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Abstract

Scientific articles contain a wealth of information about experimental methods and
results describing biological designs. Due to its unstructured nature and multiple
sources of ambiguity and variability, extracting this information from text is a diffi-
cult task. In this paper, we describe the development of the SBKS text processing
pipeline. The pipeline uses natural language processing techniques to extract and cor-
relate information from the literature for synthetic biology researchers. Specifically,
we apply named entity recognition, relation extraction, concept grounding, and topic
modeling to extract information from published literature in order to link articles to
elements within our knowledge system. Our results show the efficacy of each of the
components on synthetic biology literature, and provide future directions for further
advancement of the pipeline. Keywords: Synthetic Biology Text Processing Pipeline,
Natural Language Processing, Named Entity Recognition, Relation Extraction, Con-

cept Grounding, Topic Modeling



Introduction

The field of synthetic biology has seen exciting growth in the last few years. These arti-
cles contain a wealth of information about experimental methods and results on biological
designs. Although the amount of data and publications has increased tremendously with nu-
merous available data sources that are fragmented, making it challenging to locate relevant
data for genetic design. For example, finding sequence and performance data for biological
parts remains a manual process of sifting through articles and supplemental material. To
address this, we are developing our Synthetic Biology Knowledge System (SBKS) that inte-
grates disparate data and publication repositories to deliver effective and efficient access to
available information.!

Named entities in biological literature, such as genes, proteins, chemicals, and cell lines,
are often referenced using ambiguous symbols.? For example, abbreviations like GAP can
have a different semantic meaning depending on the context, like glyceraldehyde 3-phosphate
in glycolysis, GTPase-activating protein in cell cycle regulation, or its common meaning in
the English language. Furthermore, the meaning and synonym use of named entities can
vary across organisms, documents, and author networks.? In synthetic biology, cell lines are
often given names that are a concatenation of the species name and the genes that were
modified within their genome, leading to nested annotations of mixed types. These and
other sources of ambiguity and variability create challenges for extracting and associating
information from biological text which necessitate the use of natural language processing
methods.

This paper describes the development of a text processing pipeline using natural lan-
guage processing (NLP) techniques to extract and correlate information from the literature
for synthetic biology researchers. Namely, we apply XML parsing, Named Entity Recogni-
tion (NER), Relation Extraction (RE), Concept Grounding, and Topic Modeling to identify
concepts and identities in published articles in order to link each article to other elements in

our knowledge system.



The paper is structured as follows. First, we describe the background and related work
for each of the components in our pipeline. Second, we describe the data used to train and
evaluate our components. Third, we describe the methods for each component. Fourth, we
discuss the results achieved with our pipeline. Finally, we describe the future directions of

the pipeline.

Background and Related Work

In this section, we describe at a high level each component and their related works.

Named Entity Recognition

The goal of Named Entity Recognition (NER) is to locate and classify named entities present
in text into pre-defined categories.* For synthetic biology, examples of such categories are
names of genes, vectors, and regulatory elements. NER in biology domains has additional
challenges due to the pace of new named entities being added, lack of naming convention,
lengthy names, presence of special characters, and frequent and variable use of abbrevia-
tions.>® Figure 1 shows an example sentence containing Chemicals, Species and Cell line

entities.

H_Zh,zm Chem| [Species Cellline
To overproduce IPP and DMAPP in E. coli, we infroduced into E. coli MG1655

Figure 1: Example sentence containing mentions of Chemicals, Species and Cell Line entities.

Deep neural network approaches have been applied to NER on biomedical texts. Specif-
ically, state-of-the-art approaches use Long Short-Term Memory (LSTM)” with Conditional
Random Field (CRF)® models and Transformers.? For example, the Bidirectional Encoder
Representations from Transformers (BERT), a neural network-based language model that
produces contextualized word embeddings which are typically fed into a neural network top

model, has been shown to perform well across a variety of NLP tasks,' including NER.!



BioBERT extends the BERT language model to biological domains by supplementing the
pre-training data with PubMed Abstracts and PMC full-text articles.!?

In our work, we fine-tune BioBERT pre-trained models on each NER category separately.
Linking the results of NER processes to concepts through concept grounding is a more
recent approach that has been taken first in biomedical domains!'® and then more broadly

to information problems in general. 4

Relation Extraction

The goal of Relation Extraction (RE) is to automatically determine if there is a relationship
between two entities and if so, classify the type of relation between them. For synthetic
biology, example relations include UpRegulator, DownRegulator, and Subtrate, as shown
in Figure 2. In the example shown in the figure, three instances of the relation Subtrate
are identified (e.g., the entities mevalonate pathway and acetyl-CoA have the relationship of
Subtrate).

Figure 2 shows an example sentence containing a DownRegulator relationship between

Chemical and Gene entities.

(Chemicall DownRagulztor -
Using magnesium, we also see a similar decrease in the oo pinene ratio from 1.30 at 1 25 pM GPP to 0.83 at 1 mM

Figure 2: Downregulator relation identified by the Relation Extraction model

Deep neural networks have also been successfully used for this task. Earlier approaches
used variants of Convolutional Neural Networks (CNN)! or Long Short-Term Memory
(LSTM)7 or a mixture of both. Some methods provide extra context on how words are
related to each other by passing part-of-speech (POS) tags to the model. As with NER,
more recent approaches use Transformers® and their variants. Zhang et al.'® give an exten-
sive review of neural network-based approaches for biomedical relation extraction. Similar

to the NER task, we use BioBERT for relation extraction. We also use another neural net-



work as a top model to further process BioBERT embeddings for relation classification to

construct the final RE model.

Concept Grounding

The goal of Concept Grounding (also referred to as entity linking!” or normalization'®) is
to map entity mentions to their concepts in their respective ontologies or taxonomies.' For
example, synonymous labels such as Fscherichia coli, E. coli, E. coil, e. coli, e. coil, etc.
are normalized to their unique identifier NCBI:txid562, which references the concept for the
FEscherichia coli organism in the National Center for Biotechnology Information’s (NCBI)?
organism taxonomy. This is a challenging task as these mentions come from various entity
types, have a wide range of lexical diversity, and whose concepts often exist across a set of
different taxonomies.?! Historically, the automated concept grounding of terms to concepts

22724 automatically map

in an ontology were rule-based systems. Systems such as MetaMap
terms in biomedical text to concepts in the Unified Medical Language System (UMLS) using
a series of linguistic rules and patterns. It is one of the first automated systems for concept
grounding, and is the backbone of Medical Text Indexer (MTI),?® a system to identify
Medical Subject Heading terms in PubMed abstracts to aid the indexing process at the
National Library of Medicine, National Institutes of Health. Recently, due to the number of
corpora that have been developed to evaluate concept grounding systems, researchers have
focused on machine learning. These systems can be divided into two categories: those that

26-30 and those that treat the problem as a rank

treat the problem as a classification task,
prediction task.?'3Y For the classification category, researchers have been utilizing neural
networks, and although these have been working well with smaller datasets, there still is
a difficulty when scaling to larger ontologies. One reason is that the output space must
be the same size as the number of concepts to be predicted, and therefore only works well

when the output space tends to be small.*® For the rank prediction category, the algorithm

transforms input representations of text mentions to optimize the similarity between the



final transformed vectors of mentions and the vectors of their associated concepts in order
to identify the appropriate concept.3!

In a separate work, we are currently developing a rank prediction system, and are devel-
oping a training data set specifically for synthetic biology concept grounding and analyzing

which ontologies are required to be integrated into our system.

Topic Modeling

The goal of topic modeling is to uncover latent semantic structures in a collection of text
documents. Using a probabilistic approach, topic modeling represents a topic as a cluster
of similar words, and a document as a set of topics.*' Using the statistics of the words in a
corpus, topic modeling uncovers topics based on words that frequently occur together, and
determines the set of topics and their proportions in each document.

There are several approaches to topic modeling. In this work, we use Latent Dirichlet
Allocation (LDA).%? LDA has been used to extract information from literature in many
scientific disciplines, including bio-related fields.*® Some groups have extended LDA with

bio-related terms to find complex biological relationships in PubMed articles.**

Data

Training Data

In this section, we describe the data used to develop the components in our text mining

pipeline.

HUNER Data

t,% which consists

For training and evaluating our NER system, we utilize the HUNER datase
of 34 different corpora covering four entity types: Chemicals, Cell Lines, Genes/Proteins,

and Species. The data is partitioned into 60% training, 10% validation, and 30% testing.



Table 1: The mention counts in the HUNER development, test and training data sets.

Total Unique
Entity Dataset Type | DEV TEST TRAIN | DEV TEST TRAIN
CLL AA 30 7 234 26 67 195
CELL LINE | GELLUS AA 75 247 328 32 99 110
JNLPBA AA 429 1117 2284 | 286 771 1383
CDR AA | 1511 4716 9207 | 560 1503 2461
CEMP PF | 6364 18958 39293 | 3093 7506 14240
CHEMICAL | CHEBI PF | 1262 6067 8779 | 594 2077 2627
CHEMDNER | AA | 8062 24288 48347 | 3687 9035 16094
BC2GM AA | 2163 6753 14456 | 1938 5513 10846
BIOINFER AA 455 1383 2658 | 244 597 987
DECA AA 576 1776 3670 | 250 772 1457
FSU AA | 6606 19383 33505 | 2539 6429 0878
GENE GPRO PA | 1315 3576 7832 | 900 2004 3958
IEPA AA 104 300 708 46 81 146
JNLPBA AA | 3029 8777 18463 | 1306 3195 6029
MIRNA AA 76 291 541 38 129 234
OSIRIS AA 96 291 535 34 114 234
VARIOME AF 300 1082 3045 65 214 509
LINNEAUS AF 85 278 566 26 41 70
MIRNA AA 64 227 385 12 34 31
SPECIES S800 AA 406 1074 2188 | 203 518 1044
VARIOME AF 33 66 83 3 7 6

In this work, we evaluate 21 of the datasets to determine the efficacy of using pre-existing
training data to extract relevant entities from full text synthetic biology articles. Table 1
shows data sources for each entity type, the type of text that is being annotated (Abstract
(AA), Patents (PA), Full text article (FA)), the number of mentions (and unique mentions)

within the training, test, and development datasets.

ChemProt Data

t,46 which consists

For training and evaluationg our RE system, we use the ChemProt datase
of sentences containing chemical-protein interactions extracted from PubMed abstracts and
annotated by domain experts. This dataset was used in the BioCreative VI chemical-protein
interaction challenge.” We use a processed version of the original ChemProt dataset” that
contains sentences from PubMed abstracts where each sentence contains a pair of entities and

a label indicating the relation between the two entities. There are five classes of ChemProt

Relation (CPR) in the processed ChemProt dataset. The relations are CPR:3 (UpRegulator),



CPR:4 (DownRegulator), CPR:5 (Agonist), CPR:6 (Antagonist), and CPR:9 (Subtrate).
The processed dataset is split into train, development, and test datasets. The size (number
of sentences) of the dataset is shown in Table 2. Table 3 shows the distribution of sentences

across the relation classes in the dataset.

Table 2: The number of sentences in the ChemProt development test and training datasets

| TRAIN  DEV  TEST
Number of sentences | 19,460 16,943 11,820

ACS Data

For evaluating our NER and RE systems, we use the American Chemical Society (ACS)
dataset which comprises of full text articles from ACS Synthetic Biology. The data set con-
tains 1,545 articles with supplemental files between the years 2011 and 2019. Two full text
articles were randomly extracted and annotated for both entities (Chemicals, Cell Lines,
Genes/Proteins, and Species) and their relations (UpRegulator, DownRegulator and Sub-
trate) by two synthetic biology experts on our team. The other two relations (Agonist and
Antagonist) were not annotated in the two ACS articles as these relations are redundant
with UpRegulator and DownRegulator in the context of synthetic biology.

Table 3 shows the distribution of sentences across the relation types for the ACS dataset
used for testing compared to the ChemProt dataset used for training described above. Since
the ACS dataset does not contain any annotations for Agonist and Antagonist, we excluded
these relations from our RE process and analysis. The following subsections describe the

annotation process for both NER and RE.

NER Annotations

Table 4 shows the confusion matrix of the annotator’s label choices. The first row indicates

the beginning-inside-outside (BIO) label and entity type for one annotator, and the first
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Table 3: Distribution of sentences across relation types in ChemProt and ACS datasets

Relation ChemProt ACS

Train Dev Test Test
UpRegulator (CPR:3) 3.95%  4.65%  3.92% | 2.41%
DownRegulator (CPR:4) | 11.57%  9.26%  9.80% | 4.05%
Agonist (CPR:5) 0.89%  0.98% 1.15% N/A
Antagonist (CPR:6) 1.21%  1.68%  1.73% N/A
Subtrate (CPR:9) 3.74%  3.8T%  3.80% | 14.38%
No Relation 78.65% 79.56% 79.59% | 79.14%

column indicates the BIO label and entity type for the other annotator. The BIO format
indicates the location of the words within the entities. These labels include B=beginning,
I=inside, and O=outside (or not a named-entity of interest). The values in the table represent
the number of tokens that were labeled by the annotators. For example, the value in the
bottom right corner means 25 tokens were labeled as being inside of a cell line entity by both
annotators. The majority of mismatched labels between the two annotators are between
Gene-Chemical, and Species-Cell Line.

There are 144 mismatched labels between B-Gene and O (not an entity), and 59 mis-
matched labels between B-Chemical and O. Many of these are Genes, Proteins, and Chem-
icals that are commonly used in synthetic biology experiments such as restriction enzymes,
but are not related to the biological system on which the article was focused. Consequently,
one annotator chose to ignore them.

Table 5 shows NER evaluation metrics of each annotator using the adjudicated data set as
the ground truth. The adjudicated data is the consensus from the annotators after discussing
their disagreements. The values are grouped by entity type and averaged. An exact match
means that the annotator’s label and the boundaries of the labeled entity are exactly the
same. An approximate match allows the entity boundaries to overlap with the ground truth,
i.e., a partial match. Cohen’s k coefficient is also reported and measures the agreement

between the annotators and accounts for the underlying probability of agreement for any



token if hypothetically the labels were randomly assigned by chance. When considering all

entity types, the annotators obtained a x = 0.9050 indicating almost perfect agreement.

Table 4: Inter-annotator agreement confusion matrix of NER labels

O B-Gene I-Gene B-Chemical I-Chemical B-Species I-Species B-Cellline I-Cellline

(0] 15910 6 8 29 43 3 2 0 0
B-Gene 144 502 2 22 0 0 1 0 0
I-Gene 32 12 142 0 4 0 0 0 0

. B-Chemical 59 6 1 804 23 0 0 0 0
I-Chemical 24 0 4 10 517 0 0 0 0
B-Species 0 0 0 0 0 204 0 13 0
I-Species 0 0 0 0 0 0 391 0 26
B-Cellline 2 0 0 0 0 2 0 7 13
I-Cellline 6 2 0 0 0 0 4 0 25

Table 5: Comparison of annotators to the adjudicated NER annotations

Exact Approximate
Annotator Entity  Precision  Recall F1  Precison Recall F1
1 Cell line 0.8750 0.9545 0.9130 0.9167 1 0.9565
Chemical 0.9308 0.9145 0.9226 0.9877 0.9672 0.9774
Gene 0.8904 0.9442 0.9165 0.9108 0.9811 0.9447
Species 0.9954 0.9686 0.9818 1 09731 0.9864
All 0.9226 0.9323 0.9274 0.9594 0.9733  0.9663
2 Cell line 0.3000 0.2727  0.2857 1 09091 0.9524
Chemical 0.9954 0.9452  0.9696 0.9988  0.9485 0.973
Gene 0.9906 0.8140 0.8936 0.9943 0.8183 0.8978
Species 0.9952 0.9372  0.9654 0.9952 0.9372 0.9654

All 0.9852 0.8890  0.9347 0.9969  0.9001 0.946
Cohen’s k = 0.9050

RE Annotations

Table 6 denotes the inter-annotator agreement for RE task on the ACS dataset. We follow
the same convention as used in the NER confusion matrix table. We can observe that the
annotators agree on all of the labeled relations. The disagreement occurs for the relations
that are skipped or marked as No Relation. We can see that a large number of relations
marked as DownRegulator (12) or Subtrate (72) by one annotator are marked as No Relation
by the other annotator.

Table 7 shows evaluation metrics for each annotator with the adjudicated dataset used
as ground truth on the RE task. The values are grouped by relation type and averaged. For

the annotator agreement on the RE task, the Cohen’s x coeflicient is 0.7442.
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Table 6: Inter-annotator agreement confusion matrix of RE labels

‘ UpRegulator  DownRegulator  Subtrate NoRelation

UpRegulator 5 0 0 0
DownRegulator 0 17 0 12
Subtrate 0 0 78 72
NoRelation 0 23 53 1121

Table 7: Comparison of annotators to the adjudicated RE annotations

Annotator 1 ‘ Annotator 2
Precision Recall F1 | Precision Recall F1
UpRegulator 1.0000 0.2000 0.3333 1.000 0.2000 0.3333
Adjudicated | DownRegulator 0.5862 0.4047  0.4789 0.8 0.7619 0.7804
Subtrate 0.5866 0.5906  0.5886 0.6319 0.6107 0.6211
NoRelation 0.8773 0.9117 0.8942 0.8704 0.9299 0.8991
All Classes 0.8265 0.8275 0.8196 0.8508 0.6340 0.6746

Cohen’s k = 0.7442

Methods

In this section, we describe the methods behind each component of our text mining pipeline,
including 1) text parsing, 2) Named Entity Recognition, 3) Relation Extraction, 4) Con-
cept Grounding, and 5) Topic Modeling. Figure 3 provides an overview of each of the
different components and how the components are integrated into a single pipeline. The
tools developed for the pipeline can be found at http://web.synbioks.org/ and https:

//github.com/synbioks.

Topic
Modeling

Text Parsing

Figure 3: Components in our text mining pipeline
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Text Parsing

The articles from ACS are in XML format. We developed a preprocessing step that parses
the XML files and extracts metadata and raw texts from them. The metadata extracted
from each XML files includes article DOI, article type, keywords, and timestamps on when
the article is received and published. The metadata is then transformed into RDF /XML and
enriched with the article PubMed ID and the labels resulting from NER and RE processes
(described below) before being added to our knowledge system.

Beyond the metadata part, we also extract raw texts from the XML files by searching
for <p> tags inside the <body> sections, as each <p> tag corresponds to a paragraph in the
original article. Any texts found inside of <p> tags are stripped of formats and hyperlinks.
Additionally, image and table captions and math expressions are discarded because they
usually do not appear next to the relevant sentences, which can be disruptive to the cohe-
siveness of the context. We use scispacy’s en_core_sci_sm*® to split extracted texts into
sentences. The sentences are grouped into paragraphs the same way as they are arranged in
the XML files. Local and global span information is calculated for each paragraph, as they
are crucial for aligning entities in the downstream tasks.

Besides extracting information from the XML files, we also searched for genetic sequences
in the supplemental files to have further insight into each article. Most of sequences are
in unstructured format in PDF files, while some are in well-structured format designed
to store sequence data such as GenBank, Fasta, and SBOL. The software package SBOL
Validator®? is used to retrieve and identify sequences from these well-structured files. To
extract sequences from PDF files, we used pdftotext®® to first convert PDF files into plain
texts, and then regular expression to look for plausible sequences. We filtered out sequences
that have fewer than six letters to avoid falsely specifying English words as genetic sequences.
It is worth mentioning that since some sequences are presented as codons separated by spaces,
these spaces are removed, and codons are put together before the filtering.

The extracted metadata, texts, and sequences are organized into one dictionary data

12



structure per article and saved as JSON files, which are used as input to the subsequent

components in our pipeline.

Named Entity Recognition

We define the NER method shown here as a sequence labelling task. For inference, the
input is a sequence of words (or tokens) and the output is a sequence of labels and proba-
bilities corresponding to the entity type of each token. Possible labels include B=beginning,
[=inside, and O=outside (or not a named-entity of interest). The NER predictions from the
fine-tuned BioBERT model which separates the words into subwords. The subwords and
their labels are then collapsed into corresponding words and their corresponding predicted
labels.

We apply a rule-based label decoder to assign the final labels to tokens and identify
entity boundaries. Labels are joined in a greedy manner, i.e. adjacent tokens labeled as the
same entity type are joined to make a single entity. After joining adjacent labels, the BIO
labels are adjusted such that the first label in a multi-token entity is given a ‘B’ label, and
subsequent labels in the entity are given the ‘I’ label. This step defines the boundaries of
the entity.

Word-level prediction score is assigned the score of its first subword. Each entity is
assigned a prediction score that is the average of the scores of its component words. Since
separate models are used to predict the different entity types, overlapping predictions arise,
for example, when a gene/protein name contains the name of the chemical on which it acts.
Overlapping predictions are resolved by choosing the entity with the highest score. We
explored different scoring metrics for summarizing the predictions scores at the entity level,
including mean, median, and trimmed mean. Using the mean prediction score resolved the
problem of overlapping spans.

NER models were fine-tuned and evaluated on each dataset separately. Each model

consists of a BERT encoder layer and a linear classification layer with output dimension
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equal to the number of labels, which in most cases is three (one for each BIO label). During
fine-tuning, the inputs to a model are sequences of subword tokens from the training set, and
the outputs are scores from the linear classification layer, one score for each possible label.
We use cross entropy loss when propogatin the error back through the network.

We attempt to maximize the number of subword tokens in each input sequences given the
constraint of BERT’s maximum input size of 512. During pre-processing, we use a sliding
window approach to segment a document into non-overlapping sequences of 512 subword
tokens (including BERT’s special tokens flanking in the input). If the last token of a sequence
is in the middle of a known entity, we remove the entity from the current sequence, and place

it at the start of the next sequence.

Relation Extraction

The goal of relation extraction (RE) is to determine if there is a relation between terms
identified by the NER model, and if there is one, classify the relation. In biomedical RE, we
are given a pair of named entities inside the same sentence, and the objective is to determine
the biochemical relation between the two entities based on the surrounding context.

For the relation extraction task, we also use BioBERT as this model has been shown to
perform very well at processing sequential information. To adapt BioBERT to our specific
task of relation extraction, we take the sentence-level context (i.e., the embedding of the
<CLS> token, Hcrg) generated by BioBERT and feed it into a neural network classifier
to determine the type of relation between the named entities in the sentence (Figure 4).
This top classifier model consists of three fully connected layers with Rectified Linear Unit
(ReLU) activation. A dropout layer with dropout probability of 0.1 is inserted before the
first layer. The dimensions of the layers are 768 x 512, 512 x 512, and 512 x 4. We train the
classifier to recognize three types of relations (UpRegulator, DownRegulator, and Subtrate)
as well as NoRelation, as described above.

To avoid unstable update of BlioBERT’s parameters in the early stage of training, we keep

14
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Figure 4: RE model structure

the parameters of BioBERT frozen and only update the top model. Once the top model is
trained, we unfreeze BioBERT’s parameters and fine-tune the entire model end-to-end. In
both training stages, we select the model with the best performance on the validation data

to prevent overfitting.

Concept Grounding

At the time of writing, this aspect of the text mining pipeline is just beginning its earliest
stages of prototyping. During the initial stage, many of the entities and relationships will
be manually curated for a subset of the data in order to create a training dataset which can
be used with a series of different classification algorithms.

The first of these classifiers is intended to cluster entity and relationship labels into pools
of candidate synonyms. These clusters of labels can then be reconciled against existing
synonymous labels within target ontologies and taxonomies relevant to the concepts they
represent.

An automated process that leverages existing RESTful Web services and APIs for the

ontologies and taxonomies will eventually be developed and implemented as part of the
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pipeline to pull in the URL identifying each entity and relationship concept in the context
of its ontology or taxonomy. This process will also retrieve the preferred text labels for these
concepts. Both URLs and labels will be integrated into RDF /XML metadata files currently
being produced for the knowledge system.

Once the first stages have been successfully completed, the second stage of development is
to build a second classifier that will be able to automate the step of selecting the appropriate
relevant ontology or taxonomy to examine for each entity or relationship, making it possible

to automate much of the grounding process.

Topic Modeling

We use Latent Dirichlet Allocation (LDA)*? for Topic mModeling. The LDA model can be
represented by a graphical probabilistic model with three levels. The inner level represents
the word level: w denotes a specific word in a particular document, while z denotes the
specific topic sampled for that particular word. At the document level, 6 represents the
topic distribution for a particular document. At the outer corpus level, & and S represents
the document topic density and the word topic density, respectively. LDA uses a generative
probabilistic approach to model each topic as a mixture of a set of words and each document
as a mixture of a set of topics to determine the different topics that a corpus represents and
how much of each topic is present in each document.

The specific implementation of LDA we use is the LDA Mallet model,! available in the
Gensim package.®? In our LDA model, the number of topics is set to five, which we found
experimentally to be stable and easy to interpret.

Preprocessing is often needed to standardize the input to the topic model. We use
the BERT BasicTokenizer from Huggingface,®® which tokenizes the article text by splitting
sentences on white spaces, punctuations, and control characters. We also added steps to
convert the text to lower case, remove accents, and lemmatize each token using modules

from Natural Language Kit (NLTK).%* Generic terms such as cell and system commonly
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found in the majority of ACS articles obfuscate the process of separating documents and
topics. Thus, to remove these generic terms, the top 0.5 percent of terms, based on the
TF-IDF score® are removed as part of preprocessing to refine the specificity of the topic
model.

To tailor LDA for synthetic biology text, our topic modeling process treats NER terms
as special terms that are not preprocessed. NER terms are named entities identified by the
NER model as being of an entity type of interest, as described above. NER terms consisting
of multiple words are connected by underscore to keep the entire term intact. For some NER
terms, substrings are also identified as NER terms. For example, both aspartic acid and
tetra-aspartic acid are NER terms. Our preprocessing checks for these cases, and prioritizes
the longest NER term to be kept intact. Keeping NER terms intact allows for these named

entities to influence the topics that are discovered by the topic models.

Results and Discussion

Named Entity Recognition

We evaluate our NER system using precision, recall and Fj score. Precision is the ratio
between correctly predicted mentions over the total set of predicted mentions for a specific
entity; recall is the ratio of correctly predicted mentions over the actual number of mentions;
and Fj is the harmonic mean between precision and recall. We report both the strict and
lenient results for each entity category. In strict evaluation, two annotations are equal only
if they have the same tag with exactly matching spans. With the lenient evaluation, two
annotations are equal if they share the same tag and their spans overlap by at least one
character; when two or more entities in the system overlap with one entity in the ground
truth (or vice versa), all sharing the same tag, only one pair is counted and the extra entity
is ignored entirely. The NER model hyperparameters (e.g. epoch, dropout) were tuned over

the HUNER development set. The parameters that obtained the best performance on the
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development set were used to obtain the results for the HUNER test data and adjudicated
ACS data set.

Table 8 shows the exact and lenient precision (P), recall (R) and F1 scores for our NER
system when trained over the HUNER training data set and evaluated over the HUNER test
data set and our adjudicated ACS data set. The results are entity dependent. For Cell Line,
the current datasets are not able to generalize to the extraction of cell Line for synthetic
biology. Cell Line mentions in the ACS data set include E. coli DH1, E. coli JAD, MG1655,
and JAD-1. In contrast, Cell Line mentions in the training data include rat macrophage cell
line R2, CDJ negative T cell lines, and Jurkat cells. Species mentions in the ACS dataset
contain mentions including Pseudomonas butanovora, Zymonomas mobilis, and Lactococcus
lactis, while the Species training data contains mentions including human and mouse in
the Variome dataset, and Xenopus laevis, Caenorhabditis elegans, and bacteriophage M13 in
the Linneaus dataset. Not surprisingly, the model trained on Variome species struggles to
identify entities written in binomial nomenclature, which is the most common case in the
ACS dataset. This indicates that the creation of domain-specific training data is necessary
for synthetic biology and that models trained on biomedical entities such as Cell Line and
Species do not generalize well to other biological domains. However, models trained on
Chemicals and Genes tend to identify entities well, and the difference in exact and lenient

scores indicate a need for better post-processing.

Relation Extraction

To train our model, we use the ChemProt corpus?’ to train and evaluate our relation ex-
traction model. Each sample inside the ChemProt corpus consists of a sentence, where a
Chemical entity and a Gene entity are replaced with generic tokens ("QCHEMICALS" and
"QGENES$" respectively), and a label, which indicates the ground truth relation between
the Chemical and the Gene entities. To perform relation extraction on the ACS texts, we

split the texts into sentences (which is performed by the Text Parsing component described
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Table 8: The exact and lenient precision (P), recall (R) and F1 score for NER trained on
the HUNER training set and evaluated over the HUNER test set and the adjudicated ACS

test set. Overall average over each of the entity types are included.

HUNER ACS

EXACT LENIENT EXACT LENIENT
Entity ‘ Dataset ‘ Epoch P R F1 P R F1 ‘ P R F1 P R F1
CLL 191 0.7922 0.8472 0.8188 | 0.8571 0.9167 0.8859 | 0.2727 0.5000 0.3529 | 0.5000 0.9167 0.6471
CELL LINE | GELLUS 10 | 0.6437 0.8503 0.7327 | 0.7409 0.9839 0.8453 | 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
JNLPBA 91 0.7010 0.6675 0.6838 | 0.8317 0.7954 0.8131 | 0.3182 0.3043 0.3111 | 0.3182 0.3043 0.3111
average 0.7123 0.7883 0.7451 | 0.8099 0.8987 0.8481 | 0.1970 0.2681 0.2213 | 0.2727 0.4070 0.3194
CDR 111 0.8904 0.8803 0.8853 | 0.9430 0.9350 0.9390 | 0.7654 0.7248 0.7445 | 0.8586 0.8131 0.8352
CEMP 10.8411 0.8219 0.8314 | 0.9167 0.8886 0.9024 | 0.7325 0.7868 0.7587 | 0.8059 0.8627 0.8333
CHEMICAL | CHEBI 15| 0.7442 0.7555 0.7498 | 0.9098 0.9095 0.9097 | 0.5998 0.7160 0.6527 | 0.7072 0.8409 0.7683
CHEMDNER 6| 0.8768 0.9007 0.8886 | 0.9408 0.9525 0.9466 | 0.6886 0.7763 0.7298 | 0.7873 0.8853 0.8334
average 0.8381 0.8396 0.8383 | 0.9276 0.9214 0.9244 | 0.6966 0.7510 0.7214 | 0.7898 0.8505 0.8176
BC2GM 151 0.7857 0.7698 0.7777 | 0.9692 0.9315 0.9500 | 0.4450 0.5425 0.4889 | 0.6992 0.7912 0.7424
BIOINFER 19| 0.7744 0.8065 0.7901 | 0.9465 0.9562 0.9513 | 0.4620 0.3025 0.3656 | 0.7302 0.4591 0.5637
DECA 16 | 0.7703 0.6357 0.6965 | 0.8553 0.7088 0.7752 | 0.3101 0.4107 0.3534 | 0.4729 0.5980 0.5281
FSU 19 0.8924 0.8701 0.8811 | 0.9756 0.9373 0.9561 | 0.5256 0.7451 0.6164 | 0.5705 0.8160 0.6715
GENE GPRO 6] 0.7556 0.6429 0.6947 | 0.8739 0.7444 0.8040 | 0.1457 0.6861 0.2404 | 0.2078 0.9306 0.3397
IEPA 13 0.8900 0.8344 0.8613 | 0.9567 0.8885 0.9213 | 0.1426 0.4126 0.2120 | 0.1798 0.5179 0.2670
JNLPBA 710.7990 0.7718 0.7852 | 0.9271 0.8809 0.9034 | 0.3194 0.5037 0.3909 | 0.5194 0.7267 0.6058
MIRNA 131 0.7938 0.5908 0.6774 | 0.9485 0.7041 0.8082 | 0.0667 0.5733 0.1194 | 0.0884 0.7703 0.1586
OSIRIS 181 0.7595 0.7595 0.7595 | 0.8660 0.8720 0.8690 | 0.4403 0.5954 0.5062 | 0.5395 0.7160 0.6154
VARIOME 191 0.9214 0.8792 0.8998 | 0.9806 0.9283 0.9537 | 0.0248 0.6957 0.0479 | 0.0357 0.9200 0.0687
average 0.8142 0.7561 0.7823 | 0.9299 0.8552 0.8892 | 0.2882 0.5468 0.3341 | 0.4043 0.7246 0.4561
LINNEAUS 16 | 0.7626 0.8000 0.7808 | 0.8417 0.8731 0.8571 | 0.9596 0.8425 0.8973 | 1.0000 0.8780 0.9350
SPECIES MIRNA 111 0.5903 0.6943 0.6381 | 0.6520 0.7668 0.7048 | 0.0090 0.0238 0.0130 | 0.0179 0.0476 0.0261
S800 151 0.6955 0.6809 0.6882 | 0.8538 0.8382 0.8459 | 0.9058 0.8745 0.8899 | 0.9910 0.9567 0.9736
VARIOME 191 0.1515 0.4348 0.2247 | 0.1515 0.4348 0.2247 | 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
average 0.5500 0.6525 0.5830 | 0.6248 0.7282 0.6581 | 0.4686 0.4352 0.4501 | 0.5022 0.4706 0.4837
OVERALL AVERAGE ‘ 0.7539 0.7569 0.7498 ‘ 0.8542 0.8498 0.8460 ‘ 0.3873 0.5246 0.4139 ‘ 0.4776  0.6548 0.5107
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above), and use the results from the NER task to identify Chemical and Gene entities in
each sentence. For each identified Chemical-Gene pair, we generate an input sentence with
the pair replaced by generic tokens. For example, if a sentence contains three chemicals and

two genes, we generate six input sentences for all combinations of Chemical-Gene pairs.

Table 9: Relation Extraction results for ChemProt test data & ACS data

ChemProt ACS
Precision Recall F1 Precision Recall F1

UpRegulator 0.7160 0.6977 0.7068 | 0.8571 0.2500 0.3871
DownRegulator | 0.7594 0.8037 0.7809 | 0.7813 0.6410 0.7042
Subtrate 0.6077 0.6351 0.6211 | 0.8381 0.5906 0.6929
Overall Average | 0.7171 0.7434 0.7300 | 0.8264 0.5613 0.6685

Table 9 shows the overall and class-specific precision, recall, and Fj scores of the relation
extraction model over the ChemProt test set and the ACS dataset when trained on the
ChemProt training dataset. Here, precision is the ratio between correctly predicted relations
to the total set of predicted relations; recall is the ratio of correctly predicted relations to the
actual number of relations, and F; is the harmonic mean between the two. The results show
that the relation DownRegulator obtains a higher Fj score than the other two relations.
The results also show that the RE model is able to generalize to the ACS data with high

precision, though with lower recall, decreasing the overall F} score.

Concept Grounding

A preliminary manual mapping was created for the NER results generated for one exemplar
article from the ACS dataset. NER terms generated for Species and Cell Line type men-
tions were reconciled against the NCBI’s Species taxonomy. Of the 24 unique mentions, 10
(41.67%) were aligned with classes existing in the taxonomy. Of the remaining mentions, 11
(45.83%) were not found in the taxonomy and 4 (16.67%) were too ambiguous to differenti-
ate from multiple existing entries in the taxonomy. In an attempt to improve the grounding

results, the Cel Lline mentions were grouped with the Gene mentions and reconciled against
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MeSH terms. Of this group of 100 unique mentions, 49 (49.00%) were successfully aligned
with existing MeSH concepts. Of the remaining 51 mentions, 40 (40.00%) were not found,
4 (4.00%) were too ambiguous to differentiate among multiple different matching MeSH
terms, and 7 (7.00%) were aligned with MeSH terms that were linked with Species terms
not mentioned in the article, and were not considered to have been successfully grounded
to useful concepts. Finally, NER mentions that were classified as chemical mentions were
reconciled against the CHEBI ontology. Of these 29 unique mentions, 22 (75.86%) were
successfully aligned with matching concepts in the CHEBI ontology. Of the remaining 7
mentions, 5 (17.24%) could not be aligned with concepts in the ontology and 2 (6.90%) were
too ambiguous to differentiate among multiple matching concepts in the ontology.

The manual concept grounding failed in many instances for a variety of reasons. However,
the value additions created by linking NER mentions to corresponding concepts in ontologies,
subject thesauri, and taxonomies seem achievable for a sizable proportion of the NER dataset.
Next steps for this work will primarily comprise of building a workflow to simplify the

grounding work and allow to manageably be applied across the entire NER pipeline output.

Topic Modeling

Since LDA is unsupervised, as is the case in general with topic modeling techniques, there
is no ground truth to specify the correct topics of a corpus. Thus, to evaluate the topic
model’s results, a domain expert on our team provided interpretations of the abstract topics
uncovered by our LDA model by examining the top high-scoring words associated with
each abstract topic. The expert also provided a topic relatedness score which measures
how well the top words uncovered for each topic relates to the topic interpretation. We
also calculated the coherence score®® and used that as an additional metric to evaluate the
resulting topics. The coherence score measures the degree of semantic similarity among the
high contribution terms in the topic, and has a value between zero and one. We compared

results with the article abstracts included or excluded as shown in Table 10. We found that
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including the abstracts resulted in a higher topic relatedness score from our expert but a lower
coherence score. Both relatedness and coherence scores are close, however, which indicates

that including abstracts does not have a significant impact on topic modeling results.

Table 10: Topic modeling results. Topic Interpretation and Relatedness scores are provided
by a synthetic biology expert. Results with and without using abstracts are included.

. latedness latedness
Topic LDA (k-5 Relatedness LDA (k-5 Relatedness
. . (1=not related, . (1=not related,
Interpretation without abstract) with abstract)
S=very related) S=very related)
C circuit, network,
. circuit, input,network, .
genetic output, behavior, gate output, mput,
circuit P, B R R behavior, gate, 4.0
. strand, simulation, .
design device strand, device,
. mrna, terminator,
terminator, mrna, .
gene bp, GFP, repression repression, GFP,
. ! ’ ’ . t th, rib .
expression tRNA, cassette, 3:5 strength, ribosome, | 3.5
E:;Z};Th(iizjﬁgter’ biosynthesis, titer,
metabolic n(letab(;lite ’ 5.0 metabolite, carbon, 5.0
engineering fermentati(;n ' fermentation, flux, ’
)
flux, deletion...
ion. membrane yeast, cassette,
. ] L tRNA, residue,
protein-related / residue, peptide,
. . . 3.0 bp, CRISPR, 4.0
strain construction || surface, affinity, .
recombination,
cluster, DNA, ...
sensor, light, . .
. X light, domain,
activation, ligand, activation, ligand
biosensors GFP, switch, 4.5 ‘on fusiOI; gty 5
biosensor, riboswitch, N ’
receptor switch, sensor, ...
Average
4. 4.2
Relatedness Score 0
h
Coherence 0.453 0.424
Score
Use Cases

Table 11 shows four use case type questions the SBKS Text Mining Pipline would be able

to answer. The table contains the Use Case question potentially asked by the user. The
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Input describes that type of information required by the system. The Ouput describes the

type of information returned to answer the user’s question. The Linked Data describes the

meta data information that can be returned to the user for further exploration associated

with the question. The Pipeline Components identifies what components of the pipeline are

used to answer the question.

Table 11: SBKS Text mining pipeline use cases

Use Case: Expressing a gene | Answering  "has | Extracting parts Exploring native
in a known organ- | this been done organism biology
ism before?" questions

Input Host, species or | Part, species, or | Species or strain | Species or strain
strain strain with part (pro-

moter or gene)

Output Plasmids, pro- | Characterization | Sequences Metabolic ~ mod-
moters, other | data (e.g. HPLC els, moics data
expression  parts | titers, flow cy- (e.g. RNAseq,
that work in that | tometery  data), meabolome, pro-
organism (e.g. | plasmicds teome, genome)
gqPCR data)

Linked Names of parts or | Papers, reposito- | Names of parts or | NCBI genome,

Data sequences, phys- | ries (e.g. Ad- | sequences, reposi- | NCBI Geo
ical  repositories | dgene, AtCC), au- | tories datasets,

(e.g. Addgene, | thor names, con- GSMMS, RNAseq
ATCC), transfor- | ference venues DGE tables
mationi protocols

(papers), au-

thor/institute

names, conference

venues

Pipeline NER & RE & |NER & RE & | NER & RE & | NER &  Topic

Compo- Grounding Grounding Grounding Modeling

nents
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Conclusion and Future Work

In this paper, we have described our preliminary SBKS text mining pipeline to extract and
correlate synthetic biology information from the literature. In the future, we plan to expand
each of our components.

State-of-the-art methods for NER utilize transformers to encode text for downstream
entity classification. One drawback is the size of the models and the computational resources
required to fine-tune and perform inference on text. As the number of desired entity classes
grows, the task of performing inference becomes more time and resource consuming. Recent
work in multi-task learning helps mitigates this issue by sharing the transformer encoder layer
between all NER tasks,® which makes the problem scalable. Another possible by-product
of this approach is shared information learned in the encoder layer that may improve the
performance on a task compared to a single task model.®” We have implemented a multi-task
model and are testing its performance on inference tasks described in this paper. Future
work with multi-task task learning also includes jointly learning NER and RE, as well as
extending BioBERT’s pre-training data to include domain-specific synthetic biology articles
and abstracts. We also plan to utilize our current grounding data to aid in automating the
process of grounding entities to their respective ontologies.

For topic modeling, our topics are currently used to tag articles. However, topic modeling
can also be used to analyze trends over time, to study how terms and/or topics in synthetic
biology articles evolve over the years. Additionally, we are working on ways to incorporate

topic modeling results into an intuitive user interface to browse and explore SKBS contents.
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