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Abstract—Enabling interactive visualizations over voluminous
satellite data collections results in both processing and I/O
(network and disk) on the server side. Hotspots may also arise
when multiple users are concurrently interested in a particular
geographical extent. In this study, we propose a novel method-
ology to support interactive visualizations through our system,
Evoke, which generates models that once installed on the client
side, substantially alleviates resource requirements on the server
side. The model, based on Generative Adversarial Networks,
dynamically generates imagery during zoom-in operations and
is space-efficient to facilitate memory-residency at the clients.

Index Terms—super-resolution, generative adversarial net-
works, in-memory storage, visual analytics

I. INTRODUCTION
Voluminous datasets generated by remote sensing technologies
play a key role in making critical decisions in domains such as
geosciences, business, public health, national security, and dis-
aster management. However, making data-centric inferences
in a timely manner is challenging given the volumes, high
dimensionality, and heterogeneity of data sources. Interactive
visual analytics allows users to identify target information and
frame hypotheses to guide and inform subsequent analytics.

Challenges in enabling interactive visual analytics over
geospatial data stem from the nature of data accesses and their
I/O footprints and are exacerbated by data volume and frequent
data retrievals by users. In the case of geospatial analytics,
multiple users can concurrently perform a series of actions
such as drill-down, roll-up, panning, and adding overlays
which involve frequent and intensive network communication
(spatiotemporal queries) and disk I/O at the backend servers.

Users’ access patterns for certain activities such as drill-
down or roll-up render spatiotemporal information over over-
lapping regions between successive retrievals. To render visu-
alizations at different resolutions (while coping with limited
resources), visual analytics applications often rely on data
aggregation [1] [2] and sampling techniques. Several research
studies have explored both static and dynamic approaches
to caching data in-memory on a distributed server [3]–[6].
Maintenance and load-balancing of caches in a distributed
system to alleviate such hotspots have been explored in [4],
[5]. However, pre-loading, load-balancing, and maintenance of
these caches introduce computation overheads and server-side
memory constraints and network bandwidth.

The primary goal of this study is to support interactive
visual analytics at scale over multi-resolutions to help reduce
data transfers even when the number of retrieval requests
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Fig. (1) Super-resolution results for 8x upscaling scenario.

is high. Evoke, a generative model, adapts the concepts of
progressive Generative Adversarial Networks(GAN) [7] to
cope with unique characteristics of satellite imagery.

A. Research Questions
Research questions that we explore in this study include:
RQ1: How can we reduce data transfers and disk I/O while
supporting interactive visual analytics over voluminous satel-
lite imagery?
RQ2: How can we generate an effective representation of data
to enable multi-resolution exploration activities without the
high-velocity server-side accesses, which the analytics would
entail otherwise?

B. Overview of Methodology
Our methodology reconstructs images at diverse resolutions
while significantly reducing data communications between
the user and the backend storage system. We construct a
variation of a Progressive Generative Adversarial Network
(GAN) that captures non-linear relationship between low-
resolution images with different zoom-levels to their super-
resolution (SR) counterparts. The primary benefit of using
a progressive GAN is generating a consolidated model that
captures interactions that exist between arbitrary pairs of levels
across the entire spectrum of resolutions.

Empirical evaluation of Evoke’s model showed improve-
ments in interactivity, through reductions in latency of up
to ∼23x without GPU acceleration and ∼297x-6627x with
GPU acceleration, compared to server-side data retrieval. Our
generated images also had good perceptual quality with PSNR
values ranging from ∼32.2-36.9, depending on the scenario
and upscale factor and showed improvement in PSNR ranging
from ∼9.5-13 compared to that of an SRGAN [8].

C. Paper Contributions
Our contributions include: (1) A Super-Resolution model
that upscales satellite image tiles with 6 different levels of
resolution. At each level, our model quadruples the resolution
of the image. (2) Our methodology precludes excessive data



retrievals and transfers from frequent view changes triggered
by a user. (3) Evoke is memory-resident at the client side.
A single super-resolution model is applicable for any current
resolution level with different upscaling rates.

II. BACKGROUND AND RELATED WORK
Tile layers [9] are a widely used data-structure in visual
analytics. They consist of a set of partitioned, rasterized, and
pre-rendered image tiles, stored on a server, that are fetched
in groups through user queries [10]. In visualization systems
with interactive, sequential OLAP [11] operations such as
panning, drill-down, roll-up, and zooming, a pyramid model
of tile layers (raster pyramid) is frequently used to organize
the tile layers in increasing order of their resolution (generally
in multiples of 2) [12], [13].

QuadTiles [14] is one of the most common tile indexing
strategies used to partition the dataset into tile layers for visu-
alization. At each successive level, a quad tile’s (parent) spatial
extent is split into 4 equal sub-tiles(children). In this study, the
problem of in-situ image super-resolution boils down to using
a given tile image at layer/resolution l to generate the image
formed by its children at layer (l + 1),(l + 2),(l + 3),... for
magnifications of 2x,4x,8x,... respectively.

Single Image Super Resolution (SISR) [8], [15], [16] takes
a low-resolution (LR) image and reconstructs a high-resolution
(HR) image as output. The use of residual connections to
implement deeper convolutional neural networks has been
adopted [16] to avoid the network suffering degradation of ac-
curacy with depth. Recently, adversarial learning using Gener-
ative Adversarial Networks(GAN) [17] has produced realistic-
looking images. However, achieving HR image with higher
upscaling factor is challenging because significantly down-
sampled image cannot preserve the crucial high-frequency
information even if it still shows high PSNR values [18]
resulting in blurry images. There are several approaches to
improve the perceptual quality of the super-resolved satellite
images [18]–[20].

Most existing SISR implementations build models targeted
at a single upscaling factor. This increases the complexity of
model training; each model with different upscaling factors
should be trained separately from scratch and results in pro-
longed training times. Wang et al [21] have proposed incre-
mental training of GANs (by leveraging progressive GANs
[7]) that achieve upscaling factors of up to x8. We harness
this approach to train a model to achieve a magnification
level, m, and upon convergence append an extra set of dense
layers to the trained model to train for 2m and reconstructing
the image in intermediate steps by progressively performing a
2x upscaling of the input and combining it with the residual
output of the model. EvokeNet also incorporates geospatial
metadata into the models to provide conditional information
to adapt for satellite imagery.

III. METHODOLOGY
Evoke targets space efficiency and residency within an in-
memory hierarchical tile cache at the client machine [22]
to improve the interactivity of visual analysis. This involves

reusing coarser/partial tile information to locally generate a
high-resolution version of a tile, which is not currently avail-
able in-memory. EvokeNet model is a variation of Generative
Adversarial Networks (GANs) that estimates super-resolution
images by taking into consideration the amount of partial
high-resolution information available in the local cache from
previous queries along with additional image metadata.

A. Model Overview: [RQ1,RQ2]
Our model learns an upsampling function that transforms a
low-resolution image tile (ILR) to generate a high-resolution
synthetic rendition (ISR) that is contrasted against the ground
truth (IHR).

The main challenge is facilitating a multi-level super-
resolution/upscaling operation for an image tile for diverse
zoom levels. The diverse topographical characteristics in satel-
lite imagery at different zoom levels adds complexity to the
problem of model-based upscaling of images. We propose
a conditional adversarial network that utilizes the concept
of progressive growing of GANs [7]. Finally the sequential
training of all the sub- models (x2,x4 and so on) captures
the relations between all the levels of cascading resolutions
without going through disjoint training phases.
Model Input: In our work we extract two tile metadata/
properties to condition the inputs to both our generator
(G1) and discriminator (D1) – (1) the zoom level of ILR,
and (2) the dominant land cover type(based on their National
Land Cover Database (NLCD) codes [23], e.g. urban, forest,
barren etc.) of ILR. This extracted conditional information
,g, is embedded and then passed through a fully connected
linear activation layer to resize the embedding to an extra 4th

metadata channel that gets appended to the 3-channel RGB
image as input to G1 (as shown in Fig.2).

Fig. (2) Evoke Super-Resolution Model

Generator Network(G1): The generator output for our
model for an upscale factor of u can be represented as:

IRes = Gu
1(ILR|g) (1)Instead of the complex mapping between ILR and IHR

for any given upscaling factor, the super-resolution problem
is simplified to learning the residual, IRes that needs to be
applied to a bicubic interpolation (upscaled) of ILR (eq.2).

ISR = IRes + bic(ILR) (2)
The progressive training of the models is a form of curricu-

lum learning, where more complex upscaling models are built
on top of trained models that handle relatively simpler tasks
of a lower upscaling factor and improves stability [7].
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In order to maintain efficiency in a deep network and to
facilitate the flow of weights between its layers, we adapt
the concept of a densely connected network as introduced in
DenseNet [24], along with a variation of DenseNet’s Dense
Blocks- the Dense Connected Units [21] (see Fig.2). We
also adopt an asymmetric pyramid (Fig.2) structure for our
generator layers - the number of dense layers [24] used in
modeling is higher for lower level upscaling problems and
are progressively less complex as we upscale further. We
have limited the maximum achievable super-resolution to x8 –
beyond that, the generated satellite images cease to maintain
their desired perceptual quality.

To achieve high perceptual quality in our super-resolution
output, we target improving the receptive field of our model,
which captures relationships between distant regions in the
image. Although increased sub-sampling (downsampling) be-
tween layers (eg. through max-pooling) is known to improve
the receptive field, it also introduces blurriness in the image
output, especially for higher upsampling factors. To help im-
prove super-resolution operations for x4 and x8, we introduce
dilated convolutions [25] between the Dense Blocks, instead
of subsampling. This reduces the complexity of the model
while improving the receptive field through the newly added
layers, as shown in Fig.2. The switch from one model to
the next upscaling model is performed through the process
of gradual blending [7] (Fig.2).
Discriminator Network(D1): The discriminator layers (D1)
follow a similar incremental structure as the generator layers,
but are significantly simpler. The discriminator(s) are adapted
from the PatchGAN discriminator [26] to evaluate local topo-
graphical features for the geospatial areas. The discriminator
produces an array of output, where each element evaluates a
patch of the input image, instead of the entire image, which
help model high-frequency details in the generated image.
Objective Functions: We have used two loss functions,
optimized using an Adam optimizer [27]. Our reconstruction
loss is the average pixel-wise difference between the generated
and the real high-resolution image. Given a sample (of size N )
of the ith input for our model - (xi, gi, yi), where the individ-
ual elements represent the low-resolution input (of dimension
CxWxH), its geospatial metadata and the corresponding high-
resolution target, respectively, its reconstruction loss is:

Lrec =
1

N × C ×W ×H
[yi − (bic(xi) +Gu

1 (xi, gi))]
2 (3)

The adversarial loss is computed as

Ladv = E[log(Du
1 (yi, gi))]

+ E[log(1−Du
1 ((bic(xi) +Gu

1 (xi, gi)))]
(4)

The joint loss is computed as L = λ1(Lrec) + λ2(Ladv).
The generator is trained on this joint loss, where λ1 and λ2
are pre-determined weights, while the discriminator is trained
to minimize the adversarial loss.

IV. SYSTEM ARCHITECTURE
Fig.3 outlines the architecture and the interaction between the
various components of our system with the Evoke framework.

A. Distributed Data Store
We partition our voluminous satellite imagery based on
quadtiles, producing easily-indexed spatiotemporally bounded
extents. Our system load-balances cluster storage using a
multi-token, single-hop distributed hash table (DHT) [28].
The DHT key is the quadtile for each partitioned image. We
distribute on quadtile substrings, effectively collocating data
from neighboring regions on a single node.

B. In-memory Tile Cache
Evoke is designed to act in tandem with an in-memory
storage on a client machine that stores the most relevan-
t/recent image tiles accessed in previous queries. The main
contribution of the tile cache framework to our case is its
ability to identify and retain the most recent and relevant tiles
in-memory, based on the client’s historical access patterns.
Upon receiving a spatiotemporal query, the client-side Evoke
framework first consults its in-memory tile cache to find any
requested memory-resident tiles (Fig. 3). For the missing target
tiles, we seek coarser tiles in-memory (searching for parents
of the target tile in the tile layer) and use those to create
their corresponding high-resolution version on the fly, thus
bypassing communication with the backend servers.

C. Distributed Training
EvokeNet is trained over a distributed spatiotemporal filesys-
tem and upon convergence, made available to the clients
for download. Our training leverages the spatiotemporal par-
titioning scheme of the storage system by collocating the
training modules with the partitioned data so as to avoid data
movements. The distributed training utilizes a parameter server
to aggregate the weights asynchronously at certain intervals
through the use of Pytorch Lightning [29] in the Distributed
Data Parallel (DDP) mode. To circumvent a large-scale re-
training, in light of new data, we re-purpose the previously
trained EvokeNet models and update the stale weights through
transfer learning [30]. To facilitate efficient transfer learning
for our models, we oversample the new data, which is easy to
identify in our geospatially partitioned storage system.

Fig. (3) Evoke System Architecture

V. EVALUATION
A. Experimental Setup
EvokeNet models were trained and evaluated over a cluster
of 50 nodes (Xeon E5-2620, 64 GB Memory), each with a
Quadro P2200 GPU (5GB of memory) with 1280 cores. We
performed our experiments with visualization frames of 640 x
640 pixels and 11-16 spatial resolutions (zoom-levels). With
every increase in zoom-level, an tile’s resolution doubles. At
any zoom level, we support upscale factors of x2, x4, and x8.
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Model Type Upscale Factor x2 x4 x8

Basic
SR

Using Supplemental
Metadata Info 36.95 33.85 32.17

Using only RGB Image 35.65 32.77 31.56

TABLE (I) Utility of Supplemental Metadata Information

Our satellite imagery dataset constructed from Sentinel-
2 images. We evaluate over 3 months of data from June
to August 2018 over the States of Colorado, Nevada, and
California. Our dataset contains 3.15TB of Sentinel-2 images
with over 6000 unique captures. When split into quadtiles of
length 11, we produce ∼308,000 image partitions.

B. Utility of Conditional Metadata Information
We evaluate the utility of using geospatial metadata as geospa-
tial information for our super-resolution GAN’s in Table I. As
expected, we see that incorporation of metadata channel during
training benefits the output image quality, as demonstrated by
the higher PSNR.

C. Model Convergence Speed
We evaluate the speed of convergence for our super-resolution
models (Fig.4a). We demonstrate the three phases of training
i.e. for upscale factors 2, 4, and 8 (shaded using the colors
green, red, and purple respectively) and show the progression
of both training and validation error (bold and dotted curves
respectively). In both basic and partial super-resolution, we
see the error start high and then quickly reduce before settling
into a stable region.

(a) Progression of Training and Vali-
dation Errors

(b) Model Performance vs Upscale
Factor and Zoom Level

Fig. (4)

D. Model Accuracy Evaluation and Comparison
We have used a variety of metrics, such as RMSE, MAE,
and SSIM to evaluate the quality of our SR images. In this
experiment, we use PSNR as a measure of image quality to
compare the accuracy for EvokeNet models. As shown in
Fig.4b, the quality of image decreases with increasing upscale
factor. This is due to the increased complexity of the problem.

Fig. (5) Client-side Average Image Reconstruction Time vs Cache
Fetch Time

We also evaluate image quality on the basis of the zoom
level of the input image and find that the image quality

Upscale
Factor #Epochs Time

x2 3 152.22
x4 2 118.45
x8 2 193.47

TABLE (II) Model Retraining Times in Light of New Data
Refresh Time

(Seconds)
25% 50% 100%Method

Used Case
CPU GPU CPU GPU CPU GPU

x2 1.35 0.037 3.02 0.039 6.05 0.042
x4 1.27 0.048 2.39 0.050 4.61 0.057Basic

SR x8 0.82 0.054 1.85 0.055 3.38 0.06
z=11 46.08 81.26 139.18
z=12 12.23 25.42 40.93Fetch

Request z=13 6.29 12.97 17.84

TABLE (III) Comparison of Client-side Performance of EvokeNet
Against Traditional Spatiotemporal Server Query

improves slightly when the input image is more zoomed-in.
Since images with finer resolutions tend to reveal more details
and topographical features, the overall accuracy improves
when upscaling, especially at the higher end of the zoom
spectrum.

Fig.4b contrasts the super-resolution images quality gener-
ated by EvokeNet modules against that of SRGAN [8] trained
over the same satellite dataset. The results clearly demonstrate
an improved quality in the output SR image for EvokeNet,
especially for higher upscale factors. Our experiments showed
improvements in average PSNR’s ranging from ∼9.5-13%.

E. Model Re-Training on New Incoming Data
Since our underlying data store is dynamic, we have evaluated
the speed of convergence of our EvokeNet models in light
of fresh incoming data. To simulate such a scenario, we
have used a pre-trained model only with tiles from California
and Nevada. We have then re-trained the model on the new
dataset that includes all three states (including Colorado). We
can clearly see from Table II, and comparing the results to
Fig.4a, that updating the stale model takes comparatively lesser
number of epochs; this demonstrates the stability of the model
update procedure.

F. Image Reconstruction vs Cached Data Retrieval
In Fig.5, demonstrates the average client-side latency to gen-
erate a high resolution image in-house. We have evaluated
the average time taken by the EvokeNet models to recon-
struct(with GPU acceleration) a set of 100 images with a
batch-size of 16 for varying upscale factors. We can see latency
in the order of milliseconds for all upscale factors for both
EvokeNet super-resolution modules.

Fig.5 also compares the average latency to fetch a similar
set of images, cached in a distributed MongoDB [31] database
(based on previous queries) on our cluster. We can see that
there is a significant improvement in latency using GAN-
based in-situ image reconstruction, compared to a fetch from
a server-side cache, which can be attributed to data movement
overheads.

In Table III we contrast the time taken to refresh the
screen/visualization grid in scenarios involving varying frac-
tions of in-situ super-resolution (both with and without GPU
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acceleration) and server-side fetch through spatiotemporal
queries. An OLAP zoom operation of scale x2, x4, x8 would
require us to perform super-resolution on a set of 64, 16, and
4 tiles respectively, since higher upscaled tiles have higher
pixel coverage. Hence, although the upscaling operations get
incrementally more complex, the number of tiles involved
follow a descending order. This explains the results of Table
III, which shows that in case of no GPU assistance, total time
taken to reconstruct the same fraction of the screen x2 is higher
than that for x4 and x8, but can be explained once we consider
the decreasing number of tiles are involved.

Table III illustrates that the times taken to physically fetch
the corresponding amount of tiles from the distributed file sys-
tem are significantly higher than the case of super-resolution.
A full refresh of the window at 2x, 4x, and 8x through physical
fetch takes ∼23x, 8, 8x, and 5.3x longer than reconstruction
with the basic SR module. With the partial SR, the speed-up
was 69.5x, 125x, and 5.1x respectively. In the case of utilizing
GPU acceleration (see sectionV-A) on the client machine, the
same improvements in time range from ∼3313x to 297x and
6627x to 540x respectively (Table III).

VI. CONCLUSION
We described our framework, Evoke, for interactive client-side
visualizations by re-using historical in-memory low-resolution
data. Our system is agnostic to the back-end data-store and
the in-memory data cache. RQ1: Evoke reduces data trans-
fers with the server by identifying and repurposing memory-
resident, low-resolution image objects in the cache and using a
pre-trained GAN-based super-resolution model. RQ2: Evoke
is space-efficient and can be loaded both in the client’s RAM
or GPU (when available) and can perform super-resolution
computations in the order of milliseconds (Sec. V-F).
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