersections of
shape files, and checks for inclusion within spatial bounding boxes;
all distance calculations are based on double-precision spherical
coordinates. These spatial geometry constraints are supplemented
with traditional predicate logic that places constraints on the range
of individual feature values, equality operators, and relationships
that features must have with respect to each other both within and
across spatial data collections.

Models should be built for the right spatial extent to account for
cross feature interactions. For a given set of features, the distribution
of individual feature values and the nature of their cross-feature
interactions may vary across spatial extents. For example, tracts
within the same city often have significant income, access, and
safety disparities. Rather than build an all-encompassing model
global model, we build an ensemble of smaller ones that allow us
to better capture regional variations better.

Model building is iterative and computationally expensive.While
training models for smaller spatial extents/administrative bound-
aries allows us to capture regional variations and subtleties better,
a consequence is that the number of model fitting operations that
need to be performed increases substantially. For example, there
are 70,000 census tracks (2010 Census) and 3065 counties in the US.

Our methodology incorporates a novel transfer learning scheme
to substantially reduce computational overheads while preserving
accuracy. We posit that spatial similar regions are likely to have
weight vectors/parametrization that are within the same weight
landscape. We collate spatial extents into groups (clusters) based on
their similarity with respect to the phenomena under consideration.
We then leverage transfer learning within spatially similar regions
to reduce model training times. A single model instance (closest to
the cluster centroid) is trained exhaustively and the model parame-
ters then diffused across instances within that cluster.

Each collection encapsulates a set of interrelated features that
represent the phenomena under consideration. We leverage Princi-
pal Component Analysis (PCA) to represent the phenomena using
a lower-dimensional manifold. We first compute principal com-
ponents for each collection. In particular, we identify principal
components that explain 95% of the variability in the collections.
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Since each principal component is a linear combination of the fea-
tures, this step also allows us to identify which features contribute
to spatial variability. There are three notable advantages to leverag-
ing PCA. First, there is a significant reduction in the dimensionality
of the data. Second, considering principal components that account
for 95% of the variability within a collection allows us to benefit
from high statistical significance while striking a balance between
the coverage, representation, and dimensionality. Finally, PCA is a
one-time operation per collection; as a result, the computing costs
are amortized over multiple analyses.

Each spatial region (depending on the granularity of the spa-
tial extents) has a spatial representation vector associated with it.
We use collections involved in a modeling task as a surrogate for
the phenomena under consideration. During analysis and model
construction, we dynamically compute the spatial representation
vector for each spatial extent (tract, county, state) involved in the
analysis. The spatial representation vector is constructed based on
the principal components that explain 95% of the variability for the
collections involved in the analysis.

To identify spatial similar regions, we use an unsupervised learn-
ing technique (clustering). We cluster spatial extents (each repre-
sented using the spatial representation vector) in the principal com-
ponent space. Distances between spatial extents (each represented
using the geographic representation vector) provides a measure of
the similarity with respect to the phenomena under consideration.
Considering the principal components rather than the individual
features (across collections) provides better cluster quality, which in
turn facilitates effective demarcation of spatial extents into similar
and dissimilar spatial extents.

The unsupervised clustering operation produces 𝐾 clusters; spa-
tial extents within a cluster are similar to each with respect to the
analysis under consideration. For each of the 𝐾 clusters, we ex-
haustively train one model. The choice of the model to be trained
exhaustively is based on that the spatial extent’s proximity to the
cluster centroid. The spatial extent closest to the cluster centroid is
chosen for exhaustive training. The exhaustive training involves
hyperparameter tuning, calibration of learning rates, and regular-
ization to achieve good model performance.

Once 𝐾 such models, one from each cluster, have been trained,
their model parameters (coefficients, decision boundaries, weight
vectors, and hyperparameters) are used as the starting point for
model training within the respective clusters - these are the transfer
learned models. We incorporate a load balancing scheme aligned
with our transfer learning scheme to complete model training.

For the transfer learnedmodels, we also use progressive sampling
i.e. we progressively increase the fraction of the data that the model
is trained on. Our stopping criteria for transfer learned models
within a cluster is based on the performance of the exhaustively
trained model for that cluster. In particular, our stopping criteria
is based on achieving a model performance that is with 5% of the
exhaustively trained model. In the case of regression models, this
is based either on the RMSE (Root Mean Squared Error) or MAE
(Mean Absolute Error).

Finally, aswe outline in our performance benchmarks, ourmethod-
ology allows us to train over our models faster while making frugal
utilization of resources. We have validated the suitability of our

methodology with diverse data collections and model-fitting algo-
rithms that include linear regression, gradient boosting, random
forests, and time-series analysis.

1.4 Paper Contributions
Our methodology facilitates dynamically scaling out model execu-
tions. Our specific contributions include:
1) A methodology for model creation at diverse spatial scopes that
allows us to account for subtle spatial variations.
2) An innovative transfer learning scheme to train a large number
of models faster and with reduced resource usage while preserving
accuracy. This prevents overprovisioning of resources.
3) Broad applicability to diverse: data collections, types of models,
model fitting algorithms, and cluster management frameworks.

1.5 Paper Organization
The rest of the paper is organized as follows - section 2 outlines the
background and related work, followed by a detailed explanation
of our methodology in section 3. The experimental benchmarks on
our system is outlined in section 4, followed by conclusions and
future work in section 5.

2 RELATEDWORK
As spatial data increases in both volume and diversity distributed
frameworks require domain-specific improvements at both the
storage and analytics layers. The Hadoop Distributed File System
(HDFS) [Shvachko et al. 2010] is a popular distributed file system
that is widely deployed. AtlasFS [Rammer et al. 2019], HadoopGIS
[Aji et al. 2013], and SpatialHadoop [Eldawy et al. 2015] imple-
ment spatial specific extensions, reducing data retrieval costs over
spatial bounds by leveraging high-level data indices using geo-
hashes [geo 2021], QuadTrees [Finkel et al. 1974], and spatial in-
dexing structure variants. Similarly, many modern distributed data
stores have adopted support for spatial queries and analyses in-
cluding MongoDB [Chodorow 2013] and Apache Cassandra [Lak-
shman et al. 2010]. Apache Spark’s Resilient Distributed Datasets
(RDDs) [Zaharia et al. 2012], and their DataFrame / DataSet vari-
ants, provide a diverse solution for distributed analytics in myriad
domains. Geospark [Yu et al. 2015] and Magellan [Sriharsha [n.d.]]
offer spatial support by dynamically indexing RDD’s using R-Trees
[Guttman 1984] and Z-order Curves respectively. Alternatively, At-
lasSpark [Rammer et al. 2020] relies on spatial indices at the storage
layer to more effectively inform analytics scheduling for spatiotem-
poral workloads. We have extensively profiled our methodology
using MongoDB and Apache Spark for the storage and analytics
frameworks respectively. However, there are no methodological
restrictions locking us into these platforms.

Distributed model training efforts are typically partitioned into
two broad categories, model parallelism [Dean et al. [n.d.]] and
data parallelism [Goyal et al. 2017]. Model parallelism trains frag-
ments of the model on each machine. Consequently, it provides
the largest advantage for extremely large models [Shoeybi et al.
2019]. Alternatively, data parallelism trains a copy of the model on
each machine, synchronizing weights between each iteration. Both
the Tensorflow [Abadi et al. 2016] and PyTorch [Paszke et al. 2017]
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frameworks implement data parallelism. Our proposed methodol-
ogy complements any analysis which trains multiple identical, but
independent, models over similar data. This means it is applicable to
either of the aforementioned approaches. Furthermore, our transfer
learning schemes offer a decrease in training duration alongside
reductions in resource utilization.

Transfer learning [Pan et al. 2010; Segev et al. 2016; Zhuang
et al. 2020] has been popularly used in multiple studies to utilize
knowledge learned by a base machine learning model (𝑀) over a
source domain (𝑆) and repurpose that knowledge in the training
of a derived model (𝑀1) on a related domain (𝐷). However, one of
the main challenges to this approach is scenarios where the data
distribution between 𝑆 and 𝐷 are not similar, thus preventing us
from repurposing𝑀 . Training of𝑀1 using a pre-trained model,𝑀 ,
can be particularly useful in enhancing the model performance in
scenarios where data from (𝐷) is sparse and/ or in case of deep
learning, where model-building requires significant resources.

Depending on the context, transfer learning has be applied in
diverse ways[Pan and Yang 2009]. For example, the instance-based
transfer learning approach [Dai et al. 2007; Huang et al. 2006;
Sugiyama et al. 2007] is applied where different weights are learned
to re-weight the samples in a source domain for better learning in a
target domain. This is done in cases where a large number of labeled
source-domain and a limited number of target-domain instances
are available in an attempt to correct for marginal differences in
distribution.

Another approach, known as feature-based approach [Dai et al.
2008; Feuz et al. 2015; Long et al. 2013a,b], tries to learn common fea-
ture structures from different domains that can bridge the marginal
distribution discrepancy between domains. Feature-based transfer
learning are applicable to both homogeneous and heterogeneous
problems.

Heterogeneous transfer learning[Sukhija et al. 2016] applies to
problems where the source and the target have different feature
spaces (𝑋𝐷 ≠ 𝑋𝑆 ) and/or (𝑌𝐷 ≠ 𝑌𝑆 ) as the source and target do-
mains features and/or labels may or may not overlap, whereas
homogeneous transfer learning approaches are applicable for the
simpler scenario where the domains are of the same feature space
(𝑋𝐷 ∼ 𝑋𝑆 ) and/or (𝑌𝐷 ∼ 𝑌𝑆 ) but differ only in marginal distribu-
tions. To circumvent this, in cases where feature spaces are same,
the difference in the two distributions is reduced by correcting
either the difference in the marginal distribution, the conditional
distribution or both between the source and target dataset through
various statistical methods[Chawla et al. 2002; Gretton et al. 2008;
Long et al. 2013a].

A common trait in the aforementioned approaches is that both
the source and target dataset are available simultaneously and can
be used for training of𝑀1. Theymostly adopt the ensemble learning
based strategies[Ge et al. 2013; Segev et al. 2016; Wu et al. 2017] to
bridge the gap between the source and target domains. However,
the availability of both 𝑆 and𝐷 at the time of transfer learning is not
always guaranteed due to disk/memory constraints, unavailability
or data movement cost.

A variant of feature-based transfer learning is Online Transfer
Learning (OTL) [Zhao et al. 2014], which deals with scenarios where
all the source and target data are not co-located due to unavailability
or high cost. Hence the knowledge learned from the source data

offline, is to be applied to the target data arriving in an online
manner at a later, disjoint stage.

Our goal, in this research, is to perform fast, distributed training
to construct multiple regional models over our underlying datasets.
The quantification and characterization of spatiotemporal regions
based on their regional attributes has been a subject of significant
research. Although regionally curated data can lead to more ac-
curate models[Anthes 1983; Rummukainen 2010], building such
models leads to significant processing overhead, especially in case
of voluminous datasets like ours.

We leverage online transfer learning (which is best suited for
big data scenarios[Pan and Yang 2009]) by identifying the sets
of 𝑆 and 𝐷 data regions for a given collection with similar data
distributions that are conducive for transfer learning. This reduces
the training cost by exhaustively training models over the sets of 𝑆
and reusing the models to train over𝐷’s. To leverage this, we cluster
counties/tracts based on their regional attributes and implement
homogeneous transfer among the regions within each cluster with
the centroid of the cluster acting as 𝑆 and the remaining acting as
𝐷 .

3 METHODOLOGY
We achieve our goal of simultaneous deployment, training, and
hyper-parameter optimizations of regional models built over a large
spatiotemporal extent (the entire USA, in our case), by splitting the
overall process into 3 stages – (1) grouping the entire geospatial
extent, 𝑆𝑈 , of the dataset into a set of 𝑘 disjoint, but geospatially
similar subsets, 𝑆𝑖 , 𝑖𝜖 (1, 𝑘) and

⋃𝑘
𝑖=1 𝑆𝑖 = 𝑆𝑈 ; (2) exhaustively train-

ing a representative model for each region in 𝑆𝑖 (let us call it 𝑆𝑖𝑝 ) and
(3) use the knowledge learned in 𝑆𝑖𝑝 to train(non-exhaustively) the
remaining spatiotemporal regions in each 𝑆𝑖 using transfer learning.
In particular, we aim to alleviate excessive resource utilization over
our distributed cluster during distributed model-building.

Figure 1: Broad overview of our methodology

3.1 Data Wrangling
To further improve the utility of our predictive models, we attempt
to create them over a range of flexible, finer spatial scales. Since
building models over regionally curated data can improve their ac-
curacy, which in turn would lead to more accurate spatiotemporal
analysis and decision-making, we keep the spatiotemporal resolu-
tion of each subset flexible. In our system, the disjoint geospatial
bounds used for the elements in 𝑆𝑈 could be states, counties, tracts,
etc. depending on the users’ specifications.

Each administrative spatial extent has a shape file associatedwith
it. Recall that shape files encapsulate arbitrary N-sided polygons,
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with each vertex represented using latitude/longitude coordinates,
representing the spatial area of interest. These shape files, asso-
ciated with tracts, counties, states, etc. allow us to enforce data
inclusion criteria within administrative boundaries. We convert
these complex, double-precision shapes into string-based hierar-
chical prefix representations called GISJoins, similar in format to
geohash[geo 2021] strings. Shared prefixes allow us to hierarchi-
cally agglomerate data from different administrative tracts.

The datasets were augmented using data sources that consist of
mixed temporal resolutions, which included 2010 decennial census,
2019 American Community Survey (1-Year Data) [Manson et al.
2020], daily cases and mortality of COVID-19 [Times [n.d.]], and
North American Mesoscale Forecast data (NOAA NAM), [Vose et al.
2014] which contains observations recorded every six hours, along
with Homeland Infrastructure Foundation-Level Data (HIFLD) [hif
[n.d.]] from the Department of Homeland Security on hospitals,
power plants, natural gas pipelines, fire station, and electrical trans-
mission lines and substations.

We used query-based data construction mechanisms across col-
lections to join data in relation to geographical boundaries. For
instance, every county and census tract were tagged with total pop-
ulation, median household income, and median age extracted from
census data tables. Geospatial queries (range-based proximity, and
intersection queries) were used to identify hospitals, power plants,
fire stations, and electrical substations which belong to specific
counties and census tracts. Furthermore, gridded latitude/longitude-
based datasets such as NOAA NAM had a county GISJoin field
associated with every observation, based on their coordinates.

The goal of these data wrangling operations was to create rich
datasets comprising numerous features that could be used for clus-
tering the geographical (or political) boundaries based on their
spatial similarity; which in turn, would yield better results in re-
gression models (built with our transfer learning scheme).

We support creation of custom datasets spanning diverse col-
lections based on the aforementioned geometry and predicate con-
straints. For a given spatial extentwe support partitioning of datasets
into training, validation, and test sets. These partitioning schemes
are designed to prevent information leakage during training which
result in a model’s performance being boosted artificially. We sup-
port data normalization schemes based on summary statistics asso-
ciated with individual features. Features were normalized using a
min-max scaler before clustering operations.

3.2 Geospatial Clustering
Clustering is an unsupervised machine-learning technique that
aims at grouping objects based on their feature similarity. In our
system, we leverage clustering to group the set of all administrative
bounds in 𝑆𝑈 into disjoint subsets of 𝑆𝑖 , based on their spatial
similarity.

3.2.1 Spatial Similarity. Attempting to cluster GISJoins based on
high-dimensional underlying data can suffer from the curse of di-
mensionality[Keogh et al. 2017]. A consequence is that it is difficult
to disambiguate points based on their distance from each other. To
avoid this, we perform principal component analysis (PCA)[Wold
et al. 1987] on the aggregated collections (section 3.1) to reduce
dimensionality while preserving the majority of the variance. To

preserve the effectiveness of our clustering algorithm, we ensure
that our principal components capture over 95% variability of the
original features.

Data for clustering was constructed by aggregating multiple data
points for a given geographical boundary - principal components
were averaged to create a representation vector for each spatial
extent. We used silhouette scores [Rousseeuw 1987] to validate
our choice of the number of principal components and its impact
on cluster quality, i.e, how well-distinguished the clusters were
(section 4.3.1).

The choice of 𝐾 (number of clusters) has implications on the
quality of clusters generated through a clustering algorithm. A
good choice for 𝐾 based on past studies [Han et al. 2011] is

√
𝑁

where 𝑁 is the number of data points. This choice of 𝐾 is then
incrementally refined by performing experiments in 𝐾 ’s neighbor-
hood, by increasing and decreasing 𝐾 slightly to track their impact
on silhouette scores We choose the value of 𝐾 that gives us the best
silhouette score. We emphasize that this is an incremental, neigh-
borhood search and not an exhaustive, global one. Furthermore,
this determination of the value of 𝐾 is a one-time operation per
collection.

3.3 Exhaustive Learning vs Transfer Learning
Based on the flexible spatial resolution of our models (state, county,
or tract), the total number of regional models that need to be built
could be large – our distributed modeling needs to scale in such
scenarios. We leverage our clustering of administrative bounds
based on spatial similarity to implement transfer learning over each
of these clusters.

Rather than randomly initializing the model weights (parameters
and coefficients) of our regression models for each spatial extent
and then training these models to completion, we leverage transfer
learning. We posit that by leveraging transfer learning, we would be
able to initializemodel weights closer (inmulti-dimensional weights
hyperplane) to what these weights would be in the final, trained
model. Provided that the 𝑆 and 𝐷 data are similarly distributed,
we expect our transfer learning to greatly reduce the number of
iterations needed and also the time taken to converge, alongside a
reduction in the amount of data required for accurate model results.

We denote 𝑆𝑖𝑝 as the parent model and the models built for every
other element inside 𝑆𝑖 as the child models.

3.3.1 Hyperparameter Tuning and Exhaustive Training. Hyperpa-
rameter tuning for each individual model can be an expensive and
time-consuming operation in terms of resources, and does not scale
when the number of regional models that need to be built is very
large. This is particularly true in case of voluminous training data.
Using Spark ML for our training, each iteration of training for
each combination of hyperparameters incurs staging overheads
alongside the time for training.

Transfer learning requires accurate source models, trained ex-
haustively over an extensive dataset, which form the base for the
dependent models. To avoid incurring this expensive overhead for
each element in 𝑆𝑖 , we perform this optimization only while mod-
eling for 𝑆𝑖𝑝 , which is the geospatial region that is closest to the
centroid of the cluster represented by 𝑆𝑖 . This hyperparameter tun-
ing is a part of the exhaustive training process that each model
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for 𝑆𝑖𝑝 goes through, which also includes training over the entire
underlying dataset. Hence, in the first phase of our model training,
each of the 𝐾 models goes through this exhaustive training process
to find the models with the best fit, which then gets transferred to
the next phase.

Also, since our underlying dataset is stored in a distributed data-
store, we avoid redundant and time-consuming data transfers from
the relevant collections into a memory-resident Spark DataFrame
by making a single fetch per 𝑆𝑖 for all the geospatial regions within
𝑆𝑖 (𝐾 fetched in total). This reduces the amount of disk I/O incurred
during the training operations as well as the latency. For model
training of each element inside 𝑆𝑖 , a single filter operation is done
on the fetched DataFrame.

3.3.2 Transfer Learning. All the child models (𝑁 − 𝐾 ) are trained
from their corresponding parent through transfer learning. Depend-
ing on the size of the underlying data, our framework supports
transfer learning over either the entirety of the data (by disabling
sampling) for each of the child models or through progressive
sampling. No hyperparameter optimization is performed for the
children models – this is transfer learned, we only adjust their
weights till convergence.

Progressive sampling is leveraged when the data under each
child’s geospatial bounds is too large to be stored in in-memory
Spark DataFrames. In this mode, starting at a configurable sampling
percent, we recursively train over an increasing sample size of
the overall training data till either the desired model accuracy is
achieved (within 95% of the parent’s) or the sample size has reached
100% of the dataset.

One of the advantages of progressive sampling is that it trains
over a smaller training data, which reduces the training time per
iteration. However, each of the incremental training phases in pro-
gressive sampling is a separate Spark job which will incur an ad-
ditional staging latency. For our regression experiments, we use
a starting sample size of 15%, but that parameter is configurable,
based on the underlying dataset.

3.4 Conservation of Resources
By exhaustively training only 𝐾 models, and transfer learning the
rest, we significantly reduce the overall latency and system resource
utilization (section 4). Since the starting weights of the transfer
learned models are derived from an exhaustively trained model
from the same spatial similarity cluster, they need significantly
reduced computational overheads to converge. Also, progressive
sampling combined with region-based clustering ensures that train-
ing data needed for the transfer learned models to converge is also
reduced; this alleviates memory pressure while also reducing I/O
requirements.

3.5 Distributed Parallel Modeling
We perform batch training of each of the cluster centroid models
(𝑆𝑖𝑝 ), in a parallel, multi-threaded fashion. Each of the threads
used a connector to lazily-load in from the datastore (our research
prototype leverages MongoDB) just its corresponding observations
into a memory-resident Spark DataFrame. All our models use a
training-test data split of 80:20.

Both the parent and the child models are trained in this batched
fashion. During the training of the children, both their trained
parent model (with their model coefficients and hyperparameters),
along with its observed error (RMSE) is passed to guide its transfer
learning process. Our framework supports a variety of regression
models to be built at diverse administrative scopes in a distributed
manner. In particular, we include support for linear regression,
random forest, gradient boosting, and time series models.

3.6 Linear Regression using Transfer Learning
Each exhaustive modeling thread leveraged the hyperparameter
grid space, to train Linear Regression models over multiple com-
binations of hyperparameters. We used 3-fold evaluation on the
training set, with up to two models being trained and evaluated
concurrently. For our hyperparameter grid space, we used three
epsilon values, three convergence tolerance values, and four regu-
larization parameter values for a total of 3 · 3 · 4 = 36 combinations
of models to be trained and cross-validated. Our model construction
used feature normalization, squared error as the loss function, and
Limited-memory BFGS (L-BFGS) as the solver algorithm. Lastly, we
used RMSE as the evaluation metric for the evaluation of the best
model hyperparameters.

3.7 Ensemble Regression using Transfer
Learning

Our framework also supports regression models using ensemble
learning based on Gradient Boosting and Random Forests. In ensem-
ble learning, we train multiple weak learners to make the classi-
fication better by combining these weak learners through either
bagging (random forest) or boosting (gradient boosting). The com-
bination of weak learners, after ensemble learning, will be much
stronger with lower bias/variance. Through transfer learning, we
use the pre-trained weak learners from the parent model and fine-
tune the learned weights in light of the data from for the child
model with the goal of faster convergence.

We perform hyperparameter tuning by trying model combina-
tions over maximum bin size, maximum tree depth, sub-sampling
rate, and maximum iterations combinations of 3 each respectively
for Gradient Boosting and maximum bin size, maximum tree depth,
sub-sampling rate and minimumweight fraction per-node combina-
tions of 3 each over Random Forest respectively. Transfer learning
for both models started by sampling 15% of the total population and
incrementally doubling the sample size in case the desired accuracy
was not within 95% of its parent model.

3.8 Time-Series Models
We used Facebook’s Prophet library [Taylor et al. 2018] to build
time-series models. RMSE was used as the convergence criterion.
Hyperparameters for time-series models broadly fall into two cate-
gories: changepoint and seasonality. Changepoints are the points
in data where there are swift changes in the trend. A key tuning pa-
rameter is the number of changepoints detected for a given model.
This is supplemented with the changepoint_prior_scale that ex-
plains how resilient the changepoints are. The seasonality mode
can be either additive or multiplicative while the seasonality_
prior_scale explains the resilience of seasonality in data.
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Table 1: Principal Component Analysis over different collec-
tions

Time Taken (s) Min. no. of PCs
for 95% variability

Dataset 100%
sampling

50%
sampling

25%
sampling

10%
sampling

100%
sampling

50%
sampling

25%
sampling

10%
sampling

County-level SVI
(34 features) 1.835 1.667 1.606 1.605 9 9 9 8

County-level
Census/Infrastructure
(6 featuers)

0.854 0.809 0.762 0.647 5 5 4 4

NOAA NAM
(18 features) 805.978 801.793 800.909 801.684 13 13 13 13

4 PERFORMANCE BENCHMARKS
Our performance benchmarks assess several aspects of our method-
ology. In particular, we profile: (1) The costs for performing the
principal component analysis. (2) How the principal components
play a role in improving the quality of the clusters that underpin
spatial similarity and our transfer learning schemes. (3) How the
quality of the spatial similarity clusters varies with the choice of 𝐾
and the clustering algorithm that is used. (4) How the data distri-
butions (a/c features) within the clusters substantiate our transfer
learning schemes. (5) The impact of our methodology of reducing
completion times alongside alleviating resource requirements in
shared computing clusters.

4.1 Experimental Setup
For our experiment platform, we used a cluster of 47 machines,
each running Intel Xeon E5-2620v3 CPUs at 2.40GHz, 64 GB for
memory, and several local 7200RPM SATA hard disks. Themachines
were organized into the following configurations: (1) 5 machines
with mongos routers, one of them also running the standalone
Spark master instance (2) 39 machines running Spark workers and
mongod instances, co-located (3) 3 machines dedicated to running
a Mongo config replica set.

Our mongod instances were initialized in groups of three into
sharded replica sets, for a total of 13 shards. Each machine held
a total of 64 GB RAM, with 32 GB being allotted to Spark and
the other 32 GB being left for the mongod processes. As for our
Spark applications, the executors were limited to 4 cores and 16
GB memory, allowing up to two executors to run on any given
machine concurrently. The Spark driver was limited to only 8 GB
of memory, as this was being launched on the same machine as the
Spark master to reduce network I/O and did not perform any of the
model training or clustering operations.

The datasets used for our experiments included the county-level
Social Vulnerability Index (SVI), county-level census (Total Popula-
tion, Median Household Income, Median Age), county-level infras-
tructure (No. of Hospitals, No. of Power Plants, No. of Fire Stations,
No. of Electrical Substations) datasets. Additionally, we used three
months of the National Oceanic and Atmospheric Administration’s
North American Mesoscale (NOAA NAM) dataset[Oceanic and Ad-
ministration [n.d.]] and a COVID time-series dataset[Times [n.d.]].

4.2 Principal Component Analysis
Table 1 shows the time taken to complete Principal Component
Analysis on the following datasets.

• County-level Social Vulnerability Index data

• County-level Census Data (Total Population, Median House-
hold Income, Median Age), and infrastructure-related data

• North American Mesoscale Forecast System (NAM) data

4.3 Clustering

(a) Evaluation of Clustering Mod-
els
for NOAA NAM data

(b) K-Means Cluster sizes on Prin-
cipal Component Analysis

Figure 2

4.3.1 Cluster Quality. Fig. 2a illustrates how the silhouette scores
for the clustering models varied when clustering was done with the
original features and with different numbers of Principal Compo-
nents on County-level NOAA [Vose et al. 2014] data. The minimum
number of Principal Components that accounted for 95% variabil-
ity of the features is two. And the highest silhouette score, or the
highest quality of the clusters modeled by algorithms were also
recorded when the number of Principal Components was set to
six. It can also be observed that the highest silhouette scores were
obtained by using K-Means clustering[Likas et al. 2003], out of the
three algorithms evaluated. Running K-Means Clustering on the
Principal Component analysis output for the NOAA NAM dataset
[Vose et al. 2014] at the county level, with 𝐾 = 56, produced some-
what uneven cluster sizes, as seen in Fig. 2b The quality of these
clusters are good (we report this in Fig. 3) and the distribution of
these clusters capture the spatial variability for the phenomena of
interest. Note that the clusters and their composition varies across
the phenomenon of interest.

Between each county, the number of observations also varied
based on the geographical size of the county. The smallest counties
only had a few thousand observations over the span of threemonths,
with the largest county having over 130,000 distinct observations
taken over the same time frame. The number of observations was
also directly correlated with the time taken to train models and
evaluate performance.

4.3.2 Assessing Cluster Quality. An important metric that deter-
mines the effectiveness of our transfer learning process is the quality
of the clusters. Our clustering algorithm should ensure a reason-
ably similar distribution among features within spatially similar
clusters. In Fig. 3, we present the distributions of relative humidity,
and the U component of wind, from our NOAA dataset to demon-
strate the quality of the clusters; note that these results are similar
across other features. For each cluster of counties, we calculate
the average and standard deviation of the two features mentioned
above, grouped by their county id (GISJoin). The summary statistics
from all counties in each cluster is plotted on the Y-axis, with the
cluster-id on the X-axis. The red point in each cluster represents
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the reading from the county closest to the cluster centroid. Fig. 3,
shows that the summary statistics for counties in a cluster tend to
be grouped together, which is a good indication for the quality of
our clustering algorithm.

(a) Relative Humidity: Avg (b) Relative Humidity: Std. Dev.

Figure 3: Assessment of Cluster Quality: Mean and standard
deviations of features in each cluster. Red indicates the value
of the summary metric for the cluster centroid.

4.4 Assessing Impact of Spatiotemporal
Transfer Learning

(a) Time-series COVID-19 data (b) Linear Regression

Figure 4: Speed-up with Transfer Learning

(a) Time-series on COVID-19 data (b) Linear Regression

Figure 5: Percentage reduction of RMSE with Transfer Learn-
ing

4.4.1 Linear Regression. Our linear regression models also bene-
fited from transfer learning. We observed improvements in both
the total number of iterations and the amount of time taken to train
each model. Note that these gains accumulate as each individual
model sees faster completion times. As can be seen in Fig. 6, it took

the non-transfer-learned models, on average, 11.4 iterations to con-
verge, with a standard deviation of 0.9 between models. However,
the average number of iterations taken for transfer-learned models
to converge was cut almost in half to 6.7, with a standard deviation
of 1.4 iterations.

The training times for the transfer-learned models showed im-
provements as well. Models trained from scratch took, on average,
3.0 𝑠 to converge, with a standard deviation of 2.2 𝑠 , but models that
had been initialized with the trained weights and hyperparameters
took, on average, only 1.1 𝑠 to train, with a standard deviation of
0.2 𝑠 . The training times were heavily correlated with the num-
ber of observations for a given county model, with larger counties
having many more data points. The effects of transfer learning
(in particular, the reduction in convergence times) can be seen in
Fig. 4b.

Figure 6: Linear Regression: Percentage Reduction of Itera-
tions

(a) Gradient Boosting Regression (b) Random Forest Regression

Figure 7: Percentage Improvements in Training Times for
Exhaustive and Transfer Learning: The metrics for each clus-
ter is color-coded.

(a) Gradient Boosting Regression (b) Random Forest Regression

Figure 8: Comparison of Model Accuracy (RMSE) between
Exhaustive and Transfer Learned Models
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4.4.2 Ensemble Learning. Fig. 7 illustrates the speed-up in training
times achieved for the models using our transfer learning approach
for ensemble models. We profiled the percentage improvement in
training times needed for convergence for transfer learned depen-
dent children models over their corresponding exhaustively trained
parent models for both gradient boosting (Fig. 7a) and random
forest-based (Fig. 7b) regressions. Fig. 7 shows 5 randomly selected
clusters through color-coded bar charts and the improvement in
training times.

We can see a substantive reduction in convergence time in the
case of gradient boosting, with reductions up to 76% for transfer
learned models. We noticed that in all cases the model converged
using the first pass of the progressive sampling.

Figure 9: Latency Breakdown for Various Training and Eval-
uation Phases in Gradient Boosting

The improvement in training times in the case of random for-
est-based transfer learning is mixed. Although the majority of the
transfer-learned models converge faster (∼20-50% speed-up), a few
models require multiple training passes through incremental sam-
ples of data. In such cases, this running of consecutive Spark train-
ing jobs, compounded with the evaluation of the trained models
at the end of each, leads to the higher convergence time in such
scenarios.

Fig. 8 shows that in the case of both gradient boosting and ran-
dom forest models, the vast majority of child models reach the
desired accuracy of 95% of their parent models’ accuracy in the
majority of the cases, as denoted by the dotted line. Even the few
models that do not reach the 95% threshold, have accuracy com-
parable to the their parents. For these few cases where accuracy
stays below the desired range, the models have to go through all
the incremental sampling phases. However, the increase in training
time is not pronounced because these models do not have to go
through the hyperparameter tuning phase.
Training Latency Breakdown for Ensemble Modeling: The
training times recorded in Fig. 7 comprises data collection and pre-
processing step, an actual training phase, and an evaluation phase.
Fig. 9 shows a break-down for latency of these various phases in en-
semble modeling in our system. In all cases, we maintain a training
and testing data split of 80:20. We can see that in all cases, a major
portion of the overall time is taken to fetch the distributed data and

stage it for the actual training task. In the case of exhaustive train-
ing, we can see that the single training phase is relatively longer,
followed by a lengthy evaluation phase. In comparison, due to the
smaller data size involved in the case of transfer learning through
progressive sampling, training and evaluation times are much lower.
Also, subsequent training phases take incrementally less time, since
the model weights need fewer adjustments to converge. However,
as more and more incremental modeling phases are involved, the
staging time needed for Spark to perform each modeling task adds
up and increases the overall convergence time.

4.4.3 Time-Series Models. Fig. 4a shows the time taken to build
time-series models with and without transfer learning. In our ex-
periment, 20 cluster centers were randomly selected as starting
points to perform a grid-search on the hyperparameters mentioned
in Section 3.8. The optimal parameter values were then set as the
initial values for 10 randomly selected counties that belong to the
same cluster as the county that represented the cluster centroid.
This process was repeated for all 20 centers selected, which re-
sulted in building 220 models in total (representing 220 counties
out of 3065). The average time taken build a non-transfer-learned
model and a transfer-learned model was 5.691 𝑠 and 1.959 𝑠 re-
spectively. The standard deviation of training times was 0.648 𝑠
for non-transfer-learned models and 0.208 𝑠 for transfer-learned
models.

(a) Memory Utilization (b) CPU Utilization

(c) Page Fault Rate

Figure 10: Evaluating System Utilization for Ensemble Learn-
ing: For Gradient Boosting with exhaustive training followed
by transfer learning.

4.5 Model Performance
4.5.1 Linear Regression. While the total number of iterations until
convergence and the time taken to train each linear regression
model nearly halved with transfer learning, we did not see any
noticeable degradation of model quality when evaluating using the
RMSE metric. For the most part, all transfer-learned models con-
verged to the same error as their trained-from-scratch counterparts.
These evaluation metrics can be seen in Fig. 5b.
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We also evaluated CPU usage for Linear Regression and observed
an 18% reduction in average CPU usage on the transfer-learned-
models over non-transfer-learned models.

(a) CPU Usage (b) Memory usage

Figure 11: Resource Utilization for all Time-Series Models

(a) CPU usage (b) Memory usage

Figure 12: Resource Utilization for a single Time-Series
Model

4.5.2 Ensemble Regression. We track the memory, CPU utilization,
and page-fault rates during the exhaustive training of a parent
model and contrast it against that of the transfer learned model in
Fig. 10. We observed that the memory utilization of our transfer
learning model is significantly lower than that of the exhaustive
model training, along with the reduction in training time. Also, the
CPU utilization reduces substantially in the transfer learning phase.
However, the page fault rate remains similar during both training
processes.

4.5.3 Time-Series Models. Fig. 12a and 12b show CPU usage and
Memory usage statistics captured while building a single time-
series model. Even though there is a slight increase in the use of
memory in the transfer learning approach, it completes in less time
compared to the non-transfer-learned model. The CPU is also used
less intensively on training the transfer-learned models. The gains
in resource utilization can be observed in Fig. 11a and 11b as well.

5 CONCLUSIONS & FUTURE WORK
Here we described our methodology to construct models at scale
while ensuring effectively utilization of resources within shared
computing clusters.

[RQ-1] Our query semantics allow us to identify spatiotemporal
scopes of interest and facilitate creation of custom datasets that
include features from diverse collections. We allow collation of data
items into hierarchical administrative units; shared prefixes allow
us to agglomerate data items hierarchically.

[RQ-2] Our spatial transfer learning scheme allow us to ensure
effective starting points for model training.

[RQ-3] During diffusion of model parameters within spatially
similar extents our methodology leveraging progressive sampling,
effective starting points, and identification of stopping criteria. Cu-
mulatively, these allow us to train models with less data andwithout
the need for hyperparameter tuning. A consequence is that this
alleviates resource requirements (CPU, RAM, and I/O). Finally, our
methodology allow us to be agnostic of the underling cluster man-
agement framework.

In the future, we will expand this work to include parameteri-
zation of process-based models and continuous validation of both
analytical and process-based models.
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