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ABSTRACT: Atmospheric rivers (ARs) result in precipitation over land and ocean. Rainfall on the ocean can generate a
buoyant layer of freshwater that impacts exchanges between the surface and the mixed layer. These “fresh lenses” are im-
portant for weather and climate because they may impact the ocean stratification at all time scales. Here we use in situ
ocean data, collocated with AR events, and a one-dimensional configuration of a general circulation model, to investigate
the impact of AR precipitation on surface ocean salinity in the California Current System (CCS) on seasonal and event-
based time scales. We find that at coastal and onshore locations the CCS freshens through the rainy season due to AR
events, and years with higher AR activity are associated with a stronger freshening signal. On shorter time scales, model
simulations suggest that events characteristic of CCS ARs can produce salinity changes that are detectable by ocean instru-
ments ($0.01 psu). Here, the surface salinity change depends linearly on rain rate and inversely on wind speed. Higher
wind speeds (U . 8 m s21) induce mixing, distributing freshwater inputs to depths greater than 20 m. Lower wind speeds
(U # 8 m s21) allow freshwater lenses to remain at the surface. Results suggest that local precipitation is important in set-
ting the freshwater seasonal cycle of the CCS and that the formation of freshwater lenses should be considered for identify-
ing impacts of atmospheric variability on the upper ocean in the CCS on weather event time scales.

SIGNIFICANCE STATEMENT: Atmospheric rivers produce large amounts of rainfall. The purpose of this study is
to understand how this rain impacts the surface ocean in the California Current System on seasonal and event time
scales. Our results show that a greater precipitation over the rainy season leads to a larger decrease in salinity over
time. On shorter time scales, these atmospheric river precipitation events commonly produce a surface salinity response
that is detectable by ocean instruments. This salinity response depends on the amount of rainfall and the wind speed. In
general, higher wind speeds will cause the freshwater input from rain to mix deeper, while lower wind speeds will have
reduced mixing, allowing a layer of freshwater to persist at the surface.
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1. Introduction

Freshwater inputs from rainfall can have variable impacts on
surface ocean salinity. Of particular significance is the impact
on upper-ocean stratification, which has been shown to limit the
penetration depth of wind mixing and thus the vertical distribu-
tion of atmospheric fluxes (Schmitt 2008; Chaudhuri et al. 2021;
Thompson et al. 2019). This has larger implications for intensifi-
cation of the global water cycle (SPURS-2 Planning Group
2015; Yu et al. 2020). The relative importance of factors that are
known to impact the ocean’s response to freshwater inputs is
not well characterized, especially in the subtropics where studies
are limited. Atmospheric rivers (ARs) are narrow, elongated
plumes of strong poleward water vapor transport known to pro-
duce large amounts of precipitation over the ocean and land in

the California Current System (CCS) (Ralph and Dettinger
2012; Ralph et al. 2013). The impact of ARs on surface ocean
salinity has received minimal attention to date. Previously,
global seasonal salinity variations in the upper ocean have been
attributed to runoff (in coastal regions), advection in the ocean,
as well as evaporation and precipitation (Yu 2011). Ren and
Riser (2009) found that among these, in the subarctic regions of
the northeast Pacific (458–508N), precipitation was the largest
contributor. However, they did not address the California
Current System, where variations in salinity have been linked
to variations in anomalous advection along the trajectories of
the California Current, the Inshore Current, and the California
Undercurrent on seasonal (Lynn and Simpson 1987), interan-
nual, and decadal (Schneider et al. 2005) time scales. Therefore,
to date, seasonal variations of salinity within the CCS have
mainly been attributed to advection (Lynn and Simpson 1987;
Schneider et al. 2005). Here we hypothesize that local precipita-
tion in the CCS (including ARs) provides a significant contribu-
tion to seasonal freshening. Additionally, we hypothesize that
precipitation from ARs impacts the surface ocean on shorter
time scales and may be detectable by oceanographic salinity
sensors in some conditions.
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This study uses a combination of observations and modeling
with the aim of understanding the surface salinity response to
ARs in the California Current System by characterizing (i) the
ocean salinity response to precipitation over the duration of
the wet season and (ii) the role of rain rate and wind speed in
driving changes in upper-ocean salinity and stratification for
characteristic AR events on event time scales. Section 2 re-
views the background, section 3 describes the observational
data and model used to carry out the study, and section 4
describes methods of analysis. Section 5 focuses on the re-
sults of (i) the seasonal response and (ii) the response on
event time scales. Section 6 provides a discussion of the re-
sults and their implications for understanding the ocean’s
salinity response to precipitation. Last, section 7 wraps up
the study with conclusions.

2. Background

a. Salinity variability in the California Current System

Surface salinity variability in the CCS is typically attrib-
uted to alongshore advection from the California Current
(Lynn and Simpson 1987; Schneider et al. 2005). Situated
150–1300 km offshore, the California Current transports
cool, fresh, nutrient-rich water southward. Within the
coastal zone (0–150 km) there is a poleward flow of warm,
saline, low-oxygen subtropical waters from the California
Inshore Countercurrent (IC) (Bograd et al. 2001; Lynn and
Simpson 1987). At the surface (upper 50 m), the IC has sea-
sonality, with a poleward flow occurring in the winter and
fall, and an equatorward flow in the spring and summer
(Lynn and Simpson 1987; Rudnick et al. 2017b). Salinity in-
creases toward the coast, implying that an increase in off-
shore flow would result in an increase in salinity offshore
(Rudnick et al. 2017b). Additionally, in a study of the tem-
perature and salinity extremes found in the CCS beginning
in 2017, Ren and Rudnick (2021) concluded that the positive
salinity anomaly was a result of advection and that different
source waters were found in the California Current from
2017 to 2019. During the summer, the increased salinity at
the coast is enhanced due to coastal upwelling of cold, saline
waters from depth (Auad et al. 2011). Riverine runoff has been
linked to salinity decreases off the coast of central California
(Kudela and Chavez 2004; Johnson et al. 1999). While, as noted
in the introduction, salinity variability in the CCS has pre-
viously been attributed to intrinsic ocean dynamics (Lynn
and Simpson 1987; Schneider et al. 2005; Auad et al. 2011;
Kudela and Chavez 2004; Johnson et al. 1999), atmospheric
forcing such as local surface freshwater flux may also influ-
ence surface salinity and is investigated here.

b. Salinity response to precipitation

The response of the ocean to freshwater input is a function
of rainfall, wind, background stratification, heat flux, and ver-
tical velocity in the upper ocean (Drushka et al. 2016). Rain-
fall forms stably stratified upper-ocean layers, with lenses of
fresher water ofO(1–10) m thick. Changes in these freshwater
lenses are driven by the interaction between buoyancy and

shear forces; they can persist from minutes to hours depend-
ing on factors such as wind-driven surface mixing, lateral
advection, convective overturning during nighttime cooling,
and internal and surface waves (Brainerd and Gregg 1997;
Drushka et al. 2019; Price 1979; Tomczak 1995; Wijesekera
et al. 1999). While most fresh layers disperse within a few
hours, in some cases fresh layers have been shown to persist
for tens of hours (Walesby et al. 2015). Long-lasting freshwa-
ter layers can inhibit turbulent vertical mixing and decrease
exchanges between the mixed layer and the thermocline
(Schmitt 2008). This can lead to the formation of diurnal
warm layers (Webster et al. 1996), enhanced surface currents
(Wijesekera et al. 1999), and the suppression of near-surface
turbulent dissipation below lenses (Smyth et al. 1997). In
addition, fresh lenses may provide unexpected regional varia-
tion of internal wave energy propagation, dissipation, and mix-
ing in the thermocline (Schmitt 2008). While this work pertains
to freshwater lenses rather than barrier layers (Soloviev et al.
2015), it is interesting to note that de Boyer Montégut et al.
(2007) identified the presence of unexplained barrier layers
off the California coast at 258–458 latitude. This study may
explain the mechanisms behind this previously unexplained
phenomenon.

While the ocean salinity response to precipitation in the
CCS has received little attention to date, there is a growing
pool of research on the ocean’s response to freshwater input
in the tropics, as experiments involving surface salinity pro-
filers (SSP) provide high-resolution measurements near the
surface. Results from a SSP deployed in the western tropical
Pacific in December 2011 indicate that the vertical salinity dif-
ference between 0.26- and 0.11-m depth has a cubic depen-
dence on rain rate and is inversely proportional to wind speed
(Asher et al. 2014). Other studies have shown a linear rela-
tionship between the vertical salinity gradient and maximum
rain rate (Boutin et al. 2014; Clayson et al. 2019; Drucker and
Riser 2014; Drushka et al. 2016, 2019). However, wind speed
was not factored into all of these studies. In the cases where
wind was taken into account, results from a one-dimensional
general ocean turbulence model (GOTM) and measurements
made in the intertropical convergence zone (ITCZ) in the
eastern tropical Pacific during the second Salinity Processes in
the Upper-Ocean Regional Study (SPURS-2) showed the
maximum difference in salinity between 1- and 5-m depth and
the surface to be inversely proportional to wind speed
(Drushka et al. 2016, 2019). In this study, we focus on the sub-
tropics, where studies to date have been limited.

c. Atmospheric rivers in the California Current System

ARs account for a substantial amount of the global water
transport, especially at midlatitudes where they can supply
more than 90% of meridional transport of atmospheric water
vapor (Ralph and Dettinger 2012; Zhu and Newell 1998).
ARs are characterized by high atmospheric water vapor con-
tent and heavy winds. Because they are associated with ex-
treme precipitation on land and over the ocean, especially in
coastal regions (Ralph and Dettinger 2012; Ralph et al. 2013),
ARs often cause devastating flooding and play a large role in
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the global distribution of moisture and drought (Ralph and
Dettinger 2011). ARs can occur in families consisting of sev-
eral (typically 2–6) consecutive ARs (Fish et al. 2019), con-
tributing to the accumulation of precipitation in the upper
ocean and on land. The AR that extends from Hawaii to the
U.S. West Coast carries moisture across the eastern Pacific
to the coast of California. Off the coast of Monterey Bay
in the CCS, 30%–48% of precipitation events greater than
5 mm day21 occur during ARs, which are responsible for up
to 82% of total rainfall in the CCS, as seen along California
Cooperative Oceanic Fisheries Investigations (CalCOFI) line
66.7 in Fig. 1, and as indicated by Guan and Waliser (2015).
Argo profiles indicate large-scale upper-ocean freshening on
average from December to February in areas of the Pacific
that receive frequent AR-associated rainfall (Giglio et al.
2020). Implications of AR events for upper-ocean stratifica-
tion and salinity are important, especially as climate projec-
tions indicate that the moisture content of ARs and the
frequency of extreme AR events and storm seasons are ex-
pected to increase as a result of a warming climate (Dettinger
2011; Payne et al. 2020; Shields and Kiehl 2016).

d. Impacts of salinity on global moisture distribution

Changes in surface salinity have broad implications for the
distribution of moisture and Earth’s water cycle. For example,
a reduction in sea surface salinity due to precipitation is hy-
pothesized to lead to a positive feedback in which the forma-
tion of buoyant freshwater layers reduces vertical mixing in
the upper ocean, which then contributes to increased SST,
and in turn leads to a further increase in atmospheric convec-
tion and precipitation (SPURS-2 Planning Group 2015). In
contrast, Williams et al. (2006) used climate modeling to show
that freshwater lenses formed from an intensified hydrological

cycle could produce a basin-scale negative sea surface temper-
ature feedback to anthropogenic human climate change. These
nuances make understanding the vertical upper-ocean salin-
ity gradient important for improving air–sea coupling in
models (McCulloch et al. 2012) and understanding the role
of upper-ocean stratification in a changing climate. Boutin
et al. (2013) also suggested that the impact of precipitation
on salinity stratification should be taken into account when
assimilating satellite data under rainy conditions. Further-
more, the Clausius–Clapeyron relationship shows a strong,
nonlinear dependence of water vapor pressure on tempera-
ture. With this relation, a rise in temperature of about 18C
leads to a 7% increase in vapor pressure, which causes changes
in the water cycle as the vapor-carrying capacity of the atmo-
sphere increases (Schmitt 2008). These changes will impact the
global distribution of rainfall and drought, which is one of the
most societally relevant aspects of climate change (SPURS-2
Planning Group 2015; Yu et al. 2020).

3. Observational data and model

A combination of observations and modeling are used to
determine the seasonal and event-based response of ocean
salinity to rain events within the CCS (308–42.58N, 1288–1158W).
Here the region is divided into three subdomains based on the
distance from shore: coastal (0–50 km), onshore (50–150 km),
and offshore (150–550 km). The distance ranges are chosen
based on the location of California Undercurrent (strongest
around 70 km offshore), the California Inshore Countercur-
rent (strongest around 150 km offshore), and the California
Current (strongest at 200–300 km offshore) as they fall
along CalCOFi line 66.7 (Rudnick et al. 2017b). The subdo-
mains include data collected along the Spray glider line, and
their bounds, perpendicular to the coast, are indicated by

FIG. 1. (a) Fraction of rain events with precipitation greater than 5 mm day21 that are also ARs and (b) fraction of
total precipitation that comes from ARs, within the region of the CCS. Events included occur between September
and March for the years 2007–19. Also depicted is the trajectory traveled by CUGN Spray glider along CalCOFI line
66.7, the location of the MBARI M1 mooring (purple) and the coastal (yellow), onshore (cyan), and offshore (red)
locations that were used during model analyses. The gray dashed line represents CalCOFI line 66.7 off the coast of
Monterey, CA.

HO F FMAN E T A L . 1869AUGUST 2022



three colored markers in Fig. 1. Model initialization and
forcing data are taken from observations and reanalysis
fields at three coordinate locations (36.678N, 122.068W;
36.118N, 123.478W; and 34.438N, 127.138W, which are 30,
150, and 550 km offshore from Monterey Bay, respectively)
within the three subdomains (coastal, onshore, and off-
shore). Figure 1 shows these locations and indicates the
location of the Spray glider path along CalCOFi line 66.7 and
the Monterey Bay Aquarium Research Institute (MBARI)
M1 mooring location.

a. Instrument accuracy

The accuracy specification for conductivity–temperature–
depth (CTD) instruments in measuring salinity is equivalent
to 0.003 psu. However, this value is defined in a clean, well-
mixed calibration bath and does not take into account effects
of in situ ocean measurements. For example, the dynamic
effects of moving instruments are known to increase errors in
CTD measurements to 0.02–2.0 psu (Seabird Scientific 2016).
This is consistent with observation errors for in situ salinity
data that are found to be typically on the order of 60.01 psu
after postprocessing for quality control (Vinogradova et al.
2019; Delcroix et al. 2005). These values are similar to the
0.01 psu accuracy reported in Argo salinity measurements af-
ter delayed-mode adjustments (Wong et al. 2020). Here, we
use 0.01 psu as the threshold for a detectable salinity change.

b. ERA5

The ERA5 dataset is produced using a 4D-Var data assimi-
lation of the European Centre for Medium-Range Weather
Forecasts (ECMWF) Integrated Forecast System (IFS) by
combining a vast number of historical observations into global
estimates. Covering Earth on a 31-km (0.281 288) grid and re-
solving the atmosphere using 137 levels from the surface to
80-km height, the ERA5 dataset provides hourly estimates of
a number of surface ocean and atmospheric variables from
1979 to present (Hersbach et al. 2020). In an analysis of the
performance of five state-of-the-art global reanalyses in com-
parison to in situ data, ERA5 surface winds were found to
have the best agreement with observed variability on daily
and interannual time scales (Ramon et al. 2019). The ERA5
dataset showed significant improvements in precipitation esti-
mates compared to ERA-Interim, with the caveat that biases
still remained in the southeastern United States and on the
North American western coast (Tarek et al. 2020). Addition-
ally, reanalysis products (including the ERA5) showed the
best agreement with precipitation measurements made by
local ground stations in a comparison of a collection of sat-
ellite, reanalysis, and gauge measurements from the Fre-
quent Rainfall Observations on GridS (FROGS) dataset
for two case studies (California and Portugal) of extreme
AR events (Ramos et al. 2021). However, the ERA5 often
underestimated heavy precipitation compared to gauge meas-
urements, with a mean absolute percent error of 68% (Ramos
et al. 2021).

In this study, the ERA5 reanalysis dataset (Muñoz Sabater
2019) is used to characterize atmospheric conditions, i.e.,

atmospheric temperature, Ta (K); zonal and meridional wind
speed, UZ and UM (m s21); downwelling longwave radiation
and shortwave radiation, IL and IS (W m22); specific humidity,
SpH (kg kg21); evaporation minus precipitation, EmP (m s21);
and rain rate, R (m s21). This study uses hourly data at the sur-
face within the CCS from 2007 to 2019 to match the date range
of the dataset for the Spray glider along line 66.7.

c. SIO-R1 AR catalog

The Scripps Institution of Oceanography (SIO)-generated
AR catalog, the SIO-R1 AR catalog (Gershunov 2017), pro-
vides a record of AR activity on the North American west
coast (20.08–60.08N, 1608–1008W). The dataset indicates
whether or not an AR was detected (0 or 1) for each 6-hourly
time step on a 2.58 resolution spatial grid (Gershunov et al.
2017). Here, this catalog is used to investigate the fraction of
events with rainfall exceeding 5 mm day21 that are associated
with ARs (Fig. 1), as well as the total number of AR events
during the rainy season each year. Here we define the AR as
“detected” if there is an AR in the grid cell or neighboring
grid cell. To quantify rain events, we use ERA5 precipitation
estimates at the AR locations.

d. CUGN spray line 66.7

The California Underwater Glider Network (CUGN) pro-
vides continuous sampling along CalCOFI line 66.7 by one
Spray glider at a time (Rudnick 2016). The glider travels from
Monterey Bay to a distance about 500 km offshore, vertically
profiling in a sawtooth pattern. Each cycle to 500-m depth
and back to the surface covers 3 km of horizontal distance
and takes roughly 2.75 h. The quality controlled Spray glider
dataset provides temperature and salinity observations from
the glider ascent phase at discrete 10-m vertical levels, with
the shallowest measurements available at 10-m depth (Davis
et al. 2008). Finer resolution (raw) data are available, but per-
forming quality control at depths shallower than 10 m is be-
yond the scope of this study. Salinity collected by the Spray
glider is reported in practical salinity units (psu). Data are
available from April 2007 through present (Rudnick et al.
2017b). Here glider data are used to characterize the ocean’s
salinity response to atmospheric precipitation on seasonal
time scales and to initialize model runs (as described in
sections 4a and 4b). Spray glider data allow us to investi-
gate precipitation impacts on salinity at larger spatial
scales over the CCS. One limitation of the Spray dataset
for this study is that the temporal response of the upper-
ocean salinity to precipitation is not fully captured at a par-
ticular location due to the fact that the glider is neither a
Lagrangian nor an Eulerian platform and is traveling cross
shore.

e. MBARI M1 mooring

The MBARI M1 mooring (Chavez 2015) measures continu-
ously at one location. Therefore, in comparison to Spray,
it has the disadvantage of conveying no spatial information,
but the advantage of not aliasing spatial variability into
temporal fluctuations. Here we use surface measurements
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(nominal depth of 1 m) of ocean salinity at a location 20 km
offshore of Monterey Bay (36.758N, 122.08W; purple marker
in Fig. 1) from 2007 to 2019. This dataset is used to investigate
the seasonal response of salinity to precipitation, to compare
to model output, and to make event composites.

f. MITgcm 1D model

In this study, a one-dimensional configuration of the MITgcm
(Adcroft et al. 2018), with vertical transport equations for mo-
mentum and heat, is used to run both seasonal (September–
March) and event-based simulations (4-day sensitivity studies
and 9-day case studies) aimed at characterizing the ocean’s re-
sponse to precipitation from ARs on different time scales. The
MITgcm uses the nonlocal K-profile parameterization (KPP)
vertical mixing scheme of Large et al. (1994) with a standard
configuration as listed in Adcroft et al. (2018). Turbulent heat
fluxes are computed in the model using methods from Large
and Pond (1982). Details of model setup for each experimental
run (seasonal, event sensitivity, and event case studies) are pro-
vided in Table 1 and in the sections that follow.

4. Methods

a. Seasonal time scale

1) OBSERVATIONAL METHODS

The seasonal response of ocean salinity is first investigated by
looking at the MBARIM1 mooring surface (1 m) salinity meas-
urements from 2015 to 2018, which are compared with model
output from simulations run at the mooring location. Model
forcing and initialization are discussed further in section 4a(2).
This is followed by analysis of the annual and interannual (2008
through 2019) salinity anomaly from the Spray glider along
line 66.7 in the CCS. As part of this analysis, we assess a
one-dimensional salinity budget at a location 15 km off-
shore along the glider path using the hypothesis that
changes in salinity within the water column will be fully ex-
plained by E 2 P in the form of an equation,

d
dt

�Z

0
S dz

Z





 � (E 2 P)Sref

Z
: (1)

Here we ignore advection and diffusion and calculate the
amount of precipitation required to produce the rain-year
salinity anomaly over a depth Z, in the limiting case where
evaporation E (from ERA5) and rain P are the only con-
tributing factors.

Additionally, over the rain-year from September through
March, cumulative precipitation is calculated from ERA5 and
compared with change in salinity at 10-m depth from the
Spray glider along line 66.7 in coastal, onshore, and offshore
regions. Glider offshore distance is calculated by comparing
Spray glider data for latitude and longitude at given time steps
with the initial coordinate location 5 km offshore. Salinity
data are binned monthly and into coastal, onshore, and off-
shore subdomains for each year, and averaged over each bin.
Changes in salinity from September (start of the rain-year) to

March are calculated for each year from the averages of the
binned values. Along the line 66.7 glider path, ERA5 precipi-
tation data are extracted at the fixed locations used to repre-
sent the coastal, onshore, and offshore regions, respectively
(Fig. 1). ERA5 data from each location are binned by month
to calculate cumulative monthly precipitation, from which cu-
mulative precipitation is calculated from September through
March, to be compared with change in salinity. Uncertainties
for salinity and rainfall between September and March are
computed by calculating the standard error of the mean in
each bin and then propagating errors through the calculations
to produce cumulative rainfall or salinity differences.

2) MODEL SETUP

The seasonal, one-dimensional MITgcm model is run over
a period of 213 days (1 September–1 April) with a 0.5-h time
step. Atmospheric forcing is applied daily and taken from
ERA5 daily mean (longwave and shortwave radiation, zonal
and meridional winds, atmospheric temperature, and specific
humidity) and daily cumulative (precipitation) values. Forcing
is applied for three different locations representing the
coastal, onshore, and offshore subdomains. Initial conditions
are taken to be temperature and salinity depth profiles, inter-
polated to 0.5-m intervals, from the Spray glider dataset along
line 66.7, which provides measurements at 10-m intervals.
The shallowest Spray measurements are at 10 m, so T and S
between 0 and 10 m are set to the 10-m values, under the
assumption of a well-mixed surface layer with constant T and
S in the upper 10 m. Profiles of T and S are binned by month
and by offshore distance for each year. Initial profiles are set
as the calculated average profiles in September for each year
(2008–19) and offshore distance regime. When no data are
available for September in a given year/distance bin, the T and
S profiles from October are used as initial conditions. This is
the case for 2008 (coastal bin), 2012 (coastal and onshore
bins), and 2017 (coastal bin). The model is run for the upper
140 m of the water column, using 280 vertical levels with 0.5-m
spacing. The depth of 140 m was chosen to allow ample room
for the downward propagation of the salinity response, as even
for cases of high wind speeds, the salinity response to freshwa-
ter input was not found to propagate below 120-m depth. These
model parameters are also listed in Table 1.

3) MODEL VALIDATION

The use of a one-dimensional model will allow for analysis
without the influence of ocean processes such as horizontal
advection, upwelling, and runoff, thus isolating the impact of
rainfall and wind speed on upper-ocean salinity changes. We
validate the model for long-term studies by comparing the ob-
served and modeled March-minus-September salinity differ-
ences for all rain rates over the years 2008–19 (Fig. 2). To do
this, the methods discussed in section 4a(1) for Spray glider
data are applied to model output. A linear regression of ob-
served to modeled salinity difference finds a slope of 1.25 with
an r2 value of 0.52, which is statistically significant at the 99%
level. Figure 2 also shows that a 1:1 ratio between observed
and modeled data falls within the 99% prediction interval
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(green shading) and is close to the upper bound of the 99%
confidence interval (blue shading) for the linear fit. Here the
prediction interval represents the estimated range of a future
observation, while the confidence interval represents the
range of values for the linear regression slope and indicates
how well this slope has been determined. Higher cumulative
rainfall in Fig. 2 typically corresponds to a larger rainy-season
decrease in salinity, as seen in the gradient of the color-coded
data points, where large negative salinity differences (salinity
decrease) are dark blue (high cumulative rain), and large pos-
itive salinity differences (salinity increase) are tan (low cumu-
lative rain). Spray salinity differences tend to be larger than
model differences, indicated by the slope being slightly large
than one (i.e., for every 1 unit change in modeled salinity dif-
ference, Spray measures a change of 1.25 units). This differ-
ence in slope could be indicative of the model not including
horizontal advection, upwelling, or runoff.

b. Event studies

1) OBSERVATIONAL METHODS

To assess the salinity response to precipitation on an event
basis, we analyze ERA5 precipitation at the location of the

MBARI M1 Mooring surface salinity measurements. Event
composites are created by averaging rainfall, wind speed, and
salinity from 85 heavy rain events as a function of time rela-
tive to the start date, described below. Events are included if
daily cumulative precipitation is greater than a threshold of
5 mm and there has not been another rain event of this size
within 10 days prior to the event start date. Events are de-
fined to start (day 0) on the first date with rainfall exceeding
the threshold. For the MBARI M1 mooring, events are cho-
sen within a date range from January 2007 through March
2019. Composite analysis is not carried out using data from
the Spray glider. While the decrease in salinity in response to
precipitation is visible for a few glider events (not shown), the
motion of the Spray glider makes composites too difficult to
compute in a consistent way.

2) MODEL SETUP, SENSITIVITY STUDIES

Event-based sensitivity studies are run in the one-dimensional
configuration of the MITgcm for 4-day periods to study the
impact of AR events on the formation of freshwater lenses.
Atmospheric forcing is applied every minute with the 60-s
time steps linearly interpolated from hourly ERA5 fields.

TABLE 1. Model parameters for seasonal, event sensitivity, and event case studies.

Study time scale Seasonal Event sensitivity Case studies

Model parameters
(one-dimensional MITgcm)

Time step (s) 1800 60 60
Run time (days)/number of

time steps
213/10 244 4/5760 9/13 020

Depth (m)/dZ (m) 140/0.5 140/telescoping 140/telescoping
External forcing input

interval (s)
86 400 60 3600

Number of runs 13 (September–March
2008–19)

36 (six rain rates/six wind
speeds)

5 (16 Oct 2016, 27 Nov 2016,
11 Dec 2016, 19 Jan 2017,
17 Feb 2017)

Initial conditions (from Spray)
Salinity profile Averaged over September for

each year within each
offshore distance regime
(coastal, onshore, offshore)

Constant from salinity average
over five coastal AR events
at 10 m depth, telescoping
depths

Salinity on event start date at
coastal location,
interpolated to telescoping
depths

Temperature profile Averaged over September for
each year within each
offshore distance regime
(coastal, onshore, offshore)

Temperature average over five
coastal AR events,
interpolated to telescoping
depths

Temperature on event start
date at coastal location,
interpolated to telescoping
depths

External forcing (from ERA5)
Rain rate Daily cumulative Idealized 12-h Gaussian pulse

(0, 2, 3, 4, 5, and 8 mm h21)
Hourly

Wind speed Daily mean Idealized constant over four
days (0, 2, 4, 8, 12, and
16 m s21)

Hourly

Atmospheric temperature,
specific humidity, and
shortwave and longwave
radiation

Daily mean Constant (Ta, 13.18C;
SpH, 0.008 kg kg21;
Is, 2106.3 W m22; IL,
2323.2 W m22), average
over five AR events at the
coastal location

Hourly
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To isolate the impact of wind speed on surface mixing, val-
ues for radiation (IL and IS), specific humidity (SpH), and
air temperature Ta are kept constant and set as the calcu-
lated average value of the ERA5 dataset over five coastal
AR events from October 2016 to February 2017. Character-
istic precipitation, wind speed, and event duration are de-
fined based on commonly occurring conditions for AR
events, as noted in the statistical distribution of different
conditions for composited AR events from Table 2 in Ralph
et al. (2013). Precipitation is applied as a 12-h-long Gauss-
ian pulse (defined by the full width of the Gaussian at one
tenth of the peak) with maximum rain rate (R = 0, 2, 3, 4, 5,
and 8 mm h21) occurring during the 48th hour, preceded
and followed by a period of zero rainfall. The Gaussian
pulse was chosen based on work of Drushka et al. (2016),
who showed that for the same cumulative rainfall, the maxi-
mum rain rate was more important than pulse width in de-
termining the salinity response. Wind speed is applied as a
constant value (U = 0, 2, 4, 8, 12, 16 m s21) over the 4-day
time period. The six different rain conditions and six differ-
ent wind conditions result in a total of 36 model runs.
Figure S1 in the online supplemental material shows an ex-
ample of idealized forcing and modeled ocean response for
one sensitivity run. The model parameters for this study are
also listed in Table 1.

For event-focused simulations, the initial temperature pro-
file is set as the interpolated profile averaged over five coastal

AR events from October 2016 to February 2017 from Spray
glider data on line 66.7. The initial salinity profile is constant
with depth to allow the vertical change in salinity from precip-
itation to be distinguished from mixing. The salinity at all
depths is set to the 10-m salinity from Spray averaged over
the same five coastal AR events. The decision to adopt a
constant vertical salinity profile is justified by the results of
sensitivity tests that indicate that variations in the stratifica-
tion of the initial vertical salinity profile have little effect on
the salinity response to rain events (not shown). In contrast,
in a different regime in the tropics, Drushka et al. (2016) and
Iyer and Drushka (2021) find that rain falling on saltier water
will lead to a larger salinity stratification than rain falling on
freshwater, and that the preexisting background salinity can
have a larger impact on the salinity response to rain than the
rain conditions themselves.

Following Drushka et al. (2016), two metrics are defined in
order to characterize the ocean response to rainfall: the depth
(DL) and duration (TL) of the fresh lens. Here the fresh-lens
depthDL is defined as the depth at which the salinity anomaly
relative to the salinity at the first time step is 25% of the maxi-
mum anomaly. In contrast Drushka et al. (2016) defined DL

where the salinity anomaly relative to a no-rain control run
was 10% of the maximum anomaly. The lifetime of the fresh
lens TL is defined as the time period over which the fresh-lens
depth is nonzero. The definition of DL differs from that of
Drushka et al. (2016) in order to account for AR conditions
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FIG. 2. Observed vs modeled March-minus-September salinity differences (psu) color coded
by cumulative rainfall (cm) for the years 2008–19. The solid black line represents the linear
regression of observed to modeled salinity data for all rain rates, plotted with 99% confidence
(blue shading) and prediction (green shading) intervals. The slope and r2 value for the fit are
indicated in the legend. The black dotted line indicates the 1:1 relationship. Data are included
from coastal, onshore, and offshore locations. With 27 data points, linear regression coefficients
are statistically different from zero at the 99% confidence level if r2 . 0.24; our results exceed
this threshold.
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in the CCS, as ARs in the CCS have smaller rain rates but
longer duration than rain events in the tropics. To compare
the model simulations for different external forcing cases, we
calculate the salinity difference DS as the salinity at 0.01-m
depth at each time step subtracted from the 0.01-m depth
salinity at the first time step. A positive DS therefore repre-
sents a decrease in surface salinity over time. The maximum
vertical salinity difference DSmax is defined as the maximum
value of DS within the 4-day time period.

3) MODEL SETUP, CASE STUDIES

Event case studies are run using the one-dimensional
configuration of the MITgcm to study the impact of specific
AR events on the formation of freshwater lenses. The
event length is set to nine days to match the MBARI com-
posite studies. Five different coastal AR events are chosen:
(i) 16 October 2016, (ii) 27 November 2016, (iii) 11 December
2016, (iv) 19 January 2017, and (v) 17 February 2017. Atmo-
spheric forcing is applied hourly and is linearly interpolated
to 60 s time steps by the model. Values for rain rate (R), wind
speed (UZ and UM), radiation (IL and IS), specific humidity
(SpH), and air temperature (Ta) are taken from the ERA5
dataset at the coastal location for a duration starting 3 days
before and ending 6 days after the event date. Figure S2 in
the online supplemental material shows an example of the
forcing for one of the five runs. The initial temperature and
salinity profiles are set as the profile for each event starting
date from the Spray glider at the coastal location along line
66.7, interpolated to telescoping depths. As in the sensitivity
studies, DSmax is calculated for each model run as the maxi-
mum value of the difference in salinity at 0.01-m depth be-
tween each time step within the 9-day time period and the
first time step. Model output from case studies is compared
to that of the sensitivity studies, as well as observational
results from the MBARI M1 mooring. The model parameters
for this study are also listed in Table 1.

4) MODEL VALIDATION

A one-dimensional model (the MITgcm ocean column;
Adcroft et al. 2018) will allow for analysis without impacts
from horizontal advection or runoff. To validate the use of
the MITgcm for event-based studies, we first run with exter-
nal forcing and initial conditions used by Drushka et al.
(2016) for a site in the tropical Pacific and compare with the
published results of the General Ocean Turbulence Model
(GOTM) by Drushka et al. (2016). For consistency with
GOTM outputs, in this model validation DSmax is defined as
the maximum vertical salinity difference between 5 m and
0.01 m, following Drushka et al. (2016). MITgcm results are
similar to GOTM results (Fig. S3). One difference is that
the MITgcm KPP tends to mix deeper and preserves the
freshwater lens for a shorter duration, except in the case
of 10 m s21 winds and 2 mm h21 precipitation rates (not
shown). As a result, the maximum vertical salinity differ-
ence between 5 and 0.01 m for a given model run is gener-
ally smaller in the MITgcm than in GOTM. Conversely,
at higher rain rates, GOTM has greater mixing of large

freshwater inputs at the surface, resulting in a lower
maximum vertical salinity difference than in MITgcm for
2 m s21 (not shown) winds and 50 mm h21 precipitation
rates. However, for most rain and wind cases a statistically
significant 1:1 linear fit is exhibited between the two mod-
els (Fig. S3). Therefore, differences between GOTM and
the MITgcm are judged minor. Since the MITgcm is consistent
with the one-dimensional turbulence model, we choose to use
it here because it can later be extended to run in a three-
dimensional configuration, which will aid in future work con-
sidering ocean processes such as horizontal advection, runoff,
and upwelling.

Sensitivity experiments are run to test other parameters
of the MITgcm, including the model time step, the KPP
Richardson number threshold for mixing, and the initial
stratification (not shown). Model results are relatively in-
sensitive to time step and only sensitive to Richardson
number threshold at high rain rates in combination with low
wind speeds. Initial stratification is tested by changing the
input vertical salinity profile to have different slopes within
a salinity range of 33–34 psu in the upper 20–80 m of the
water column (not shown). These changes are found to have
little impact on the vertical changes in salinity in response to
different rain rates.

5. Results

a. Seasonal response

While changes in the salinity of the CCS have previously
been attributed mainly to advection (Lynn and Simpson
1987; Schneider et al. 2005), the time series for the MBARI
M1 Mooring salinity and the MITgcm model output salinity
at 1-m depth in comparison to ERA5 daily cumulative pre-
cipitation both suggest that local precipitation also impacts
ocean surface salinity (Fig. 3). A seasonal freshening is pre-
sent from September to March for the years 2015–18 in both
mooring and model data, with the exception of 2017 for the
mooring (Fig. 3). Here, the mooring data often show the
freshening to be a response to rain events, as typically spikes
in precipitation (10–35 mm day21) are followed by de-
creases in salinity (0.1–1.0 psu). The comparison of model
and mooring salinities in Fig. 3 shows that the mooring has a
more drastic salinity response immediately following rain
events, while the model response is more gradual (up to
0.25 psu). While Fig. 3 suggests a relationship between
seasonal precipitation and salinity change, its inclusion here
is mainly intended as an introduction to the idea that salin-
ity changes in the upper ocean may be linked to precipita-
tion. Data from the MBARI M1 mooring are further
analyzed in sections 5b(1) and 5b(3).

We also examine annual and interannual variability of
salinity as measured by the Spray glider and precipitation
from ERA5 (Fig. 4). The annual climatological salinity
anomaly in Fig. 4a shows that at all locations there is a nega-
tive salinity anomaly (blue) during the rainy season months
of October–April. A positive anomaly (red) is seen during
the summer months May–September. This pattern is stronger
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at the coast than offshore. The annual cycle of negative
anomaly in the winter (October–April) and positive anomaly
in summer (May–September) is also often visible in the full
time series (Figs. 4b,d). For example, high precipitation in
the 2016/17 rainy season (Fig. 4d) coincides with a negative
salinity anomaly (Fig. 4d and blue in Fig. 4b), while lower
precipitation in the 2017/18 season coincides with a positive,
or less negative, salinity anomaly (Fig. 4d and red in Fig. 4b).
Figure 4e shows that the salinity anomaly averaged over the
top 40 to top 150 m is rather insensitive to the depth range
over which it is averaged (red lines), suggesting that processes
other than local rain (e.g., runoff, advection) play a role in
these salinity changes. However, the all-rain scenario is used
here as a limiting case by applying these salinity anomalies in
Eq. (1) to calculate the amount of precipitation that would
theoretically produce the anomaly if evaporation and rain
were the only contributing factors (blue line, Fig. 4e). This in-
formation is then used to compute the ratio of observed cu-
mulative local precipitation from September to January of
each year to the theoretical cumulative precipitation that
could account for the annual cycle of freshening. Here,
Fig. 4f shows that ratio and indicates that local rain could
potentially account for up to 100% of the annual cycle of
freshening in the upper 50 m in this limiting case in which the
system depends only on vertical mixing, with no effect due to
horizontal advection. The precipitation required to produce
the annual salinity anomaly over the depth range increases

with increasing depth, which leads to estimated rain fraction
decreasing with increasing integration depth. In other words,
as we integrate to greater depth, a smaller portion of the
salinity signal is expected to be due to rain. Determining the
mechanisms responsible for the residual, which possibly
include horizontal advection, runoff, upwelling, or downwel-
ling, is outside the scope of this study.

To characterize upper-ocean freshening in response to
precipitation, for both glider and model data, we plot the
March-minus-September salinity differences at 10-m depth
as a function of cumulative rainfall at coastal, onshore, and
offshore locations (Figs. 5a–c). We also include salinity dif-
ferences as measured from the MBARI M1 mooring at the
coastal location. The quantities appear anticorrelated: high
cumulative rainfall typically corresponds to larger salinity
decreases (Figs. 5a–c). For glider, mooring, and model data,
least squares fits show negative slopes and r2 values that
are statistically significant at the 95% level (corresponding
to r2 . 0.30 for 12 years of data), except at the offshore lo-
cation. These r2 values suggest that precipitation can ex-
plain a significant portion of the variance in the surface
salinity difference over the rainy season at coastal and
onshore locations (52% and 59% for the glider data, 50%
for the mooring data, and 84% and 62% for the model out-
put). The offshore region does not always show a salinity
decrease over the course of the water year, and it also tends to
experience a lower cumulative rainfall than coastal and onshore
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FIG. 3. Time series showing salinity (psu) for MITgcm one-dimensional model runs (red, solid) and MBARI M1 mooring (red, dashed)
at 1-m depth, compared to ERA5 rain rate (mm day21) (blue) from September through March in (a)–(d) 2015–18. The black dashed line
represents the initial salinity in September for comparison.
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locations (15–45 cm for offshore in comparison to 20–70 cm for
coastal). The model response differs from the observational
data in that the model tends to show a smaller decrease in salin-
ity over the season (Figs. 5a–c), as discussed in section 4a(3).

Given the one-dimensional nature of the model, external
forcing would be expected to explain 100% of the variance
in salinity changes, which is not the case in Fig. 5. Here, un-
explained variance results from not including evaporation
and analyzing salinity changes only at the surface, thus not
capturing mixing of the freshwater input to further depths.
When comparing evaporation minus precipitation to the
salinity change integrated over all depths, 100% of the
variance is explained by the model for all locations (not
shown).

To further investigate the role that ARs play in seasonal
upper-ocean freshening, we compare the number of AR
events to the March-minus-September 10-m salinity differ-
ence for glider data at the three locations (Figs. 5d–f). Years
with more ARs tend to exhibit larger salinity decreases, as
seen in Figs. 5d–f and as indicated by the negative slopes of
the regressions. This is the case except in 2017 at the off-
shore location, when an increase in salinity is seen despite a
large number of ARs (Fig. 5d). Similarly to the relationship
between cumulative rainfall and salinity difference, this
trend is statistically significant at the 95% level, except at
offshore locations, and r2 values suggest that ARs can
explain a significant portion of the variance in salinity

difference over the rainy season for coastal and onshore
locations. At offshore locations, relationships between the
number of AR events and salinity difference (Fig. 5d) or
precipitation and salinity difference (Fig. 5a) do not exhibit
r2 values for linear regression that are statistically signifi-
cant. The lack of correlation between local rainfall and
freshening at offshore locations could be caused by salinity
changes related to processes other than rainfall, such as
advection.

b. Event-based response

1) EVENT COMPOSITES

While the results of section 5a demonstrate that in the
CCS region, the upper ocean freshens more during high
rainfall years than it does in low rainfall years, the question
of whether individual rainfall events are detectable in
upper-ocean salinity remains. We begin examination of the
ocean salinity response to rain events on short time scales
by using event composites. Figure 6 shows a time series
composited from 85 events that occurred at the MBARI M1
mooring location from January 2007 to March 2019 (see
Fig. S4). The rain events that are in the composite analysis
are shown as both cumulative rain over 6 h (red) and daily
cumulative precipitation (blue), whereas salinity is plotted
as a 6-hourly moving mean. In Fig. 6, relative day zero represents
the first day that rainfall exceeded a threshold of 5 mm day21

FIG. 4. (a) Climatological annual cycle and (b) multiyear time series of salinity anomaly as a function of offshore distance at 10 m
depth as measured by the CUGN Spray underwater glider on line 66.7. (c),(d) Salinity anomaly averaged over offshore distances
from 0 to 50 km (red) and daily precipitation with a 30-day moving mean at the coastal location (blue; offshore distance , 50 km):
annual signal averaged over 2007–19 in (c) and time series in (d), showing interannual anomaly for salinity and a 30-day moving mean
for daily precipitation. (e) Salinity anomaly averaged over different depths (40, 50, 70, 100, and 150 m) in the upper ocean at 15 km
offshore (red) and theoretical daily precipitation that would be required if local rain was the only factor leading to a change in salinity
(blue). (f) Ratio of observed cumulative precipitation from September to January of each year to cumulative precipitation that would
be required to produce the annual salinity anomaly in (e) for different depths. Spray data from Rudnick et al. (2017a); evaporation
and precipitation data from ERA5.
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[a result of the event compositing discussed in section 4b(1)].
The wind speed (Fig. 6b) remains relatively constant at about
5 6 1 m s21 for the duration of the composite time series,
with a slight peak on relative days 0–1. Figure 6c shows that the
surface salinity measured by the M1 mooring decreases over
the duration of the composite time series, especially during the
days with peak rain (day 0 through 1). While there is an in-
crease in salinity from day 1 through day 4, overall the salinity
is lower at the end of the composite time series than at the be-
ginning. The results from this composite study indicate that sa-
linity measurably decreases in response to rain on an event
basis. To assess the mechanisms governing this freshening pat-
tern, we use the model to carry out event sensitivity studies.

2) MODEL SENSITIVITY STUDIES OF RAIN AND WIND

EFFECTS IN FRESHWATER LENS FORMATION

Event-based studies are performed using the one-dimensional
MITgcm configured for the CCS. The model allows us to isolate
the impacts of rain and wind on upper-ocean salinity stratification
and to determine whether the resulting vertical salinity change
will be detectable, given the 0.01-psu resolution of CTD in-
struments (as discussed in section 3a). While the range of sa-
linity responses depends on rain rate and wind speed on
event time scales, this study highlights two key mechanisms

that govern salinity changes as a function of precipitation
and wind speed: (i) mixing of the freshwater or (ii) develop-
ment of freshwater lenses at the surface.

Figure 7 shows the salinity anomaly in the upper ocean in
response to a range of model input conditions (wind speeds
increase from 2 to 16 m s21 from top to bottom, and rain
rates increase from 2 to 8 mm h21 from left to right), normal-
ized to the maximum salinity anomaly for each given wind
speed and rain rate. Two extreme cases are detected: (i) vertical
mixing of the freshwater to depths greater than 20 m at high
wind speeds (U . 8 m s21) and (ii) development of freshwater
lenses at the surface for low wind speeds (U # 8 m s21),
where the depth of the fresh lens is depicted by the black
lines of Fig. 7. This is consistent with results from Thompson
et al. (2019), where stable rain layers were found to persist with
wind speeds up to 9.8 m s21. As wind speed increases (moving
top to bottom) the freshwater lens is brought to a greater depth
and remains over a shorter time period than at low wind speeds,
except in the case of R = 2 mm h21 where the small freshwater
input may impact the trend in lens depth. As rain rate increases
(moving left to right) the freshwater input is mixed over a
deeper range, except in the case of U = 2 m s21; additionally,
the lens has a longer duration with increasing rain rate. These
results are reproduced in Fig. 8.
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FIG. 5. (top) Cumulative rainfall (cm) and (bottom) number of AR events as a function of salinity (psu) difference between March and
September for the years 2008–19 at (a),(d) offshore, (b),(e) onshore, and (c),(f) coastal locations. Panels (a)–(c) include CUGN Spray line
66.7 observations (blue), MBARI M1 mooring observations (red, dotted), and MITgcm one-dimensional model runs (red, solid) at 10 m
depth. The blue and red lines represent least squares fits to glider, mooring, and model data with the slope and r2 values labeled in the
legend. Panels (d)–(f) show data from SIO-R1 AR catalog and CUGN Spray line 66.7 observations (blue) at 10-m depth. Blue lines
represent linear regressions, with slopes and r2 indicated in the legends.
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The dependence of the vertical salinity gradient on rain
and wind speed is shown in Fig. 8. In Figs. 8a and 8b, the
maximum vertical salinity difference DSmax [defined in
section 4b(2)] increases as a function of rain rate and de-
creases as a function of wind speed. Modeled freshwater lens
depth (DL) and duration (TL) are shown as a function of
wind speed and rain rate in Figs. 8c and 8d. Here, an in-
creased wind speed corresponds to deeper mixing, bringing
freshwater to a greater depth, therefore decreasing stratifica-
tion and decreasing the magnitude of DSmax. At low wind
speeds there is minimal mixing, and changes in salinity are
confined to the surface (,20 m) and are not prominent at
depth, leading to a larger DSmax (Figs. 8a,b). In this case, a
freshwater lens is formed at the surface, and stratification is
enhanced. Figures 8a and 8b (reproduced in Fig. 9) also show
model output from five event case studies (the colored
circles), which fall within the same range for DSmax as the output
from the sensitivity studies with similar rain rates and wind
speeds. The black dotted line in Fig. 9 represents the salinity
change that is detectable by CTD instruments (0.01 psu). Almost
all of the events in the sensitivity studies exceed this threshold,
with the only exception being for a rain rate of 2 mm h21 in com-
bination with a wind speed of 16 m s21.

The results show a relationship between wind, rainfall, and
salinity similar to that suggested by Drushka et al. (2016):
DSmax = ARmaxU

b, where constants A and b are solved for us-
ing model outputs. Here, rain rates of 0 mm h21 and wind
speeds of 0 m s21 are omitted from the regression because the
fit is representative of cases where rain and wind are present.

For the MITgcm model runs, A = 0.326 0.05 psu (mm h21)21

and b = 1.446 0.06. Uncertainties of linear regression param-
eters are calculated using Monte Carlo methods (Fig. S5).
The values of the regression parameters are within five
standard deviations of values found by Drushka et al.
(2016): A = 0.11 6 0.03 and b = 1.1 6 0.03. The values of
these coefficients are also similarly related to those found in
studies done without the wind dependence both by Drucker
and Riser (2014), who found a value A = 0.14 psu (mm h21)21

averaged over the tropics, and by Boutin et al. (2014), who
found region-dependent values of A that ranged from 0.14 to
0.22 psu (mm h21)21 at moderate wind speeds. Differences in
these coefficients likely arise as a result of the difference in du-
ration of the applied rain pulse (12 h here for AR studies in
CCS versus 1 h for studies in the tropics). While this relation-
ship has been applied in the tropics for the references listed
above, we find it does well in representing AR events in the
CCS, with an r2 of 0.97 (Fig. S5). It should be noted that this
equation is appropriate for one-dimensional models that do not
include advection and may not work well in cases where advec-
tion is significant. However, case studies in the following section
[section 5b(3)] show this equation does well in representing the
magnitude of the salinity response to AR events in comparison
to in situ measurements (Figs. 9 and 10).

Freshwater lenses reach depths of 5–50 m, depending on
rain rate and wind speed (Fig. 8c). The depth of the fresh
lens increases with wind speed for all rain rates, except in
the cases of 2 and 3 mm h21 rain rates where wind is greater
than 8 m s21. These exceptions likely occur because the
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FIG. 6. Composite time series of (a) 6-hourly rain (mm; red) and daily cumulative rain from day23 to day n (mm; blue), (b) wind speed
(m s21) with a 6-h moving mean, and (c) salinity difference (psu) between relative day n and relative day 0 for 85 rain events occurring at
the MBARI M1 mooring location from January 2007 to March 2019. The solid line (m) represents the mean of all composite events and
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which is zero on day zero because the anomaly is in reference to this day. Events are included if daily cumulative precipitation on day zero
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the first date that rainfall exceeds the threshold; conditions are shown from 3 days before through 6 days after this date. Rainfall and wind
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freshwater input is too small to cause salinity changes at in-
creasing depths during mixing. Additionally, the fresh lens
depth increases with higher rain rates, as indicated by the
ordering of the colored lines, with the lowest rain rate (light
green, 2 mm h21) having the smallest DL and the highest
rain rate (dark blue, 8 mm h21) the largest DL. This is true
except in the cases of low wind speed and high rain rate
(U = 2, 4, and 8 m s21 and R = 8 mm h21), where the magnitude
of the salinity response is comparatively large (DSmax = 1.3, 0.55,
and 0.2 psu). These events fall outside the trend for DL be-
cause for each particular combination of wind speed and rain
rate these metrics are defined based on the maximum salinity
anomaly relative to the salinity at the first time step, which for
these extreme cases is much higher than the average salinity
anomaly for a particular rain rate or wind speed. Freshwater
lenses last anywhere from 10 to 50 h, depending on rain rate
and wind speed (Fig. 8d). The duration of the freshwater lens
TL shows a pattern of decreasing with increasing wind speed
and decreasing rain rate. For wind speeds greater than 8 m s21

the lens duration has a much smaller range of 10–15 h.
Results for the fresh lens depth, DL, are in agreement with

the 20-m mean stable layer depth in central Indian Ocean
found by Thompson et al. (2019). These results also show sim-
ilar trends to the tropical results of Drushka et al. (2016). One

difference is that for these studies of characteristic AR events
in the CCS, the depth and duration of the freshwater lens are
much larger than studies done in the tropics. This is likely a re-
sult of the fact that AR events in the CCS have a much longer
rainfall duration than rain events in the tropics (12 versus 1 h).
This is confirmed by runs done in the CCS with 24-h rain
pulses (not shown), where DL and TL increased even more
from the 12-h rain pulse case. It should be noted that DL

and TL are highly sensitive to the lens definition, as dis-
cussed in section 4b(2). Decreasing the percentage of the
maximum salinity anomaly that defines the depth leads to
overall increases in DL and TL. This makes sense because a
less drastic salinity anomaly is expected to reach greater
depths for a longer duration. As an example of this sensi-
tivity, for a rain rate of 8 mm h21 and U = 12 m s21, whenDL

is defined as the depth at which the salinity anomaly is 15% of
the maximum anomaly, rather than 25%, it reaches a maximum
of 80 m instead of 53 m. Correspondingly, the time TL

reaches a maximum of 95 h instead of 50 h.

3) MODEL CASE STUDIES

Event case studies are performed using the one-dimensional
MITgcm configured for the CCS at the start of each of five dif-
ferent AR events (Table 1). The model allows us to isolate the

FIG. 7. Normalized salinity anomaly in the upper 55 m of the ocean for the 4-day one-dimensional MITgcm runs and for wind speeds
from 2 to 16 m s21 and maximum rain rates from 2 to 8 mm h21. Each contour plot is divided by the absolute value of the maximum salin-
ity anomaly for the given rain rate and wind speed. Black lines represent the freshwater lens depthDL (m), defined as the depth at which
the salinity anomaly relative to the salinity during the first time step for each run is 25% of the maximum anomaly.
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impacts of atmospheric forcing on upper-ocean salinity stratifi-
cation and to determine whether the resulting vertical salinity
change may be detectable, given the 0.01-psu resolution of
CTD instruments (as discussed in section 3a). The results from
three case studies are shown in Fig. 10, where the different col-
umns (i.e., Figs. 10a,d; Figs. 10b,e; Figs. 10c,f) represent each of
the three different events. Figures 10a–c show the rain rate
(blue) and wind speed (red) from ERA5 at the coastal location
that was used as forcing for the model. Figures 10d–f show the
response of salinity difference (DS) from the first time step at
0.01-m depth for the model (red, solid) and 1-m depth for the
MBARI M1 mooring (orange, dotted). The magnitude of the
model and mooring DS responses are similar, while their tem-
poral structure is not. The mooring often has a slower re-
sponse that lasts a longer duration. These differences are
likely due to the fact that the model is one-dimensional and
solely shows a salinity response to rain, while the mooring
captures runoff and advection of waters from other loca-
tions that were impacted by the rain events, and thus
changes continue to occur once the local rain has stopped.
Here, the black dotted line indicates DS values that are de-
tectable by CTD instruments (0.01 psu), showing that all
three AR events produced measurable changes in salinity.
Additionally, Fig. 9 shows the results from five modeled
case studies overlaid on results from the model sensitivity

studies (colored circles), as a function of both rain rate and
wind speed. The black dotted line indicates DS values that
are detectable by CTD instruments (0.01 psu). All of the
case studies shown produce salinity changes greater than
the measurable threshold. The DS values for the case stud-
ies fall within the range of the sensitivity studies for a given
rain rate and wind speed, as discussed in section 5b(2).
Overall, the salinity difference DS in the modeled case stud-
ies is consistent with outputs from the model sensitivity
studies for characteristic AR events, as well as with obser-
vations at the MBARI M1 mooring.

6. Discussion

The purpose of this study has been to evaluate the impact
of atmospheric forcing on surface ocean salinity in the CCS.
A one-dimensional ocean model can help isolate the salinity
response to rainfall events in comparison to other intrinsic
ocean dynamics. While changes in salinity in the CCS have
previously been largely attributed to southward horizontal ad-
vection of low-salinity water from the northeast Pacific (Lynn
and Simpson 1987; Schneider et al. 2005), this analysis has
shown that the salinity changes could also be attributed to
freshwater inputs in the form of precipitation from atmo-
spheric rivers on both seasonal and event time scales.
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FIG. 8. Results from the MITgcm experiments using idealized environmental forcing in which the peak rain rate
and the wind speed are varied. (a) Peak magnitude of DS, DSmax, as a function of rain rate for five different wind
speeds; (b) DSmax as a function of wind speed for different rain rates; and maximum (c) thicknessDL and (d) lifetime
TL of the fresh lens as a function of wind speed at different rain rates. The DSmax is defined as the maximum value of
the salinity difference at 0.01-m depth from the salinity at the first time step within the 4-day simulation time period.
In both (a) and (b), the colored circles show model output from event case studies, with the colors representing wind
speed and rain rate, respectively.
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a. Seasonal response

Seasonal freshening in the CCS depends on cumulative
rainfall. Results in section 5a compare ERA5 rainfall to salin-
ity from observational data (mooring and underwater
glider) and one-dimensional model output. While intrinsic
ocean processes should be captured by observations, most
are not represented by the one-dimensional model. Despite
this omission, the model nonetheless shows a statistical rela-
tionship between cumulative rainfall and salinity difference
(Fig. 5). These analyses support the idea that local rainfall
may be one of several mechanisms playing a role in the sea-
sonal salinity response, and that it is a significant enough
component to account for anomalously fresh or salty years.

We find that there is a stronger salinity signal in coastal
locations for both observations and model outputs. As discussed
in section 5a, this could be attributed to the fact that there is a
higher cumulative rainfall at coastal locations. Additionally,
processes omitted by the model, including upwelling, runoff,
and advection, could all play a role in the observational results.
For example, Auad et al. (2011) suggest that upwelling of cool,
saline water enhances coastal salinity increases in the summer,
which could contribute to a larger positive salinity anomaly in
summer (September) and a larger difference in March minus
September salinity. Freshwater input from riverine runoff has
also been linked to decreases in surface salinity measurements.
AR precipitation events occur more often on land than over
the ocean (Fig. 1a), which might lead to runoff. Riverine input
from the Salinas River that discharges into Monterey Bay
has been linked to decreases in surface salinity as measured
by the MBARI M1 mooring (Kudela and Chavez 2004).
River discharge from the Sacramento/San Joaquin River
system 100 km north of the M1 mooring has also been linked
to low-salinity measurements off the coast of Monterey Bay
(Johnson et al. 1999).

Southward advection of freshwater in the low-salinity
tongue of the California Current has been previously de-
scribed as the main source of salinity changes in the CCS

(Auad et al. 2011; Lynn and Simpson 1987; Schneider et al.
2005). While we do not find evidence against this, when look-
ing at the seasonal cycle of CCS advection there are a few in-
stances of anomalous salinity that may not be linked to
advection. For example, the low surface salinity anomaly seen
50 m offshore along CalCOFI line 66.7 during the winter
months (Fig. 4.2.3.1 in Rudnick et al. 2017b) is unexplained
by the strong poleward current at this location and time which
would be expected to carry saltier water from further south.
On longer time scales (5–10 years), Schneider et al. (2005)
found that negative anomalies in salinity storage averaged
over the top 150 m corresponded to increased precipitation,
but also noted that patterns in salinity anomaly imply fresh-
water fluxes that are larger than the observed precipitation or
evaporation anomalies. This is supported by Fig. 4f, which
shows that the observed precipitation is 3%–30% of the pre-
cipitation that would be required to produce the salinity
anomaly in the upper 150 m if all other terms in the salinity
balance are ignored. While this may be the case for the salin-
ity changes in the upper 150 m, we have shown the observed
precipitation can explain up to 100% of the seasonal salinity
change in the upper 40 m.

While some of the salinity changes may be linked to runoff,
upwelling, or advection, the one-dimensional nature of the
model omits these ocean dynamics that might have a visible
impact on mooring and glider data. Nonetheless, the model
still shows a seasonal salinity response to freshwater inputs
from rain, as discussed in section 5a.

b. Event-based response

On event time scales, certain combinations of rain rate and
wind speed can lead to the formation of freshwater lenses.
Freshwater lenses may inhibit mixing of surface waters and in-
crease upper-ocean stratification, which has a variety of implica-
tions for the exchange of heat and moisture between the ocean
and atmosphere, as discussed in section 2d (SPURS-2 Planning
Group 2015; Williams et al. 2006). Understanding the structure
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FIG. 9. As in Figs. 8a and 8b, but zoomed in to enhance view of results from event case studies (colored circles).
The colored circles show model output from event case studies, with the colors representing wind speed and rain rate,
respectively. The black dotted line represents the salinity difference of 0.01 psu that is detectable by CTD
instruments.
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and evolution of these lenses is important for understanding the
possible impacts on air–sea exchanges.

The wind speed and rain rate dependences of ocean sur-
face salinity are investigated using event composites and
one-dimensional model sensitivity studies. We show that sa-
linity decreases in response to rain events (section 5b). Fur-
thermore, model results show that the salinity change
during a rain event depends linearly on the rain rate and is
inversely proportional to wind speed [section 5b(2)]. This
suggests that for low wind speeds, freshwater inputs are
trapped at the surface and lead to the formation of freshwa-
ter lenses, while high wind speeds cause freshwater from
rain to mix as deep as 50 m and prevent the formation of
long-lasting fresh lenses.

Many events characteristic of ARs in the CCS produce
measurable changes in salinity. As discussed in section 5b,
there is only one instance where the sensitivity studies do not
produce a salinity changed that exceeds the 0.01-psu detect-
able limit (low rain rate in combination with high wind
speed). Additionally, all modeled and observed case studies
produce measurable salinity changes. Case studies show that
single AR events can produce salinity decreases of up to
0.1 psu that last up to 50 h (Fig. 8). These salinity anomalies
are comparable to the decreases in salinity over the entire
rainy season, which are shown to be as high as 0.8 psu for ob-
servations, and 0.4 psu for one-dimensional models where

effects from advection, runoff, and upwelling are excluded
(Fig. 5). It should be noted that while a single AR event may
not cause a large, long-lasting drop in salinity, there is a range
of salinity change depending on the strength of the given AR.
Additionally, ARs often occur in series with several in a row,
which may lead to a larger integrated effect over time. Statis-
tics from a composite analysis of 91 AR events from Table 2
of Ralph et al. (2013) indicate that the average maximum rain
rate for these events is 4.09 mm h21 and the average wind
speed is 12.8 m s21. Based on our results, these events would
produce salinity changes above the measurable threshold, im-
plying that AR events should be detectable by CTD measure-
ments of ocean salinity.

7. Conclusions

Seasonal freshening in the CCS depends on cumulative
rainfall and atmospheric river events, in addition to other in-
trinsic ocean dynamics that previous studies have identified.
At coastal and onshore locations, the CCS freshens through-
out the rainy season due to AR events, and years with higher
AR activity are associated with a stronger freshening signal
(Fig. 5).

Event studies indicate that freshening in the CCS depends
on wind speed in addition to rain rate. Low winds lead to con-
ditions that cause freshwater lens formation, while high wind
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FIG. 10. Results from case studies for three AR events in the CCS. (a)–(c) Time series of rain rate (mm h21; blue) and wind speed
(m s21; red) that was used as model forcing from ERA5 at the coastal location; (d)–(f) time series showing the salinity difference
(DS; psu) from the first time step at 0.01-m depth for the model output (red, solid) and at 1-m depth for the MBARI M1 mooring
(orange, dotted). The black dotted line in (d)–(f) indicates the salinity difference of 0.01 psu that is detectable by CTD instruments.
The start date for event 1 in (a) and (c) is 16 Oct 2016; event 2 in (b) and (e) is 27 Nov 2016; and event 3 in (c) and (f) is 11 Dec 2016.
The model runs were initialized 3 days before this date and run until 6 days after.
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speeds mix freshwater input from rain through the mixed
layer. Results from our one-dimensional model show that
freshwater lens formation in the CCS is possible in the event
of heavy rain and low winds. For events that are characteristic
of ARs in the CCS, these lenses are formed often and can last
anywhere from 10 to 50 h. The one-dimensional model simula-
tions also suggest that events characteristic of ARs in the CCS
tend to produce changes in salinity that are greater than the
measurable CTD limit of 0.01 psu, as indicated in Figs. 9 and 10.

Because of the dependence of salinity on both rain and
wind, further investigation in the CCS would require local,
high-resolution observations of both variables, as was done in
the SPURS-2 experiment, in order to develop a more com-
plete understanding. With observations it would also be possi-
ble to validate the use of the one-dimensional MITgcm to
represent salinity changes on an event time scale, as was done
for the seasonal studies [e.g., Fig. 2 in section 4a(3)].

As discussed in section 5b(2), the freshwater lens is highly
sensitive to definition. The definitions for DL and TL that
were shown to work with GOTM for the salinity response to
rain events in the tropics (Drushka et al. 2016) were altered
slightly for results in the CCS, as discussed in section 4b(2). In
another study, Thompson et al. (2019) derived an estimate of
the stable layer depth based on wind speed and buoyancy fre-
quency. Future work could explore different forms of the defi-
nition specific to the CCS.

While this study has provided evidence that freshwater in-
puts from rain contribute to variability in ocean surface salin-
ity, the relative importance of horizontal advection, runoff,
and external atmospheric forcing has not been addressed. Ad-
vection could contribute to the evolution of freshwater lenses
by causing increased mixing and by introducing new water
into the region. Future studies could address these shortcom-
ings by considering a three-dimensional ocean model that will
show the relative importance of horizontal advection and runoff.
Additionally, large-scale surface advective salinity transport could
be estimated from observations. Future work could also look
at the response of properties other than salinity, for example,
temperature or biogeochemical properties, and thus elucidate the
impact of precipitation events on the climate state.
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