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Abstract: Soft robotic manipulators have seen growing interest in recent years and have many applications
in the medical and industrial fields. Path planning algorithms for these soft continuum arms often have
features to include obstacle avoidance. The redundant nature of soft robots allows for these manipulators
to avoid obstacles while moving towards a goal. In this paper, a novel, efficient path planning algorithm is
proposed for a soft robotic arm to navigate multiple obstacles in its workspace. The method aims to reduce
the computational complexity and increase the precision of modeling curve-like obstacles by representing
them with parametric equations instead of a set of points. The closest point between a function modeling
the robotic arm and a function approximating the obstacle is updated in real-time and used to accommodate
obstacle avoidance in path planning. The method is tested in simulation with a soft continuum arm
represented by the piecewise-constant curvature model and the performance is compared to the traditional
approach where an obstacle is defined by a set of points. The efficacy of the proposed approach is supported

by simulation results from multiple obstacle settings, including one emulating multiple tree branches.
Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Soft continuum robotic manipulators are often based on
biological designs such as octopus tentacles (Neppalli et al.,
2007) and snakes (Luo et al., 2015). The continuum nature of
these manipulators enables redundancy of control, allowing
for sophisticated path planning algorithms that take into
account obstacles that need to be avoided. Soft robots that
work on complex tasks such as picking berries from bushes
(Uppalapati et al., 2020) or performing non-invasive surgery
(Diodato et al., 2018) require obstacle avoidance. Path
planning for continuum arms has been examined in a number
of settings (Xiao and Vatcha, 2010; Mbakop et al., 2020).
Planning algorithms for redundant manipulators (Maciejewski
et al., 1985) have been adapted to work for multi-segment
continuum arms (Godage et al., 2012). Additionally, potential-
field-based path planning (Khatib, 1985) has also been utilized
with multi-segment continuum arms with additional
considerations such as mechanical constraints of the
manipulator (Ataka et al., 2016).

A common factor in these path planning algorithms is the
necessity of accommodating obstacles. While the main
objective of the algorithm is to reach an end goal, a secondary
objective that must be achieved is avoiding collision with the
obstacles. While methods for modeling the robotic arm and
checking for collisions with the obstacles have been developed
(Li and Xiao, 2012) and methods of detecting the obstacles as
a set of points are available (Rakprayoon et al., 2011), the
general method for modeling these obstacles has remained the
same. The obstacles are typically represented through a point
or set of points in 3D space. This method has many
advantages: an adequate set of points could represent any
object, it is simple to calculate the distance from the

manipulator to these points, and the vectors between these
points and the manipulator can be easily obtained. The
disadvantage of this method lies in the increasing
computational cost of a large number of points. Complex
obstacles cannot be easily modeled without a large number of
points unless features of the obstacle are simplified.
Additionally, non-3D obstacles such as lines and planes
require a high number of points to ensure there are no gaps in-
between points mistaken for open space.

In this paper, a novel path planning method for soft continuum
arms is proposed that efficiently accommodates multiple
curve-like obstacles. The method applies to soft robots with
workspaces containing curve-like obstacles such as tree
branches, piping, wiring, etc. Geometric models for obstacles
have been considered in literature in contexts such as motion
planning for mobile robots and rigid robots [REFs]. In this
paper, the motion planning framework for continuum robots
developed in Ataka et al. (2016), in which obstacles were
represented by discrete points, is built upon. For curve-like
obstacles, it is shown that using geometric models of the
obstacles enables efficient motion planning. Specifically,
using these geometric models and optimization techniques, we
propose a systematic approach to represent a set of obstacles
and a soft robot through parametric equations and use these
within the artificial potential-based planning framework.
While such ideas have been used for artificial potential-based
planning for rigid manipulators [REFs], to the best of our
knowledge, such ideas have not been explored for soft
robots. To facilitate the discussion of the main idea, the
piecewise-constant curvature model is adopted for the soft
robotic manipulator. The method for modeling an obstacle
using a curve equation in 3D space is presented, as well as how
it can be utilized in path planning algorithms in place of, or in
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tandem with, a set of points. The method is then tested in
simulation with multiple settings for the obstacles, with the
robotic arm described by a 3-segment constant curvature
model. The proposed approach is compared to an alternative
method where curve-like obstacles are modeled with a set of
points, in terms of both computation time and ability to avoid
collision with the obstacle.

2. METHOD

2.1 Kinematic Model

This section covers the kinematic model of the continuum arm
used throughout this paper: a piecewise-constant curvature
arm as described in Webster and Jones (2010). Fig. 1 illustrates
the model with a 3-segment example.

Fig. 1. Illustration of a continuum arm model with piecewise-constant
curvature.

Each segment i, with i =1,2,...,n for any number n of
segments, of the arm is composed of an actuator of length
L; = Lo; + 1;, where Ly; is the base length of the segment and
l; is the length variation for the segment. Each segment has a
base, starting at either the global base of the arm or the tip of
the previous segment, with its own local coordinate system X;-
Y~Z:. Z: coincides with the tangential direction of the segment
at its base while X;-Y; follow the right-hand rule and are
determined by the bending of the previous segment. The
bending on each segment can be modeled by two parameters,
®;, which defines the direction of bending in the X;-Y; plane,
and 0;, the magnitude of the angle the segment curves; see Fig.
2 for illustration. This bending results in a change in
orientation from the base to the tip of a segment by a rotation
about the Z; axis by ¢;, followed by a rotation about the
successive Y; axis by 0;. A single segment can be described as
an arc of a circle of length L; and angle 0;, as shown in Fig.
2(a), with the direction of bending defined by ;, illustrated in
Fig. 2(b). The radius of the circle the arc is formed from, r;, is
equal to L;/0;, with the curvature of the arc, k; = 1/7;.

.

Side View ' Top View
(@) (b)

Fig. 2. (a) A side view of a segment with length L; and bending of 6;. (b) A
top view of a segment with bending direction ¢;.

For a given segment i with configuration variables q; =
[L; ©; ], the displacement matrix relating its tip to its
base is given by

. R. P
-1 _ 2 l
i = o il o

where R; is the rotation matrix representing the orientation at
the end of the segment relative to its base and P; is the set of
coordinates of the endpoint of the segment relative to its base.
R; and P; can be calculated as follows (Webster & Jones,
2010):

cos(p;) cos(©;) —sin(g;) cos(g;)sin(B;)
R; = [sin(@;) cos(6;)  cos(@;) sin(@;)sin(0;)| (2)
—sin(6;) 0 cos(6;)
n [1 - cos(8)] ¢ cos()
PL: Py = [1—COS(ei)]§Sin((Pi) . (3)
P, .

[ sin(6;) g—i |

A value of 0 for ©; would lead to an arc of infinite radius and
an undefined value for P;. Instead, if ©; =0, P; can be
expressed as [0 0 L;]”. The displacement matrix for each
segment can be extended to include any number of n segments
relating the base of the arm to the tip of the nth segment by

HY = [T H7 )

2.2 General Path Planning Algorithm

This section covers a general path planning algorithm that
utilizes the piecewise constant curvature model. For this
manipulator model, any given point s relative to the base on a
segment i of the arm can be calculated by

[1~ cos(8;5)] 5 cos(py)
Py = REy|[1 = cos(®s)I gsin(e) |+ P, 5)
. L;
[ sm(eis)e—i |

where R)_, is the matrix representing the orientation of the ith
segment base relative to the base of the arm, P2 ; is the set of
coordinates for the base of the ith segment with respect to the
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base of the arm, and s is a parametric variable with a range [0
1] that defines the proportional distance along the segment.
The Jacobian of the 3D position for any point s on the segment
i can be derived with respect to the set of all configuration
variables q =[q1,92, -, qn] as Js(q) = 0Py /0q. The
Jacobian expresses the change in position of a point on the arm
relative to any change in the configuration variables. Using
this, the linear velocity for any point s on the arm segment
i, P;, can be calculated as follows using the rate of change in
the configuration variables §.

Psi =]si(q)q- (6)

Conversely, the rate of change in the configuration variables
needed to achieve a desired linear velocity can be expressed as

q :]si(q)+Psi . (7)

Here J,;(q)* is the pseudo-inverse of the Jacobian and can be
calculated as

Jsi@)* = Js(@) ' Usi(@)si" (@17, ®)

with J;"(q) being the transpose of the Jacobian. In a scenario
without obstacles, a path planning algorithm would assign Pg;
at the endpoint of the arm equal to a velocity that drives the
endpoint of the arm directly to its desired end position. Given
the redundant nature of soft robotic arms, a secondary
objective can be assigned to a path planning algorithm such as
avoiding obstacles. A general path planning algorithm that
incorporates obstacle avoidance for a soft continuum arm takes
the following form to specify the rate of change for the
configuration variables ¢ similar to the one presented in Ataka
et al. (2016):

q zje(q)+Fe(‘/e) _Z?Lllsj(q)+st(Vsj)’ (9)

where J,(q)" is the pseudo inverse of Jacobian at the endpoint
of the manipulator and F,(V,) is some gain function for the
vector between the endpoint on the arm and end goal of the
manipulator, V,. For the jth obstacle of any number, m,
obstacles, J;;(q)* is the pseudo-inverse of the Jacobian of the
point on the arm closest to the obstacle and F;(Vs;) is some
gain function for the vector between the closest point on the
arm and the obstacle, V;. This algorithm works by attracting
the end of the manipulator to the end goal while repelling it
away from any obstacle. The point on the arm closest to an
obstacle can be calculated by discretizing the arm with a set
number of points and comparing their distances to the obstacle.
These obstacles are typically defined as a set of points, making
the distance calculation trivial. However, as the number of
points on the manipulator increases and the number of
obstacles also increases, the computational cost for this
calculation rises, as not only the number of distance
calculations increases, the inverse Jacobian must be calculated
for each point that falls within a critical range. This can present
a problem, as the path planning algorithm should compute g
repeatedly, as it allows for a dynamically changing end goal
position and obstacles. This leads to a compromise needing to
be made for the number of points on the arm and the obstacles
in regards to computation time and accuracy of modeling. This
compromise can be avoided if the obstacles resemble a curve-

like object. In this case, the obstacle can be modeled as a
function in space along with the manipulator, and the closest
point between these two functions can be found instead and
utilized in the path planning algorithm, reducing the
computational complexity without sacrificing the accuracy in
representing the obstacles. This is the key concept exploited in
our proposed approach.

2.3 Curve-Like Obstacle Model

Using the method proposed in this paper, a curve-like obstacle
can be avoided by evading the single point on the obstacle
closest to the manipulator. This allows for a curve-like
obstacle to be represented as a single point, which greatly
simplifies the computation. In path planning algorithms,
obstacles can be modeled by sets of points in 3D space that
when combined can represent a variety of shapes. However, a
small number of points may fail to properly represent
elongated objects such as lines and curves. If the number of
points is reduced, the manipulator may not properly avoid the
obstacle. Instead, a curve-like obstacle can simply be
represented as parameterized functions in 3D space. This
allows for the accuracy of modeling the object with an infinite
number of points, without the computational intensity of a
large number of points. These curve-like objects in 3D space
can be represented by

Fo(w) = [X = (W), Y = f,(w), Z = f,W]", (10)
where u is a parametric variable and f,, f,, and f, are some
functions of u. These equations could be used to represent
objects such as tree branches, pipelines, wires, etc. The
equations themselves could be derived from a set of points
from a point cloud using techniques such as linear or quadratic
regression. The curve itself could be of any length defined by
the limits of u, allowing for longer objects to be modeled. In
order to use the obstacle avoidance algorithm, the minimum
distance between the obstacle curve and the arm must be
found. Given a soft robotic arm of # segments, points on each
individual segment i could be represented by parametric
equations as follows

(1 = cos(8;5)) g cos ()
Fri(s) = R, | (1 = cos(0;5)) ¢ sin()) |+ AL
[ sin(eis)g—ii |

(11

Using these curves, the distance between points on the obstacle
and a segment for any set of parametric variables u and s can
be calculated by

Di(s,u) = |[Fi(s) = Fo(wll. (12)

To calculate the minimum distance between the obstacle and
segment #, three cases must be tested. The minimum distance
between the segment and the obstacle will be the minimum of
these three cases and the global minimum will be the minimum
among the distances between the obstacle and all segments.
The first case is when the partial derivatives of D; with respect
to both s and u are equal to 0:
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aD

TR=0 = Fri(s) Fri(s) = Fo ) Fri(s) = 0 (13)
% =0 = F,W)TF,(u) — Fg;(s)TF,(u) = 0. (14)

For these equations Fg;(s) and F,(u) are the derivative of the
curves with respect to s and u respectively. A solution (s, u) to
both equations implies either a local minimum or maximum
for the distance between the curves. If the point is a local
maximum, the distance values obtained in the following cases
checking the edge cases will be smaller, and thus this type of
local extremum does not need to be calculated. The extremum
may not necessarily be unique, so all solutions within the
bounds of s and u should be calculated for the minimum of all
solutions.

The second case is at the limits of either s and u where the
derivative of the other parametric variable is zero. Values of s
and u that solve these conditions can be found from any the
equations below.

ab

—1=0 = Fpi() Fri(s) — Fo(Umin) "Fri(s) = 0 (15)
SA =0 = Fry($) Fpi(s) = Fo(tmar) TFri(s) =0 (16)
4= 0 = Fo () Fo ) = Fai(0)7Fo(u) = 0 an
S =0 = F,(W)Fo () — F(1)TFow) = 0. (18)

The values of s and u for any solution to the above equations
should be only included if they exist within the limits of the
parametric variables.

The third and final case is where the minimum distance
corresponds to the endpoints of both the obstacle and
manipulator. All four combinations of endpoints need to be
checked for their distances.

Once the individual point on the manipulator that is closest to
the obstacle curve is found, the minimum distance can be used
in the original obstacle avoidance algorithm (9) with the
obstacle being treated as a single point. The algorithm can be
extended to include any number of curved obstacles without
inhibiting the ability for other obstacles to be modeled by a set
of points in the same path planning algorithm.

3. SIMULATION RESULTS

The proposed path planning algorithm is evaluated in
MATLAB simulation, with a soft continuum arm of three
segments. The simulations are done on a Windows 10 PC with
an Intel Core i5 @3.80GHz and 16.0 GB RAM. The method
is compared with an alternative where the obstacles are
approximated with a discrete set of points evenly distributed
with respect to u along the curve, and another set of points
representing the discretization of the robotic arm. The inverse
Jacobian is not calculated for each point of the obstacle, only
once per obstacle. The majority of the computational time for
the method using sets of points arises from the distance
calculations and comparisons. To find the shortest distance for
the method utilizing a set of points, the MATLAB function
dsearchn is used. The MATLAB function Isgnonlin is used to

solve the nonlinear equations from (13-18). Table 1 presents
the parameters of the simulated arm.

Table 1. Simulation parameters for the soft arm.

Number of segments 3
Static length of segments (L;) 1
# Of points per segment on the
. . 10
arm for distance calculations

The computational time and the number of iterations (i.e., the
number of times ¢ needs to be calculated as in (9) to reach the
end goal) for the different methods are calculated in differing
scenarios and given in Tables 2-4 with visual representations
shown in Figs. 3-5.

3.1 Simulation 1

Simulation 1 has the manipulator navigate to a goal position
while avoiding a linear obstacle. Results of different methods
are shown in Table 2, with snapshots of the arm under the
proposed method presented in Fig. 3.

Table 2. Simulation 1: Line segment

End goal [1.1,-0.8, 0.9]
Obstacle X=1,Y=uZ=05—-u
equation 2<u<?2
Obstacle Iterations to | Average computation
model used in reach goal time (s)
simulation
Proposed 60 0.2914
method
1 Point 24 0.0053
10 Points 24 0.0690
50 Points 24 0.4254
100 Points 66 1.6679
Obstacle

2
)
.// *

End Goal (a)

[

(b)
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Fig. 3. Snapshots of arm movement under the proposed algorithm for
simulation 1 at (a) O iterations, (b) 40 iterations, (c) final iteration.

In simulation 1, the proposed method has a similar
computation time to that of modeling the obstacle with 50
points. However, the 50-point method did not properly model
the obstacle and the manipulator collided with the obstacle.
Only the proposed and the 100-points methods led to
manipulator avoiding the obstacle, although the 100-points
simulation had a higher computation time relative to the
proposed method.

3.2 Simulation 2

Simulation 2 has the manipulator navigate to a goal position
while avoiding a curved obstacle. Results of differing methods
are shown in Table 3, with snapshots of the arm under the
proposed method presented in Fig. 4.

Table 3. Simulation 2: Curved line segment

End goal [1,1,1]
Obstacle X=05Y=u/Z=>5u?
equation 2<u<2
Obstacle Iterations to | Average computation
model used in | reach goal time (s)
simulation
Proposed 30 0.2971
method
1 Point 23 0.0044
10 Points 23 0.0599
50 Points 24 0.2720
100 Points 23 0.5794
Obstacle
/ A&
‘/
End Goal

(a)

(b)

(©)

Fig. 4. Snapshots of arm movement under the proposed algorithm for
simulation 2 at (a) 0 iterations, (b) 20 iterations, (c) final iteration.

In simulation 2, the proposed method again has a similar
computation time to that of the 50-point method. Of all tested
methods including the more computationally expensive 100-
point method, only the proposed method avoided collisions.

3.3 Simulation 3

Simulation 3 has the manipulator navigate to a goal position
while avoiding six curved obstacles. The obstacles were
chosen to represent a tree-like environment. Results of
differing methods are shown in Table 4, with snapshots of the
arm under the proposed method presented in Fig. 5.

Table 4. Simulation 3: Multiple curves

End goal [1,0.7,1.45]
X Y Z u
1—-0.2u 1-—u 2 —u? 0-1
Obstacle 1-05u |[1+u—u?|17+03u|0-1.5
equations 1 1—u 2—01u |0-1.5
1+u—u? 1-—u 1.7 0-1
1 1-—u 1.5+ 0.1u |0-1.5
1 1 u—u? | 03
Obstacle Iterations to | Average computation time
model used in reach goal (s)
simulation
Proposed 32 0.7414
method
1 Point 19 0.1090
10 Points 19 0.7594
50 Points 32 5.7699
Obstacles

End Goal (a)

(b)
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(©)

Fig. 5. Snapshots of arm movement under the proposed algorithm for
simulation 3 at (a) 0 iterations, (b) 20 iterations, (c) final iteration.

In Simulation 3, the proposed method performs significantly
faster than the 50-point representation, comparable to that of
the 10-point method. The arm avoids the obstacles in both the
proposed and 50-point methods. In all 3 simulations, the
proposed method avoided collisions and had a lower
computation time than other methods that avoided collisions.

4. CONCLUSION

In this paper, an efficient path planning approach was
presented for soft robotic arms. Most existing obstacle
avoidance algorithms using sets of points to represent
obstacles will need a minimal alteration in order to implement
the proposed method. The proposed method showed a
reduction of computational complexity compared to
approaches using many points representing curve-shaped
obstacles and was demonstrated to be effective in handling
complex obstacle scenarios including one emulating a target
behind multiple tree branches.

Future work will extend the approach to soft robotic arms
without the piecewise-constant curvature assumption, to
accommodate realistic shapes under effects of gravity and
other loadings. The proposed algorithm will also be tested
experimentally on soft robotic arms.
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