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tandem with, a set of points. The method is then tested in 

simulation with multiple settings for the obstacles, with the 

robotic arm described by a 3-segment constant curvature 

model. The proposed approach is compared to an alternative 

method where curve-like obstacles are modeled with a set of 

points, in terms of both computation time and ability to avoid 

collision with the obstacle.  

2. METHOD 

2.1 Kinematic Model 

This section covers the kinematic model of the continuum arm 

used throughout this paper: a piecewise-constant curvature 

arm as described in Webster and Jones (2010). Fig. 1 illustrates 

the model with a 3-segment example. 

 

Fig. 1. Illustration of a continuum arm model with piecewise-constant 

curvature. 

Each segment 𝑖𝑖, with 𝑖𝑖 = 1, 2, … , 𝑛𝑛 for any number n of 

segments, of the arm is composed of an actuator of length 𝐿𝐿𝑅𝑅 = 𝐿𝐿0𝑅𝑅 + 𝑙𝑙𝑅𝑅, where 𝐿𝐿0𝑅𝑅 is the base length of the segment and 𝑙𝑙𝑅𝑅 is the length variation for the segment. Each segment has a 

base, starting at either the global base of the arm or the tip of 

the previous segment, with its own local coordinate system Xi-

Yi-Zi. Zi coincides with the tangential direction of the segment 

at its base while Xi-Yi follow the right-hand rule and are 

determined by the bending of the previous segment. The 

bending on each segment can be modeled by two parameters, φ𝑅𝑅, which defines the direction of bending in the Xi-Yi plane, 

and Ѳ𝑅𝑅, the magnitude of the angle the segment curves; see Fig. 

2 for illustration. This bending results in a change in 

orientation from the base to the tip of a segment by a rotation 

about the Zi axis by φ𝑅𝑅, followed by a rotation about the 

successive Yi axis by Ѳ𝑅𝑅. A single segment can be described as 

an arc of a circle of length 𝐿𝐿𝑅𝑅 and angle Ѳ𝑅𝑅, as shown in Fig. 

2(a), with the direction of bending defined by φ𝑅𝑅, illustrated in 

Fig. 2(b). The radius of the circle the arc is formed from, 𝑟𝑟𝑅𝑅, is 

equal to 𝐿𝐿𝑅𝑅/Ѳ𝑅𝑅 , with the curvature of the arc, 𝑘𝑘𝑅𝑅 = 1/𝑟𝑟𝑅𝑅 . 

  

 

(a) (b)  

Fig. 2. (a) A side view of a segment with length 𝑳𝑳𝒊𝒊 and bending of Ѳ𝒊𝒊. (b) A 

top view of a segment with bending direction 𝛗𝛗𝒊𝒊. 
For a given segment i with configuration variables 𝑞𝑞𝑅𝑅 = [𝐿𝐿𝑅𝑅 Ѳ𝑅𝑅 φ𝑅𝑅], the displacement matrix relating its tip to its 

base is given by 

𝐻𝐻𝑅𝑅𝑅𝑅−1 = [ 𝑅𝑅𝑅𝑅 𝑃𝑃𝑅𝑅01𝑚𝑚3 1],                                                              (1) 

where 𝑅𝑅𝑅𝑅 is the rotation matrix representing the orientation at 

the end of the segment relative to its base and 𝑃𝑃𝑅𝑅  is the set of 

coordinates of the endpoint of the segment relative to its base. 𝑅𝑅𝑅𝑅 and 𝑃𝑃𝑅𝑅  can be calculated as follows (Webster & Jones, 

2010): 

𝑅𝑅𝑅𝑅 = [cos(φ𝑅𝑅) cos(Ѳ𝑅𝑅) − sin(φ𝑅𝑅) cos(φ𝑅𝑅) sin(Ѳ𝑅𝑅)sin(φ𝑅𝑅) cos(Ѳ𝑅𝑅) cos(φ𝑅𝑅) sin(φ𝑅𝑅) sin(Ѳ𝑅𝑅)− sin(Ѳ𝑅𝑅) 0 cos(Ѳ𝑅𝑅) ]       (2) 

𝑃𝑃𝑅𝑅 = [𝑃𝑃𝑚𝑚𝑃𝑃𝑦𝑦𝑃𝑃𝑧𝑧
] =

[ 
  
 [1 − cos(Ѳ𝑅𝑅)] 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 cos(φ𝑅𝑅)[1 − cos(Ѳ𝑅𝑅)] 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 sin(φ𝑅𝑅)sin(Ѳ𝑅𝑅) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 ] 

  
 
.                              (3) 

A value of 0 for Ѳ𝑅𝑅 would lead to an arc of infinite radius and 

an undefined value for 𝑃𝑃𝑅𝑅 . Instead, if Ѳ𝑅𝑅 = 0, 𝑃𝑃𝑅𝑅  can be 

expressed as [0 0 𝐿𝐿𝑅𝑅]𝑇𝑇 . The displacement matrix for each 

segment can be extended to include any number of n segments 

relating the base of the arm to the tip of the nth segment by 

𝐻𝐻𝑚𝑚0 = ∏ 𝐻𝐻𝑅𝑅𝑅𝑅−1𝑚𝑚𝑅𝑅=1 .                                                                  (4) 

2.2 General Path Planning Algorithm 

This section covers a general path planning algorithm that 

utilizes the piecewise constant curvature model. For this 

manipulator model, any given point s relative to the base on a 

segment i of the arm can be calculated by 

𝑃𝑃𝜕𝜕𝑅𝑅 = 𝑅𝑅𝑅𝑅−10
[ 
  
 [1 − cos(Ѳ𝑅𝑅s)] 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 cos(φ𝑅𝑅)[1 − cos(Ѳ𝑅𝑅s)] 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 sin(φ𝑅𝑅)sin(Ѳ𝑅𝑅𝑠𝑠) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 ] 

  
 + 𝑃𝑃𝑅𝑅−10 ,                   (5)  

where 𝑅𝑅𝑅𝑅−10  is the matrix representing the orientation of the ith 

segment base relative to the base of the arm, 𝑃𝑃𝑅𝑅−10  is the set of 

coordinates for the base of the ith segment with respect to the 
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base of the arm, and s is a parametric variable with a range [0 

1] that defines the proportional distance along the segment. 

The Jacobian of the 3D position for any point s on the segment 

i can be derived with respect to the set of all configuration 

variables  𝑞𝑞 = [𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑚𝑚] as 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞) =  𝜕𝜕𝑃𝑃𝜕𝜕𝑅𝑅/𝜕𝜕𝑞𝑞. The 

Jacobian expresses the change in position of a point on the arm 

relative to any change in the configuration variables. Using 

this, the linear velocity for any point s on the arm segment 

i, 𝑃̇𝑃𝜕𝜕𝑅𝑅, can be calculated as follows using the rate of change in 

the configuration variables 𝑞̇𝑞.                                                                          

𝑃̇𝑃𝜕𝜕𝑅𝑅 = 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)𝑞̇𝑞.                                                                         (6) 

Conversely, the rate of change in the configuration variables 

needed to achieve a desired linear velocity can be expressed as  

𝑞̇𝑞 = 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)+𝑃̇𝑃𝜕𝜕𝑅𝑅 .                                                                       (7) 

Here 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)+ is the pseudo-inverse of the Jacobian and can be 

calculated as 

𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)+ = 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)T[𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)𝐽𝐽𝜕𝜕𝑅𝑅T(𝑞𝑞)]−1,                                         (8) 

with 𝐽𝐽𝜕𝜕𝑅𝑅T(𝑞𝑞) being the transpose of the Jacobian. In a scenario 

without obstacles, a path planning algorithm would assign 𝑃̇𝑃𝜕𝜕𝑅𝑅 
at the endpoint of the arm equal to a velocity that drives the 

endpoint of the arm directly to its desired end position. Given 

the redundant nature of soft robotic arms, a secondary 

objective can be assigned to a path planning algorithm such as 

avoiding obstacles. A general path planning algorithm that 

incorporates obstacle avoidance for a soft continuum arm takes 

the following form to specify the rate of change for the 

configuration variables 𝑞̇𝑞 similar to the one presented in Ataka 

et al. (2016): 

𝑞̇𝑞 = 𝐽𝐽𝑒𝑒(𝑞𝑞)+𝐹𝐹𝑒𝑒(𝑉𝑉𝑒𝑒) − ∑ 𝐽𝐽𝜕𝜕𝑠𝑠(𝑞𝑞)+𝐹𝐹𝜕𝜕𝑠𝑠(𝑉𝑉𝜕𝜕𝑠𝑠)𝑚𝑚𝑠𝑠=1 ,                             (9)  

where 𝐽𝐽𝑒𝑒(𝑞𝑞)+ is the pseudo inverse of Jacobian at the endpoint 

of the manipulator and 𝐹𝐹𝑒𝑒(𝑉𝑉𝑒𝑒) is some gain function for the 

vector between the endpoint on the arm and end goal of the 

manipulator, 𝑉𝑉𝑒𝑒. For the jth obstacle of any number, m, 

obstacles, 𝐽𝐽𝜕𝜕𝑠𝑠(𝑞𝑞)+ is the pseudo-inverse of the Jacobian of the 

point on the arm closest to the obstacle and 𝐹𝐹𝜕𝜕𝑠𝑠(𝑉𝑉𝜕𝜕𝑠𝑠) is some 

gain function for the vector between the closest point on the 

arm and the obstacle, 𝑉𝑉𝜕𝜕𝑠𝑠. This algorithm works by attracting 

the end of the manipulator to the end goal while repelling it 

away from any obstacle. The point on the arm closest to an 

obstacle can be calculated by discretizing the arm with a set 

number of points and comparing their distances to the obstacle. 

These obstacles are typically defined as a set of points, making 

the distance calculation trivial. However, as the number of 

points on the manipulator increases and the number of 

obstacles also increases, the computational cost for this 

calculation rises, as not only the number of distance 

calculations increases, the inverse Jacobian must be calculated 

for each point that falls within a critical range. This can present 

a problem, as the path planning algorithm should compute 𝑞̇𝑞 

repeatedly, as it allows for a dynamically changing end goal 

position and obstacles. This leads to a compromise needing to 

be made for the number of points on the arm and the obstacles 

in regards to computation time and accuracy of modeling. This 

compromise can be avoided if the obstacles resemble a curve-

like object. In this case, the obstacle can be modeled as a 

function in space along with the manipulator, and the closest 

point between these two functions can be found instead and 

utilized in the path planning algorithm, reducing the 

computational complexity without sacrificing the accuracy in 

representing the obstacles. This is the key concept exploited in 

our proposed approach. 

2.3 Curve-Like Obstacle Model 

Using the method proposed in this paper, a curve-like obstacle 

can be avoided by evading the single point on the obstacle 

closest to the manipulator. This allows for a curve-like 

obstacle to be represented as a single point, which greatly 

simplifies the computation. In path planning algorithms, 

obstacles can be modeled by sets of points in 3D space that 

when combined can represent a variety of shapes. However, a 

small number of points may fail to properly represent 

elongated objects such as lines and curves. If the number of 

points is reduced, the manipulator may not properly avoid the 

obstacle. Instead, a curve-like obstacle can simply be 

represented as parameterized functions in 3D space. This 

allows for the accuracy of modeling the object with an infinite 

number of points, without the computational intensity of a 

large number of points. These curve-like objects in 3D space 

can be represented by   

F0(𝑢𝑢) = [𝑋𝑋 = f𝑚𝑚(𝑢𝑢), 𝑌𝑌 = f𝑦𝑦(𝑢𝑢), 𝑍𝑍 = f𝑧𝑧(𝑢𝑢)]𝑇𝑇,    (10) 

where 𝑢𝑢 is a parametric variable and f𝑚𝑚, f𝑦𝑦, and f𝑧𝑧 are some 

functions of 𝑢𝑢. These equations could be used to represent 

objects such as tree branches, pipelines, wires, etc. The 

equations themselves could be derived from a set of points 

from a point cloud using techniques such as linear or quadratic 

regression. The curve itself could be of any length defined by 

the limits of 𝑢𝑢, allowing for longer objects to be modeled. In 

order to use the obstacle avoidance algorithm, the minimum 

distance between the obstacle curve and the arm must be 

found. Given a soft robotic arm of n segments, points on each 

individual segment i could be represented by parametric 

equations as follows 

F𝑅𝑅𝑅𝑅(𝑠𝑠) = 𝑅𝑅𝑅𝑅−10
[ 
  
 (1 − cos(Ѳ𝑅𝑅𝑠𝑠)) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 cos(φ𝑅𝑅)(1 − cos(Ѳ𝑅𝑅𝑠𝑠)) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 sin(φ𝑅𝑅)sin(Ѳ𝑅𝑅𝑠𝑠) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 ] 

  
 + 𝑃𝑃𝑅𝑅−10 .             (11) 

Using these curves, the distance between points on the obstacle 

and a segment for any set of parametric variables 𝑢𝑢 and s can 

be calculated by 

𝐷𝐷𝑅𝑅(s, 𝑢𝑢) =  ‖𝐹𝐹𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝐹𝐹𝑜𝑜(𝑢𝑢)‖.                                                  (12) 

To calculate the minimum distance between the obstacle and 

segment i, three cases must be tested. The minimum distance 

between the segment and the obstacle will be the minimum of 

these three cases and the global minimum will be the minimum 

among the distances between the obstacle and all segments. 

The first case is when the partial derivatives of 𝐷𝐷𝑅𝑅  with respect 

to both s and 𝑢𝑢 are equal to 0:  
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 𝑞𝑞 = [𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑚𝑚] 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞) =  𝜕𝜕𝑃𝑃𝜕𝜕𝑅𝑅/𝜕𝜕𝑞𝑞.

 𝑃̇𝑃𝜕𝜕𝑅𝑅 𝑞̇𝑞
𝑃̇𝑃𝜕𝜕𝑅𝑅 = 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)𝑞̇𝑞.

𝑞̇𝑞 = 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)+𝑃̇𝑃𝜕𝜕𝑅𝑅𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)+

𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)+ = 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)T[𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)𝐽𝐽𝜕𝜕𝑅𝑅T(𝑞𝑞)]−1
𝐽𝐽𝜕𝜕𝑅𝑅T(𝑞𝑞) 𝑃̇𝑃𝜕𝜕𝑅𝑅

𝑞̇𝑞
𝑞̇𝑞 = 𝐽𝐽𝑒𝑒(𝑞𝑞)+𝐹𝐹𝑒𝑒(𝑉𝑉𝑒𝑒) − ∑ 𝐽𝐽𝜕𝜕𝑠𝑠(𝑞𝑞)+𝐹𝐹𝜕𝜕𝑠𝑠(𝑉𝑉𝜕𝜕𝑠𝑠)𝑚𝑚𝑠𝑠=1

𝐽𝐽𝑒𝑒(𝑞𝑞)+ 𝐹𝐹𝑒𝑒(𝑉𝑉𝑒𝑒)
𝑉𝑉𝑒𝑒𝐽𝐽𝜕𝜕𝑠𝑠(𝑞𝑞)+ 𝐹𝐹𝜕𝜕𝑠𝑠(𝑉𝑉𝜕𝜕𝑠𝑠)

𝑉𝑉𝜕𝜕𝑠𝑠

𝑞̇𝑞

F0(𝑢𝑢) = [𝑋𝑋 = f𝑚𝑚(𝑢𝑢), 𝑌𝑌 = f𝑦𝑦(𝑢𝑢), 𝑍𝑍 = f𝑧𝑧(𝑢𝑢)]𝑇𝑇
𝑢𝑢 f𝑚𝑚 f𝑦𝑦 f𝑧𝑧𝑢𝑢

𝑢𝑢

F𝑅𝑅𝑅𝑅(𝑠𝑠) = 𝑅𝑅𝑅𝑅−10
[ 
  
 (1 − cos(Ѳ𝑅𝑅𝑠𝑠)) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 cos(φ𝑅𝑅)(1 − cos(Ѳ𝑅𝑅𝑠𝑠)) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 sin(φ𝑅𝑅)sin(Ѳ𝑅𝑅𝑠𝑠) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 ] 

  
 + 𝑃𝑃𝑅𝑅−10

𝑢𝑢
𝐷𝐷𝑅𝑅(s, 𝑢𝑢) =  ‖𝐹𝐹𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝐹𝐹𝑜𝑜(𝑢𝑢)‖.                                                  

𝐷𝐷𝑅𝑅𝑢𝑢

 

 

     

 

𝜕𝜕𝐷𝐷𝑖𝑖𝜕𝜕𝜕𝜕 = 0 ⇒ F𝑅𝑅𝑅𝑅(𝑠𝑠)𝑇𝑇Ḟ𝑅𝑅𝑅𝑅(s) − F𝑜𝑜(𝑢𝑢)𝑇𝑇Ḟ𝑅𝑅𝑅𝑅(s) = 0                    (13) 

𝜕𝜕𝐷𝐷𝑖𝑖𝜕𝜕𝜕𝜕 = 0 ⇒ F𝑜𝑜(𝑢𝑢)𝑇𝑇Ḟ𝑜𝑜(𝑢𝑢) − F𝑅𝑅𝑅𝑅(𝑠𝑠)𝑇𝑇Ḟ𝑜𝑜(𝑢𝑢) = 0.                   (14) 

For these equations Ḟ𝑅𝑅𝑅𝑅(𝑠𝑠) and Ḟ𝑜𝑜(𝑢𝑢) are the derivative of the 

curves with respect to s and u respectively. A solution (s, u) to 

both equations implies either a local minimum or maximum 

for the distance between the curves. If the point is a local 

maximum, the distance values obtained in the following cases 

checking the edge cases will be smaller, and thus this type of 

local extremum does not need to be calculated. The extremum 

may not necessarily be unique, so all solutions within the 

bounds of s and u should be calculated for the minimum of all 

solutions. 

The second case is at the limits of either s and u where the 

derivative of the other parametric variable is zero. Values of s 

and u that solve these conditions can be found from any the 

equations below.  

𝑑𝑑𝐷𝐷𝑖𝑖𝑑𝑑𝜕𝜕 = 0 ⇒ F𝑅𝑅𝑅𝑅(𝑠𝑠)𝑇𝑇Ḟ𝑅𝑅𝑅𝑅(𝑠𝑠) − F𝑜𝑜(𝑢𝑢𝑚𝑚𝑅𝑅𝑚𝑚)𝑇𝑇Ḟ𝑅𝑅𝑅𝑅(𝑠𝑠) = 0              (15) 

𝑑𝑑𝐷𝐷𝑖𝑖𝑑𝑑𝜕𝜕 = 0 ⇒ F𝑅𝑅𝑅𝑅(𝑠𝑠)𝑇𝑇Ḟ𝑅𝑅𝑅𝑅(𝑠𝑠) − F𝑜𝑜(𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚)𝑇𝑇Ḟ𝑅𝑅𝑅𝑅(𝑠𝑠) = 0             (16) 

𝑑𝑑𝐷𝐷𝑖𝑖𝑑𝑑𝜕𝜕 = 0 ⇒ F𝑜𝑜(𝑢𝑢)𝑇𝑇Ḟ𝑂𝑂(𝑢𝑢) − F𝑅𝑅𝑅𝑅(0)𝑇𝑇Ḟ𝑂𝑂(𝑢𝑢) = 0                    (17) 

𝑑𝑑𝐷𝐷𝑖𝑖𝜕𝜕𝜕𝜕 = 0 ⇒ F𝑜𝑜(𝑢𝑢)𝑇𝑇Ḟ𝑂𝑂(𝑢𝑢) − F𝑅𝑅𝑅𝑅(1)𝑇𝑇Ḟ𝑂𝑂(𝑢𝑢) = 0.                   (18) 

The values of s and u for any solution to the above equations 

should be only included if they exist within the limits of the 

parametric variables. 

The third and final case is where the minimum distance 

corresponds to the endpoints of both the obstacle and 

manipulator. All four combinations of endpoints need to be 

checked for their distances.  

Once the individual point on the manipulator that is closest to 

the obstacle curve is found, the minimum distance can be used 

in the original obstacle avoidance algorithm (9) with the 

obstacle being treated as a single point. The algorithm can be 

extended to include any number of curved obstacles without 

inhibiting the ability for other obstacles to be modeled by a set 

of points in the same path planning algorithm. 

3. SIMULATION RESULTS 

The proposed path planning algorithm is evaluated in 

MATLAB simulation, with a soft continuum arm of three 

segments. The simulations are done on a Windows 10 PC with 

an Intel Core i5 @3.80GHz and 16.0 GB RAM. The method 

is compared with an alternative where the obstacles are 

approximated with a discrete set of points evenly distributed 

with respect to u along the curve, and another set of points 

representing the discretization of the robotic arm. The inverse 

Jacobian is not calculated for each point of the obstacle, only 

once per obstacle. The majority of the computational time for 

the method using sets of points arises from the distance 

calculations and comparisons. To find the shortest distance for 

the method utilizing a set of points, the MATLAB function 

dsearchn is used. The MATLAB function lsqnonlin is used to 

solve the nonlinear equations from (13-18). Table 1 presents 

the parameters of the simulated arm. 

Table 1. Simulation parameters for the soft arm. 

Number of segments 3 

Static length of segments (𝐿𝐿𝑅𝑅) 1 

# Of points per segment on the 

arm for distance calculations 
10 

 

The computational time and the number of iterations (i.e., the 

number of times 𝑞̇𝑞 needs to be calculated as in (9) to reach the 

end goal) for the different methods are calculated in differing 

scenarios and given in Tables 2-4 with visual representations 

shown in Figs. 3-5.  

3.1 Simulation 1 

Simulation 1 has the manipulator navigate to a goal position 

while avoiding a linear obstacle. Results of different methods 

are shown in Table 2, with snapshots of the arm under the 

proposed method presented in Fig. 3. 

Table 2. Simulation 1: Line segment 

End goal [1.1, -0.8, 0.9] 

Obstacle 

equation 
𝑋𝑋 = 1, 𝑌𝑌 = 𝑢𝑢, 𝑍𝑍 = 0.5 − 𝑢𝑢 

-2 < u < 2 

Obstacle 

model used in 

simulation 

Iterations to 

reach goal 

Average computation 

time (s) 

Proposed 

method 

60 0.2914 

1 Point 24 0.0053 

10 Points 24 0.0690 

50 Points 24 0.4254 

100 Points 66 1.6679 

 

(a) 

(b) 
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(c) 

Fig. 3. Snapshots of arm movement under the proposed algorithm for 

simulation 1 at (a) 0 iterations, (b) 40 iterations, (c) final iteration. 

In simulation 1, the proposed method has a similar 

computation time to that of modeling the obstacle with 50 

points. However, the 50-point method did not properly model 

the obstacle and the manipulator collided with the obstacle. 

Only the proposed and the 100-points methods led to 

manipulator avoiding the obstacle, although the 100-points 

simulation had a higher computation time relative to the 

proposed method. 

3.2 Simulation 2 

Simulation 2 has the manipulator navigate to a goal position 

while avoiding a curved obstacle. Results of differing methods 

are shown in Table 3, with snapshots of the arm under the 

proposed method presented in Fig. 4. 

Table 3. Simulation 2: Curved line segment 

End goal [1, 1, 1] 

Obstacle 

equation 
𝑋𝑋 = 0.5, 𝑌𝑌 = 𝑢𝑢, 𝑍𝑍 = 5𝑢𝑢2 

-2 < u < 2 

Obstacle 

model used in 

simulation 

Iterations to 

reach goal 

Average computation 

time (s) 

Proposed 

method 

30 0.2971 

1 Point 23 0.0044 

10 Points 23 0.0599 

50 Points 24 0.2720 

100 Points 23 0.5794 

 

(a) 

(b) 

(c) 

Fig. 4. Snapshots of arm movement under the proposed algorithm for 

simulation 2 at (a) 0 iterations, (b) 20 iterations, (c) final iteration. 

In simulation 2, the proposed method again has a similar 

computation time to that of the 50-point method. Of all tested 

methods including the more computationally expensive 100-

point method, only the proposed method avoided collisions. 

3.3 Simulation 3 

Simulation 3 has the manipulator navigate to a goal position 

while avoiding six curved obstacles. The obstacles were 

chosen to represent a tree-like environment. Results of 

differing methods are shown in Table 4, with snapshots of the 

arm under the proposed method presented in Fig. 5. 

Table 4. Simulation 3: Multiple curves 

End goal [1, 0.7, 1.45] 
Obstacle 

equations 

X Y Z u 1 − 0.2𝑢𝑢 1 − 𝑢𝑢 2 − 𝑢𝑢2 0-1 1 − 0.5𝑢𝑢 1 + 𝑢𝑢 − 𝑢𝑢2 1.7 + 0.3𝑢𝑢 0-1.5 

1 1 − 𝑢𝑢 2 − 0.1𝑢𝑢 0-1.5 1 + 𝑢𝑢 − 𝑢𝑢2 1 − 𝑢𝑢 1.7 0-1 

1 1 − 𝑢𝑢 1.5 + 0.1𝑢𝑢 0-1.5 

1 1 𝑢𝑢 − 𝑢𝑢2 0-3 
 

Obstacle 

model used in 

simulation 

Iterations to 

reach goal 

Average computation time 

(s) 

Proposed 

method 

32 0.7414 

1 Point 19 0.1090 

10 Points 19 0.7594 

50 Points 32 5.7699 

 

(a) 

(b) 
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𝑋𝑋 = 0.5, 𝑌𝑌 = 𝑢𝑢, 𝑍𝑍 = 5𝑢𝑢2
[1, 0.7, 1.45]

1 − 0.2𝑢𝑢 1 − 𝑢𝑢 2 − 𝑢𝑢21 − 0.5𝑢𝑢 1 + 𝑢𝑢 − 𝑢𝑢2 1.7 + 0.3𝑢𝑢1 − 𝑢𝑢 2 − 0.1𝑢𝑢1 + 𝑢𝑢 − 𝑢𝑢2 1 − 𝑢𝑢1 − 𝑢𝑢 1.5 + 0.1𝑢𝑢𝑢𝑢 − 𝑢𝑢2

 

 

     

 

(c) 

Fig. 5. Snapshots of arm movement under the proposed algorithm for 

simulation 3 at (a) 0 iterations, (b) 20 iterations, (c) final iteration. 

In Simulation 3, the proposed method performs significantly 

faster than the 50-point representation, comparable to that of 

the 10-point method. The arm avoids the obstacles in both the 

proposed and 50-point methods. In all 3 simulations, the 

proposed method avoided collisions and had a lower 

computation time than other methods that avoided collisions. 

4.  CONCLUSION 

In this paper, an efficient path planning approach was 

presented for soft robotic arms. Most existing obstacle 

avoidance algorithms using sets of points to represent 

obstacles will need a minimal alteration in order to implement 

the proposed method. The proposed method showed a 

reduction of computational complexity compared to 

approaches using many points representing curve-shaped 

obstacles and was demonstrated to be effective in handling 

complex obstacle scenarios including one emulating a target 

behind multiple tree branches.  

Future work will extend the approach to soft robotic arms 

without the piecewise-constant curvature assumption, to 

accommodate realistic shapes under effects of gravity and 

other loadings. The proposed algorithm will also be tested 

experimentally on soft robotic arms.  
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