

1 **Slow kinetics of iron binding to marine ligands in seawater measured by isotope
2 exchange liquid chromatography inductively coupled plasma mass spectrometry.**

3

4 Rene M. Boiteau^{1*} and Daniel J. Repeta²

5

6 ¹College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis
7 OR 97330, United States

8 ²Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic
9 Institution, Woods Hole, MA 02543, United States

10 *Corresponding Author, Rene.Boiteau@oregonstate.edu

11

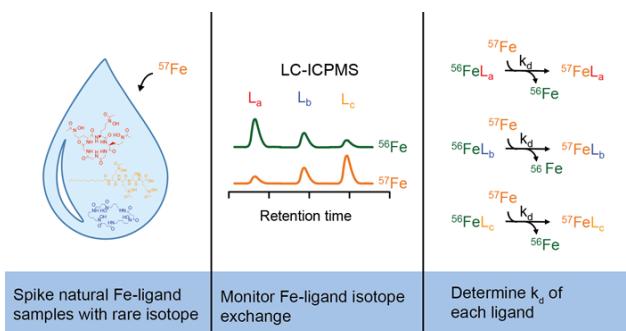
12 **Abstract:**

13 Current understanding of dissolved iron (Fe) speciation in the ocean is based on
14 two fundamentally different approaches; electrochemical methods that measure bulk
15 properties of a heterogeneous ligand pool, and liquid chromatography mass spectrometry
16 methods that characterize ligands at a molecular level. Here, we describe a method for
17 simultaneously determining Fe ligand dissociation rate constants (k_d) of suites of
18 naturally occurring ligands in seawater by monitoring the exchange of ligand-bound ^{56}Fe
19 with ^{57}Fe using liquid chromatography-inductively coupled mass spectrometry. Values of
20 k_d were determined for solutions of ferrichrome and ferrioxamine E. In seawater, the
21 dissociation rate constant of ferrichrome ($k_d = 10 \times 10^{-8} \text{ s}^{-1}$) was greater than that of
22 ferrioxamine E ($k_d = 3.6 \times 10^{-8} \text{ s}^{-1}$). Rates for both compounds were over twice as fast in
23 seawater compared with pure water, suggesting that seawater salts accelerate

24 dissociation. Isotope exchange experiments on organic extracts of natural seawater
25 indicated that ligand binding sites associated with chromatographically unresolved
26 dissolved organic matter exchanged Fe more quickly ($k_d = 1.8 \times 10^{-5} \text{ s}^{-1}$) than amphibactin
27 siderophores ($k_d = 2.15 \times 10^{-6} \text{ s}^{-1}$) and an unidentified siderophore with m/z 709 ($k_d =$
28 $9.6 \times 10^{-6} \text{ s}^{-1}$). These findings demonstrate that our approach can bridge molecular level
29 ligand identification with kinetic and thermodynamic metal-binding properties.

30

31 **Key words:**


32 Siderophore, Ocean Biogeochemistry, Metal Complexation, Reaction Rates

33 **Synopsis:**

34 We present a method for determining iron dissociation rates of chemical species
35 in environmental mixtures containing diverse iron-complexes.

36

37 **TOC image:**

39

40

41

42

43

44 **Introduction:**

45 Organic complexation affects the solubility, reactivity, and biological availability
46 of many transition metals in the ocean. Since the discovery that iron (Fe) limits biological
47 productivity in large areas of open ocean ¹⁻⁴, there has been significant interest in
48 understanding the role of organic ligands in microbial trace metal acquisition and
49 incorporating trace metal ligand interactions into ocean biogeochemical models. Organic
50 ligands complex over 99% of dissolved Fe in the ocean ⁵⁻⁹ and maintain dissolved Fe
51 stocks available for biological uptake that are well above the solubility of inorganic Fe
52 species in seawater ¹⁰⁻¹². Current methods for characterizing organic ligands focus on
53 either measuring the Fe binding strengths of the total ligand pool, or molecular-level
54 identification of metal-ligand complexes. Here, we bridge the gap between these
55 approaches by developing an isotope exchange method to measure the kinetic
56 dissociation rate, which is directly related to binding strength, of chromatographically
57 resolved Fe-ligand complexes.

58

59 Previous research on ligand characterization has largely focused on the
60 concentrations and binding strengths of the entire suite of ligands in a sample of
61 seawater. These measurements have been made throughout the ocean using competitive
62 ligand exchange (CLE) methods monitored by cathodic stripping voltammetry ^{13,14}. CLE
63 experiments have demonstrated that the concentrations and binding strengths for organic
64 Fe-binding ligands vary extensively throughout the ocean. Surface and coastal waters
65 tend to have higher concentrations of metal binding ligands than the oligotrophic or deep
66 ocean, suggesting that marine organic ligands have multiple important sources including

67 biological productivity and terrestrial inputs. Furthermore, the conditional Fe binding
68 stability constants ($\log K^{\text{cond}}_{\text{Fe}^{\cdot}\text{L}}$) vary spatially and a wide range of values have been
69 reported by different studies (10.3-13.9)^{13,15}. Stability constants derived from these
70 measurements are strongly dependent on methodological setups such as added ligand
71 identity/concentration and equilibration times¹⁶. Typically, one or two ligand classes
72 with different binding strengths are fit to CLE titration data. When a two ligand fit has
73 been used, the strong class (L_1) is generally more abundant in productive surface waters
74^{6,17-20}, suggesting a biological source for the strongest ligands. Weaker ligands (L_2) tend
75 to be particularly abundant near continental shelves and benthic boundary layers²¹⁻²⁴.
76 Based on the similarity of binding strengths, it has been suggested that the L_1 class may
77 include siderophores, biomolecules that are synthesized by microbes specifically to
78 acquire Fe under Fe-stressed conditions⁶, and that the L_2 class includes polysaccharides
79 and refractory ‘humic-like’ organic matter produced from biomass degradation²⁵⁻²⁹.
80

81 More recently, the molecular-level composition of Fe binding ligands has been
82 studied with liquid chromatography with inductively coupled plasma mass spectrometry
83 and high resolution electrospray mass spectrometry (LCMS) based approaches (Boiteau
84 et al., 2019; Boiteau et al., 2016; Bundy et al., 2018; Gledhill et al., 2004; Macrellis et al.,
85 2001; Mawji et al., 2008; Velasquez et al., 2011). These techniques physically separate
86 organic ligands, identify each species based on mass spectral data and chromatographic
87 retention time, and quantify the amount of metal associated with each. Using this
88 approach, a broad suite of siderophores and siderophore-like compounds have been
89 identified in seawater. In addition, nearly all seawater samples have been shown to have

90 a complex suite of Fe binding ligands that are chromatographically unresolved and likely
91 generated from the degradation of biomolecules into refractory compounds with extreme
92 structural variability.

93

94 A major challenge that remains is to link the chemical/structural information
95 obtained by LCMS based approaches to the binding strengths acquired by CLE
96 measurements. This requires new ways of determining physical parameters (e.g.
97 thermodynamic and kinetic constants) of the compounds detected by LCMS that can be
98 compared to those measured with CLE. The conditional stability constant of an organic
99 ligand with respect to inorganic Fe is related to the formation and dissociation of that
100 ligand with Fe. Association rates of organic ligands with free metals are generally limited
101 by the loss of water from the inner coordination sphere of the metal species (k_w), with
102 only small variations attributed to the incoming ligand ³⁷. Dissociation rates, however, are
103 strongly influenced by the specific structural characteristics of the ligand, and thus the
104 disjunctive dissociation rate constant (k_{dis}) and ligand strength are inversely correlated.
105 Measurements of the dissociation rate of ligand-organic complexes can therefore provide
106 estimates of $K^{cond} Fe' L$, a key parameter for incorporating Fe into ocean biogeochemical
107 models. Previous studies have used electrochemical methods ³⁸⁻⁴¹ or radioisotope
108 exchange ^{42,43} to measure kinetic constants of Fe binding by marine organic ligands, but
109 these approaches obtain average values that represent a complex ligand mixture.

110

111 Here, we introduce an approach for determining compound specific Fe
112 dissociation rates from a mixed ligand sample based on the exchange of naturally

113 abundant ^{56}Fe with the rare ^{57}Fe isotope. This method provides a means of determining
114 the dissociation rates of individual Fe ligands under close-to-natural seawater conditions
115 and ligand concentrations. We developed this approach by measuring the dissociation
116 rate of two model siderophores. From these rates, we used previous measurements of the
117 conditional formation constant (k_f) of the model siderophores in seawater to calculate
118 their conditional stability constants and compared these values to previous measurements
119 obtained by electrochemistry. We then analyzed a complex mixture of naturally occurring
120 ligands isolated from the coast of California containing chromatographically unresolved
121 natural organic matter and two siderophore classes ³⁵. We compare results from isotope
122 exchange with previous kinetic and stability constants determined by other means, and
123 discuss the implications of our findings in the context of metal exchange across the
124 ocean.

125

126 **Methods:**

127 Iron ligand exchange kinetics:

128 Measurements of dissociation rates for individual compounds in a complex
129 mixture require a method that can determine the amount of metal associated with each
130 species. Chromatography coupled with mass spectrometry can achieve compound
131 specific detection, but the measurements are subject to changes in speciation during
132 sample preparation or chromatographic separation (e.g. loss of metal from the organic
133 ligand). To circumvent this issue, we employed isotopic exchange to determine the
134 dissociation rates of Fe bound to siderophores and natural suites of organic ligands in
135 seawater. For these experiments, organic ligands were first bound with natural Fe (92%

136 ^{56}Fe). Then, a higher concentration of the rare isotope ^{57}Fe was added as a stock solution
137 containing excess citrate as a weak stabilizing ligand to limit Fe precipitation. The
138 isotopic ratios of the organic-ligand complexes were measured over time as the two
139 isotopes equilibrated with the organic ligands. Since association rates are much faster
140 than dissociation rates for strong Fe ligands, the rate of isotopic equilibration is directly
141 related to the rate of the slow dissociation step.

142 Iron exchange can proceed via a two-step disjunctive mechanism, in which a Fe-
143 ligand complex (FeL) dissociates, followed by ligand complexation with a different Fe
144 atom, or by an adjunctive mechanism which involves the formation of a ternary complex
145 intermediate with free added citrate (Y') or another free ligand or cation in solution. The
146 rate of isotope exchange depends on the molar fractional abundance of ^{56}Fe ($f_{56\text{Fe}}$) in the
147 sample. The overall mole fraction of ^{56}FeL remaining at time t can be described as a
148 pseudo-first order integrated rate equation relative to the initial concentration:

149

$$150 \quad \left[\frac{^{56}\text{FeL}}{L_{total}} \right] = \left(\left[\frac{^{56}\text{FeL}}{L_{total}} \right]_{initial} - f_{56\text{Fe}} \right) * e^{-k_d t} + f_{56\text{Fe}} \quad (1)$$

151

152 Where k_d is the pseudo first order dissociation rate constant for the metal ligand complex
153 at a particular temperature and solution composition, and includes both disjunctive (k_{dis})
154 and adjunctive (k_{adj}) rate constants:

155

$$156 \quad k_d = (k_{dis} + k_{adj,Y}[\text{Y}']) \quad (2)$$

157

158 The derivation of equation 1, provided as supporting information (SI), assumes that the
159 concentration of added ^{57}Fe -citrate is much larger than the initial ^{56}Fe concentration and
160 that the only significant forms contributing to the total ligand concentration [L_{total}] are the
161 complexes with ^{56}Fe or ^{57}Fe . The dissociation rate constant k_d can be obtained from the
162 slope of the linear fit to the rearranged form of equation 1:

163

164 $\ln \left(\left[\frac{^{56}\text{FeL}}{\text{L}_{\text{total}}} \right] - f_{56\text{Fe}} \right) = -k_d t + \ln \left(\left[\frac{^{56}\text{FeL}}{\text{L}_{\text{total}}} \right]_{\text{initial}} - f_{56\text{Fe}} \right)$ (3)

165

166 A key aspect of this method is that liquid chromatography with inductively
167 coupled plasma mass spectrometry (LC-ICPMS) is capable of simultaneously measuring
168 isotope ratios (and thus k_d) for every chromatographically resolved metal species in a
169 sample. The determination of the isotopic ratio, such as $^{56}\text{FeL}/(^{56}\text{FeL} + ^{57}\text{FeL})$, by LC-
170 ICPMS is a robust measurement that is not impacted by Fe loss during extraction or
171 chromatography, and does not vary with changes in instrument sensitivity. Although
172 isotopic fractionation effects do affect isotopic ratios, these fractionation factors are very
173 small (typically <<1%) compared to the changes that are measured in this study⁴⁴⁻⁴⁶. As
174 illustrated by equation 2, the excess free citrate that was amended to samples can
175 accelerate the rates of Fe-ligand exchange via adjunctive pathways compared to
176 unamended samples. As a result, measurements of k_d described here can be viewed as
177 upper bounds on the disjunctive dissociation rate constants (k_{dis}) of ligands in natural
178 waters.

179

180 Materials and reagents:

181 High purity water (18.2 MΩ cm⁻¹, qH₂O) and LCMS grade methanol (MeOH) and
182 ammonium formate (Optima, Fisher scientific) were used in this study. The methanol was
183 redistilled in a polytetrafluoroethylene (PTFE) still to reduce the Fe blank. Polycarbonate
184 carboys and PTFE tubing for sample collection and solid phase extraction (SPE) were
185 soaked overnight in 0.1% detergent (Citanox), rinsed with qH₂O, and soaked for 1 day in
186 1 M HCl (trace metal grade, Fisher Scientific) before a final qH₂O rinse. Stock solutions
187 of ferrichrome, ferrioxamine E and cyanocobalamin (Sigma Aldrich) were prepared in
188 qH₂O. To prepare the ⁵⁷Fe citrate stock solution, ⁵⁷Fe oxide (96% ⁵⁷Fe, Cambridge
189 Isotope Laboratories) dissolved in concentrated HCl (trace metal grade), and diluted to 4
190 μM Fe in a 5 mM citrate solution prepared from trisodium citrate dihydrate (Fisher
191 scientific) in qH₂O. The 1000-fold excess of citrate was added to prevent the precipitation
192 of ferric Fe oxyhydroxides. Citrate was selected due to its fast dissociation kinetics ^{47,48},
193 which exchanges Fe isotopes rapidly while maintaining a high concentration of dissolved
194 Fe.

195

196 Sample collection:

197 The sample used for the natural ligands Fe exchange rate experiment was
198 obtained from surface waters (3m depth) within a cyclonic (upwelling) eddy along the
199 coast of California in July 2014 IRNBRU cruise from 39.43°N, 124.54°W. A volume of
200 20 L was collected using a trace metal clean GeoFish sampling system and passed
201 through a 0.2 μm polyethersulfone capsule filter into a 20 L polycarbonate carboy. The
202 dissolved Fe concentration was measured at 0.12 nM by flow injection analysis, while
203 total solid phase extractable Fe ligand concentrations and siderophore concentrations

204 were measured by LC-ICPMS to be 0.17 nM and 5 pM respectively³⁵. Organic
205 compounds were extracted from the seawater onto a solid phase extraction (SPE) resin
206 column (1 g, ENV, Agilent) at a flow rate of 15 mL/min using a peristaltic pump
207 equipped with polytetraflouoroethylene (PTFE) and platinum-cured silicone tubing. Prior
208 to use, the SPE column was activated with 5 mL MeOH, rinsed with 10 mL pH 2 qH₂O
209 (acidified with trace metal grade HCl), and conditioned with 10 mL qH₂O. The column
210 was rinsed with 10 mL of qH₂O after extraction to remove excess salt and immediately
211 frozen. To recover natural organic ligands, the column was thawed, eluted with 6 mL
212 MeOH, and the MeOH extract was amended with 10 µL of a 50 µM cyanocobalamin
213 stock solution as an internal standard. The extract was concentrated to <1 mL under a
214 stream of N₂ gas and brought up to a volume of 2 mL with qH₂O.

215

216 Fe exchange from ferrichrome and ferrioxamine E in seawater:

217 Two solutions containing 2 nM each of ferrioxamine E, ferrichrome, and
218 cyanocobalamin were prepared in 60 mL PTFE bottles, one containing 50 mL qH₂O and
219 another containing 50mL filtered seawater. To each bottle, 1 mL of the ⁵⁷Fe citrate stock
220 solution was added, yielding a final concentration of 98 µM citrate and 78 nM added ⁵⁷Fe
221 and a pH of 5.8. The solutions were filter sterilized through 0.2 µm polyethersulfone
222 syringe filters (Millipore) into microwave sterilized polycarbonate bottles. The f_{56Fe} of the
223 solutions was measured by ICPMS to be 0.11 ± 0.005. The bottles were incubated in the
224 dark to prevent photodegradation at room temperature with time points collected over the
225 course of 235 days by passing 4 mL from each treatment through a 100 mg C18 SPE
226 column (Bond Elut, Agilent) that had been activated with MeOH and rinsed with qH₂O.

227 The columns were then rinsed with 1 mL qH₂O to remove salts and excess ⁵⁷Fe citrate,
228 which is not retained by the column. The columns were stored at -20 °C. For analysis,
229 siderophores were eluted with 0.8 mL of MeOH, the solvent was removed by vacuum
230 centrifugation (Savant speedvac), and samples diluted to a final volume of 150 µL with
231 qH₂O. Samples were analyzed within hours to minimize Fe exchange during processing.

232

233 LC-ICPMS analysis was used to quantify isotope ratios for separated ligands
234 using methods adapted from previous studies ^{34,35,49}. Organic extracts were separated on a
235 bioinert high pressure liquid chromatography (HPLC) system (Dionex Ultimate RSLC
236 3000) fitted with a C18 column (Hamilton, 2.1x150 mm, 3 µm particle size) and
237 polyetheretherketone (PEEK) tubing and connectors. Samples were eluted with (A) 5
238 mM aqueous ammonium formate and (B) 5 mM ammonium formate in distilled MeOH
239 using a 12 minute gradient from 10-60% B, followed by isocratic elution at 60% B for 5
240 minutes at a flow rate of 0.2 mL/min. 50 µL/min of the eluent flow was directed to a
241 quadrupole ICPMS (Thermo iCAPq) by a post column PEEK tee. O₂ gas (25 mL/min)
242 was added to the plasma to completely oxidize the organic solvent to CO₂. Data was
243 collected in kinetic energy discrimination mode monitoring ⁵⁶Fe, ⁵⁷Fe, and ⁵⁹Co with a
244 dwell time of 0.1 seconds using 4.5 mL/min He as a collision gas to remove the ArO⁺
245 interference on ⁵⁶Fe. Isotopologues were quantified based on the integration of
246 chromatographic peak areas above the baseline, with sub picomole detection limits. The
247 mean and standard deviation of isotope ratios measured by LC-ICPMS was evaluated by
248 repeated analyses of siderophores bound to naturally occurring Fe. The ⁵⁷Fe/⁵⁶Fe
249 measurement was 0.026±0.001 (n=6), which is slightly higher than the natural abundance

250 ratio of 0.023. This reflects typical instrumental mass bias towards heavier isotopes⁵⁰ and
251 indicates high precision in the context of the isotope ratios measured this study. A linear
252 regression was fit to a plot of $\ln[{}^{56}\text{Fe}/({}^{56}\text{Fe}+{}^{57}\text{Fe}) - f_{56\text{Fe}}]$ versus time for each compound
253 and treatment. Values of k_d presented in Table 1 were calculated from the slope and
254 standard error of the fit.

255

256 Fe exchange of natural organic ligands:

257 To investigate Fe exchange by natural organic ligands from seawater, 40 μL of the
258 ${}^{57}\text{Fe}$ citrate stock solution was mixed with 160 μL of the concentrated organic extract
259 from the California coast in a 250 μL autosampler vial insert (Agilent Scientific). Note
260 that these extracts were preconcentrated by a factor of 10,000 via solid phase extraction,
261 so the sample contains lower salt content and higher organic matter/ligand
262 concentrations. The resulting spiked solution contained 1 mM citrate, 800 nM added ${}^{57}\text{Fe}$
263 and $f_{56\text{Fe}} = 0.21 \pm 0.01$ and a pH of 8.1. This sample was analyzed by LC-ICPMS after
264 incubating at 25 °C for 30 minutes, 4 days, and 10 days using a bioinert liquid
265 chromatography system (Agilent 1260 Series) and a quadrupole ICPMS as described
266 above, but using a 20 minute gradient from 5-95% B, followed by a 10 minute isocratic
267 elution at 95% B. Data was collected in kinetic energy discrimination mode monitoring
268 ${}^{56}\text{Fe}$, ${}^{57}\text{Fe}$ and ${}^{59}\text{Co}$ with dwell times of 0.05 seconds.

269

270 **Results and discussion:**

271 Fe exchange for model siderophores in seawater:

272 We first investigated the exchange kinetics of two model siderophores,
273 ferrichrome and ferrioxamine E, in seawater (pH 8.1) and qH₂O (pH 5.8). These two tri-
274 hydroxamate siderophores are produced by fungi and bacteria respectively, and
275 ferrioxamine E has been previously detected in the surface ocean^{31,34-36}. The Fe
276 dissociation kinetics of ferrichrome, ferrioxamine B, and natural marine organic ligand
277 pools have been studied previously in seawater using electrochemical and radioisotope
278 exchange measurements, providing a benchmark to compare with the results from our
279 method^{39,41-43,51,52}.

280

281 LC-ICPMS analysis of the samples yielded chromatograms with the two
282 siderophores fully resolved (Fig. 1), and an increase in the peak intensity of ⁵⁷Fe versus
283 ⁵⁶Fe over time. Several precautions were taken to ensure that sample preparation and
284 chromatographic separation did not influence isotope ratios. Distilled solvents and trace
285 metal free extraction and chromatography components were used for this analysis to
286 prevent the siderophores of interest from exchanging with ambient Fe during sample
287 processing, which would bias the measured Fe isotope ratios. Iron may still dissociate
288 from the ligands during sample preparation or chromatography, but this has negligible
289 impacts on isotope ratios. Sterilization of the solution was found to be important to
290 prevent microbial degradation of the siderophores over time. The sum of the ⁵⁶Fe and
291 ⁵⁷Fe peak areas and thus total siderophore concentration was consistent between
292 timepoints (Fig. 1; standard deviation of 7% for ferrichrome and 6% for ferrioxamine E).
293 While the citrate concentrations used in this study have been shown to stabilize Fe over a
294 wide range of pH and ionic strength^{48,53}, we note that Mg²⁺ and Ca²⁺ also bind with

295 citrate and reduce its effectiveness at stabilizing dissolved Fe. Estimates of Fe speciation
296 in seawater (salinity of 35 and pH of 8.1) with 98 μ M citrate and 78 nM Fe were
297 calculated based on the cit^{4-} model Ito *et. al.*^{48,53} with ionic strength corrected stability
298 constants for Mg^{2+} and Ca^{2+} binding with citrate.⁵⁴ These calculations suggest that only
299 67% of Fe was bound to citrate (primarily as $\text{Fe}(\text{Cit})_2^{5-}$) and that some Fe precipitation
300 may have occurred in the seawater condition. However, this should not greatly affect the
301 rate of isotopic exchange and thus the measured dissociation constants.

302

303 Integrated peak areas were determined to calculate the $^{56}\text{Fe}/(^{56}\text{Fe} + ^{57}\text{Fe})$ ratios at
304 every time point and obtain linear fits to equation 3 for each compound (Fig. 2). Using
305 this method, dissociation rate constants for ferrichrome and ferrioxamine E were
306 determined in both qH₂O and seawater (Table 1). The k_d value for ferrichrome was
307 $4.5 \pm 0.7 \times 10^{-8} \text{ s}^{-1}$ in qH₂O and $10 \pm 0.3 \times 10^{-8} \text{ s}^{-1}$ in seawater, while k_d for ferrioxamine E
308 was $1.7 \pm 0.1 \times 10^{-8} \text{ s}^{-1}$ and $3.6 \pm 0.02 \times 10^{-8} \text{ s}^{-1}$ in seawater. Our observation that
309 ferrichrome dissociation was nearly 3x faster than ferrioxamine E dissociation in both
310 qH₂O and seawater is consistent with the higher reported affinity of ferrioxamine E ($\log \beta$
311 = 32.49) compared to ferrichrome ($\log \beta = 29.07$) for Fe^{55,56}.

312

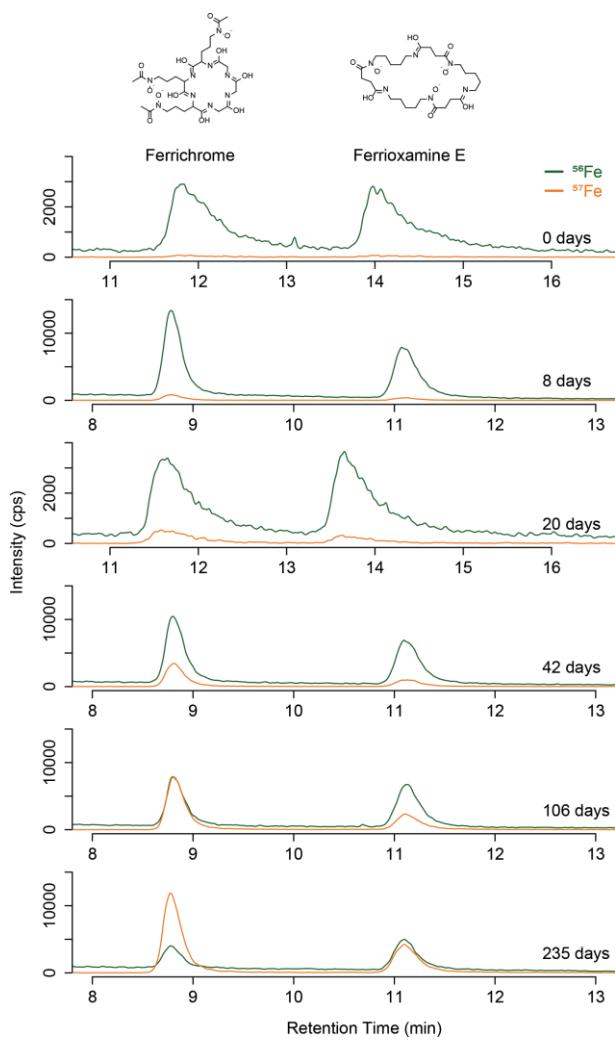
313 The ferrichrome k_d value for seawater is in good agreement with the value of 5 ± 4
314 $\times 10^{-8} \text{ s}^{-1}$ obtained by *Witter et al.*, 2000, who used electrochemical methods to monitor
315 the exchange of Fe bound to siderophores in UV oxidized seawater with added 1-nitroso-
316 2-naphthol (1N2N). However, the reported k_d value of ferrioxamine B ($150 \pm 180 \times 10^{-8} \text{ s}^{-1}$
317¹⁾ based on 1N2N electrochemical measurements was significantly faster than both

318 ferrichrome and ferrioxamine E, although the reported ferrioxamine B binding strength
319 ($\log \beta = 30.6$) is intermediate between ferrioxamine E and ferrichrome⁵⁶. Dissociation
320 rates measured by the 1N2N electrochemical method have also conflicted with other
321 kinetic studies for protoporphyrin IX and phytic acid^{57,58}. These discrepancies highlight
322 the advantage of having a distinct method to measure binding constants, such as the LC-
323 ICPMS approach described here.

324

325 For both compounds, faster dissociation kinetics were observed in seawater at pH
326 8.1 and 35 PSU salinity compared with qH₂O at pH 5.8. The two factors that differentiate
327 these treatments, pH and salinity, likely have opposite effects on Fe dissociation kinetics.
328 Previous studies have shown that lower pH accelerates metal dissociation from
329 hydroxamate siderophores^{59,60} via a mechanism involving protonation of the siderophore
330 complex, followed by adjunctive or disjunctive dissociation. Lower pH also affects the
331 protonation state of free citrate, from predominately HCit³⁻ at pH 8.1 to H₂Cit²⁻ at pH 5.8,
332 which may influence adjunctive dissociation rates involving ternary complexes. In
333 seawater, higher concentrations of Na⁺, Ca²⁺, Mg²⁺, and other cations can promote the
334 formation of coordination complexes that weaken the Fe-siderophore association and
335 enable faster dissociation kinetics, similar to the role of H⁺ at lower pH. As a secondary
336 effect, cations bind with non-metalated (free) citrate, which slows dissociation via
337 adjunctive pathways (98% of citrate was likely present as complexes with Ca, Mg, and
338 Na in seawater)^{47,61}. The overall faster dissociation rates observed in seawater compared
339 to qH₂O suggest that the accelerating effect of seawater cations is strong.

340

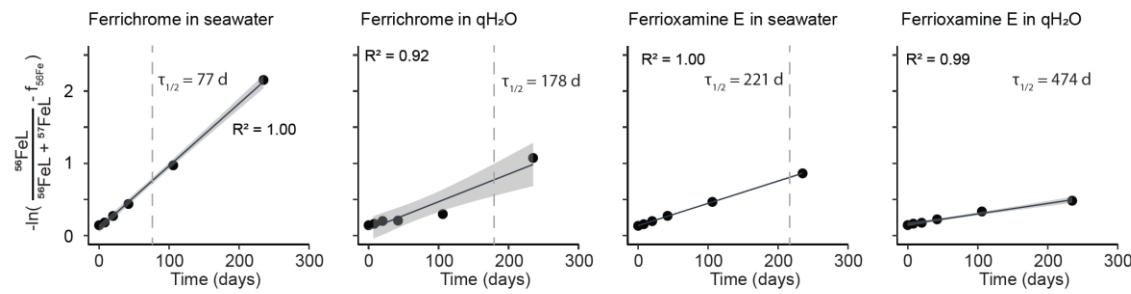

341 The results for ferrioxamine E and ferrichrome demonstrate that monitoring ^{57}Fe
342 exchange by LC-ICPMS is a useful approach for determining metal dissociation
343 constants. One of the primary advantages of this method is that it provides a compound
344 specific dissociation rate constant for each component within a complex mixture of
345 ligands as found in natural seawater, whereas competitive ligand exchange measurements
346 reflect the combined dissociation kinetics of all ligands simultaneously. Furthermore, less
347 than 1 picomole of compound is needed for each analysis, enabling sensitive analyses of
348 dilute solutions. The concentration of metals and ligands in solution influences the
349 contribution of adjunctive versus disjunctive mechanisms to overall reaction rates. These
350 isotope-exchange analysis can be scaled to liter volumes for natural samples containing
351 picomolar concentrations of organic ligands. Ultimately, the determination of
352 environmentally relevant rates of Fe dissociation can inform biogeochemical models of
353 Fe cycling ⁴³.

354

355 The LC-ICPMS approach is suitable for monitoring metal ligand complexes with
356 slow exchange rates, such as siderophores, provided the complexes remain stable over
357 timescales greater than the analysis time for each measurement
358 (extraction/preconcentration time plus analysis time). It is important to consider that once
359 concentrated, ligands are capable of exchanging metal with each other, which drives their
360 isotopic composition (and thus the calculated dissociation rates) closer together if
361 exchange is fast relative to the timescale of analysis. Previous studies found that the
362 exchange of Fe between concentrated (4 mM) siderophores ferrioxamine B and
363 ferrichrome is only 50% complete after 220 hours of incubation at 25°C and pH 7.4 ⁶⁰.

364 Thus, Fe isotope exchange between siderophores is likely negligible in the siderophore
365 extracts before and during analysis by LC-ICPMS.

366


367

368 **Figure 1:** LC-ICPMS separation and detection of ferrichrome (first peak) and
369 ferrioxamine E (later peak) extracted from seawater incubations with excess ^{57}Fe added.
370 Over time, ^{56}Fe (green trace) is lost from the compounds and replaced with ^{57}Fe (orange
371 trace). Samples from 0 and 20 days were analyzed using a different LC column than the
372 other four samples, hence the differences in peak shape, sensitivity, and retention time
373 compared to the other four samples.

374

375

376

377

378 **Figure 2:** Determination of dissociation rate constant (k_d) for ferrichrome and
379 ferrioxamine E in seawater and ultrapure water (qH₂O). Iron isotope ratios
380 ($^{56}\text{Fe}/^{56}\text{Fe} + ^{57}\text{Fe}$) of ferrichrome and ferrioxamine E were measured over time measured
381 by LC-ICPMS during an incubation with ^{57}Fe citrate in seawater and qH₂O. Gray lines
382 show the linear fits to the data in the form of equation 3, with a slope equal to k_d . Dashed
383 lines indicate the half-life ($\tau_{1/2}$) of the Fe-complex with respect to dissociation. Gray
384 shaded area indicates the standard error of the fit.

385

386

387

388

389

390

391

392

393

394

395

396 **Table 1: Kinetic rate constants of siderophores measured by LC-ICPMS**

Conditions	Siderophore	k_d (s^{-1}) $\times 10^{-8}$	std error (s^{-1}) $\times 10^{-8}$	Published k_d (s^{-1}) $\times 10^{-8}$	$\tau_{1/2}$ (d)
Seawater pH=8.1 S=35 ppt	Ferrichrome	10	0.25	5±4*	77
	Ferrioxamine E	3.6	0.022		220
	Ferrioxamine B			150±180*	
	Marine NOM			10-9720*	
qH ₂ O pH = 5.8				10-100	
				(strong)**	
				6000-25000	
				(weak)**	
				520-7900~	
SPE extract pH ~ 6-8	Ferrichrome	4.5	0.69		178
	Ferrioxamine E	1.7	0.092		474
	Amphibactins		18		
	Unidentified (709 m/z)	215			3.7
Unresolved DOM	960	73			0.83
	1800	710			0.44

* Measured by CLE with added 1-nitroso-2-naphthol (1N2N), Luther and Wu (1997) Witter and Luther (1998), Witter et al. (2000).

** Measured by CLE with 2-(2-thiazolylazo)-4-methylphenol (TAC), Croot and Heller (2012).

~ Measured by ⁵⁵Fe radioisotope exchange, Croot and Heller (2012)

397

398 Kinetic and stability constants of marine siderophores:

399 Microbial Fe acquisition by siderophores involves secretion of the free form of
400 the siderophore, chelation of Fe, and uptake of the Fe-siderophore complex before
401 dissociation or decomposition. The results from LC-ICPMS analyses provide insight into
402 the rates of these processes. Solving equation 1 for the half-maximum concentration
403 yields half-life ($\tau_{1/2}$) timescales with respect to dissociation for ferrichrome (77d) and

404 ferrioxamine E (220d). These timescales are similar to the residence time of Fe in the
405 surface ocean^{62,63}. Thus, once Fe-siderophore complexes form in the ocean, dissociation
406 is likely negligible in the absence of degradation or redox processes.

407

408 The formation and dissociation rate constants can be used to estimate equilibrium
409 conditional stability constants of the metal-ligand complex ($K^{cond}_{Fe^*L}$) to compare with
410 values determined by electrochemical competitive ligand exchange methods. $K^{cond}_{Fe^*L}$ is
411 related to the forward and reverse rate constants of the reaction:

412

$$413 K^{cond}_{Fe^*L} = k_f/k_{dis} \quad (4)$$

414

415 The conditional formation constant (k_f) of the siderophore ferrioxamine B in seawater at
416 pH 8 has been previously measured by Hudson *et al.* to be $2.0 \times 10^6 M^{-1}s^{-1}$ ³⁷. Since the
417 rate-limiting step of forming a strong Fe-ligand complex is the removal of inner sphere
418 water, k_f constants vary little for different siderophores⁶⁴. Although the measured k_d
419 value here includes a contribution from the purely disjunctive mechanism as well as
420 adjunctive mechanisms involving added free citrate, we can use it as an upper bound
421 estimate of k_{dis} . Using the experimentally determined k_d of ferrioxamine-E in seawater
422 ($3.6 \times 10^{-8} s^{-1}$) and the value of k_f from Hudson and Morel, we calculate $\log K^{cond}_{Fe^*L} =$
423 13.7. While the $K^{cond}_{Fe^*L}$ determined here represents a lower bound estimate, it illustrates
424 an approach for estimating species-specific conditional stability constants. This value is
425 within a factor of two of the CLE measured stability constant for ferrioxamine E of 14.0,

426 which may also be viewed as a lower-bound estimate since the Fe-saturated ligand was
427 used³⁶.

428

429 *Fe isotope exchange in organic ligands of marine origin:*

430 In a previous study, we found surface waters of the upwelling transition zone in
431 the California current system contained a mixture of unresolved dissolved organic matter
432 (DOM), known siderophores (amphibactins), and an unidentified Fe ligand complex
433 (likely a hydroxamate siderophore) with a monoisotopic ion mass of 709 *m/z* and
434 molecular formula of $[C_{33}H_{59}O_8N_5Fe]^{+}$ ³⁵. We used ⁵⁷Fe exchange to investigate the
435 relative binding strengths of these compounds and the timescales required to incorporate
436 an isotopic label. A large excess of ⁵⁷Fe citrate was added to the concentrated organic
437 extract and was allowed to exchange with the natural seawater ligands for 30 minutes, 4
438 days, and 10 days before analysis by LC-ICPMS (Fig. 3). ⁵⁶Fe/Fe_{total} ratios were
439 determined by integrating the area of the ⁵⁷Fe and ⁵⁶Fe LC-ICPMS chromatograms for
440 unresolved DOM eluting between 7 to 21 min, amphibactins eluting between 25-28 min,
441 and the unidentified siderophore (709 *m/z*) eluting between 28-28.8 min (Fig. 4). An 18%
442 decrease in total dissolved Fe was observed over the course of the experiment, suggesting
443 a small amount of loss of citrate-bound Fe over time due to precipitation or adsorption
444 onto the vial walls.

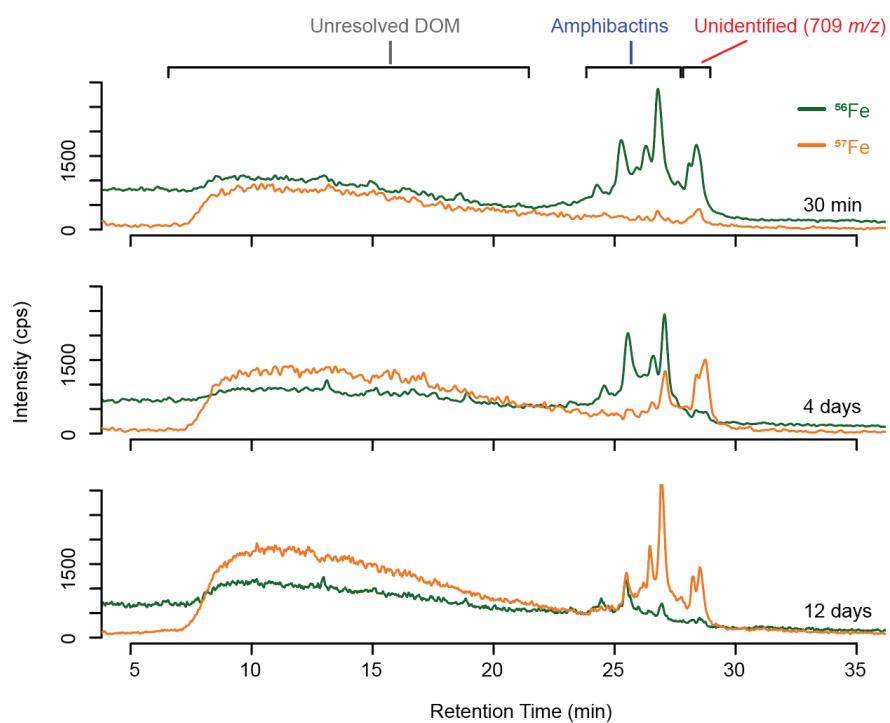
445

446 Dissociation rates were measured for the three components by calculating isotope
447 ratios over time and determining the slope of the fit to equation 3. The siderophores
448 showed a gradual exchange of ⁵⁶Fe for ⁵⁷Fe over time, with measured $\tau_{1/2}$ of 0.8 days for

449 the unidentified siderophore with m/z 709 and 3.7 days for amphibactins. The unresolved
450 DOM exchanged Fe significantly faster than the siderophores. Under the experimental
451 conditions, the measured $\tau_{1/2}$ of the unresolved DOM-Fe complex with respect to
452 dissociation was 0.4 days. However, unlike the siderophores, the total Fe associated with
453 the unresolved DOM increased over time by 80%, indicating that the ^{57}Fe signal reflects
454 not only Fe isotope exchange, but also ^{57}Fe binding to excess Fe-free ligand. We also
455 investigated whether ^{57}Fe displaced other metals (Cu, Ni, or Zn) associated with the
456 unresolved DOM, but the LC-ICPMS chromatograms of these metals remained constant
457 over the course of the experiment. This overall increase in ^{57}FeL resulted in lower
458 measurements of $^{56}\text{Fe}/\text{Fe}_{\text{total}}$ associated with the unresolved DOM, and thus the true $\tau_{1/2}$
459 for the unresolved DOM was likely longer than the value calculated here. This issue
460 could be avoided in future experiments by pre-saturating ligands with ^{56}Fe .

461

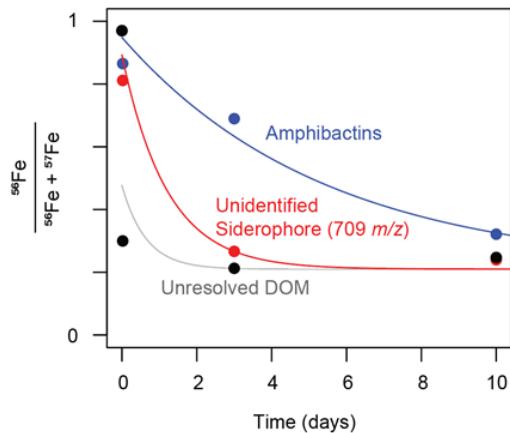
462 The Fe exchange rates determined for the natural suite of organic ligands in
463 seawater extracts are likely faster than exchange rates *in-situ* due to the added citrate and
464 10,000 fold higher concentration of natural Fe ligands in our experimental sample.
465 Higher ligand concentrations will accelerate the rates of Fe exchange by adjunctive
466 mechanisms. Although the pH of the ^{57}Fe amended extracts was not measured due to the
467 small volume, it was estimated to be between 6-8 due to the removal of carbonate from
468 the seawater by SPE. Lower salt concentration and lower pH in the extracts may also
469 influence Fe dissociation rate relative to seawater conditions, but our similar results
470 comparing Fe-siderophore exchange in qH₂O and seawater suggest that the net effect
471 may be small.


472 To constrain these experimental effects, we compared the measured dissociation
473 rates of amphibactins ($2.15 \times 10^{-6} \text{ s}^{-1}$) with estimates derived from electrochemical
474 measurement. Given literature values of $\log K^{\text{cond}}_{\text{Fe}^{\cdot}\text{L}}$ for amphibactins (12.06 to 12.48)³⁶
475 and assuming that the k_f value for these strong hydroxamate siderophores are similar to
476 ferrioxamine B ($2.0 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$), one can estimate $k_d = 0.7-1.7 \times 10^{-6} \text{ s}^{-1}$. Based on this
477 comparison, we estimate that dissociation was up to 3 times faster in the SPE organic
478 extract compared to seawater, likely due to the contribution of adjunctive exchange
479 mechanisms in the concentrate with added citrate. Our dissociation rate measurements
480 also indicate that the unidentified siderophore with 709 m/z ($k_d = 9.6 \times 10^{-6} \text{ s}^{-1}$) is a
481 weaker Fe chelator than amphibactins.

482

483 The measured k_d value for the unresolved DOM ($1.8 \pm 0.7 \times 10^{-5} \text{ s}^{-1}$) is notably
484 faster than for the siderophores (Table 1). The dissociation rate is within the range
485 measured for weak seawater ligands by previous studies using CLE ($k_d = 1 \times 10^{-7}$ to 9.72
486 $\times 10^{-5} \text{ s}^{-1}$) and radioisotope exchange methods ($k_d = 5.2 \times 10^{-6}$ to 7.92×10^{-5})^{39,41-43,52}. As
487 with our experiments, dissociation rates determined by CLE based methods may also be
488 accelerated by adjunctive reactions with the added ligand. These similarities suggest that
489 the chromatographically unresolved DOM represent a fraction of the weaker ligands in
490 seawater detected by electrochemical methods. These ligands are likely composed of
491 heterogeneous biomass decomposition products with a range of Fe binding strengths.
492 Some of these ligands, which bind to Fe when it is added at high concentrations as Fe-
493 citrate, may be too weak to keep Fe in solution in seawater over long periods of time⁴³.
494 However, they may still be important for transiently solubilizing Fe in the ocean from

495 benthic boundaries or atmospheric deposition. It is also likely that a small proportion of
496 the DOM binding sites are strong enough to be indistinguishable from siderophores in
497 terms of conditional strength. We have previously suggested that these unresolved DOM
498 components detected by LC-ICPMS correspond, at least in part, to electrochemically
499 active ligands detected by catalytic CSV that have a similar redox potential to humic
500 acids^{22,25,35,65}. They have similar oceanographic distributions, with elevated
501 concentrations near the coastal margin and benthic boundary, where they may promote
502 the transport of dissolved Fe from sediments to overlying surface waters.


503

504

505 **Figure 3:** Iron isotope exchange between natural Fe ligands extracted from seawater and
506 ^{57}Fe -citrate by LC-ICPMS. Over time, ^{56}Fe (green trace) dissociates from the natural
507 ligands and is replaced with ^{57}Fe (orange trace).

508

509

510 **Figure 4:** ^{56}Fe fraction associated with each component of the natural ligand sample over
 511 time. Colored lines indicate the modelled rate of Fe isotope exchange for each of the
 512 three ligands (equation 1) based on the measured dissociation rate constants (k_d).
 513

514 *Towards measurements of ligand-specific Fe dissociation rates in natural seawater:*

515 Laboratory experiments with simple model compounds have been instrumental to
 516 the development of mechanistic models of aqueous metal-ligand speciation ^{47,48,64,66}, but
 517 applying such models to natural waters relies on knowledge of the composition and
 518 properties of naturally occurring ligands. With the advent of LCMS methods that enable a
 519 chemical characterization and quantification of organic ligands in natural seawater
 520 extracts, there is an opportunity to generate more complete models of metal speciation in
 521 marine waters. The experiments presented here provide a proof-of-concept that isotopic
 522 exchange monitored by LC-ICPMS is a promising approach to simultaneously observe
 523 the rates of Fe-ligand exchange for mixtures of organic ligands in natural seawater and to
 524 estimate conditional stability constants of each component that can be
 525 chromatographically separated.

526

527 While our results provide a starting point, further work is needed to determine the
528 contribution of adjunctive vs. disjunctive pathways to the rate of Fe exchange in
529 seawater, in particular those involving ternary complexes with added citrate. This can be
530 accomplished with experiments that vary the concentration of citrate. Given the high
531 sensitivity of the LC-ICPMS method, future experiments can measure the dissociation
532 rates of naturally occurring ligands under ambient seawater conditions by directly
533 amending seawater with ^{57}Fe citrate and performing solid phase extractions and LC-
534 ICPMS analysis of subsamples at each kinetic timepoint. Higher temporal resolution
535 within the first few hours will also provide better constraints on the exchange kinetics of
536 the unresolved DOM. In addition, optimizing the separation between ligand pools will
537 enable more robust quantitation of each rate.

538

539 This work also highlights that Fe exchange kinetics in seawater are sluggish due
540 to dissociation rates and the dilute nature of Fe and ligands. Since Fe' is often more
541 reactive with respect to scavenging and biological uptake than ligand bound Fe, models
542 of Fe biogeochemistry often rely on explicit estimates of $[\text{Fe}']$ supplied from dissociating
543 FeL complexes. For hydroxamate siderophores, dissociation of ferric complexes occurred
544 on timescales that may exceed turnover times of Fe and ligands in the surface open
545 ocean. Such slow rates highlight the importance of biological or photochemical processes
546 for accelerate the rate of $[\text{Fe}']$ release from strong ligands, as has been pointed out
547 previously by Croot et al. 2012 ⁴³. Further work is needed to evaluate the rate at which Fe
548 is released from siderophores via other reactions that weaken the complex strength (e.g.
549 siderophore degradation or Fe reduction by sunlight or reactive oxygen species).

550

551 **Supporting Information:** Derivation of kinetic equations of isotope exchange.

552

553 **Acknowledgements:**

554 We would like to thank Serena Dao and Geoffrey Smith for assistance collecting
555 samples, Francois Morel for valuable discussion, and Ken Bruland and the scientists and
556 crew of the R/V *Melville*. This work was funded by the Gordon and Betty Moore
557 Foundation (Grant GBMF3298), the National Science Foundation (NSF) program in
558 chemical oceanography (OCE-1356747, OCE-1259776, OCE- 1736280, OCE-1829761),
559 the NSF Science and Technology Center for Microbial Oceanography Research and
560 Education (DBI-0424599), and the Simons Foundation (Awards 621513, 329108).

561

562 **References:**

563 (1) Martin, J. H.; Gordon, R. M.; Fitzwater, S. E. The Case for Iron. *Limnol.*
564 *Oceanogr.* **1991**, *36* (8), 1793–1802.

565 (2) Martin, J. H.; Coale, K. H.; Johnson, K. S.; Fitzwater, S. E.; Gordon, R. M.;
566 Tanner, S. J.; Hunter, C. N.; Elrod, V. A.; Nowicki, J. L.; Coley, T. L.; Barber, R.
567 T.; Lindley, S.; Watson, A. J.; Van Scoy, K.; Law, C. S.; Liddicoat, M. I.; Ling,
568 R.; Stanton, T.; Stockel, J.; Collins, C.; Anderson, A.; Bidigare, R.; Ondrusek, M.;
569 Latasa, M.; Millero, F. J.; Lee, K.; Yao, W.; Zhang, J. Z.; Friederich, G.;
570 Sakamoto, C.; Chavez, F.; Buck, K.; Kolber, Z.; Greene, R.; Falkowski, P.;
571 Chisholm, S. W.; Hoge, F.; Swift, R.; Yungel, J.; Turner, S.; Nightingale, P.;
572 Hatton, A.; Liss, P.; Tindale, N. W. Testing the Iron Hypothesis in Ecosystems of

573 the Equatorial Pacific Ocean. *Nature* **1994**, *371* (6493), 123–129.

574 <https://doi.org/10.1038/371123a0>.

575 (3) Boyd, P. W.; Jickells, T.; Law, C. S.; Blain, S.; Boyle, E. A.; Buesseler, K. O.;

576 Coale, K. H.; Cullen, J. J.; Baar, H. J. W. De; Follows, M.; Harvey, M.; Lancelot,

577 C.; Levasseur, M. Mesoscale Iron Enrichment Experiments 1993–2005: Synthesis

578 and Future Directions. *Science (80-.)* **2007**, *315* (February), 612–617.

579

580 (4) De Baar, H.; Boyd, P.; Coale, K.; Landry, M. Synthesis of Iron Fertilization

581 Experiments: From the Iron Age in the Age of Enlightenment. *J. Geophys. Res*

582 **2005**, *110* (C9), 1–24. <https://doi.org/10.1029/2004JC002601>.

583 (5) Rue, E.; Bruland, K. Complexation of Iron(III) by Natural Organic Ligands in the

584 Central North Pacific as Determined by a New Competitive Ligand

585 Equilibration/Adsorptive Cathodic Stripping Voltammetric Method. *Mar. Chem.*

586 **1995**, *50* (1–4), 117–138. [https://doi.org/10.1016/0304-4203\(95\)00031-L](https://doi.org/10.1016/0304-4203(95)00031-L).

587 (6) Rue, E. L.; Bruland, K. W. The Role of Organic Complexation on Ambient Iron

588 Chemistry in the Equatorial Pacific Ocean and the Response of a Mesoscale Iron

589 Addition Experiment. *Limnol. Oceanogr.* **1997**, *42* (5), 901–910.

590 <https://doi.org/10.4319/lo.1997.42.5.0901>.

591 (7) Gledhill, M.; van den Berg, C. M. G. Measurement of the Redox Speciation of

592 Iron in Seawater by Catalytic Cathodic Stripping Voltammetry. *Mar. Chem.* **1995**,

593 *50* (1–4), 51–61. [https://doi.org/10.1016/0304-4203\(95\)00026-N](https://doi.org/10.1016/0304-4203(95)00026-N).

594 (8) van den Berg, C. M. G. Evidence for Organic Complexation of Iron in Seawater.

595 *Mar. Chem.* **1995**, *50* (1–4), 139–157. [https://doi.org/10.1016/0304-4203\(95\)00026-N](https://doi.org/10.1016/0304-4203(95)00026-N).

596 4203(95)00032-M.

597 (9) Yokoi, K.; van den Berg, C. M. G. The Determination of Iron in Seawater Using
598 Catalytic Cathodic Stripping Voltammetry. *Electroanalysis* **1992**, *4* (1), 65–69.
599 <https://doi.org/10.1002/elan.1140040113>.

600 (10) Kuma, K.; Nishioka, J.; Matsunaga, K. Controls on Iron(III) Hydroxide Solubility
601 in Seawater: The Influence of PH and Natural Organic Chelators. *Limnol.*
602 *Oceanogr.* **1996**, *41* (3), 396–407. <https://doi.org/10.4319/lo.1996.41.3.0396>.

603 (11) Kuma, K.; Katsumoto, A.; Kawakami, H.; Takatori, F.; Matsunaga, K. Spatial
604 Variability of Fe(III) Hydroxide Solubility in the Water Column of the Northern
605 North Pacific Ocean. *Deep - Sea Res. Part I - Oceanogr. Res. Pap.* **1998**, *45* (1),
606 91–113. [https://doi.org/10.1016/S0967-0637\(97\)00067-8](https://doi.org/10.1016/S0967-0637(97)00067-8).

607 (12) Liu, X.; Millero, F. The Solubility of Iron in Seawater. *Mar. Chem.* **2002**, *77*, 43–
608 54.

609 (13) Gledhill, M.; Buck, K. N. The Organic Complexation of Iron in the Marine
610 Environment: A Review. *Front. Microbiol.* **2012**, *3*, 1–17.
611 <https://doi.org/10.3389/fmicb.2012.00069>.

612 (14) Vraspir, J. M.; Butler, A. Chemistry of Marine Ligands and Siderophores. *Ann.*
613 *Rev. Mar. Sci.* **2009**, *1* (1), 43–63.
614 <https://doi.org/10.1146/annurev.marine.010908.163712>.

615 (15) Caprara, S.; Buck, K. N.; Gerrings, L. J. A.; Rijkenberg, M. J. A.; Monticelli, D. A
616 Compilation of Iron Speciation Data for Open Oceanic Waters. *Front. Mar. Sci.*
617 **2016**, *3* (NOV), 1–7. <https://doi.org/10.3389/fmars.2016.00221>.

618 (16) Gerringa, L. J. A.; Gledhill, M.; Ardiningsih, I.; Muntjewerf, N.; Laglera, L. M.
619 Comparing CLE-AdCSV Applications Using SA and TAC to Determine the Fe-
620 Binding Characteristics of Model Ligands in Seawater. *Biogeosciences* **2021**, *18*
621 (19), 5265–5289. <https://doi.org/10.5194/bg-18-5265-2021>.

622 (17) Cullen, J. T.; Bergquist, B. A.; Moffett, J. W. Thermodynamic Characterization of
623 the Partitioning of Iron between Soluble and Colloidal Species in the Atlantic
624 Ocean. *Mar. Chem.* **2006**, *98* (2–4), 295–303.
625 <https://doi.org/10.1016/j.marchem.2005.10.007>.

626 (18) Buck, K. N.; Selph, K. E.; Barbeau, K. A. Iron-Binding Ligand Production and
627 Copper Speciation in an Incubation Experiment of Antarctic Peninsula Shelf
628 Waters from the Bransfield Strait, Southern Ocean. *Mar. Chem.* **2010**, *122* (1–4),
629 148–159. <https://doi.org/10.1016/j.marchem.2010.06.002>.

630 (19) Ibsanmi, E.; Sander, S. G.; Boyd, P. W.; Bowie, A. R.; Hunter, K. A. Vertical
631 Distributions of Iron-(III) Complexing Ligands in the Southern Ocean. *Deep Sea*
632 *Res. Part II Top. Stud. Oceanogr.* **2011**, *58* (21–22), 2113–2125.
633 <https://doi.org/10.1016/j.dsr2.2011.05.028>.

634 (20) Buck, K. N.; Sedwick, P. N.; Sohst, B.; Carlson, C. A. Organic Complexation of
635 Iron in the Eastern Tropical South Pacific: Results from US GEOTRACES Eastern
636 Pacific Zonal Transect (GEOTRACES Cruise GP16). *Mar. Chem.* **2018**, *201*
637 (October 2017), 229–241. <https://doi.org/10.1016/j.marchem.2017.11.007>.

638 (21) Buck, K.; Lohan, M.; Berger, C.; Bruland, K. Dissolved Iron Speciation in Two
639 Distinct River Plumes and an Estuary : Implications for Riverine Iron Supply.

640 *Limnol. Oceanogr.* **2007**, *52* (2), 843–855.

641 (22) Bundy, R. M.; Abdulla, H. A. N.; Hatcher, P. G.; Biller, D. V.; Buck, K. N.;
642 Barbeau, K. A. Iron-Binding Ligands and Humic Substances in the San Francisco
643 Bay Estuary and Estuarine-Influenced Shelf Regions of Coastal California. *Mar.*
644 *Chem.* **2015**, *173*, 183–194. <https://doi.org/10.1016/j.marchem.2014.11.005>.

645 (23) Boye, M.; Aldrich, A. P.; van den Berg, C. M. ; de Jong, J. T. ; Veldhuis, M.; de
646 Baar, H. J. . Horizontal Gradient of the Chemical Speciation of Iron in Surface
647 Waters of the Northeast Atlantic Ocean. *Mar. Chem.* **2003**, *80* (2–3), 129–143.
648 [https://doi.org/10.1016/S0304-4203\(02\)00102-0](https://doi.org/10.1016/S0304-4203(02)00102-0).

649 (24) Batchelli, S.; Muller, F. L. L.; Chang, K.-C.; Lee, C. Evidence for Strong but
650 Dynamic Iron-Humic Colloidal Associations in Humic-Rich Coastal Waters.
651 *Environ. Sci. Technol.* **2010**, *44* (22), 8485–8490.
652 <https://doi.org/10.1021/es101081c>.

653 (25) Laglera, L. M.; van den Berg, C. M. G. Evidence for Geochemical Control of Iron
654 by Humic Substances in Seawater. *Limnol. Oceanogr.* **2009**, *54* (2), 610–619.

655 (26) Hassler, C.; Cabanes, D.; Blanco-Ameijeiras, S.; Sander, S. G.; Benner, R.
656 Importance of Refractory Ligands and Their Photodegradation for Iron Oceanic
657 Inventories and Cycling. *Mar. Freshw. Res.* **2020**, *71* (3), 311–320.
658 <https://doi.org/10.1071/MF19213>.

659 (27) Norman, L.; Worms, I. A. M.; Angles, E.; Bowie, A. R.; Nichols, C. M.; Ninh
660 Pham, A.; Slaveykova, V. I.; Townsend, A. T.; David Waite, T.; Hassler, C. S. The
661 Role of Bacterial and Algal Exopolymeric Substances in Iron Chemistry. *Mar.*

662 *Chem.* **2015**, *173*, 148–161. <https://doi.org/10.1016/j.marchem.2015.03.015>.

663 (28) Hassler, C. S.; Schoemann, V.; Nichols, C. M.; Butler, E. C. V.; Boyd, P. W.

664 Saccharides Enhance Iron Bioavailability to Southern Ocean Phytoplankton. *Proc.*

665 *Natl. Acad. Sci.* **2011**, *108* (3), 1076–1081.

666 <https://doi.org/10.1073/pnas.1010963108>.

667 (29) Whitby, H.; Planquette, H.; Cassar, N.; Bucciarelli, E.; Osburn, C. L.; Janssen, D.

668 J.; Cullen, J. T.; González, A. G.; Völker, C.; Sarthou, G. A Call for Refining the

669 Role of Humic-like Substances in the Oceanic Iron Cycle. *Sci. Rep.* **2020**, *10* (1),

670 1–12. <https://doi.org/10.1038/s41598-020-62266-7>.

671 (30) Gledhill, M.; McCormack, P.; Ussher, S.; Achterberg, E. P.; Mantoura, R. F. C.;

672 Worsfold, P. J. Production of Siderophore Type Chelates by Mixed

673 Bacterioplankton Populations in Nutrient Enriched Seawater Incubations. *Mar.*

674 *Chem.* **2004**, *88* (1–2), 75–83. <https://doi.org/10.1016/j.marchem.2004.03.003>.

675 (31) Mawji, E.; Gledhill, M.; Milton, J. A.; Tarran, G. A.; Ussher, S.; Thompson, A.;

676 Wolff, G. A.; Worsfold, P. J.; Achterberg, E. P. Hydroxamate Siderophores:

677 Occurrence and Importance in the Atlantic Ocean. *Environ. Sci. Technol.* **2008**, *42*

678 (23), 8675–8680.

679 (32) Velasquez, I.; Nunn, B. L.; Ibsanmi, E.; Goodlett, D. R.; Hunter, K. A.; Sander, S.

680 G. Detection of Hydroxamate Siderophores in Coastal and Sub-Antarctic Waters

681 off the South Eastern Coast of New Zealand. *Mar. Chem.* **2011**, *126* (1–4), 97–

682 107. <https://doi.org/10.1016/j.marchem.2011.04.003>.

683 (33) Macrellis, H. M.; Trick, C. G.; Rue, E. L.; Smith, G.; Bruland, K. W. Collection

684 and Detection of Natural Iron-Binding Ligands from Seawater. *Mar. Chem.* **2001**,
685 76 (3), 175–187. [https://doi.org/10.1016/S0304-4203\(01\)00061-5](https://doi.org/10.1016/S0304-4203(01)00061-5).

686 (34) Boiteau, R. M.; Mende, D. R.; Hawco, N. J.; McIlvin, M. R.; Fitzsimmons, J. N.;
687 Saito, M. A.; Sedwick, P. N.; Delong, E. F.; Repeta, D. J. Siderophore-Based
688 Microbial Adaptations to Iron Scarcity across the Eastern Pacific Ocean. *Proc.
689 Natl. Acad. Sci.* **2016**, 113 (50), 14237–14242.
690 <https://doi.org/10.1073/pnas.1608594113>.

691 (35) Boiteau, R. M.; Till, C. P.; Coale, T. H.; Fitzsimmons, J. N.; Bruland, K. W.;
692 Repeta, D. J. Patterns of Iron and Siderophore Distributions across the California
693 Current System. *Limnol. Oceanogr.* **2019**, 64 (1), 376–389.
694 <https://doi.org/10.1002/lno.11046>.

695 (36) Bundy, R. M.; Boiteau, R. M.; McLean, C.; Turk-Kubo, K. A.; McIlvin, M. R.;
696 Saito, M. A.; Van Mooy, B. A. S.; Repeta, D. J. Distinct Siderophores Contribute
697 to Iron Cycling in the Mesopelagic at Station ALOHA. *Front. Mar. Sci.* **2018**, 5.
698 <https://doi.org/10.3389/fmars.2018.00061>.

699 (37) Hudson, R. J. .; Covault, D. T.; Morel, F. M. . Investigations of Iron Coordination
700 and Redox Reactions in Seawater Using ^{59}Fe Radiometry and Ion-Pair Solvent
701 Extraction of Amphiphilic Iron Complexes. *Mar. Chem.* **1992**, 38 (3–4), 209–235.
702 [https://doi.org/10.1016/0304-4203\(92\)90035-9](https://doi.org/10.1016/0304-4203(92)90035-9).

703 (38) Wu, J.; Luther, G. Complexation of Fe(III) by Natural Organic Ligands in the
704 Northwest Atlantic Ocean by a Competitive Ligand Equilibration Method and a
705 Kinetic Approach. *Mar. Chem.* **1995**, 50 (1–4), 159–177.

706 https://doi.org/10.1016/0304-4203(95)00033-N.

707 (39) Witter, A. E.; Hutchins, D. A.; Butler, A.; Luther, G. W. Determination of
708 Conditional Stability Constants and Kinetic Constants for Strong Model Fe-
709 Binding Ligands in Seawater. *Mar. Chem.* **2000**, *69*, 1–17.
710 https://doi.org/10.1016/S0304-4203(99)00087-0.

711 (40) Luther, G. W.; Mullaugh, K. M.; Hauser, E. J.; Rader, K. J.; Di, D. M.
712 Determination of Ambient Dissolved Metal Ligand Complexation Parameters via
713 Kinetics and Pseudo-Voltammetry Experiments. *Mar. Chem.* **2021**, *234*, 103998.
714 https://doi.org/10.1016/j.marchem.2021.103998.

715 (41) Witter, A. E.; Luther, G. W. Variation in Fe-Organic Complexation with Depth in
716 the Northwestern Atlantic Ocean as Determined Using a Kinetic Approach. *Mar.*
717 *Chem.* **1998**, *62* (3–4), 241–258. https://doi.org/10.1016/S0304-4203(98)00044-9.

718 (42) Croot, P. L.; Heller, M. I.; Schlosser, C.; Wuttig, K. Utilizing Radioisotopes for
719 Trace Metal Speciation Measurements in Seawater. *Radioisot. - Appl. Phys. Sci.*
720 **2011**. https://doi.org/10.5772/23182.

721 (43) Croot, P. L.; Heller, M. I. The Importance of Kinetics and Redox in the
722 Biogeochemical Cycling of Iron in the Surface Ocean. *Front. Microbiol.* **2012**, *3*
723 (June), 1–15. https://doi.org/10.3389/fmicb.2012.00219.

724 (44) Conway, T. M.; John, S. G. Quantification of Dissolved Iron Sources to the North
725 Atlantic Ocean. *Nature* **2014**, *511* (7508), 212–215.
726 https://doi.org/10.1038/nature13482.

727 (45) Lacan, F.; Radic, A.; Jeandel, C.; Poitrasson, F.; Sarthou, G.; Pradoux, C.;

728 Freydier, R. Measurement of the Isotopic Composition of Dissolved Iron in the
729 Open Ocean. *Geophys. Res. Lett.* **2008**, *35* (24), 1–5.
730 <https://doi.org/10.1029/2008GL035841>.

731 (46) Radic, A.; Lacan, F.; Murray, J. W. Iron Isotopes in the Seawater of the Equatorial
732 Pacific Ocean: New Constraints for the Oceanic Iron Cycle. *Earth Planet. Sci.
733 Lett.* **2011**, *306* (1–2), 1–10. <https://doi.org/10.1016/j.epsl.2011.03.015>.

734 (47) Ito, H.; Fujii, M.; Masago, Y.; Waite, T. D.; Omura, T. Effect of Ionic Strength on
735 Ligand Exchange Kinetics between a Mononuclear Ferric Citrate Complex and
736 Siderophore Desferrioxamine B. *Geochim. Cosmochim. Acta* **2015**, *154*, 81–97.
737 <https://doi.org/10.1016/j.gca.2015.01.020>.

738 (48) Ito, H.; Fujii, M.; Masago, Y.; Yoshimura, C.; Waite, T. D.; Omura, T. Mechanism
739 and Kinetics of Ligand Exchange between Ferric Citrate and Desferrioxamine B.
740 *J. Phys. Chem. A* **2011**, *115* (21), 5371–5379. <https://doi.org/10.1021/jp202440e>.

741 (49) Boiteau, R. M.; Fitzsimmons, J. N.; Repeta, D. J.; Boyle, E. A. Detection of Iron
742 Ligands in Seawater and Marine Cyanobacteria Cultures by High-Performance
743 Liquid Chromatography–Inductively Coupled Plasma-Mass Spectrometry. *Anal.
744 Chem.* **2013**, *85* (9), 4357–4362. <https://doi.org/10.1021/ac3034568>.

745 (50) Heumann, K. G.; Gallus, S. M.; Ra, G.; Vogl, J. Precision and Accuracy in Isotope
746 Ratio Measurements by Plasma Source Mass Spectrometry †. *J. Anal. At.
747 Spectrom.* **1998**, *13* (September).

748 (51) Gerringa, L. J. A.; Rijkenberg, M. J. A.; Wolterbeek, H. T.; Verburg, T. G.; Boye,
749 M.; de Baar, H. J. W. Kinetic Study Reveals Weak Fe-Binding Ligand, Which

750 Affects the Solubility of Fe in the Scheldt Estuary. *Mar. Chem.* **2007**, *103* (1–2),
751 30–45. <https://doi.org/10.1016/j.marchem.2006.06.002>.

752 (52) Luther, G. W.; Wu, J. What Controls Dissolved Iron Concentrations in the World
753 Ocean? — A Comment. *Mar. Chem.* **1997**, *57* (3–4), 173–179.
754 [https://doi.org/10.1016/S0304-4203\(97\)00046-7](https://doi.org/10.1016/S0304-4203(97)00046-7).

755 (53) Silva, A. M. N.; Kong, X.; Parkin, M. C.; Cammack, R.; Hider, R. C. Iron(III)
756 Citrate Speciation in Aqueous Solution. *Dalt. Trans.* **2009**, No. 40, 8616–8625.
757 <https://doi.org/10.1039/b910970f>.

758 (54) Morel, F. M.; Hering, J. *Principles And Applications Of Aquatic Chemistry.*, 2nd
759 ed.; Wiley: New York, NY, 1993.

760 (55) Anderegg, G.; L'Eplattenier, F.; Schwarzenbach, G. Hydroxamatkomplexe III.
761 Eisen(III)-Austausch Zwischen Sideraminen Und Komplexonen. Diskussion Der
762 Bildungskonstanten Der Hydroxamatkomplexe. *Helv. Chim. Acta* **1963**, *46* (4),
763 1409–1422. <https://doi.org/10.1002/hlca.19630460436>.

764 (56) Anderegg, G.; L'Eplattenier, F.; Schwarzenbach, G. Hydroxamatkomplexe II. Die
765 Anwendung Der PH-Methode. *Helv. Chim. Acta* **1963**, *46* (4), 1400–1408.
766 <https://doi.org/10.1002/hlca.19630460435>.

767 (57) Schlosser, C.; Croot, P. L. Application of Cross-Flow Filtration for Determining
768 the Solubility of Iron Species in Open Ocean Seawater. *Limnol. Oceanogr.*
769 *Methods* **2008**, *6*, 630–642. <https://doi.org/10.4319/lom.2008.6.630>.

770 (58) Rijkenberg, M. J. A.; Gerrings, L. J. A.; Carolus, V. E.; Velzeboer, I.; de Baar, H.
771 J. W. Enhancement and Inhibition of Iron Photoreduction by Individual Ligands in

772 Open Ocean Seawater. *Geochim. Cosmochim. Acta* **2006**, *70* (11), 2790–2805.

773 <https://doi.org/10.1016/j.gca.2006.03.004>.

774 (59) Tufano, T. P.; Raymond, K. N. Coordination Chemistry of Microbial Iron
775 Transport Compounds. 21. Kinetics and Mechanism of Iron Exchange in
776 Hydroxamate Siderophore Complexes. *J. Am. Chem. Soc.* **1981**, *103* (22), 6617–
777 6624. <https://doi.org/10.1021/ja00412a015>.

778 (60) Raymond, K. N.; Mueller, G.; Matzanke, B.; Müller, G. Complexation of Iron by
779 Siderophores a Review of Their Solution and Structural Chemistry and Biological
780 Function. *Struct. Chem.* **1984**, *123*, 49–102. <https://doi.org/10.1021/ba-1977-0162.ch002>.

782 (61) Rea, L. T.; Xu, Y.; Boland, N. E. Effects of Calcium on the Kinetics of a Model
783 Disjunctive Ligand Exchange Reaction: Implications for Dynamic Trace Metal Ion
784 Speciation. *Environ. Sci. Process. Impacts* **2019**, *21* (1), 89–103.
785 <https://doi.org/10.1039/c8em00301g>.

786 (62) Hayes, C. T.; Fitzsimmons, J. N.; Boyle, E. A.; McGee, D.; Anderson, R. F.;
787 Weisend, R.; Morton, P. L. Thorium Isotopes Tracing the Iron Cycle at the Hawaii
788 Ocean Time-Series Station ALOHA. *Geochim. Cosmochim. Acta* **2015**, *169*, 1–16.
789 <https://doi.org/10.1016/j.gca.2015.07.019>.

790 (63) Croot, P. L. Short Residence Time for Iron in Surface Seawater Impacted by
791 Atmospheric Dry Deposition from Saharan Dust Events. *Geophys. Res. Lett.* **2004**,
792 *31* (23), L23S08. <https://doi.org/10.1029/2004GL020153>.

793 (64) Hering, J. G.; Morel, F. M. M. Slow Coordination Reactions in Seawater.

794 *Geochim. Cosmochim. Acta* **1989**, *53* (3), 611–618. [https://doi.org/10.1016/0016-7037\(89\)90004-5](https://doi.org/10.1016/0016-7037(89)90004-5).

795

796 (65) Bundy, R. M.; Biller, D. V; Buck, K. N.; Bruland, K. W.; Barbeau, K. A. Distinct
797 Pools of Dissolved Iron-Binding Ligands in the Surface and Benthic Boundary
798 Layer of the California Current. *Limnol. Oceanogr.* **2014**, *59* (3), 769–787.
799 <https://doi.org/10.4319/lo.2014.59.3.0769>.

800 (66) Hering, J.; Morel, F. Kinetics of Trace Metal Complexation: Ligand-Exchange
801 Reactions. *Environ. Sci. Technol.* **1990**, *252* (9), 242–252. <https://doi.org/0013-936X/90/0924-0242>.

802

803