

 Preston R. Fairchild et al. / IFAC PapersOnLine 54-20 (2021) 586–591 587

























tandem with, a set of points. The method is then tested in

simulation with multiple settings for the obstacles, with the

robotic arm described by a 3-segment constant curvature

model. The proposed approach is compared to an alternative

method where curve-like obstacles are modeled with a set of

points, in terms of both computation time and ability to avoid

collision with the obstacle.

2. METHOD

2.1 Kinematic Model

This section covers the kinematic model of the continuum arm

used throughout this paper: a piecewise-constant curvature

arm as described in Webster and Jones (2010). Fig. 1 illustrates

the model with a 3-segment example.

Fig. 1. Illustration of a continuum arm model with piecewise-constant

curvature.

Each segment 𝑖𝑖, with 𝑖𝑖 = 1, 2, … , 𝑛𝑛 for any number n of

segments, of the arm is composed of an actuator of length 𝐿𝐿𝑅𝑅 = 𝐿𝐿0𝑅𝑅 + 𝑙𝑙𝑅𝑅, where 𝐿𝐿0𝑅𝑅 is the base length of the segment and 𝑙𝑙𝑅𝑅 is the length variation for the segment. Each segment has a

base, starting at either the global base of the arm or the tip of

the previous segment, with its own local coordinate system Xi-

Yi-Zi. Zi coincides with the tangential direction of the segment

at its base while Xi-Yi follow the right-hand rule and are

determined by the bending of the previous segment. The

bending on each segment can be modeled by two parameters, φ𝑅𝑅, which defines the direction of bending in the Xi-Yi plane,

and Ѳ𝑅𝑅, the magnitude of the angle the segment curves; see Fig.

2 for illustration. This bending results in a change in

orientation from the base to the tip of a segment by a rotation

about the Zi axis by φ𝑅𝑅, followed by a rotation about the

successive Yi axis by Ѳ𝑅𝑅. A single segment can be described as

an arc of a circle of length 𝐿𝐿𝑅𝑅 and angle Ѳ𝑅𝑅, as shown in Fig.

2(a), with the direction of bending defined by φ𝑅𝑅, illustrated in

Fig. 2(b). The radius of the circle the arc is formed from, 𝑟𝑟𝑅𝑅, is

equal to 𝐿𝐿𝑅𝑅/Ѳ𝑅𝑅 , with the curvature of the arc, 𝑘𝑘𝑅𝑅 = 1/𝑟𝑟𝑅𝑅 .

(a) (b)

Fig. 2. (a) A side view of a segment with length 𝑳𝑳𝒊𝒊 and bending of Ѳ𝒊𝒊. (b) A

top view of a segment with bending direction 𝛗𝛗𝒊𝒊.
For a given segment i with configuration variables 𝑞𝑞𝑅𝑅 = [𝐿𝐿𝑅𝑅 Ѳ𝑅𝑅 φ𝑅𝑅], the displacement matrix relating its tip to its

base is given by

𝐻𝐻𝑅𝑅𝑅𝑅−1 = [𝑅𝑅𝑅𝑅 𝑃𝑃𝑅𝑅01𝑚𝑚3 1], (1)

where 𝑅𝑅𝑅𝑅 is the rotation matrix representing the orientation at

the end of the segment relative to its base and 𝑃𝑃𝑅𝑅 is the set of

coordinates of the endpoint of the segment relative to its base. 𝑅𝑅𝑅𝑅 and 𝑃𝑃𝑅𝑅 can be calculated as follows (Webster & Jones,

2010):

𝑅𝑅𝑅𝑅 = [cos(φ𝑅𝑅) cos(Ѳ𝑅𝑅) − sin(φ𝑅𝑅) cos(φ𝑅𝑅) sin(Ѳ𝑅𝑅)sin(φ𝑅𝑅) cos(Ѳ𝑅𝑅) cos(φ𝑅𝑅) sin(φ𝑅𝑅) sin(Ѳ𝑅𝑅)− sin(Ѳ𝑅𝑅) 0 cos(Ѳ𝑅𝑅)] (2)

𝑃𝑃𝑅𝑅 = [𝑃𝑃𝑚𝑚𝑃𝑃𝑦𝑦𝑃𝑃𝑧𝑧
] =

[

 [1 − cos(Ѳ𝑅𝑅)] 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 cos(φ𝑅𝑅)[1 − cos(Ѳ𝑅𝑅)] 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 sin(φ𝑅𝑅)sin(Ѳ𝑅𝑅) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖]

. (3)

A value of 0 for Ѳ𝑅𝑅 would lead to an arc of infinite radius and

an undefined value for 𝑃𝑃𝑅𝑅 . Instead, if Ѳ𝑅𝑅 = 0, 𝑃𝑃𝑅𝑅 can be

expressed as [0 0 𝐿𝐿𝑅𝑅]𝑇𝑇 . The displacement matrix for each

segment can be extended to include any number of n segments

relating the base of the arm to the tip of the nth segment by

𝐻𝐻𝑚𝑚0 = ∏ 𝐻𝐻𝑅𝑅𝑅𝑅−1𝑚𝑚𝑅𝑅=1 . (4)

2.2 General Path Planning Algorithm

This section covers a general path planning algorithm that

utilizes the piecewise constant curvature model. For this

manipulator model, any given point s relative to the base on a

segment i of the arm can be calculated by

𝑃𝑃𝜕𝜕𝑅𝑅 = 𝑅𝑅𝑅𝑅−10
[

 [1 − cos(Ѳ𝑅𝑅s)] 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 cos(φ𝑅𝑅)[1 − cos(Ѳ𝑅𝑅s)] 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 sin(φ𝑅𝑅)sin(Ѳ𝑅𝑅𝑠𝑠) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖]

 + 𝑃𝑃𝑅𝑅−10 , (5)

where 𝑅𝑅𝑅𝑅−10 is the matrix representing the orientation of the ith

segment base relative to the base of the arm, 𝑃𝑃𝑅𝑅−10 is the set of

coordinates for the base of the ith segment with respect to the

588 Preston R. Fairchild et al. / IFAC PapersOnLine 54-20 (2021) 586–591

base of the arm, and s is a parametric variable with a range [0

1] that defines the proportional distance along the segment.

The Jacobian of the 3D position for any point s on the segment

i can be derived with respect to the set of all configuration

variables 𝑞𝑞 = [𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑚𝑚] as 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞) = 𝜕𝜕𝑃𝑃𝜕𝜕𝑅𝑅/𝜕𝜕𝑞𝑞. The

Jacobian expresses the change in position of a point on the arm

relative to any change in the configuration variables. Using

this, the linear velocity for any point s on the arm segment

i, 𝑃̇𝑃𝜕𝜕𝑅𝑅, can be calculated as follows using the rate of change in

the configuration variables 𝑞̇𝑞.

𝑃̇𝑃𝜕𝜕𝑅𝑅 = 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)𝑞̇𝑞. (6)

Conversely, the rate of change in the configuration variables

needed to achieve a desired linear velocity can be expressed as

𝑞̇𝑞 = 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)+𝑃̇𝑃𝜕𝜕𝑅𝑅 . (7)

Here 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)+ is the pseudo-inverse of the Jacobian and can be

calculated as

𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)+ = 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)T[𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)𝐽𝐽𝜕𝜕𝑅𝑅T(𝑞𝑞)]−1, (8)

with 𝐽𝐽𝜕𝜕𝑅𝑅T(𝑞𝑞) being the transpose of the Jacobian. In a scenario

without obstacles, a path planning algorithm would assign 𝑃̇𝑃𝜕𝜕𝑅𝑅
at the endpoint of the arm equal to a velocity that drives the

endpoint of the arm directly to its desired end position. Given

the redundant nature of soft robotic arms, a secondary

objective can be assigned to a path planning algorithm such as

avoiding obstacles. A general path planning algorithm that

incorporates obstacle avoidance for a soft continuum arm takes

the following form to specify the rate of change for the

configuration variables 𝑞̇𝑞 similar to the one presented in Ataka

et al. (2016):

𝑞̇𝑞 = 𝐽𝐽𝑒𝑒(𝑞𝑞)+𝐹𝐹𝑒𝑒(𝑉𝑉𝑒𝑒) − ∑ 𝐽𝐽𝜕𝜕𝑠𝑠(𝑞𝑞)+𝐹𝐹𝜕𝜕𝑠𝑠(𝑉𝑉𝜕𝜕𝑠𝑠)𝑚𝑚𝑠𝑠=1 , (9)

where 𝐽𝐽𝑒𝑒(𝑞𝑞)+ is the pseudo inverse of Jacobian at the endpoint

of the manipulator and 𝐹𝐹𝑒𝑒(𝑉𝑉𝑒𝑒) is some gain function for the

vector between the endpoint on the arm and end goal of the

manipulator, 𝑉𝑉𝑒𝑒. For the jth obstacle of any number, m,

obstacles, 𝐽𝐽𝜕𝜕𝑠𝑠(𝑞𝑞)+ is the pseudo-inverse of the Jacobian of the

point on the arm closest to the obstacle and 𝐹𝐹𝜕𝜕𝑠𝑠(𝑉𝑉𝜕𝜕𝑠𝑠) is some

gain function for the vector between the closest point on the

arm and the obstacle, 𝑉𝑉𝜕𝜕𝑠𝑠. This algorithm works by attracting

the end of the manipulator to the end goal while repelling it

away from any obstacle. The point on the arm closest to an

obstacle can be calculated by discretizing the arm with a set

number of points and comparing their distances to the obstacle.

These obstacles are typically defined as a set of points, making

the distance calculation trivial. However, as the number of

points on the manipulator increases and the number of

obstacles also increases, the computational cost for this

calculation rises, as not only the number of distance

calculations increases, the inverse Jacobian must be calculated

for each point that falls within a critical range. This can present

a problem, as the path planning algorithm should compute 𝑞̇𝑞

repeatedly, as it allows for a dynamically changing end goal

position and obstacles. This leads to a compromise needing to

be made for the number of points on the arm and the obstacles

in regards to computation time and accuracy of modeling. This

compromise can be avoided if the obstacles resemble a curve-

like object. In this case, the obstacle can be modeled as a

function in space along with the manipulator, and the closest

point between these two functions can be found instead and

utilized in the path planning algorithm, reducing the

computational complexity without sacrificing the accuracy in

representing the obstacles. This is the key concept exploited in

our proposed approach.

2.3 Curve-Like Obstacle Model

Using the method proposed in this paper, a curve-like obstacle

can be avoided by evading the single point on the obstacle

closest to the manipulator. This allows for a curve-like

obstacle to be represented as a single point, which greatly

simplifies the computation. In path planning algorithms,

obstacles can be modeled by sets of points in 3D space that

when combined can represent a variety of shapes. However, a

small number of points may fail to properly represent

elongated objects such as lines and curves. If the number of

points is reduced, the manipulator may not properly avoid the

obstacle. Instead, a curve-like obstacle can simply be

represented as parameterized functions in 3D space. This

allows for the accuracy of modeling the object with an infinite

number of points, without the computational intensity of a

large number of points. These curve-like objects in 3D space

can be represented by

F0(𝑢𝑢) = [𝑋𝑋 = f𝑚𝑚(𝑢𝑢), 𝑌𝑌 = f𝑦𝑦(𝑢𝑢), 𝑍𝑍 = f𝑧𝑧(𝑢𝑢)]𝑇𝑇, (10)

where 𝑢𝑢 is a parametric variable and f𝑚𝑚, f𝑦𝑦, and f𝑧𝑧 are some

functions of 𝑢𝑢. These equations could be used to represent

objects such as tree branches, pipelines, wires, etc. The

equations themselves could be derived from a set of points

from a point cloud using techniques such as linear or quadratic

regression. The curve itself could be of any length defined by

the limits of 𝑢𝑢, allowing for longer objects to be modeled. In

order to use the obstacle avoidance algorithm, the minimum

distance between the obstacle curve and the arm must be

found. Given a soft robotic arm of n segments, points on each

individual segment i could be represented by parametric

equations as follows

F𝑅𝑅𝑅𝑅(𝑠𝑠) = 𝑅𝑅𝑅𝑅−10
[

 (1 − cos(Ѳ𝑅𝑅𝑠𝑠)) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 cos(φ𝑅𝑅)(1 − cos(Ѳ𝑅𝑅𝑠𝑠)) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 sin(φ𝑅𝑅)sin(Ѳ𝑅𝑅𝑠𝑠) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖]

 + 𝑃𝑃𝑅𝑅−10 . (11)

Using these curves, the distance between points on the obstacle

and a segment for any set of parametric variables 𝑢𝑢 and s can

be calculated by

𝐷𝐷𝑅𝑅(s, 𝑢𝑢) = ‖𝐹𝐹𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝐹𝐹𝑜𝑜(𝑢𝑢)‖. (12)

To calculate the minimum distance between the obstacle and

segment i, three cases must be tested. The minimum distance

between the segment and the obstacle will be the minimum of

these three cases and the global minimum will be the minimum

among the distances between the obstacle and all segments.

The first case is when the partial derivatives of 𝐷𝐷𝑅𝑅 with respect

to both s and 𝑢𝑢 are equal to 0:

 Preston R. Fairchild et al. / IFAC PapersOnLine 54-20 (2021) 586–591 589

 𝑞𝑞 = [𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑚𝑚] 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞) = 𝜕𝜕𝑃𝑃𝜕𝜕𝑅𝑅/𝜕𝜕𝑞𝑞.

 𝑃̇𝑃𝜕𝜕𝑅𝑅 𝑞̇𝑞
𝑃̇𝑃𝜕𝜕𝑅𝑅 = 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)𝑞̇𝑞.

𝑞̇𝑞 = 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)+𝑃̇𝑃𝜕𝜕𝑅𝑅𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)+

𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)+ = 𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)T[𝐽𝐽𝜕𝜕𝑅𝑅(𝑞𝑞)𝐽𝐽𝜕𝜕𝑅𝑅T(𝑞𝑞)]−1
𝐽𝐽𝜕𝜕𝑅𝑅T(𝑞𝑞) 𝑃̇𝑃𝜕𝜕𝑅𝑅

𝑞̇𝑞
𝑞̇𝑞 = 𝐽𝐽𝑒𝑒(𝑞𝑞)+𝐹𝐹𝑒𝑒(𝑉𝑉𝑒𝑒) − ∑ 𝐽𝐽𝜕𝜕𝑠𝑠(𝑞𝑞)+𝐹𝐹𝜕𝜕𝑠𝑠(𝑉𝑉𝜕𝜕𝑠𝑠)𝑚𝑚𝑠𝑠=1

𝐽𝐽𝑒𝑒(𝑞𝑞)+ 𝐹𝐹𝑒𝑒(𝑉𝑉𝑒𝑒)
𝑉𝑉𝑒𝑒𝐽𝐽𝜕𝜕𝑠𝑠(𝑞𝑞)+ 𝐹𝐹𝜕𝜕𝑠𝑠(𝑉𝑉𝜕𝜕𝑠𝑠)

𝑉𝑉𝜕𝜕𝑠𝑠

𝑞̇𝑞

F0(𝑢𝑢) = [𝑋𝑋 = f𝑚𝑚(𝑢𝑢), 𝑌𝑌 = f𝑦𝑦(𝑢𝑢), 𝑍𝑍 = f𝑧𝑧(𝑢𝑢)]𝑇𝑇
𝑢𝑢 f𝑚𝑚 f𝑦𝑦 f𝑧𝑧𝑢𝑢

𝑢𝑢

F𝑅𝑅𝑅𝑅(𝑠𝑠) = 𝑅𝑅𝑅𝑅−10
[

 (1 − cos(Ѳ𝑅𝑅𝑠𝑠)) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 cos(φ𝑅𝑅)(1 − cos(Ѳ𝑅𝑅𝑠𝑠)) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖 sin(φ𝑅𝑅)sin(Ѳ𝑅𝑅𝑠𝑠) 𝐿𝐿𝑖𝑖Ѳ𝑖𝑖]

 + 𝑃𝑃𝑅𝑅−10

𝑢𝑢
𝐷𝐷𝑅𝑅(s, 𝑢𝑢) = ‖𝐹𝐹𝑅𝑅𝑅𝑅(𝑠𝑠) − 𝐹𝐹𝑜𝑜(𝑢𝑢)‖.

𝐷𝐷𝑅𝑅𝑢𝑢

𝜕𝜕𝐷𝐷𝑖𝑖𝜕𝜕𝜕𝜕 = 0 ⇒ F𝑅𝑅𝑅𝑅(𝑠𝑠)𝑇𝑇Ḟ𝑅𝑅𝑅𝑅(s) − F𝑜𝑜(𝑢𝑢)𝑇𝑇Ḟ𝑅𝑅𝑅𝑅(s) = 0 (13)

𝜕𝜕𝐷𝐷𝑖𝑖𝜕𝜕𝜕𝜕 = 0 ⇒ F𝑜𝑜(𝑢𝑢)𝑇𝑇Ḟ𝑜𝑜(𝑢𝑢) − F𝑅𝑅𝑅𝑅(𝑠𝑠)𝑇𝑇Ḟ𝑜𝑜(𝑢𝑢) = 0. (14)

For these equations Ḟ𝑅𝑅𝑅𝑅(𝑠𝑠) and Ḟ𝑜𝑜(𝑢𝑢) are the derivative of the

curves with respect to s and u respectively. A solution (s, u) to

both equations implies either a local minimum or maximum

for the distance between the curves. If the point is a local

maximum, the distance values obtained in the following cases

checking the edge cases will be smaller, and thus this type of

local extremum does not need to be calculated. The extremum

may not necessarily be unique, so all solutions within the

bounds of s and u should be calculated for the minimum of all

solutions.

The second case is at the limits of either s and u where the

derivative of the other parametric variable is zero. Values of s

and u that solve these conditions can be found from any the

equations below.

𝑑𝑑𝐷𝐷𝑖𝑖𝑑𝑑𝜕𝜕 = 0 ⇒ F𝑅𝑅𝑅𝑅(𝑠𝑠)𝑇𝑇Ḟ𝑅𝑅𝑅𝑅(𝑠𝑠) − F𝑜𝑜(𝑢𝑢𝑚𝑚𝑅𝑅𝑚𝑚)𝑇𝑇Ḟ𝑅𝑅𝑅𝑅(𝑠𝑠) = 0 (15)

𝑑𝑑𝐷𝐷𝑖𝑖𝑑𝑑𝜕𝜕 = 0 ⇒ F𝑅𝑅𝑅𝑅(𝑠𝑠)𝑇𝑇Ḟ𝑅𝑅𝑅𝑅(𝑠𝑠) − F𝑜𝑜(𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚)𝑇𝑇Ḟ𝑅𝑅𝑅𝑅(𝑠𝑠) = 0 (16)

𝑑𝑑𝐷𝐷𝑖𝑖𝑑𝑑𝜕𝜕 = 0 ⇒ F𝑜𝑜(𝑢𝑢)𝑇𝑇Ḟ𝑂𝑂(𝑢𝑢) − F𝑅𝑅𝑅𝑅(0)𝑇𝑇Ḟ𝑂𝑂(𝑢𝑢) = 0 (17)

𝑑𝑑𝐷𝐷𝑖𝑖𝜕𝜕𝜕𝜕 = 0 ⇒ F𝑜𝑜(𝑢𝑢)𝑇𝑇Ḟ𝑂𝑂(𝑢𝑢) − F𝑅𝑅𝑅𝑅(1)𝑇𝑇Ḟ𝑂𝑂(𝑢𝑢) = 0. (18)

The values of s and u for any solution to the above equations

should be only included if they exist within the limits of the

parametric variables.

The third and final case is where the minimum distance

corresponds to the endpoints of both the obstacle and

manipulator. All four combinations of endpoints need to be

checked for their distances.

Once the individual point on the manipulator that is closest to

the obstacle curve is found, the minimum distance can be used

in the original obstacle avoidance algorithm (9) with the

obstacle being treated as a single point. The algorithm can be

extended to include any number of curved obstacles without

inhibiting the ability for other obstacles to be modeled by a set

of points in the same path planning algorithm.

3. SIMULATION RESULTS

The proposed path planning algorithm is evaluated in

MATLAB simulation, with a soft continuum arm of three

segments. The simulations are done on a Windows 10 PC with

an Intel Core i5 @3.80GHz and 16.0 GB RAM. The method

is compared with an alternative where the obstacles are

approximated with a discrete set of points evenly distributed

with respect to u along the curve, and another set of points

representing the discretization of the robotic arm. The inverse

Jacobian is not calculated for each point of the obstacle, only

once per obstacle. The majority of the computational time for

the method using sets of points arises from the distance

calculations and comparisons. To find the shortest distance for

the method utilizing a set of points, the MATLAB function

dsearchn is used. The MATLAB function lsqnonlin is used to

solve the nonlinear equations from (13-18). Table 1 presents

the parameters of the simulated arm.

Table 1. Simulation parameters for the soft arm.

Number of segments 3

Static length of segments (𝐿𝐿𝑅𝑅) 1

Of points per segment on the

arm for distance calculations
10

The computational time and the number of iterations (i.e., the

number of times 𝑞̇𝑞 needs to be calculated as in (9) to reach the

end goal) for the different methods are calculated in differing

scenarios and given in Tables 2-4 with visual representations

shown in Figs. 3-5.

3.1 Simulation 1

Simulation 1 has the manipulator navigate to a goal position

while avoiding a linear obstacle. Results of different methods

are shown in Table 2, with snapshots of the arm under the

proposed method presented in Fig. 3.

Table 2. Simulation 1: Line segment

End goal [1.1, -0.8, 0.9]

Obstacle

equation
𝑋𝑋 = 1, 𝑌𝑌 = 𝑢𝑢, 𝑍𝑍 = 0.5 − 𝑢𝑢

-2 < u < 2

Obstacle

model used in

simulation

Iterations to

reach goal

Average computation

time (s)

Proposed

method

60 0.2914

1 Point 24 0.0053

10 Points 24 0.0690

50 Points 24 0.4254

100 Points 66 1.6679

(a)

(b)

590 Preston R. Fairchild et al. / IFAC PapersOnLine 54-20 (2021) 586–591

(c)

Fig. 3. Snapshots of arm movement under the proposed algorithm for

simulation 1 at (a) 0 iterations, (b) 40 iterations, (c) final iteration.

In simulation 1, the proposed method has a similar

computation time to that of modeling the obstacle with 50

points. However, the 50-point method did not properly model

the obstacle and the manipulator collided with the obstacle.

Only the proposed and the 100-points methods led to

manipulator avoiding the obstacle, although the 100-points

simulation had a higher computation time relative to the

proposed method.

3.2 Simulation 2

Simulation 2 has the manipulator navigate to a goal position

while avoiding a curved obstacle. Results of differing methods

are shown in Table 3, with snapshots of the arm under the

proposed method presented in Fig. 4.

Table 3. Simulation 2: Curved line segment

End goal [1, 1, 1]

Obstacle

equation
𝑋𝑋 = 0.5, 𝑌𝑌 = 𝑢𝑢, 𝑍𝑍 = 5𝑢𝑢2

-2 < u < 2

Obstacle

model used in

simulation

Iterations to

reach goal

Average computation

time (s)

Proposed

method

30 0.2971

1 Point 23 0.0044

10 Points 23 0.0599

50 Points 24 0.2720

100 Points 23 0.5794

(a)

(b)

(c)

Fig. 4. Snapshots of arm movement under the proposed algorithm for

simulation 2 at (a) 0 iterations, (b) 20 iterations, (c) final iteration.

In simulation 2, the proposed method again has a similar

computation time to that of the 50-point method. Of all tested

methods including the more computationally expensive 100-

point method, only the proposed method avoided collisions.

3.3 Simulation 3

Simulation 3 has the manipulator navigate to a goal position

while avoiding six curved obstacles. The obstacles were

chosen to represent a tree-like environment. Results of

differing methods are shown in Table 4, with snapshots of the

arm under the proposed method presented in Fig. 5.

Table 4. Simulation 3: Multiple curves

End goal [1, 0.7, 1.45]
Obstacle

equations

X Y Z u 1 − 0.2𝑢𝑢 1 − 𝑢𝑢 2 − 𝑢𝑢2 0-1 1 − 0.5𝑢𝑢 1 + 𝑢𝑢 − 𝑢𝑢2 1.7 + 0.3𝑢𝑢 0-1.5

1 1 − 𝑢𝑢 2 − 0.1𝑢𝑢 0-1.5 1 + 𝑢𝑢 − 𝑢𝑢2 1 − 𝑢𝑢 1.7 0-1

1 1 − 𝑢𝑢 1.5 + 0.1𝑢𝑢 0-1.5

1 1 𝑢𝑢 − 𝑢𝑢2 0-3

Obstacle

model used in

simulation

Iterations to

reach goal

Average computation time

(s)

Proposed

method

32 0.7414

1 Point 19 0.1090

10 Points 19 0.7594

50 Points 32 5.7699

(a)

(b)

 Preston R. Fairchild et al. / IFAC PapersOnLine 54-20 (2021) 586–591 591

𝑋𝑋 = 0.5, 𝑌𝑌 = 𝑢𝑢, 𝑍𝑍 = 5𝑢𝑢2
[1, 0.7, 1.45]

1 − 0.2𝑢𝑢 1 − 𝑢𝑢 2 − 𝑢𝑢21 − 0.5𝑢𝑢 1 + 𝑢𝑢 − 𝑢𝑢2 1.7 + 0.3𝑢𝑢1 − 𝑢𝑢 2 − 0.1𝑢𝑢1 + 𝑢𝑢 − 𝑢𝑢2 1 − 𝑢𝑢1 − 𝑢𝑢 1.5 + 0.1𝑢𝑢𝑢𝑢 − 𝑢𝑢2

(c)

Fig. 5. Snapshots of arm movement under the proposed algorithm for

simulation 3 at (a) 0 iterations, (b) 20 iterations, (c) final iteration.

In Simulation 3, the proposed method performs significantly

faster than the 50-point representation, comparable to that of

the 10-point method. The arm avoids the obstacles in both the

proposed and 50-point methods. In all 3 simulations, the

proposed method avoided collisions and had a lower

computation time than other methods that avoided collisions.

4. CONCLUSION

In this paper, an efficient path planning approach was

presented for soft robotic arms. Most existing obstacle

avoidance algorithms using sets of points to represent

obstacles will need a minimal alteration in order to implement

the proposed method. The proposed method showed a

reduction of computational complexity compared to

approaches using many points representing curve-shaped

obstacles and was demonstrated to be effective in handling

complex obstacle scenarios including one emulating a target

behind multiple tree branches.

Future work will extend the approach to soft robotic arms

without the piecewise-constant curvature assumption, to

accommodate realistic shapes under effects of gravity and

other loadings. The proposed algorithm will also be tested

experimentally on soft robotic arms.

ACKNOWLEDGMENT

This work was supported in part by the National Science

Foundation (ECCS 2024649) and the Michigan State

University Strategic Partnership Grants program (16-SPG-

Full-3236).

REFERENCES

Ataka, A., Qi, P., Liu, H., and Althoefer K. (2016). Real-time

planner for multi-segment continuum manipulator in

dynamic environments. In 2016 IEEE International

Conference on Robotics and Automation, Stockholm,

Sweden, pp. 4080-4085.

Diodato, A., Brancadoro, M., Rossi, G.D., Abidi, H.,

Dall’Alba, D., Muradore, R., Ciuti, G., Fiorini, P.,

Menciassi, A., and Cianchetti, M. (2018) Soft robotic

manipulator for improving dexterity in minimally

invasive surgery. Surgical Innovation, 25 (1), pp. 69-76.

Godage, I.S., Branson, D.T., Guglielmino, E., and Caldweel

D.G. (2012). Path planning for multisection continuum

arms. In 2012 IEEE International Conference on

Mechatronics and Automation, Chengdu, China, pp.

1208-1213.

Khatib, O. (1985). Real-time obstacle avoidance for

manipulators and mobile robots. In 1985 IEEE

International Conference on Robotics and Automation, St.

Louis, MO, USA, pp. 500-505.

Li, J., and Xiao, J. (2012). Exact and efficient collision

detection for a multi-section continuum manipulator. In

2012 IEEE International Conference on Robotics and

Automation, Saint Paul, MN, USA, pp. 4340-4346.

Luo, M., Pan, Y., Skorina, E.H., Tao, W., Chen, F., Ozel, S.,

and Onal, C.D. (2015). Slithering towards autonomy: A

self-contained soft robotic snake platform with integrated

curvature sensing. Bioinspiration & Biomimetics, 10 (5),

055001.

Maciejewski, A.A., and Klein, C.A. (1985). Obstacle

avoidance for kinematically redundant manipulators in

dynamically varying environments. The International

Journal of Robotics Research, 4(3), pp. 109-116.

Mbakop S., Tange G., Lakhal O., Merzouki R., and Drakunov

S.V. (2020) Path planning and control of mobile soft

manipulators with obstacle avoidance. In 2020 3rd IEEE

International Conference on Soft Robotics, New Haven,

CT, USA, pp. 64-69.

Neppalli, S., Jones, B., McMahan, W., Chitrakaran, V.,

Walker, I., Pritts, M., Csencsits, M., Rahn, C., Grissom,

M. (2007). OctArm - a soft robotic manipulator. In 2007

IEEE/RSJ International Conference on Intelligent Robots

and Systems, San Diego, CA, USA, pp. 2569-2569.

Rakprayoon, P., Runchanurucks, M., and Coundoul, A. (2011)

Kinect-based obstacle detection for manipulator. In 2011

IEEE/SICE International Symposium on System

Integration, Kyoto, Japan, pp. 68-73.

Uppalapati, N.K., Walt, B.T., Havens, A.J., Armeen, M.,

Chowdhary, G., and Krishnan, G. (2020) A berry picking

robot with a hybrid soft-rigid arm: design and task space

control. In Robotics: Science and Systems 2020, Corvalis,

Oregon, USA.

Webster, R.J., Jones, B.A. (2010) Design and kinematic

modeling of constant curvature continuum robots: A

review. The International Journal of Robotics Research,

29 (13), pp. 1661-1683.

Xiao, J., and Vatcha, R. (2010). Real-time adaptive motion

planning for a continuum manipulator. In 2010 IEEE/RSJ

International Conference on Intelligent Robots and

Systems, Taipei, Taiwan, pp. 5919-5926.

