
MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000–000
S 0025-5718(XX)0000-0

IMPROVED COMPUTATION OF FUNDAMENTAL DOMAINS

FOR ARITHMETIC FUCHSIAN GROUPS

JAMES RICKARDS

Abstract. A practical algorithm to compute the fundamental domain of an

arithmetic Fuchsian group was given by Voight, and implemented in Magma.
It was later expanded by Page to the case of arithmetic Kleinian groups. We

combine and improve on parts of both algorithms to produce a more efficient

algorithm for arithmetic Fuchsian groups. This algorithm is implemented in
PARI/GP, and we demonstrate the improvements by comparing running times

versus the live Magma implementation.

1. Introduction

Let Γ be a discrete subgroup of PSL(2,R), which acts on the hyperbolic upper
half plane H. Assume that the quotient space Γ\H has finite hyperbolic area µ(Γ),
and denote the hyperbolic distance function on H by d. Let p ∈ H have trivial
stabilizer under the action of Γ. Then the space

D(p) := {z ∈ H : d(z, p) ≤ d(gz, p) for all g ∈ Γ}
forms a fundamental domain for Γ\H, and is known as a Dirichlet domain. It is a
connected region whose boundary is a closed hyperbolic polygon with finitely many
sides. Two examples of Dirichlet domains are given in Figure 1; the boundaries of
the domains are in green, interiors in grey, and they are displayed in the unit disc
model of hyperbolic space.

Explicitly computing fundamental domains has many applications, including:

• Computing a presentation for Γ with a minimal set of generators (Theorem
5.1 of [Voi09]);

• Solving the word problem with respect to this set of generators (Algorithm
4.3 of [Voi09]);

• Computing Hilbert modular forms ([DV13]);
• Efficiently computing the intersection number of pairs of closed geodesics
([Ric21]).

In [Voi09], John Voight published an algorithm to compute D(p). The algorithm
has two main parts:

2020 Mathematics Subject Classification. Primary 11Y40; Secondary 11F06, 20H10, 11R52.

Key words and phrases. Shimura curve, fundamental domain, quaternion algebra, algorithm.
I thank John Voight and Aurel Page for their useful discussions and comments. I also thank

Bill Allombert for his help and suggestions with PARI/GP, and the anonymous reviewers for their
helpful comments. This research was supported by an NSERC Vanier Scholarship at McGill

University. The author is currently partially supported by NSF-CAREER CNS-1652238 (PI
Katherine E. Stange).

©XXXX American Mathematical Society

1

2 JAMES RICKARDS

(a) F = Q, D = 21. (b) F = Q(
√
5), NmF/Q(D) = 61.

Figure 1. Dirichlet domains corresponding to norm 1 unit groups
of maximal orders in a quaternion algebra of discriminant D over
a number field F .

• Element enumeration: algebraic algorithms to produce non-trivial elements
of Γ, which are added to a set G. This step is given for arithmetic Fuchsian
groups, which are commensurable with unit groups of maximal orders in a
quaternion algebra over a totally real number field that is split at exactly
one real place.

• Geometry: geometric algorithms used to compute the fundamental domain
of ⟨G⟩. This step is valid for all Fuchsian groups Γ.

The process terminates once the hyperbolic area of ⟨G⟩ \H equals µ(Γ) (computed
with an explicit formula).

These algorithms were implemented in Magma [BCP97], and do a reasonable
job with small cases, but do not scale very well. An improvement to the enu-
meration algorithms was given by Page in [Pag15]: he replaces the deterministic
element generation by a probabilistic algorithm, which in practice performs signif-
icantly better. He also generalized the setting from arithmetic Fuchsian groups to
arithmetic Kleinian groups, and has a Magma implementation available from his
website.

In this paper, we aim to further improve the computation by improving the
geometric part (as described by Voight), and refining the element enumeration (as
described by Page). These algorithms have been implemented by the author in
PARI/GP ([PAR22]), and are publicly available in a GitHub repository ([Ric22]).
Sample running times comparing the live Magma implementation and the PARI
implementation are found in Table 1 (all computations were run on the same McGill
University server). The degree and discriminant of the base number field F , norm
to Q of the discriminant of the algebra, area, number of sides, and running times
are recorded.

In Section 2, we detail the geometric portion of the algorithm, and compare
the theoretical running time with Voight’s paper. Taking element generation as an
oracle, we give the general algorithm to compute the fundamental domain in Section

IMPROVED COMPUTATION OF FUNDAMENTAL DOMAINS 3

Table 1. Running times (in seconds) of the PARI versus the
Magma implementation.

deg(F) disc(F) N(D) Area Sides t(MAGMA) t(PARI) t(MAGMA)
t(PARI)

1 1 33 20.943 17 13.190 0.022 599.5
1 1 793 753.982 640 15727.170 1.718 9154.3
2 33 37 226.195 222 297.750 0.946 314.7
2 44 79 571.770 552 4182.640 3.142 1331.2
3 473 99 418.879 406 104146.830 4.382 23767.0
4 14656 17 469.145 454 2487.800 12.107 205.5
5 5763833 1 4490.383 4294 2746313.540 1242.494 2210.3
7 20134393 119 1507.964 1446 2236865.680 1234.850 1811.4

3. Section 4 specializes Page’s enumeration to our setting, and investigates optimal
selection of required constants. Finally, Section 5 gives more sample running times
over a range of µ(Γ) for deg(F) ≤ 4.

2. Geometry

Instead of working in the upper half plane, it is better to work with the unit disc
model, D (final results can be transferred back if desired). To this end, fix a p ∈ H
which has trivial stabilizer under the action of Γ. Consider the map ϕ : H → D
given by

ϕ(z) =
z − p

z − p
,

which is the conformal equivalence between H and D that sends p to 0. The group
Γ now acts on D via Γϕ := ϕΓϕ−1 ⊆ PSU(1, 1).

2.1. Normalized boundary.

Definition 2.1. For a non-identity element g =
(︁
a b
c d

)︁
∈ Γϕ, define the isometric

circle of g to be
I(g) := {z ∈ D : |cz + d| = 1}.

As the point p has trivial stabilizer under Γ, c ̸= 0, hence I(g) is an arc of the
circle with radius 1

|c| and centre −d
c . By convention, the arc runs counterclockwise

from the initial point to the terminal point. Furthermore, define

int(I(g)) := {z ∈ D : |cz + d| < 1}, ext(I(g)) := {z ∈ D : |cz + d| > 1},
to be the interior and exterior of I(g) respectively. See Figure 2 for an example.

The isometric circle has the following alternate characterization:

d(z, 0) < d(gz, 0) if and only if z ∈ ext(I(g)).

The analogous statements with < replaced by = or > and ext(I(g)) replaced by
I(g) or int(I(g)) respectively also hold (Proposition 1.3b of [Voi09]).

Definition 2.2. Let G ⊂ Γϕ\{1} be a subset, and define the exterior domain of
G to be

ext(G) =
⋂︂
g∈G

ext(I(g)).

In particular, D(0) = ext(Γϕ\{1}).

4 JAMES RICKARDS

Initial point

Terminal point

ext(I(g))

I(g)

int(I(g))

Figure 2. I(g) example

Following Voight, let G ⊂ Γϕ\{1} be finite, and let E = ext(G). Then E is
bounded by a generalized hyperbolic polygon, with sides being:

• subarcs of I(g) for g ∈ G (proper side);
• arcs of the unit circle (infinite side);

and vertices being:

• intersections of I(g) with I(g′) for g ̸= g′ (proper vertex);
• intersections of I(g) with the unit circle (vertex at infinity).

The polygon E can be neatly expressed via its normalized boundary.

Definition 2.3. A normalized boundary of E is a sequence U = g1, g2, . . . , gk such
that:

• E = ext(U);
• The counterclockwise consecutive proper sides of E lie on I(g1), I(g2), . . . ,
I(gk);

• The vertex v with minimal argument in [0, 2π) is either a proper vertex
with v ∈ I(g1) ∩ I(g2), or a vertex at infinity with v ∈ I(g1).

See Figures 3 and 4 for an example of going from the set of I(g) for g ∈ G to
its normalized boundary. While this process is “obvious” visually, we require an
algorithm that a computer can execute. Algorithm 2.5 of [Voi09] accomplishes this
task, and it can be summarized as follows: start by intersecting all I(g) with [0, 1]
to find g1. Next, given g1, g2, . . . , gi, find all intersections of I(gi) with I(g) for
g ∈ G, and choose the “best one”. Repeat until gi = g1.

Taking |G| = n, the running time is O(nk), where k is the number of sides of U .
In practice, k = O(n) is typical, which gives a running time of O(n2).

To improve this algorithm, consider the terminal points of I(gi), and observe
that they are in order around the boundary of D! This follows from the fact that
I(g) and I(g′) cannot intersect twice in D. In particular, we can start by sorting
G by the arguments of the terminal points of I(g), to get g1, g2, . . . , gn. The final
normalized boundary will then be gi1 , gi2 , . . . , gik , where i1 < i2 < · · · < ik. We can
iteratively construct this sequence i1, i2, . . . , ik in O(n) steps, for a total running
time of O(n log(n)) (due to the sorting).

IMPROVED COMPUTATION OF FUNDAMENTAL DOMAINS 5

Figure 3. I(g) for all
g ∈ G

v1

v2
v3

v4

v5

v6

v7

g1

g2

g3

g4

g5 g6

Figure 4. Normalized
boundary of G

Algorithm 2.4. Given a finite subset G ⊂ Γϕ\{1}, this algorithm returns the
normalized boundary of ext(G) in O(n log(n)) steps. The letters U and V track
sequences of elements of G and points in D respectively.

(1) Sort G by the arguments (in [0, 2π)) of the terminal points, to get G =
g1, g2, . . . , gn (take indices modulo n).

(2) Let H be the set of all g such that I(g) intersects [0, 1]. If H is empty, go
to step 3. Otherwise, go to step 4.

(3) Let U = g1, let i = 2, let V be the terminal point of I(g1), and continue to
step 5.

(4) LetH ′ ⊆ H be the (non-empty) subset which gives the smallest intersection
with [0, 1]. Let g ∈ H ′ give the smallest angle of intersection of I(g) with
[0, 1]. Cyclically shift G so that g1 = g, take U = g1, let i = 2, and let V
be the intersection of I(g1) with [0, 1].

(5) If i = n+ 2, delete g1 from the end of U , and return U .
(6) Assume U ends with g, V ends with v, and compute v′ = I(g) ∩ I(gi).

(a) If v′ does not exist, then compare the terminal point of I(gi) with
I(g). If it lies in the interior, then increment i by 1, and go back to
step 5. Otherwise, append gi to U , append the initial point of I(g) to
V , append the terminal point of I(gi) to V , increment i by 1, and go
back to step 5.

(b) If v′ is closer to the initial point of I(g) than v, then append gi to U ,
append v′ to V , increment i by 1, and go back to step 5.

(c) Otherwise, delete g from the end of U , delete v from the end of V , and
go back to step 5.

Proof. If I(g) does not intersect [0, 1] for all g ∈ G, then g = g1 must minimize the
argument of the terminal point of I(g). Otherwise, g = g1 minimizes the intersec-
tion with [0, 1], and taking the smallest angle (if this is not unique) guarantees the
selection. This is the content of steps 1-4.

For the rest of the algorithm, U is the normalized boundary of g1, g2, . . . , gi−1,
and V tracks the intersection of g with the previous side of U , where this side

6 JAMES RICKARDS

may be infinite, or [0, 1] if i = 2. We intersect I(gi) with I(g), and if there is
no intersection, then we are either enclosed inside I(g), or there is an infinite side
(which must exist in all subsequent iterations due to the sorting of G). If v′ is
closer to the initial point of I(g) than v, then we simply must add this new side in.
Otherwise, this implies that the new side completely encloses the previous side, so
backtrack by deleting the previous side and try again.

Our choice of g1 guarantees that it will be a part of any partial normalized
boundary, hence the sets U and V will never be empty. Furthermore, once we get
to i = n+ 1, we still need to go on, since gn+1 = g1 may completely enclose some
of the final isometric circles in U . Once we have finished with this step, we have
completed the circle, and are left with the normalized boundary.

As for the running time, the initial sorting is the bottleneck. If we assume that
we start with a sorted G, then finding g1 takes O(n) steps, and the rest of the
algorithm also takes O(n) steps. Indeed, if we deleted e elements from U in a step,
then we performed e + 1 intersections. Since each element of G can be added to
U at most once, and each element of U can be deleted at most once, the result
follows. □

Assume that Figure 3 contains I(g1), I(g2), . . . , I(g11), ordered by argument of
terminal points, with I(g1) intersecting [0, 1]. Figure 5 contains the partial normal-
ized boundaries computed by Algorithm 2.4, and which values of i they correspond
to.

The order of magnitude of improvement is typically O
(︂

n
log(n)

)︂
, which is a sub-

stantial improvement since Algorithm 2.4 is called a large number of times. Fur-
thermore, we will often be in the situation where we have a computed normalized
boundary E and a set G′, and we want to compute the normalized boundary of
E ∪ G′. Instead of blindly running Algorithm 2.4 on E ∪ G′, we can save time
by “remembering” that E is a normalized boundary. We only have to sort G′,
and combine this sorted list with the presorted E. When we are iteratively going
through the new sequence, we can copy the data from E when we are away from
new sides coming from G′. This extra computational trick is most effective when
the size of G′ is a much smaller than the size of E.

Remark 2.5. John Voight has made similar observations with regards to optimizing
the geometric algorithms (personal communication). This code was implemented
in Magma, but is not in the live version.

2.2. Reduction of points. Given an enumeration of elements of Γ, Algorithm
2.4 is enough to compute the fundamental domain, since eventually we will have
the boundary of D(0) in our set G. However, this is far too slow in practice.
One of the key ideas introduced by Voight in [Voi09] is the ability to efficiently
compute ext(⟨G⟩), not just ext(G). By only requiring a set of generators, we need
to enumerate less elements, which brings the total computation time to reasonable
levels.

Definition 2.6. Let G ⊂ Γϕ\{1} be finite. Call U a normalized basis of G if U is
the normalized boundary for ext(⟨G⟩).

Before describing the computation of the normalized basis, we consider the reduc-
tion of elements/points to a normalized boundary. Take G as above, let z ∈ int(D),

IMPROVED COMPUTATION OF FUNDAMENTAL DOMAINS 7

i = 1, 2, 3 i = 4 i = 5

i = 6 i = 7 i = 8

i = 9 i = 10 i = 11, 12

Figure 5. Partial normalized boundaries of Figure 3 computed
with Algorithm 2.4

and consider the map

ρ : Γ →R≥0

γ →ρ(γ; z) = d(γz, 0).

Definition 2.7. An element γ ∈ Γ is (G, z)-reduced if for all g ∈ G, we have
ρ(γ; z) ≤ ρ(gγ; z).

Algorithm 4.3 of [Voi09] describes a process to reduce an element γ ∈ Γ, namely:

(1) Compute ming∈G ρ(gγ; z). If this is greater than or equal to ρ(γ; z), return
γ.

(2) Replace γ by gγ, where g is the first element that attains the above mini-
mum. Return to step 1.

This algorithm terminates to produce an element redG(γ; z) := δγ, where δ ∈ ⟨G⟩
and redG(γ; z) is (G, z)-reduced. If z = 0, write redG(γ) for the reduction.

Proposition 4.4 of [Voi09] shows that if U is the normalized basis of G, then
for almost all z ∈ D, the element redU (γ; z) is independent of all choices made.
Furthermore, redU (γ) = 1 if and only if γ ∈ ⟨G⟩. Thus, if γ ∈ ⟨G⟩, this algorithm
is a way to write γ−1 as a word in U .

8 JAMES RICKARDS

g4

g5

0

γz

Figure 6. γz is in int(I(g4)) and int(I(g5)), and the line from 0
to γz passes through I(g5).

While the above algorithm is valid for all finite sets G ⊂ Γϕ\{1}, it turns out
that whenever we want to reduce an element, we will have the normalized boundary
of G, denoted U , at our disposal! We make the following observations:

• When replacing γ with gγ, it is not necessary to have

ρ(gγ; z) = min
g′∈G

ρ(g′γ; z),

all that is required is ρ(gγ; z) < ρ(γ; z). The algorithm will still terminate
in approximately the same number of steps;

• By definition, ρ(gγ; z) < ρ(γ; z) if and only if γz ∈ int(I(g));
• If γz ∈ int(I(g)) for some g ∈ G, then the straight line from 0 to γz will
intersect U on the proper side that is part of I(g) for a possible g. See
Figure 6 for a demonstration of this fact.

By finding where arg(γz) should be inserted in the list of arguments of vertices
of G (precomputed), we can determine a possible g for each step (or show that we
are done) in O(log(n)) steps. This is a large time save compared to the previous
algorithm, where each step took O(n) steps.

Algorithm 2.8. Let G be the normalized boundary of a finite subset of Γ, let the
vertices of G be v1, v2, . . . , vk, let z ∈ int(D), and let γ ∈ Γ. The following steps
return δ, where redG(γ; 0) = δγ and δ ∈ ⟨G⟩:

(1) Initialize δ = 1, and z′ = γz.
(2) Use a binary search to determine the index i such that arg(vi) ≤ arg(z′) <

arg(vi+1).
(3) Let w be the intersection point of the side vivi+1 (corresponding to I(g))

and the straight line (with respect to Euclidean geometry) between 0 and
z′.

IMPROVED COMPUTATION OF FUNDAMENTAL DOMAINS 9

(4) If |z′| ≤ |w|, return δ. Otherwise, replace (δ, z′) by (gδ, gz′), and return to
step 2.

2.3. Side pairing. One crucial omission thus far is the notion of a side pairing
for Dirichlet domains. Let P be a generalized hyperbolic polygon (allowing infinite
sides), with proper sides S. Consider the set

SP = {(g, s, s′) : s′ = g(s)} ⊆ Γ× S × S,

and call two sides (s, s′) paired if there exists a g ̸= 1 for which (g, s, s′) ∈ SP, where
we allow a side to be paired with itself (note that that this relation is symmetric,
but not necessarily reflexive). Say P has a side pairing if this relation induces a
partition of S into singletons/pairs, i.e. for all s ∈ S there exists a unique side
s′ ∈ S with (s, s′) paired.

As noted in Proposition 1.1 of [Voi09], the Dirichlet domain D(p) has a side
pairing. Furthermore, if G is a normalized boundary whose exterior domain has
a side pairing, then ext(G) is the fundamental domain of ⟨G⟩. In particular, to
compute the normalized basis of a finite set G, it suffices to compute a normalized
boundary G′ that has a side paring and ⟨G′⟩ = ⟨G⟩.

In the case of Dirichlet domains, it is easy to see that if we have a side s ⊆ I(g),
then the only possible side s could be paired with is gs. In particular, given a
normalized boundary G with vertices v1, v2, . . . , vk and a proper side s = vivi+1 ⊆
I(g), we can compute g(vi), search for its argument in the ordered list of arg(vj),
and then determine the j such that g(vi) = vj (or determine that no such j exists).
By computing g(vi+1) and comparing it with vj−1, we can determine if the side s
is paired or not. Since all operations besides the set search are O(1) time, the the
side pairing test takes O(log(n)) time, with |G| = n. If we try to find all paired
sides, this will take O(n log(n)) time.

2.4. Normalized basis. Algorithm 4.7 of [Voi09] details how to compute the nor-
malized basis of G, and is not modified here. We do record it, to demonstrate that
whenever we apply Algorithm 2.8 to reduce an element, the corresponding normal-
ized boundary has been pre-computed (and thus we are able to apply our improved
algorithms).

Algorithm 2.9. [Normalized basis algorithm, Algorithm 4.7 of [Voi09]] Let G ⊂
Γϕ\{1} be finite. The normalized basis of G can be computed as follows:

(1) Let G′ = G ∪G−1 = {g : g or g−1 ∈ G}.
(2) Use Algorithm 2.4 to compute the normalized boundary of G′, denoted U .
(3) Let G′′ = G′. For each element g ∈ G′, compute redU (g). If redU (g) ̸= 1,

extend G′′ by redU (g)
−1.

(4) Compute the normalized boundary of G′′, denoted U ′.
(5) If U ′ = U and G′′ = G′, then continue. Otherwise, replace (G′, U) by

(G′′, U ′), and return to step 3.
(6) Compute the set of paired sides of U . If this is a side pairing, then return

U . Otherwise, for all pairs (s, v) of an unpaired proper side s with unpaired
vertex v (i.e. s ⊆ I(g) and gv is not a vertex of U), compute redG′(g; v)
and add it to G′′ (if v is a vertex at infinity, replace v by a nearby point in
the interior of D).

(7) Let G′ = G′′, and return to step 2.

10 JAMES RICKARDS

3. The general algorithm (without enumeration)

With the geometry in hand, we describe the computation of the fundamental
domain, since this will help guide us in considering the enumeration of elements of
Γ.

Algorithm 3.1. Let Γ be a discrete subgroup of PSL(2,R), so that Γϕ ⊆ PSU(1, 1).
Let f(Γ) denote an oracle that returns a finite set of elements of Γ. This algorithm
returns D(0), which is a fundamental domain of Γ.

(1) Compute µ(Γ) via theoretical means. Initialize G = ∅.
(2) Call f(Γ) to generate G′ ⊆ Γϕ.
(3) Use Algorithm 2.9 to compute U , the normalized basis of G′ ∪G.
(4) Compute the hyperbolic area of U . If it is equal to µ(Γ), then return U .

Otherwise, let G = U , and return to step 2.

Besides the oracle, this algorithm assumes two things: explicit computation of
the hyperbolic area of U , and theoretical computation of µ(Γ). The first of these is
easy to resolve: it is well known that the area of a hyperbolic polygon with n sides
and angles α1, α2, . . . , αn is

µ(P) = (n− 2)π −
n∑︂

i=1

αi.

Therefore, the only requirements to compute a fundamental domain are a way
to generate (enough) elements of the group, and a computation of the area (or
another means to determine when we are done). In the case of arithmetic Fuchsian
groups, an enumeration is described in the next section, and the area computation
is classical (see Theorem 39.1.8 of [Voi21] for a statement and proof).

Remark 3.2. The most expensive part of the area computation for arithmetic Fuch-
sian groups is the computation of ζF (2), where F is the totally real number field.
With larger fields, we need higher precision, and the cost to compute this zeta value
accurately grows high. However, a precise value for ζF (2) is unnecessary! Indeed,
as soon as we have a normalized basis with finite area, it will correspond to a finite
index subgroup Γ′ of Γ. In particular, µ(Γ′) = [Γ : Γ′]µ(Γ) ≥ 2µ(Γ) if they are not
equal. Thus, it suffices to check that the hyperbolic area is less than 2µ(Γ), which
requires very little precision. In practice, it is incredibly unlikely to end up with a
Γ′ ̸= Γ; the algorithm will nearly always stop once the area is finite.

4. Enumeration

Let F be a totally real number field of degree n with ring of integers OF , and
let B be a quaternion algebra over F that is split at exactly one infinite place.
Consider B as being embedded in Mat(2,R) via the unique split infinite place, and
let O be an order of B. Then the group ΓO := O1/{±1} ⊆ PSL(2,R), the group of
units in O of reduced norm 1, is an arithmetic Fuchsian group.

Definition 4.1. Label the Fuchsian group corresponding to O by the integer triple
(n, d,N), where n is the degree of F , d = disc(F) is the discriminant of F , and
N = NmF/Q(discrd(O)) is the norm to Q of the reduced discriminant of the order
O. Call this triple the data associated to the group.

IMPROVED COMPUTATION OF FUNDAMENTAL DOMAINS 11

Note that the data does not necessarily uniquely label a Fuchsian group, since
distinct number fields may have the same discriminant, and nonisomorphic alge-
bras/orders may give the same N .

As in Section 2, fix p = x+yi ∈ H, and let ϕ : H → D be the corresponding map
sending p to 0. For g =

(︁
a b
c d

)︁
∈ Mat(2,R), define

fg(p) := cp2 + (d− a)p− b.

If g has norm 1, let gϕ = (A B
C D) ∈ SU(1, 1), and then a computation shows that

C =
−fg(p)

2iy
, and the radius of I(g) is

1

|C| .

In particular, if M = (A B
C D) ∈ U(1, 1), define

fM (p) := 2iyC,

so that fg(p) = fgϕ(p).

Definition 4.2. Let z1, z2 ∈ D, and fix M1,M2 ∈ PSU(1, 1) so that Mi(0) = zi for
i = 1, 2. For g ∈ B, define the quadratic form

Qz1,z2(g) :=
1

2y2

⃓⃓⃓
fM−1

2 gϕM1
(p)

⃓⃓⃓2
+TrF/Q(nrd(g)).

This is the analogue of Qz1,z2 from Definition 28 in [Pag15], and is similarly well
defined (independent of M1,M2) and positive definite. In [Voi09], Voight defined
the absolute reduced norm N , which satisfies

N(g) = 2y2Q0,0(g).

The analogue of Proposition 30 of [Pag15] is Proposition 4.3.

Proposition 4.3. If g ∈ ΓO, then

Qz1,z2(g) = cosh(d(gϕz1, z2)) + n− 1.

Proof. Let M = M−1
2 gϕM1 =

(︁
A B
B A

)︁
, with |A|2 − |B|2 = 1. Since nrd(g) = 1, it

suffices to prove that

cosh(d(gzϕ1 , z2))− 1 = 2|B|2.
Since the action of PSU is isometric with respect to hyperbolic distance,

d(gϕz1, z2) = d(M−1
2 gϕz1,M

−1
2 z2) = d(M0, 0).

Applying a classical formula for the hyperbolic distance, we get

cosh(d(gzϕ1 , z2))− 1 =
2|B/A|2

1− |B/A|2 =
2|B|2

|A|2 − |B|2 = 2|B|2,

as desired. □

In particular, if we pick z1, z2 such that gz1 is close to z2 for some g ∈ ΓO, then
by enumerating vectors g′ ∈ O such that Qz1,z2(g

′) ≤ C and checking which of
them have reduced norm 1, we can recover g. Since O is a positive definite rank 4n
module over Z, the small vectors of Qz1,z2 can be enumerated with the Fincke-Pohst
algorithm, [FP85].

In [Voi09], the enumeration strategy was to solve Q0,0(g) ≤ C, and compute the
normalized basis of the generated elements. If the area is larger than the target

12 JAMES RICKARDS

area, then increase C and repeat. Since the boundary of the fundamental domain
has finitely many sides and

Q0,0(g) =
2

rad(I(g))2
+ n

for g ∈ O1, for large enough C we obtain the fundamental domain. A downside
to this strategy is the number of g ∈ O with Qz1,z2(g) ≤ C grows like C2n, the
proportion of elements with g ∈ O1 shrinks, and thus the computation time blows
up. The timing also has high variance, as the value of C you need can vary greatly
for similar examples.

In [Pag15], Page introducedQz1,z2 (defined for Kleinian groups, which we special-
ized down to Fuchsian groups), and used this new freedom to define a probabilistic
enumeration that greatly outperforms the deterministic one in practice. The outline
of his enumeration is as follows:

• Pick a set of random points Z;
• Solve Q0,z(g) ≤ C for z ∈ Z;
• Take the small vectors with nrd(g) = 1, and add them to your generating
set;

• Compute the normalized basis, and if the area is not correct, repeat these
steps.

This strategy requires a couple of choices that are not immediately obvious:

• What value of C is optimal?
• How do we pick the random points Z, and how many of them are chosen
in each pass?

Heuristics for both questions are given, but it is not clear if they remain optimal
for the case of arithmetic Fuchsian groups. Furthermore, the heuristics do not spec-
ify the constants, which are necessary for an efficient practical implementation. We
explore these questions, with plenty of data as evidence, in the following sections.

Remark 4.4. One subtle part of this strategy is checking if nrd(g) = 1. Since we
are repeating this norm computation a large number of times, we pre-compute the
Cholesky form of nrd(g), i.e. write it as a sum of (four) squares (see [FP85] for
more details). This speeds the norm computations up by a factor of ≈ 10 over the
PARI command “algnorm”.

4.1. Choosing random points. As in [Pag15], we pick points uniformly from a
hyperbolic disc of radius R. The choice of R needs to be large enough that the
random point is approximately uniform in the fundamental domain. On the other
hand, if R is too large, then precision issues may occur. We take R = RO, where

µ(disc of radius RO) = µ(ΓO)
2.1.

This is the same choice as the implementation of [Pag15].

Remark 4.5. There are several papers on the diameter of Γ\H, which lend support
to RO being large enough. Unconditional results are given by Chu-Li in [CL16],
and conditional results on the almost-diameter are given by Golubev-Kamber in
[GK19]. Assuming the Selberg eigenvalue conjecture, their results imply that the
almost-diameter of Γ\H is bounded by

(1 + o(1)) log(µ(Γ\H)),

IMPROVED COMPUTATION OF FUNDAMENTAL DOMAINS 13

when Γ is a congruence arithmetic Fuchsian group. An upcoming work by Steiner
([Ste]) gives this result unconditionally in certain cases.

Remark 4.6. Based on Remark 4.5, an exponent of 1 + ϵ in the definition of RO

would be sufficient to pick up the whole fundamental domain when O is Eichler.
Since we do not want the random point to be biased, we increased the exponent to
2.1 for RO. This is not a precise choice, merely a choice that worked sufficiently
well in practice. For non-Eichler orders, a larger exponent might be required, or an
alternate approach where the fundamental domain for a maximal order containing
O is computed, and a coset enumeration algorithm is applied to push the domain
down.

4.2. Choice of C. Choosing the correct value of C in the computation ofQ0,z(g
′) ≤

C is extremely important. If C is too small, then it will take too many trials to get
an element of reduced norm 1, and if C is too large, each individual trial will take
too long.

First, we compute the probability of success of a trial. Assume that z is chosen
sufficiently randomly, take g ∈ O1, and let x = d(gϕ(0), z) be the distance between
gϕ(0) and z. By Proposition 4.3, the trial Q0,z(g

′) ≤ C will find g if and only if

cosh(x) =
ex + e−x

2
≤ C + 1− n.

Therefore we find g if and only if the hyperbolic disc of radius cosh−1(C + 1 − n)
about z contains gϕ(0). The expected number of such g’s is thus the area of this
disc divided by µ(ΓO). Since a hyperbolic disc of radius R has area

4π sinh(R/2)2 = π(eR + e−R − 2) = 2π(cosh(R)− 1),

we derive Heuristic 4.7.

Heuristic 4.7. The expected number of elements of O1 that the trial Q0,z(g
′) ≤ C

outputs is

E(number of elements found) =
2π(C − n)

µ(ΓO)
.

To demonstrate this heuristic, we run the trial Q0,z(g
′) ≤ C across a range of

C’s in two algebras. The points z are chosen uniformly at random from a disc of
radius RO. In Figures 7 and 8, we display the results, including the straight line
predicted by Heuristic 4.7 (we only count the non-trivial elements found). The R2

values of the heuristic are 0.98840348 and 0.96506302 respectively. This data also
lends support to our chosen radius being sufficiently large to model a random point
of the fundamental domain.

Remark 4.8. If C is small, then we will find at most one element of O in each
trial. Indeed, if we found two elements g1, g2, then we must have d(0, g−1

1 g2(0)) ≤
2 cosh−1(C+1−n), i.e. 0 is close to g−1

1 g2(0). Since the action of Γϕ
O is discrete, this

gives a minimum bound on C for this behaviour to occur. In practice, the optimal
value of C will typically be smaller than this, so we can stop a trial if we find a
single element. Note that even if C were just large enough, the second element
found will be useless after the first time! An element is only useful if it is not in the
span of all previously found elements. In this case, the quotient g = g−1

1 g2 will be
constant, so g2 is in the span of g1 and all previously found elements if we already
have g.

14 JAMES RICKARDS

0 5 10 15 20
0

200

400

600

C

E
le
m
en
ts

fo
u
n
d

Figure 7. Elements
found in 1000 trials of
Q0,z(g

′) ≤ C for curve
(2, 21, 101).

0 5 10 15 20
0

50

100

150

C

E
le
m
en
ts

fo
u
n
d

Figure 8. Elements
found in 1000 trials of
Q0,z(g

′) ≤ C for curve
(3, 229, 106).

Remark 4.9. We can test Q0,0(g
′) ≤ C at the start in an attempt to pick up some of

these elements with large isometric circle radii. This is typically more useful when
µ(ΓO) is small, and becomes more effective as the degree of the number field grows
(as the cost to generate a single element becomes high very quickly). We will use
the same value of C as for the tests Q0,z(g

′) ≤ C.

To perform the enumeration of Q0,z(g
′) ≤ C, there are two distinct parts. Part

one is the setup of Fincke-Pohst, i.e. computing the a series of matrix reductions
to minimize failures in the enumeration. This part is independent of C. Part
two consists of the actual enumeration, and we assume that the time taken is
proportional to the number of vectors enumerated. This leads to Heuristic 4.10.

Heuristic 4.10. The time to complete the enumeration of Q0,z(g
′) ≤ C is

A+BC2n,

where A,B are constants depending on O.

To demonstrate Heuristic 4.10, we computed the enumeration time for 1000 C’s
in two quaternion algebras. Figure 9 demonstrates the results for n = 1, along
with the associated best fit curve t = 1.0560652 · 10−3 +1.1777653 · 10−8C2, which
gives an R2 value of 0.99559127 (the horizontal lines are due to PARI timings being
integer multiples of one millisecond). Figure 10 demonstrates the results for n = 4,
along with the associated best fit curve t = 1.1927396 · 10−2 +6.3362747 · 10−14C8,
which gives an R2 value of 0.99761548.

In particular, combining Heuristics 4.7 and 4.10, the expected time taken before
a success is given by

(4.1)

(︃
µ(ΓO)B

2π

)︃
C2n +A/B

C − n
.

Basic calculus implies that this is minimized for the unique real solution C > n of
the polynomial

(4.2) (2n− 1)C2n − 2n2C2n−1 = A/B.

IMPROVED COMPUTATION OF FUNDAMENTAL DOMAINS 15

0 1,000 2,000 3,000 4,000 5,000
0

0.1

0.2

0.3

C

T
im

e

Figure 9. Computa-
tion time of Q0,z(g

′) ≤ C
for curve (1, 1, 2021).

20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

C

T
im

e

Figure 10. Computa-
tion time of Q0,z(g

′) ≤ C
for curve (4, 14013, 109).

Remark 4.11. The values of A and B are highly dependent on factors like precision,
processor speed, etc. However, these factors should affect A and B to approximately
the same factor, leaving A/B constant. On the other hand, A/B is highly dependent
on the implementation of Fincke-Pohst, the setup to the enumeration, or even the
computation of the norm of an element.

For a fixed O, we can run similar computations to Figures 9 and 10, and obtain
approximate values for A,B with a least squares regression. Solving Equation
(4.2) gives the optimal value of C for this quaternion order. By performing this
computation across a large selection of arithmetic Fuchsian groups, we can deduce
a heuristic for the optimal value of C. This is presented in Heuristic 4.12, with
the rest of this section dedicated to providing experimental evidence justifying the
heuristic. It is important that the heuristic is run across a large range of C’s,
algebra discriminants, and field discriminants, as otherwise the final constants may
be significantly off.

Heuristic 4.12. Let O have reduced discriminant D. The optimal choice of C is
given by

CO := Cn disc(F)1/n NmF/Q(D)1/2n,

for constants Cn. Approximate values for Cn for n ≤ 8 to 6 decimal places are:

n Cn n Cn

1 2.830484 5 1.019539
2 0.933176 6 1.018481
3 0.909751 7 0.994256
4 0.973456 8 0.964400

Remark 4.13. The non-constant part of CO differs to the heuristic in [Pag15].
However, this was a typo! The Magma implementation of the algorithm uses the
correct heuristic.

Remark 4.14. We can also justify the heuristic theoretically (thanks to Aurel
Page for the argument). Fix n, and consider Heuristic 4.10. The term BC2n

should be proportional to the number of elements enumerated, and thus B is in-
versely proportional to the covolume of O. Thus, 1/B should be proportional to

16 JAMES RICKARDS

0 104 2 · 104 3 · 104
0

20

40

60

NmF/Q(D)

C

Figure 11. C for 400
quaternion algebras over
Q(y), with y2 − 13 = 0.

0 2 · 104 4 · 104
0

10

20

30

NmF/Q(D)

C

Figure 12. C for 400
quaternion algebras over
Q(y), with y4−5y2+5 =
0.

disc(F)2 NmF/Q(D). Assume A is constant and A/B is large, so that C is also
large (say C ≫ n). Then the secondary term of Equation (4.2) can be ignored, and
Heuristic 4.12 follows.

The value of Cn is dependent on implementation. If there is a future improve-
ment in part of the implementation, then the new optimal algorithm would neces-
sarily have larger optimal values for Cn. However, unless it was a very significant
improvement, the current optimal values of Cn would be still perform well.

The behaviour of Cn is hard to explain. When n ≥ 2, we have to deal with
number theory arithmetic, which is more costly than integer arithmetic. This may
explain the big drop from C1 to C2, but does not explain the further oscillation.
For n ≥ 9, we suggest taking Cn = 1 as a baseline, since the data does hover around
this value. When running a large computation with n ≥ 9, it would also be worth
running these experiments again for this n, or at least experimenting with the value
of Cn a bit to get a more accurate value, and thus better performance.

4.3. Computational evidence. To demonstrate Heuristic 4.12, start by fixing F
and varying D. By computing A and B (with a regression) as in Heuristic 4.10 and
solving for C with Equation (4.2), we can determine the optimal C for each case.
In Figure 11, we carry this out for 400 quaternion algebras over a quadratic field.

The curve of best fit, C = 3.43356822
(︁
NmF/Q(D)

)︁1/4
, is given in red. In Figure

12, this is done for 400 quaternion algebras in a quartic setting. The curve of best

fit is C = 6.54768871
(︁
NmF/Q(D)

)︁1/8
.

Next, fix n, and vary F . For each value of n we take 400 quaternion algebras
over totally real number fields of degree n, and compute C ′ = C/NmF/Q(D)1/2n.

The curves of best fit are all of the form C ′ = Cn disc(F)1/n. The data for n = 2
and n = 3 is displayed in Figures 13 and 14 respectively.

These computations also give the values of Cn, as found in Heuristic 4.12. Since
they are experimentally found, running the computations again will produce slightly
different values; the values given are only intended as approximations.

IMPROVED COMPUTATION OF FUNDAMENTAL DOMAINS 17

0 100 200 300 400 500 600 700
0

5

10

15

20

25

disc(F)

C
/
N
m

F
/
Q
(D

)1
/
4

Figure 13. C ′ for n =
2.

0 1,000 2,000 3,000 4,000 5,000 6,000
0

5

10

15

disc(F)

C
/
N
m

F
/
Q
(D

)1
/
6

Figure 14. C ′ for n =
3.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

C

t
(s
)

Figure 15. Time to ob-
tain 1000 elements for
(2, 5, 101).

0 5 10 15 20
0

5

10

15

C

t
(s
)

Figure 16. Time to ob-
tain 1000 elements for
(3, 316, 46).

To demonstrate that this theory actually works, we can fix an algebra, compute
the time taken to find N non-trivial elements over a range of C’s, and verify that
Heuristic 4.12 is close to the observed minimum. In Figures 15 and 16, we take
curves with data (2, 5, 101) and (3, 316, 46), and compute the time to generate 1000
non-trivial elements of each for 500 values of C (outputting at most one value for
each z, due to Remark 4.8). A dotted red line is drawn at the value of C predicted
by Heuristic 4.12 to be minimal. In each example this value is close to the absolute
minimum.

4.4. Improved Fincke-Pohst. Let Q(x1, x2, . . . , xN) be a positive definite qua-
dratic form. The general idea of the Fincke-Pohst enumeration of Q(x) ≤ C is to
make a change of basis to variables x′

1, x
′
2, . . . , x

′
N , write Q as a sum of squares

in this basis, and incrementally bound x′
N , x′

N−1, . . . , x
′
1. The change of basis was

chosen in a way to minimize the number of “dead ends” in the incremental enumer-
ation, and is the key part of the algorithm (for details, see Section 2 of [FP85]). In
our situation, we also have an (indefinite) quadratic form Q′ for which we require
Q′(x1, x2, . . . , xN) = 1. If we compute the change of basis for Q′ to the variables

18 JAMES RICKARDS

0 2 4 6 8 10 12 14
0

1

2

3

C

t
(s
)

Figure 17. Time to ob-
tain 1000 elements for
n = 2, FP and IFP.

0 5 10 15 20
0

10

20

30

40

C

t
(s
)

Figure 18. Time to ob-
tain 1000 elements for
n = 3, FP and IFP.

x′
i, then when we get to x′

1, we see that it must satisfy a quadratic equation! In
particular, there are at most two possibilities for it. By solving this quadratic over
the integers, we can determine if we have a solution or not. Note that we may
find solutions with Q(x) > C, but this does not concern us since they still give an
element of O1.

Label the classical Fincke-Pohst by “FP”, and this new approach by “IFP”. If
we have many choices for x′

1, then IFP should be a faster algorithm, since we solve
one quadratic equation over Z as opposed to checking the norms of a large set of
elements. On the other hand, this requires a lot more (number field) arithmetic,
some of which will be “useless” when we reach dead ends. To determine the efficacy,
we compute the time required to find 1000 non-trivial elements in a given quaternion
algebra with each enumeration method (as before, stopping each trial after finding
an element). We use a range of C’s, as the optimal value of C for this approach
may not be CO (in particular, Heuristic 4.10 is no longer valid). Considering the
already computed examples in Figures 15 and 16, we re-compute the time taken
with IFP. The output (with IFP shown in green with triangle markers) is Figures
17 and 18.

In particular, IFP is slower for both examples. This fact continues to hold for all
other examples attempted with n ≥ 2. On the other hand, if n = 1 (i.e. F = Q),
then IFP appears to be faster. For example, see Figures 19 and 20. The value of
CO is no longer optimal for IFP, but it is still quite reasonable and better than
before.

Observation 4.15. For the enumeration, we should use IFP when n = 1, and FP
when n > 1.

The difference in behaviour between n = 1 and n > 1 likely comes from the
limiting of trials to one element. IFP thrives on cutting down large ranges for x′

1,
and when n > 1, we don’t get these large ranges. If we instead find all norm one
elements in a trial, then IFP will become more efficient than FP for large enough
C. While this is irrelevant with regards to the current enumeration, it is useful
for Voight’s enumeration of elements in [Voi09], which is to solve Q0,0(g) ≤ C for
increasingly large C.

IMPROVED COMPUTATION OF FUNDAMENTAL DOMAINS 19

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

C

t
(s
)

Figure 19. Time to ob-
tain 1000 elements for
curve (1, 1, 119), FP and
IFP.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

C

t
(s
)

Figure 20. Time to ob-
tain 1000 elements for
curve (1, 1, 514), FP and
IFP.

4.5. Balancing enumeration and geometry. At this point, algorithms to effi-
ciently generate elements of O1 and compute normalized bases have been described.
The final question is: how do we strike a balance between these two operations? If
we compute the normalized basis too often, then we are wasting a lot of time with
useless calls. On the other hand, if we call it less often, then we may enumerate
too many elements before finishing.

One other benefit of normalized basis calls was noted in both [Voi09] and [Pag15].
If we have an infinite side of a partial fundamental domain, then an element g ∈ O1

for which I(g) closes off (part) of this side can be picked up with Q0,z for some z
near the infinite side. In particular, by searching there, we can increase the chance
of finding useful elements.

On the geometric side, computing the normalized basis with Algorithm 2.9
should take O(n log(n)) steps, where n is the number of elements. To estimate
the number of sides of the final fundamental domain, we do this computation for
1000 domains with hyperbolic area at most 1000 (distributed among deg(F) ≤ 4).
As seen in Figure 21, the number of sides is typically proportional to the area
(the analogous statement was noted for arithmetic Kleinian groups at the end of
[Pag15]). In fact, the line of best fit is

Number of sides ≈ 0.94747172µ(ΓO),

which has an R2 value of 0.99273664. Assuming we don’t compute the normalized
basis too often, this final computation should dominate. Therefore we expect the
geometric part of the algorithm to grow proportionally to µ(ΓO) log(µ(ΓO)).

For the enumeration, as noted in [Pag15], a number of elements proportional to
µ(ΓO) should generate ΓO (see Theorem 1.5 of [BGLS10]). Due to the probabilistic
nature of the method, there is not a precise constant of proportionality for which
we can guarantee success. Instead, we will get a rough idea of the proportion by
computing a large number of examples. Using the same input algebras as Figure 21,
we find the smallest N such that the first N random elements we computed were
sufficient to generate the fundamental domain. This data is displayed in Figure

20 JAMES RICKARDS

0 200 400 600 800 1,000
0

200

400

600

800

1,000

µ(ΓO)

#
o
f

S
id

es

Figure 21. Number of
sides of the fundamental
domain.

0 200 400 600 800 1,000
0

100

200

300

400

500

µ(ΓO)

#
of

ge
n
er

a
ti

n
g

el
em

en
ts

Figure 22. Number
of random elements
required to generate the
fundamental domain.

22, and does appear to be approximately linear, as expected. Based on this data,
around 1

4µ(ΓO) elements is a good target to generate the fundamental domain.
Considering Equation (4.1), an element can be generated in expected time

O(µ(ΓO)). Furthermore, combining the heuristics gives a computable constant
w such that wµ(ΓO)

2 random points should be close to generating the fundamental
domain.

With these heuristics in hand, we suggest choosing a constant c < 1, and picking
cwµ(ΓO)

2 points in each iteration. Experiments show that c = 1
2 when n = 1, and

c = 1
12 when n > 1 are reasonable choices.

Remark 4.16. As seen in the previous section, the “cost” of choosing a poor value
of Cn was extremely high. On the other hand, the cost of a poor choice for the
number of random centres in each iteration is much smaller. Any reasonable choice
will perform decently well, and we thus do not delve as deep into the choice of c in
each situation as we did for the choice of C.

Remark 4.17. Another solution to striking a balance between enumeration and
geometry would be to use parallel computing. One processor would be enumer-
ating group elements, with the other processor computing normalized bases (and
supplying information on missing infinite sides). Furthermore, by having multiple
processors enumerating elements, one can speed up the enumeration by a constant
factor.

5. Sample timings

While the currently implemented algorithms correspond to the content of this
paper, that may change in the future. If better approaches, constant choices, pro-
gramming tricks, etc. are found, then the algorithm timings will change with it.
The hardware of a computer will also affect things, and this may not be a constant
factor either. In any case, these timings are a representative of the current state of
affairs, and give a general guideline. All computations in this section were run on
the same McGill University server as Table 1. This server is not particularly fast,
so you will likely see similar or better times on your own machine.

IMPROVED COMPUTATION OF FUNDAMENTAL DOMAINS 21

0 5000 10000 15000 20000
0

20

40

60

80

100

µ(ΓO)

t
(s

)

Figure 23. Time to
compute the fundamen-
tal domain, n = 1.

0 1,000 2,000 3,000 4,000
0

20

40

60

80

100

µ(ΓO)

t
(s

)

Figure 24. Time to
compute the fundamen-
tal domain, n = 2.

0 500 1,000 1,500 2,000 2,500
0

50

100

µ(ΓO)

t
(s

)

Figure 25. Time to
compute the fundamen-
tal domain, n = 3.

0 200 400 600 800 1,000 1,200 1,400
0

50

100

150

200

µ(ΓO)

t
(s

)

Figure 26. Time to
compute the fundamen-
tal domain, n = 4.

Considering the heuristics given in Section 4.5, the expected running time is

c1µ log(µ) + c2µ
2,

where µ = µ(ΓO), and c1, c2 depend on n. While the enumeration time will even-
tually be the most costly part of the algorithm, the normalized basis will dominate
for smaller areas.

For n = 1, we computed all fundamental domains with area at most 20000 that
correspond to maximal orders (there are 9550 such examples). In this range, the
normalized basis dominates, and the curve with (c1, c2) = (0.88824714, 0) is shown
in red in Figure 23.

For n = 2, we computed 2975 examples, all with area at most 4000, over three
fields. The curve with (c1, c2) = (0.00066605054, 0.0000014754184) is shown in red
in Figure 24. The enumeration becomes the dominant part of the computation time
at µ(ΓO) ≈ 3700.

22 JAMES RICKARDS

For n = 3, we computed 1481 examples, all with area at most 2500, over four
fields. The curve with (c1, c2) = (0.0011822431, 0.0000068505131) is shown in red
in Figure 25.

Finally, for n = 4, we computed 912 examples, all with area at most 1500, over
six fields. The curve with (c1, c2) = (0.0018590790, 0.000021764718) is shown in
red in Figure 26.

References

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I.

The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, Computational

algebra and number theory (London, 1993). MR MR1484478
[BGLS10] Mikhail Belolipetsky, Tsachik Gelander, Alexander Lubotzky, and Aner Shalev, Count-

ing arithmetic lattices and surfaces, Ann. of Math. (2) 172 (2010), no. 3, 2197–2221.

MR 2726109
[CL16] Michelle Chu and Han Li, Small generators of cocompact arithmetic Fuchsian groups,

Proc. Amer. Math. Soc. 144 (2016), no. 12, 5121–5127. MR 3556258
[DV13] Lassina Dembélé and John Voight, Explicit methods for Hilbert modular forms, Elliptic

curves, Hilbert modular forms and Galois deformations, Adv. Courses Math. CRM

Barcelona, Birkhäuser/Springer, Basel, 2013, pp. 135–198.
[FP85] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in

a lattice, including a complexity analysis, Math. Comp. 44 (1985), no. 170, 463–471.

MR 777278
[GK19] Konstantin Golubev and Amitay Kamber, Cutoff on hyperbolic surfaces, Geom. Dedi-

cata 203 (2019), 225–255. MR 4027593

[Pag15] Aurel Page, Computing arithmetic Kleinian groups, Math. Comp. 84 (2015), no. 295,
2361–2390.

[PAR22] The PARI Group, Univ. Bordeaux, Pari/gp version 2.14.0, 2022, available from http:

//pari.math.u-bordeaux.fr/.
[Ric21] James Rickards, Counting intersection numbers of closed geodesics on Shimura curves,

https://arxiv.org/abs/2104.01968, 2021.
[Ric22] , Fundamental domains for Shimura curves, https://github.com/

JamesRickards-Canada/Fundamental-Domains-for-Shimura-curves, 2022.

[Ste] Raphael S. Steiner, Small diameters and generators for arithmetic lattices in SL2(R)
and certain Ramanujan graphs, https://arxiv.org/abs/2207.12684, 2022.

[Voi09] John Voight, Computing fundamental domains for Fuchsian groups, J. Théor. Nombres

Bordeaux 21 (2009), no. 2, 469–491.
[Voi21] , Quaternion algebras, Graduate Texts in Mathematics, vol. 288, Springer,

Cham, [2021] ©2021. MR 4279905

University of Colorado Boulder, Boulder, Colorado, USA
Email address: james.rickards@colorado.edu

URL: https://math.colorado.edu/~jari2770/

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
https://arxiv.org/abs/2104.01968
https://github.com/JamesRickards-Canada/Fundamental-Domains-for-Shimura-curves
https://github.com/JamesRickards-Canada/Fundamental-Domains-for-Shimura-curves
https://arxiv.org/abs/2207.12684

	1. Introduction
	2. Geometry
	2.1. Normalized boundary
	2.2. Reduction of points
	2.3. Side pairing
	2.4. Normalized basis

	3. The general algorithm (without enumeration)
	4. Enumeration
	4.1. Choosing random points
	4.2. Choice of C
	4.3. Computational evidence
	4.4. Improved Fincke-Pohst
	4.5. Balancing enumeration and geometry

	5. Sample timings
	References

