Joint Assortment Optimization and Customization under a Mixture of
Multinomial Logit Models: Value of Personalized Assortments

Omar El Housni Huseyin Topaloglu
School of Operations Research and Information Engineering, Cornell Tech, New York, NY 10044
{0€e46,ht88}@cornell.edu
November 23, 2021

Abstract

We consider a joint assortment optimization and customization problem under a mixture of
multinomial logit models. In this problem, a firm faces customers of different types, each
making a choice within an offered assortment according to the multinomial logit model with
different parameters. The problem takes place in two stages. In the first stage, the firm picks
an assortment of products to carry subject to a cardinality constraint. In the second stage,
a customer of a certain type arrives into the system. Observing the type of the customer,
the firm customizes the assortment that it carries by, possibly, dropping products from the
assortment. The goal of the firm is to find an assortment of products to carry and a customized
assortment to offer to each customer type that can arrive in the second stage to maximize the
expected revenue from a customer visit. The problem arises, for example, in online platforms,
where retailers commit to a selection of products before the start of the selling season, but
they can potentially customize the displayed assortment for each customer type. We refer
to this problem as the Customized Assortment Problem (CAP). Letting m be the number
of customer types, we show that the optimal expected revenue of CAP can be Q(m) times
greater than the optimal expected revenue of the corresponding model without customization
and this bound is tight. We establish that CAP is NP-hard to approximate within a factor better
than 1 — 1/e, so we focus on providing an approximation framework for CAP. As our main
technical contribution, we design a novel algorithm, which we refer to as Augmented Greedy,
and building on it, we give a ©(1/logm)-approximation algorithm to CAP. Also, we present
a fully polynomial-time approximation scheme for CAP when the number of customer types is
constant. In our computational experiments, we demonstrate the value of customization by using
a dataset from Expedia and check the practical performance of our approximation algorithm.

1 Introduction

Discrete choice models have been seeing steadily increasing attention to capture the customer choice
in revenue management. Using discrete choice models, we can model the fact that customers choose
and substitute among the products. If a product is not offered, then a portion of the demand for
this product shifts to other products, while the remaining portion is lost. Given that the customer
demand can be shaped by changing the assortment of products offered to the customers, a natural
question for the retailers is to choose an assortment of products to offer to their customers to
maximize their expected revenues. There is significant amount of literature indicating that both
brick-and-mortar stores and online retailers can increase their revenues by carefully choosing the
assortment of products they carry. In contrast to brick-and-mortar stores, online retailers have
access to tremendous amount of customer browsing and purchasing data. As a result, in addition to
picking the assortment of products they carry, online retailers can display a customized assortment

of products to each customer based on what is known about the preferences of the customer.
A personalized assortment can potentially allow enhancing the customer experience, as well as
improving the revenue of the retailer.

In this paper, we study a joint assortment optimization and customization problem under a
mixture of multinomial logit models. In this problem, a firm faces different customer types, each
making a choice with an offered assortment according to the multinomial logit model with different
parameters. The problem takes place in two stages. In the first stage, the firm picks an assortment
of products to carry, subject to a cardinality constraint. In the second stage, a customer of a
certain type arrives into the system. Observing the type of the customer, the firm customizes the
assortment that it carries by, possibly, dropping products from the assortment. The goal of the firm
is to find an assortment of products to carry and a customized assortment to offer to each customer
type to maximize the expected revenue from a customer visit. We refer to this problem as the
Customized Assortment Problem (CAP). This problem is faced by almost all online retailers. For
example, online grocers make an initial decision of what product variety to carry in each product
category, but the grocery choices of different customer segments dramatically differ from each other.
Thus, they can adjust the assortment offered to each customer based on what is known about the
segment of the customer. Often times, online grocers operate warehouses in urban centers and
they are severely limited by the variety of products they can inbound to these warehouses. The
cardinality constraints may capture such limitations. Though not exactly, cardinality constraints
may also serve as proxy to budget or storage limitations.

Despite its ubiquitous nature, to our knowledge, CAP remained fully unexplored until our work.
A closely related problem is the assortment optimization under a mixture of multinomial logit
models without customization (Rusmevichientong et al., 2014; Bront et al., 2009). In this problem,
the firm still faces multiple customer types, each choosing according to a multinomial logit model
with different parameters. The firm picks an assortment of products to carry, possibly subject to a
cardinality constraint, but does not have the opportunity to customize the assortment. Customers
of each type are offered the same assortment carried by the firm. The goal of the firm is to find an
assortment of products to carry to maximize the expected revenue from a customer visit. We refer
to this problem as Mized Multinomial Logit Assortment Problem (MMNL). For MMNL, letting m
be the number of customer types, there is no polynomial time algorithm with an approximation
factor better than O(1/m!'~¢) for any € > 0 (Désir et al., 2014). On one hand, CAP is operationally
more complicated than MMNL with the presence of a second stage to customize the assortment. On
the other hand, if there is no cardinality constraint in the first stage, then the optimal solution
in CAP is for the firm to carry all products, so the decision in the first stage becomes trivial. In
contrast, MMNL is NP-hard even when there is no cardinality constraint. Thus, the computational
complexity of CAP is not clear at the first glance. If CAP is not solvable in polynomial time, then
it is not clear to what accuracy we can approximate the problem.

1.1 Contributions

Our main contributions are in characterizing the complexity of CAP, giving tight bounds on the
value of customization, and developing approximation algorithms CAP.

Model and computational complexity. We show that CAP is NP-hard to approximate within
a factor better than (1 — % —¢) for any € > 0 even in the special case where all the product revenues

are equal and customers of each type arrive with equal probabilities. In view of this hardness result,
we turn out attention to developing approximation algorithms for CAP.

Value of customization. We show that CAP, by customizing the assortment offered to each
customer type, can substantially increase the expected revenue obtained by MMNL, which does
not customize the assortment offered to different customer types. In particular, we give a family of
instances for which the optimal expected revenue of CAP exceeds the optimal expected revenue of
MMNL by a factor of (m), where m is the number of customer types. Furthermore, this bound is
tight in the sense that the expected revenue provided by CAP cannot exceed the expected revenue
provided by MMNL by more than this factor (Theorem 3.1).

Augmented Greedy and approximation algorithms. As our main technical contribution, we
develop an approximation framework for CAP. In particular, we design a novel algorithm that we
refer to as Augmented Greedy. This algorithm is the building block of our algorithmic framework.
Augmented Greedy considers a small number of subsets of products based on the ranking of the
product revenues. For each subset, it executes a standard greedy algorithm that iteratively picks
the product that provides the highest increase in the objective function and adds this product
to the offered assortment. Augmented Greedy returns the assortment with the highest expected
revenue over all considered subsets. Our main structural result lower bounds the expected revenue
of the assortment returned by Augmented Greedy with a constant factor of the optimal expected
revenue from a certain portion of customer types (Theorem 4.2). Since we can compare the expected
revenue from the Augmented Greedy assortment with the optimal expected revenue from only a
portion of customer types, this result does not immediately give an approximation for CAP.

Nevertheless, we show that Augmented Greedy gives Q(1/log m)-approximation to CAP when
all customer types have the same arrival probabilities (Theorem 5.1). Building on this result, we
design an algorithm that gives Q(1/logm)-approximation to CAP for general arrival probabilities
(Theorem 5.2). The latter algorithm is based on applying Augmented Greedy recursively on several
subsets of customer types and combining the solutions using a tractable dynamic program. Thus,
our work demonstrates the stark difference between the complexity of CAP and MMNL. While
MMNL does not admit a polynomial-time algorithm with an approximation factor better than
O(1/m!'=€) for any € > 0, we are able to give an approximation algorithm for CAP with an
approximation factor of 2(1/logm), establishing that the ability to customize the assortment
offered to each customer type also makes the assortment optimization problem dramatically more
tractable. As discussed earlier in this section, at a first glance, it is not clear whether CAP should
be easier or harder to approximate than MMNL and our work closes this gap.

We also extend our approximation algorithm to the case where we have a knapsack constraint
on the subset of products that we pick in the first stage of CAP, rather than a cardinality constraint.
We give Q(1/logm)-approximation to CAP under a knapsack constraint.

Fully polynomial-time approximation scheme. We give a fully polynomial-time approximation
scheme (FPTAS) for CAP when the number of customer types is constant (Theorem 6.1). Our
FPTAS uses a geometric grid to guess the expected revenue from each customer type and solves a
dynamic program to find a first stage assortment that realizes the guessed expected revenues. We
show that CAP is NP-hard even with two customer types, so FPTAS is the best approximation
guarantee we can aim for under a constant number of customer types. We also build on our

approach for the FPTAS to give an integer programming formulation for CAP.

Computational study. We use a dataset from Expedia to demonstrate the value of customization.
Our computational study indicates that customization can be rather important for certain customer
types. In particular, we can achieve significantly higher expected revenues by offering customized
assortments for such customer types, as opposed to offering a single assortment to all customer
types. In addition, we check the practical performance of our approximation algorithms and
integer programming formulation on randomly generated problem instances. Our approximation
algorithms perform remarkably well, obtaining near-optimal solutions for an overwhelming majority
of our problem instances.

1.2 Related literature

There is significant work on assortment optimization under the multinomial logit model, but
none of this work focuses on customization. Gallego et al. (2004) and Talluri and van Ryzin
(2004) study the assortment optimization problem under the multinomial logit model with a single
customer type. They show that the optimal assortment is revenue-ordered in the sense that it
includes a certain number of products with the largest revenues. Rusmevichientong et al. (2010)
study the same problem when there is a constraint on the number of offered products, whereas
Sumida et al. (2020) incorporate constraints that can be characterized by a totally unimodular
constraint structure. Wang (2012) studies joint pricing and assortment optimization under the
multinomial logit model. Jagabathula (2016) examines the performance of exchange heuristics that
incrementally improve the assortment on hand by adding or removing products.

Assortment optimization problem under a mixture of multinomial logit models is also relevant
to our work. In this problem, we have customers of different types, each choosing according to a
multinomial logit model with different parameters. The goal is to find a single assortment that
maximizes the expected revenue from a customer visit. Bront et al. (2009) show that the problem is
NP-hard when the number of customer types is as large as number of products and give an integer
programming formulation. Rusmevichientong et al. (2014) show that the problem is still NP-hard
even with two customer types and study the performance of revenue-ordered assortments. Désir
et al. (2014) give an inapproximability result and develop an FPTAS when the number of customer
types is fixed. Méndez-Diaz et al. (2014) give valid cuts for the integer programming formulation
of the problem, whereas Sen et al. (2018) study a more efficiently solvable conic programming
formulation. Berbeglia and Joret (2020) analyze the performance of revenue-ordered assortments
for general class of random utility maximization models, sharpening some of the earlier performance
bounds. Feldman and Topaloglu (2015) give a tractable upper bound on the optimal expected
revenue, which is useful as a benchmark when checking the optimality gap of heuristics.

Our joint assortment optimization and customization model can be interpreted as one way
of enhancing the operational flexibility of the multinomial logit model. Feldman and Topaloglu
(2018) seek to enhance the operational flexibility of the multinomial logit model by incorporating
consideration sets, where each customer arrives into the system with a specific consideration set,
ignores all offered products that are not in her consideration set, and chooses within the remaining
products according to the multinomial logit model. The authors give an FPTAS when the possible
consideration sets have a nested structure. Aouad et al. (2019) give a PTAS when the consideration

set of a customer includes each product with a fixed probability. Wang and Sahin (2018) work with
a variant of the multinomial logit model in which the customers tradeoff product search effort with
the utility to form their consideration sets. Aouad et al. (2018) study the assortment optimization
problem under dynamic substitution, where the assortment viewed by the customer corresponds to
the set of products with remaining inventories and the goal is to pick the initial inventory levels of
the products. Gao et al. (2020) study the assortment optimization problem under the multinomial
logit model when the offered assortment is gradually revealed, as in online search results.

Several recent papers studied customization, focusing on either developing sophisticated choice
models or solving pricing problems. Jagabathula and Vulcano (2018) develop a choice model to
predict personal preferences. In their model, each customer has a partial order between the products
that is encoded by a directed acyclic graph. In each store visit, the customer samples a preference
ranking over the full set of products, while staying consistent with her partial order. She drops
some of the products in the preference ranking that are not in her consideration set. Among the
remaining products, she purchases the highest ranking product that is also available in the offered
assortment. Jagabathula et al. (2020) use a similar model for running personalized promotions.
Aouad et al. (2020) develop a choice model with multiple customer segments by segmenting the
customers with the help of trees, but they do not consider personalized assortment optimization
or pricing problems. Berbeglia et al. (2021) study assortment optimization problems in which the
firm can make certain products unattractive to customers, which is modeled by allowing the firm
to change the utilities of the products. In our paper, we give a Q(1/logm)-approximation to CAP.
After our work, Udwani (2021) gave a constant-factor approximation for CAP. His work studies
optimization problems where one maximizes set functions that satisfy only a limited version of
submodularity defined over a fixed permutation of the ground set. The author shows that the
objective function of CAP satisfies this limited version of submodularity.

The rest of the paper is organized as follows. In Section 2, we formulate CAP and characterize
its computational complexity. In Section 3, we give tight bounds on the benefit of customization.
In Section 4, we describe the Augmented Greedy algorithm. In Section 5, we develop and analyze
our (1/logm)-approximation algorithm for CAP. In Section 6, we give our FPTAS. Building the
approach that we use to develop of FPTAS, we also provide an integer programming formulation for
CAP. In Section 7, we extend our approximation algorithm to the case where we have a knapsack
constraint on the subset of products that we pick in the first stage of CAP, rather than a cardinality
constraint. In Section 8, we give computational experiments to check the value of customization
on a dataset from Expedia. In Section 9, we check the practical performance of our approximation
algorithms, as well as our integer programming formulation.

2 Problem formulation and complexity

We give a formulation of our model and characterize its complexity. We consider a set of products
N ={1,...,n}. For each product i € N, let r; denote its revenue. Without loss of generality, we
assume that the products are indexed such that

rL>reg> .. >, > 0.

We use M = {1,...,m} to denote the set of customer types. The probability that a customer
of type j arrives into the system is 6;, where Zje m 0 = 1. A customer of a certain type makes
a choice among the products offered to her according to the multinomial logit (MNL) model. In
the multinomial logit model, let v;; denote the preference weight that customer type j attaches to
product i. For all customer types, we normalize the preference weights of the no-purchase option to
one. Under the MNL model, given that we offer the set of products S; to a customer of type j, she
purchases product i € S; with probability v;;/(1+ ¢ s, vej). In this case, given that we offer the
set of products S; to a customer of type j, the expected revenue that we obtain from the customer
is (Qies, rivig)/ (L4 Xies, vij)-

In the first stage of our problem, we select a subset of at most K products. We use S C N
to capture this subset. In the second stage, we observe the type of the arriving customer and
offer her a personalized assortment, which is a subset of the products in S carried initially. We
use S; to capture the personalized set of products offered to customer type j, where S; C S. For
each customer type j € M and an initial subset of products S C N, let f;(S) denote the optimal
expected revenue from customer type j when the universe of products is 5, i.e.,

S g Ti i
£i(S) = max ——<% Y
5,68 1+ 3 e, Vij

Our goal is to find a set of at most K products to carry in the first stage to maximize the expected
revenue over all customer types. We refer to this problem as the Customized Assortment Problem
(CAP). In particular, we want to solve the problem

eap = e JEZM 0; f;(S). (CAP)

For fixed S, computing f;(S) corresponds to finding an assortment S; C S that maximizes the
expected revenue from a single customer of type j. This problem is well-studied (Gallego et al.,
2004; Talluri and van Ryzin, 2004). Thus, for fixed S, we can efficiently compute f;(.5).

In the next theorem, we provide an inapproximability result for CAP. In particular, we show
that it is NP-hard to approximate CAP within a factor better than (1 — % —¢€) for any € > 0
even in the special case where the product revenues are all equal and customers of all types arrive
with equal probabilities. We use a reduction from the maximum coverage problem to show this
inapproximability result. The proof of the theorem is deferred to Appendix A.

Theorem 2.1. Unless P = NP, there is no polynomial-time algorithm that approximates CAP
within a factor better than (1 — % —€) for any € > 0 even when we have r; = 1 for all i € N and
Hj:%forallje/\/l.

While the proof of the inapproximability result in Theorem 2.1 necessitates a large number
of customer types, we also show a weaker hardness result for constant number of customer
types. In particular, we show in Appendix A that CAP is NP-hard even with two customer
types. Motivated by these inapproximability and hardness results, we will focus on developing
approximation algorithms for CAP. Before presenting our algorithmic framework, we discuss in the
next section the value of customization capability provided by our model.

3 Value of customization

We quantify the value of customization by comparing CAP to a model where the decision-maker
offers the selected products in the first stage to all customer types without customization. In
particular, to contrast CAP, which customizes the products selected in the first stage to each
arriving customer, with a model that does not use customization, we write CAP as

Z ma 0; - ma Ziesj i
o= _max S 6y max <
SCN, ISI<K - £ 7 §;,Cs 1+Zz‘esj ij

The problem without customization corresponds to the assortment optimization problem under
a mixture of MNL models with a cardinality constraint. We refer to this problem as Mized
Multinomial Logit (MMNL) problem, which is given by

> ics Ti Vij

: MMNL
143 cs Vi ()

ZMMNL = max Z 0; -
SCN, IS|<k &=
JEM

Note that CAP is a relaxation of MMNL, so the optimal expected revenue of CAP is at least
as large as the optimal expected revenue of MMNL. In the next theorem, we show that the
optimal expected revenue of CAP is at most m times the optimal expected revenue of MMNL.
More importantly, we show that this bound is tight by presenting a family of instances where the
optimal expected revenue of CAP can be 2(m) times larger than the optimal expected revenue of
MMNL. This result shows the power of customization, as the expected revenue of our model can
be significantly larger when compared to a model without customization.

Theorem 3.1. Let zpmmnL be the the optimal objective value of MMNL and zcap be the optimal
objective value of CAP. Then, we have zpmmnL < zcap < m - zmMmnL- Moreover, there are instances
such that zcap = Q(m) - zMMNL -

Proof. The inequality zmmne < zcap is immediate because CAP is a relaxation of MMNL. To
show the other inequality, let S* be the optimal solution of CAP. For each j € M, let Sj’f c 5*
be the optimal assortment to offer to customer type j in CAP. Let ¢ € M be the customer type
with the largest value of 6, f;(S*) for j € M, i.e., 0;f;(S*) < 8,f,(S*) for all j € M. Therefore,
zcap < m - 0y fy(S*). Since Sy C S, we have |S;| < K, so S is feasible for MMNL, yielding

2 ies: Ti Vig 2 icss Ti Vij
Oqfa(S™) =04 1T o : <> b [S : < ZMMNL-

+ Dies: Via — joxy +2ies; Vij
Therefore, zcap < m - zmmnL. 1o show the tightness of the bound, we give the following problem
instance. We consider a problem instance where the number of products n is equal to the number
of customer types m, which is, in turn, equal to the cardinality K, i.e., n = m = K. We use m to

denote all three parameters. Let us consider the instance given by
«a . i .
9]-:5 Vjie{l,...,m}, ri=a" Vie{l,...,m},

bl if g < g
Vij = - Vi,jge{l,...,m},
* { 0 otherwise A }

where « is a normalizing constant, i.e., a = (3_7%; 1/a’)~'. The scalars a and b will be chosen

such that a > b > 1. We will shortly specify the exact values of a and b.

Since the cardinality of products K allowed in an assortment is equal to the number of
products n, the optimal solution of CAP is S* = AN. Moreover, the optimal assortment to offer to
a customer type j in CAP is the solution of the assortment optimization problem under her MNL
model with universe of products N'. Thus, we have

m bm—j+1

m
TV m
z > 0. —121 — — > —
CAP_Z Jl—i—’l)jj ;14—6"‘_]"'1_ 2’

where the first inequality holds because the optimal expected revenue of CAP is greater than the
expected revenue of the solution where, for each j € {1,...,m}, we only offer product j to customer
type j. The second inequality holds because b > 1.

Now, consider a set of products S and fix j € {1,...,m}. Let Rev;(S) denote the expected
revenue of assortment S under the MNL model of customer type j, i.e.,

>ics TiVij B Yics at-1(i < j) - bt

Rev;(S) = = —
i(5) L+ egviy 14+ 2 eg (i < j) - omHt
We have
cqal 1(i<j—1).pmitt 1(7 . pm—i+l
;- Rev;(S) — p, . 2xies @1 =T — 1) - b7 a- UEeS)- ™ gy
L+ e 1(i < j) - bm—itt L+ eg1(i < j) - bm—itt
We bound the first term on the right side of (3.1) as
) i_1'<'_1_bmf’i+1))
9] . Z’LGSG’ (Z — J .) T S 9] Zaz . 1(Z S j o 1) . bm*l+1
T+ s 16 < J) - 2
j—1
<O b a1 <j-1)<60;- 0" al <0027 =20 /a,
i€S i=1

where the last inequality holds because Ef;ll al = (i:f < 2a771 for a > 2. Letting £g be the

smallest index in S, we bound the second term on the right side of (3.1) as
1(j € 9) - pym—i+l 1(j €9) - pm—itl
- . Q-
1+ Zz’es 1(7; <]) L pm—itl — pm—Ls+1

—a-1(j € 8)-bs.

Moreover, we have

- 1
diGes) v <1+ Y bfsﬂ<1+T

Jj=1 ls<j<m

Therefore, we obtain

- 2mb™ —1
29j~Revj(S)§a~nﬂ;+a-<l+mb>.
j=1

Choosing b = m — 1 and a = 2m(m — 1)™, we get > 7" 6; - Rev;(S) < 3a for any S C N. Thus,
we have zymne < 3. Noting that zcap > a - %, we get zcap = Q(m) - zmmnL- O

4 Augmented Greedy algorithm

In view of the computational complexity of CAP discussed in Section 2, we focus on providing
approximation algorithms for CAP. Our algorithmic framework is based on a novel algorithm that
we design and refer to as Augmented Greedy. Before introducing our algorithm, we define the
following notation. For any subset of customer types C C M, let

=> 0;f;.

jec

Thus, f€(S) corresponds to the optimal expected revenue from customer types C given that we
initially pick the subset of products S. Let us also define

f=mM

In this case, CAP corresponds to the problem of maximizing the set function f subject to a
cardinality constraint K, i.e.,

P = max S).
CAP scAr R K f(S)

The function f is monotone increasing, i.e., f(A) < f(B) for any A C B C N, because we
obtain larger expected revenue when we select more products in the first stage of CAP. However,
the function f is not submodular!. Nemhauser et al. (1978) show that a greedy algorithm, which
iteratively picks the element providing the largest increase in the objective function and adding it
to the solution, gives (1 —1/e)-approximation to the problem of maximizing monotone submodular
functions subject to a cardinality constraint. Our function f is not submodular in general, so this
classical result does not apply to our problem. In Appendix B, we give a counterexample with
only one customer type and three products to show that the function f is not submodular. This
observation necessitates developing a more general algorithm for approximating CAP.

!We say that a set function g is submodular on a finite set € if for every A, B C Q with A C B and every i € Q\ B
we have that g(AU {i}) — g(A) > g(BU{i}) — g(B) .

4.1 Description of Augmented Greedy algorithm

We present our algorithm, referred to as Augmented Greedy, which will constitute the building
block of our algorithmic framework for approximating CAP. The algorithm takes as input a subset
of customer types C C M and an integer k. The goal is to find an assortment A of size at most k
that maximizes f¢(A). In general, this problem cannot be approximated in polynomial time
within a factor better than (1 — 1/e) due to Theorem 2.1. Augmented Greedy returns a candidate
assortment for this problem that we refer to as AugGreedy(C, k). This candidate assortment verifies
a key structural property that we will present in the next subsection.

We use the classical Greedy algorithm as a subroutine in our design of Augmented Greedy.
Greedy takes as input a set function g defined over a set of products P along with a scalar k,
and tries to find an assortment of size at most k& that maximizes the set function g over the set
of products P. In particular, Greedy picks iteratively a product that provides the largest increase
in the objective value until reaching the cardinality k. By the discussion at the beginning of this
section, if g were monotone submodular, then Greedy would return a (1 — 1/e)-approximation to
the problem maxgcp |s1< 9(5). Below, we state the details of Greedy for completeness.

Greedy

: Input: set function g, products P, cardinality k

Ao

: while |A| <k and P\ A # @ do

Add to A a product i € P\ A that maximizes g(A U 1)
: end while

: return A

I S SO R

With the details of Greedy in place, we can describe Augmented Greedy. Recall that the
products in A are indexed such that r1 > ro > ... > r,. We consider the products in descending
order of revenues. For each i € N, let V; be the subset of products with revenues at least as
large as 74, i.e., V; = {1,2,...,i}. For each i € N, we use Greedy to maximize the set function
S = > jec by min(f;(S),r;) over the set of products V;, subject to a cardinality constraint k. We
let A; be the assortment returned by Greedy. Augmented Greedy returns the assortment that
maximizes fC¢ over all n candidates A; for i € . Here are the details of Augmented Greedy.

Augmented Greedy

1: Input: customer types C C M, cardinality k

2: for 1=1,2,...,ndo

3: Let V; = {1,2,...,i}

4 Use Greedy to get an approximate solution to

max Zﬁj min(f;(S),)
jec

SCVi,|S|I<k

Let A; be the assortment returned by Greedy
: end for
. return AugGreedy(C, k) = argmax;cn {fC(A;)}

(=2

10

4.2 Lower bound on the performance of Augmented Greedy algorithm

In this subsection, we present our key structural result that gives a guarantee on the expected
revenue of the assortment returned by Augmented Greedy. Consider a subset of customer types
C C M and an integer k. Let AugGreedy(C, k) be the assortment returned by Augmented Greedy.
We will show that this assortment provides a constant fraction of the optimal expected revenue from
a certain subset of customer types in C. To formally present our structural result, let us introduce
some definitions. Let S* be the optimal solution of CAP, and for each j € M, let S;f C S* be the
optimal assortment to offer to customer type j in CAP.

Definition 4.1. Consider a subset of products P C N. We say that customer type j is complete
with respect to P if and only if PN ST =P NS*

For a subset of customer types C € M and a subset of products P C N, we let Cp denote the
set of all customer types in C that are complete with respect to P, i.e.,

Cp={jeC :PNS; =PnNS*}

In the next theorem, we present our main result in this section. We show that the subset of
products A = AugGreedy(C, k) returned by Augmented Greedy gives an expected revenue fC(A)
that is at least a constant fraction of f¢(P N S*) for any subset of products P C A such that
|P N S*| < k. Note that fC7(P N S*) is the expected revenue that we obtain from the complete
customer types Cp with the set of products P N S*.

Theorem 4.2. For any subset of customer types C C M and any subset of products P C N, let
Cp be the set of complete customer types with respect to P. Let k € N be such that [P N S*| < k
and let A = AugGreedy(C, k). Then, we have

fa) > (1 - i) P (P S,

To prove Theorem 4.2, we will use a key lemma, where we show that, for any i« € A and
j € C, the set function S — min(f;(S),r;) is submodular on V;. Recall that we say that a
set function g is submodular on Q if for every A,B C Q with A C B and every i € Q\ B
we have that g(A U {i}) — g(A) > ¢g(B U {i}) — g(B). By our counterexample in Appendix B,
the set function S — f;(S) is not necessarily submodular on V;. In contrast, the set function
S — min(f;(S),r;) turns out to be submodular on V;. Throughout the paper, we will often use
the fact that f; is monotone increasing and subadditive, i.e., f;(4) < f;(B) for any A C B C N
and fj(AUB) < f;j(A) + f;(B) for any A,B C N. These two properties are straightforward to
show. For completeness, we provide their proofs in Appendix C.

Lemma 4.3. For each j € C and i € N, the set function S — min(f;(S),r;) is submodular on V;.

We give the proof of Lemma 4.3 in Appendix D. Building on this lemma, we present the proof
of Theorem 4.2.

Proof of Theorem 4.2. Let p be the product with the smallest revenue in P N S*. Execute
Augmented Greedy with inputs C and k. Consider the p-th iteration of Augmented Greedy, i.e., the

11

iteration of the for loop corresponding to product p. In this iteration, we have V, = {1,...,p}. Let
A, €V, be the assortment of products returned at this p-th iteration. Let us define the function
h such that, for all S C V,, we have
h(S) = 6;min(f;(S),rp).
jec

Multiplying submodular functions by positive constants and adding them up yields a
submodular function. Thus, by Lemma 4.3, h is submodular on V,. Moreover, since f; is
monotone increasing, h is also monotone increasing. In this case, by Nemhauser et al. (1978),
the greedy algorithm provides a (1 — 1/e)-approximate solution to the problem of maximizing h
subject to a cardinality constraint k. Recall that A, is the output of Greedy to the problem
of maximizing h subject to a cardinally k. Furthermore, noting that [P N S*| < k, PN S* is a
feasible solution to the problem of maximizing h subject to a cardinality k, in which case, we obtain
h(Ap) > (1 — 1) (P N S*). Therefore, we have

FEA) 2 £(A) = S 0,55(80) = 3 05 min(f5(A,),) = h(A,) > (1 - 1) WP,

(&
jec jec

For a complete customer type j € C7, we know that PNS* = PﬁSJ’-‘, which implies that p € 5’;. By
a standard result for assortment optimization under the MNL model, a product is in the revenue-
maximizing assortment if and only if the revenue of the product is greater than or equal to the
optimal expected revenue of the assortment optimization problem. For completeness, we prove this
property in Appendix E. Thus, by this property, for all j € C¥, we have

ZiES;-‘ T'iVij

> — £(G*) > f. *
(RS i

where the equality follows by the definition of S7. Therefore, we get

B(PNS™) =Y 0;min(f;(PNS*), 1) > > 0;min(f;(PNS*), 1) = Y 0;f;(PNS*) = £ (PNSY),

jec jecr jecr
which concludes the proof. O

In Augmented Greedy, rather than trying to find a maximizer of the function) jec [;(S) over
the ground set V; subject to a cardinality constraint of k, we try to find a maximizer of the
function »_;cc 6; min(f;(S),r;). Note that the advantage of working with the latter problem is
that the function S — 37, - 0; min(f;(S),r;) is submodular on V;. However, due the fact that
the latter problem tries to find a maximizer of 3, - 0; min(f;(S5),r;), rather than > ... 0;f;(5),
Augmented Greedy recovers 1—1/e fraction of the optimal expected revenue only from the complete
customer types, as indicated in Theorem 4.2. As a result, Theorem 4.2 does not immediately yield
an approximation guarantee for CAP, but this theorem will form an important building block when
we design an approximation algorithm for CAP.

12

5 Approximation algorithm

In this section, we give approximation algorithms for CAP. We start by considering the case where
all customer types arrive with equal probability, and show that the output of Augmented Greedy
is a ©(1/m)-approximate solution to CAP. Following this result, we consider the more general case
where different customer types have different arrival probabilities. We build on our result with
equal arrival probabilities to give a (1/log m)-approximation algorithm to CAP.

5.1 Homogenous arrival probabilities

We consider the case where the arrival probabilities {6; : j € M} are equal, ie., 0; = % for
all j € M. We show that if we execute Augmented Greedy with the input M for the customer
types and K for the cardinality constraint, then we immediately get a €2(1/logm)-approximation
to CAP, despite the fact that Augmented Greedy with the input M for the set of customer types
focuses on the objective function .\, 6; min(f;(S),r;) for each i € N.

Theorem 5.1. Suppose that 0; = % for all j € M. Let zcap be the optimal objective value of CAP
and A = AugGreedy(M, K). Then, we have

f(A) =Q(1/logm) - zcap-

Proof. Let S* be the optimal solution of CAP. For each j € M, let 57 C 5" be the optimal
assortment to offer to customer type j in CAP. We use log = to denote the logarithm of z in base 2.

We partition the customer types as follows. For each £ =1,..., [logm] + 1, we set
m - ZCAP * M - ZCAP

To capture the remaining customer types, we set

% m - ZCAP
Gu = {g e M| 18" < g}
Because zcap = = > jem [i(S™), we have f;(S*) < m - zcap, which implies that the partitions
{Gy:£=1,...,[logm] + 1} along with G collectively include all customer types. Noting the
objective function of CAP, we have

[logm]+1
eap = f(S) = > D Si(S) Y fi(S),
/=1 JEGy JEGT

Focusing on the customer types in G and using the fact that |G| < m, we get

1 . 1 m - ZCAP 1 m - ZCAP ZCAP

D D /1 (i El S s < ,

m Jil57) = m 2flogm]+1 = Gl 2m ~ 2
JjEGY JEGL

13

Because the total expected revenue from all customer types is zcap, we get

[log m]+1

1 . ZCAP
D DD D /GO o

/=1 jEG@

so there exists a group of customers ¢* € {1,2,..., [logm] + 1} such that

% Z f](S*) = Q(l/ logm) - ZCAP- (5'1)

JEG p*

For notational brevity, let § = m;ﬁ“’ so that 6 < f;(S*) <20 for all j € Gy. Let p be the product

with the smallest revenue, but no smaller than 9, i.e.,
=argmin {r; :7r; >0d}.
p g Y {ri i >0}

When executing Augmented Greedy with inputs M and K, consider the p-th iteration of this
algorithm, i.e., the iteration of the for loop corresponding to product p. In this iteration, we have
Vo = {1,...,p}. Let A, C V, the solution returned at this p-th iteration. The solution A, is
obtained by using Greedy on the function S — %Zg’e Amin(f;(S),rp) over the ground set V,
with cardinality constraint K. Because this function is submodular over V), by Lemma 4.3, A,
is a (1 —1/e)-approximate solution to the problem maxgcy, |sj<x 1 > jemmin(f;(S),rp). On the
other hand, since |S*| < K, we have |V, NS*| < K, so V,N.S* is only a feasible solution to the last
problem. In this case, we obtain

FO) 2 (8 = oo 3 H(8) > 0 3 min(fa,)r) > (1= 1) o 3 win(f 008"

(&
JEM JEM JEM

As discussed in the proof of Theorem 4.2, considering the assortment optimization problem under
the MNL model, in Appendix E, we show that a product is in the revenue-maximizing assortment
if and only if the revenue of the product is greater than or equal to the optimal expected revenue
of the assortment optimization problem. Thus, we have S} = {i € 8* 11 > f;(S*)}. Note that
fj(S*) > ¢ for each j € G-, so S; C{ieN:ri >0} =V,, where the last equality follows from
the definition of product p. Therefore, using the fact that S C S*, we have ST C V), N S*, which
implies that f;(V, NS*) = f;(S*). Hence, the chain of inequalities above yields

£(A) > (1 - i) % ZG: min(f;(S*),).

For each j € Gy«, we have min(f;(5*),rp) > > f;(5*)/2. Thus, by the inequality above, we get
f(A)>(1-14Ht 2jec,. [i(57) /2 =Q(1/logm) - zcap, where the equality is by (5.1). O

e/m
5.2 Heterogenous arrival probabilities

In this section, we present our main algorithm and show that it gives a (1/logm)-approximation
to CAP in the general case where different customer types have different arrival probabilities. Our

14

approximation algorithm is based on using our Augmented Greedy algorithm several times, where
at each time, we compute an assortment of a certain size for a certain subset of customer types,
and then, we combine these assortments using a dynamic program that can be solved in polynomial
time. More specifically, we define several groups of customer types based on the values of their
arrival probabilities {; : j € M}. We use a tree structure to describe these groups. For each group
of customer types and a given assortment size, we compute an assortment of products of this size
using Augmented Greedy. Finally, we combine all the solutions together using a tractable dynamic
program to get the assortment that gives (1/logm)-approximation to CAP. The performance
guarantee for the algorithm exploits Theorem 5.1, which gives a ©(1/logm)-approximation to CAP
in the case of equal arrival probabilities, as well as the structural result of Augmented Greedy in
Theorem 4.2. Below, we describe the steps of our algorithm.

Step 1. (Round arrival probabilities) Consider j € M and let £ € Z such that

< 1
mitl = 0; < mt
~ o f+1
We round the arrival probablity 0; to 0; = %. Because 6; m‘*! > 1, we have |0; m‘*!| >

%0]- mt!, so % < éj < 0;. Thus, we lose at most a factor 2 by this rounding. We will focus on
giving a (1/log m)-approximation algorithm for CAP with the arrival probabilities {6, : j € M}.
For ease of notation, we simply use {6; : j € M} to denote the rounded values in the rest.

Step 2. (Construct a tree of customer types) For ¢ € Z, we define the group of customer types

‘ 1 1
The customer types M are given by the union of M(¥) for ¢ € Z. There are at most m of the
subsets {M({) : £ € Z} that are non-empty because | M| = m. We partition the customer types M
into non-empty customer groups of the form {M(¢) : £ € Z}, i.e.,

M=GUGyU... UGy,

where, for each i € {1, ..., L}, we have G; = M(¥;) for some ¢; € Z and G; is non-empty. We index
the customer groups such that ¢ > f5 > ... > {;. Note that, if ¢ < ¢/ then ¢; > ¢;, so for any
p € G; and any ¢ € Gy, we have 0, < 0,. In particular, customer types in G have the smallest
values of ¢; and customer types in G, have the highest values of 6; among all customer types.
Based on this order, we construct a tree 7 as follows. At the root of T, we split the customer
types into two subsets, the left subtree contains {Gi,...,G |L/2 J} and the right subtree contains
{GL L2415+, G 1} Similarly, at each node, we keep splitting the group of customer types into two
subsets such that half of the groups go the left subtree and the other half go to the right one until
we arrive to the leaves, where each leaf of T contains a unique group. In Figure 1, we show the tree
resulting from this procedure. Note that at each split, the customer types of the left subtree have
smaller values of §; than the customer types of the right subtree. Therefore, the leaves of T from
left to right are in the order Gy, ...,Gr. The depth of T is O(log L), which is at most O(logm),
since the number of non-empty groups L is smaller than m. For each node in 7, we associate a

15

Figure 1: Tree of customer types T

subtree that includes all descendant of that node as well as the node itself. Let £ denote the set of
all these subtrees. In Figure 1, the dashed boxes show two subtrees in £ corresponding to nodes a
and b. For each subtree T' € L, let Cr denote the set of customer types that belong to the groups
in the leaves of T. For instance, in Figure 1, if we denote by T the subtree that corresponds to
node a, then Crp is the set of customer types that are in the groups {G1, G2, G3,G4}.

Step 3. (Execute Augmented Greedy) Recall that K is the the bound on the number of products
that we can offer in CAP. For each subtree T' € £ and each k = 1,..., K, we use Augmented
Greedy to compute the assortment

Agy = AugGreedy(Crp, k),
and denote its corresponding expected revenue by

Rry, = [T (Ary).

Step 4. (Synthesize a solution) Finally, we solve the maximization problem

K
max Z Z Ryy -z (5.2)

TeLl k=1

K
st ZkaTk SK
TeLl k=1
K

Sk tary) <1, VTeL T'CT, T'#T
k=1
xr € {0,1}, VTel k=1,... K.

In the second constraint, we write 7" C T if all the nodes of the subtree 7" belong to the subtree
T, i.e., the root of T' is anode in T'. In problem (5.2), we choose a collection of subtrees to maximize
the total expected revenue. The first constraint ensures that the total number of products in the
assortment Apy, for the chosen subtrees does not exceed K. The second constraint ensures that the
chosen subtrees are disjoint. Furthermore, for each chosen subtree T, there exists only one capacity

16

value k such that 7 = 1. We can solve problem (5.2) efficiently by using a dynamic program.

Dynamic programming formulation for problem (5.2). Let g(7T, k) be the optimal objective
value of problem (5.2) when we can choose only assortments Ap for the subtrees 77 C T and
the total number of products in the chosen assortments cannot exceed k. We compute the value
functions {g(T,k): T € L, k=1,..., K} as follows. In the boundary condition, if T" is a leaf, then
we set g(T, k) = Rrpy. Otherwise, we set

9(T, k) = max {RTk, max {g(T1, k1) + g(T3, kzg)}} ,
k1+ko=k

where T} and T5 are respectively the left and right subtrees of 7. The optimal objective value of
problem (5.2) is given by g(7T, K).
Letting {z%,, : T € L, k=1,..., K} be the optimal solution of problem (5.2), our candidate

solution for CAP is
A:{ U Aoy = 1}. (5.3)

TeL, k=1,..K
In the next theorem, we show that the solution in (5.3) is a ©(1/log m)-approximation to CAP.

Theorem 5.2. Let zcap be the optimal objective value of CAP and A be the assortment in (5.3).
Then, we have

f(A) =Q(1/logm) - zcap-

We give the proof of Theorem 5.2 in Appendix F. The outline of the proof is as follows. First,
the customer types located at a single leaf of the tree have the same arrival probabilities, so we use
an argument similar to the one in the proof of Theorem 5.1 to show that Augmented Greedy, when
applied to the these customer types, obtains 2(1/logm) fraction of the optimal expected revenue
from these customer types. Second, using Theorem 4.2, we show that instead of offering some
subset of products to the customers in a tree, we can partition the subset of products into two and
offer the products in each partition separately to the customers in the left and right subtrees, while
incurring a loss in the expected revenue of 1 — 1/logm. Because the depth of the tree is at most

—_)logm which is equivalent

logm
to 1/e, for large m. Joining the two parts of the argument ultimately gives the desired guarantee.

log m, the total loss in this partitioning scheme is bounded by (1 —

6 Fully polynomial-time approximation scheme

We develop an FPTAS for CAP for the case where the number of customer types m is constant. In
particular, for any desired accuracy § > 0, we design a polynomial-time algorithm that outputs an
assortment S such that f(S) > (1 —) - zcap. The idea behind our FPTAS is to guess the optimal
expected revenue from each customer type. Once we guess the optimal expected revenue from each
customer type, we solve a dynamic program to check whether there exists an assortment to pick
in the first stage that allow us to achieve the guesses for the optimal expected revenue from each
customer type. By trying guesses over a geometric grid and choosing the best achievable guess, we
obtain an approximate solution with the desired accuracy.

Let S be the assortment that we pick in the first stage in CAP. There exists an assortment
S; € S that provides an expected revenue of ¢; or more from customer type j if and only if there

17

exists an assortment S; C S such that

D ies; Ti Vi
— 2t
L+ > ies, vij

The inequality above is equivalent to » .. s, Vij (ri —t;) > t;. Thus, there exists an assortment
S; C S that provides an expected revenue of ¢; or more from customer type j if and only if
there exists an assortment S; C S such that s, Vij (ri —t;) > t;. There exists an assortment
S; C S that satisfies the last inequality if and only if maXSjQS{ZieSj vy (ri —t;)} > t;. In the last
maximization problem, it is optimal to include each product 7 € S in the solution S if r; —¢; > 0.
Thus, the optimal objective value of the last maximization problem is) ;g v (r; — t;)*. Thus,
the discussion in this paragraph establishes that if we pick the assortment S in the first stage in
CAP, then we can obtain an expected revenue of t; or more from customer type j if and only if

Z’Uz‘j (T’Z‘ - tj)+ > tj.

€S

Thus, by the discussion so far in this section, for each customer type j, we have f;(S) > t; if
and only if Y, g vj (r; —t;)T > t;. Using this observation, our FPTAS is based on an alternative
formulation for CAP. In the alternative formulation, we guess lower bounds on the optimal expected
revenue from each customer type. Using these lower bounds on the optimal expected revenue
for each customer type, we obtain a lower bound on the optimal objective value of CAP. In our
alternative formulation, we maximize this latter lower bound on the optimal objective value of
CAP. In particular, let ¢ = (t1,...,t,) be the vector of lower bound guesses for the optimal
expected revenue from each of the m customer types. Using S C N to denote the assortment that
we pick in the first stage in CAP, consider the problem

max Z 0;t; (6.1)
JEM
st Zvi]‘(ﬂ'—t]’) >t VjieM
€S
S| < K
SCN, teRTY,

where the decision variables are S and ¢ = (t1,...,%y). The first constraint ensures that if we pick
the assortment S in the first stage, then the optimal total expected revenue from customer type j
is lower bounded by ¢;. The second constraint ensures that the assortment that we pick in the first
stage includes no more than K products. In the objective function, » jem 0;t; is a lower bound on
the optimal expected revenue from all customer types and we maximize this lower bound. We can
show that if (S*,¢*) is an optimal solution to problem (6.1), then S* is also an optimal solution to
CAP. We do not pursue showing this result, because CAP is NP-hard, which implies the same for
the problem above. We focus on approximating problem (6.1).

Our approximate version of problem (6.1) is based on two observations. First, instead of using
lower bounded guesses on the optimal expected revenues that take values over real numbers, we
use guesses that take values over a geometric grid. To construct our geometric grid, let ry.x =

18

max{r; : i € N} and ryuin = min{r; : i € N'} be the largest and smallest product revenues and
Umin = min{v;; : i € N, j € M, v;; > 0} be the smallest non-zero preference weight. In
this case, the expected revenue from any customer type lies in [rminlfﬁ%,rmax] U {0}. Letting

Brin = "min 1ij)‘zin and Bpax = rmax for notational brevity, for a fixed accuracy parameter ¢ > 0,

we consider the grid points on the geometric grid

Grid:{(l—i—e)k:k: Lm}...jm]}u{o}.

Second, we modify the first constraint in problem (6.1) so that we can solve this problem through
(s —t)T
a dynamic program. We write the first constraint equivalently as >, ¢ M > % We
J
consider an approximate version of the constraint given by

vij (ri —t;))T n
[t |2,

ieS J

The constraint above is a relaxation of the first constraint in problem (6.1), because any (S,t;)
pair that satisfies the first constraint in problem (6.1) also satisfies the constraint above. Letting
oij(t;) = (U”(Tlii_t]ﬁ -2 for notational brevity, we write the constraint above as) ;¢ 0i;(t;) > [2].
Note that o;;(t;) takes on integer values.

Replacing the first constraint in problem (6.1) with), ¢ 0y;(t;) > |%] and focusing on the
lower bound guesses t = (t1,...,t,) that take values in Grid™, we consider an approximate version

of problem (6.1) given by

max Z 0;t; (6.2)
JEM
n
() > | = i
st Zam(t])_LJ VieM

i€S

S| < K

SCN, teGrid™.
Our FPTAS is based on solving the problem above by using a dynamic program. For each set of

lower bound guesses t, we can check whether there exists an assortment S C N that satisfies the
first two constraints in problem (6.2) by solving the dynamic program

‘/i((h: s ,Qm,& t) = maX{V%-Fl(Q1 + Uil(tl)v <o Gm T+ Uim(tm)a ¢+ 1; t)v V%-H(Qla <5 Qmy, ﬁ; t)}? (63)
with the boundary condition that

0 ifZgKandqulﬁJforaHjeM
€

Vn+l(qla ce. an,& t) = (64)

—oo otherwise.

The two terms in the max operator in (6.3) correspond to including and not including
product i in the assortment .S in problem (6.2). The state variable g; accumulates the quantities
{04;(t;) : i € N'} for the products included in the assortment S, whereas the state variable ¢ tracks

19

the number of products in the assortment S. In the boundary condition, if ¢; > | 2] for all j € M
and £ < K, then there exists an assortment S with |S| < K such that), \-04j(t;) > |%]. Noting
that o;;(¢;) is an integer, all components of the state variable take on integer values.

Observe that there are O(M) points in Grid, yielding a total of O(%)
lower bound guesses t € Grid™. In the next theorem, accounting for the running time to solve
the dynamic program in (6.3) for each ¢t € Grid™ so that we can check whether there exists an
assortment S that satisfies the two constraints in problem (6.2), along with tracking the error
introduced by using a geometric grid for the lower bound guesses, we give an FPTAS for CAP for

constant m. We give the proof of the theorem in Appendix G.

Theorem 6.1. There exists an algorithm, where, for any € € (0,1), the algorithm returns a
(1 — €)-approxzimate solution to CAP in running time O(logm(%) ";—,:2), which 1s polynomial
in the input size and € for constant m.

Another useful aspect of our FPTAS is that we can build on the approach for developing our
FPTAS to give an integer programming formulation for CAP. The running time for our FPTAS can
get excessive when the number of customer types is large. The integer programming formulation

we give can be interpreted as a practically appealing version of our FPTAS.

Integer programming formulation. In our integer programming formulation, we build on
problem (6.1), but focus on the lower bound guesses that take place over the geometric grid. For
notational brevity, we denote the elements of the grid by {7!,...,7%} with L = |Grid|. We have
two sets of binary decision variables. The decision variable z; takes value 1 if we pick product i to
include in the assortment in the first stage of CAP, whereas the decision variable z;, takes value 1 if
we chose the ¢-th point in Grid as the lower bound on the optimal expected revenue from customer
type j. In this case, we consider the integer program

L
max ZHjZTezjg (6.5)
JEM /=1
st Zvij(ri—T€)+$¢ZT€ng VieM, l=1,...,L
eN
ieN
L
szg:1 VjeM
(=1
zi, zje € {0,1} VieN,jeM, (=1,..., L.

In the problem above, the first two constraints are analogues of the first two constraints in
problem (6.1). The right side of the first constraint above takes value 7¢ if we choose the ¢-th point
in Grid as the lower bound on the optimal expected revenue from customer type j. In this case,
if the assortment that we pick in the first stage of CAP is characterized by the decision variables
{z; : i € N}, then we know that the optimal expected revenue from customer type j is lower
bounded by 7¢ if and only if Y ien Vij (1 —) * 2; > ¢, which is the condition imposed by the first
constraint. The second constraint limits the size of the assortment that we pick in the first stage

20

of CAP to K. The third constraint ensures that we pick one lower bound on the optimal expected
revenue from each customer type. In the objective function, we maximize the lower bound on the
optimal expected revenue over all customer types.

The first constraint in (6.5) is driven by the same idea we used in our FPTAS. In Appendix H,
noting that € is the accuracy parameter for Grid, we show that if {z} : i € N'} is an optimal solution
to problem (6.5), then the assortment S* = {i € N : 2} = 1} is a (1 — ¢)-approximation to
CAP and we can obtain an upper bound on the optimal objective value of CAP by using problem
(6.5). Our integer program returns a (1 — €)-approximate solution, but in the literature, integer
programming formulations under the MNL model with multiple customer types require big-M
constraints (Bront et al., 2009). In contrast, problem (6.5) does not require such constraints.

7 Extensions to a knapsack constraint

In CAP, we have a cardinality constraint on the assortment picked in the first stage. In this section,
we extend our algorithmic results to give ©(1/logm)-approximation to CAP under a knapsack
constraint. In particular, we consider the setting where product ¢ uses w; units of capacity. The
total capacity consumption of the products that we pick in the first stage of CAP is bounded
by C. Thus, the first-stage assortment S should verify the knapsack constraint >, qw; < C.
Letting W(S) = > ,cg w; for notational brevity, we write the knapsack constraint as W(S) < C,
so Customized Assortment Problem with a Knapsack Constraint (CAP-Knap) is given by

ZKnap = SQN,HIWE/L%)SC];/t ij](S) (CAP—Knap)

The goal of this section is to show that the algorithmic framework we developed for
giving Q(1/logm)-approximation to CAP can be extended, modulo some modifications, to give
Q(1/log m)-approximation to CAP-Knap. We use a slightly modified version of Augmented
Greedy, where instead of using the classical greedy algorithm as a subroutine for maximizing a
monotone submodular set function subject to a cardinality constraint, we use the greedy algorithm
given by Sviridenko (2004) for maximizing a monotone submodular set function subject to a
knapsack constraint. In particular, Sviridenko (2004) shows that a greedy algorithm gives a
(1 — 1)-approximate solution for the problem maxgcy, w(s)<c 9(5), when the set function g is
monotone submodular. At each iteration, the greedy algorithm adds a product ¢ to the current
solution S such that the product maximizes (g(SU{i})—g(S))/w; and does not violate the knapsack
constraint. In this way, the algorithm prioritizes products that yield the largest increase in the
objective function relative to the capacity consumption. In his analysis, Sviridenko (2004) shows
that the iterations of the greedy algorithm actually generate a (1 — %)—approximate solution for the
problem maxgcr, w(s)<q 9(S) for all ¢ € [0,C]. Moreover, the collection of (1 — 1)-approximate
solutions for the problem maxgcy,w(s)<q9(S) for all ¢ € [0,C] includes O(n*) solutions. This
property will be useful in our analysis. We proceed to discussing how we incorporate the greedy
algorithm by Sviridenko (2004) to extend our algorithmic framework for a knapsack constraint.

Augmented Greedy for CAP-Knap. Recall that we index the products sothat r; >ro > ... > 7,
and V; = {1,2,...,i} is the subset of products with revenues greater than or equal to r;. Consider
a subset of customer types C and a knapsack capacity g € [0, C]. For each i € N/, we use the greedy

21

algorithm in Sviridenko (2004) to maximize the set function S — ... 0; min(f;(S),r;) over the
set of products V; subject to the knapsack constraint W (S) < ¢q. Let A; denote the assortment
returned by this algorithm. Augmented Greedy returns the assortment that maximizes f€ over all
the n candidates {A; : i € N'}. We summarize Augmented Greedy for CAP-Knap below.

Augmented Greedy for CAP-Knap
1: Input: customer types C C M, capacity ¢
2: for 1=1,2,...,ndo
3: Let V; = {1,2,...,i}
4 Use the greedy algorithm in Sviridenko (2004) to get an approximate solution to

STV (S)<q Jze; 9 min(f;(5). i) (7.1)
Let A; be the assortment returned the greedy algorithm

: end for

: return AugGreedy(C, q) = argmax;c {f¢(A:)}

(o2

Performance guarantees of Augmented Greedy. By Lemma 4.3, for each j € C and i € N, the
set function S — min(f;(S5), r;) is submodular on V;. Moreover, this set function is monotone. Thus,
the greedy algorithm in Sviridenko (2004) provides a (1— %)—approximate solution for problem (7.1).
This is the analogue of the approximation guarantee we had in the case with a cardinality constraint,
where we use the classical greedy algorithm to maximize the set function S — .. 0; min(f;(S), ;)
over the ground set V; subject to a cardinality constraint. Using Augmented Greedy for CAP-Knap,
Theorem 4.2 goes through with minor modifications under a knapsack constraint. In particular,
this theorem takes the following form under a knapsack constraint.

e For any subset of customer types C C M and any subset of products P C N, let Cp be the
set of complete customer types with respect to P. Let ¢ > 0 be such that W(P N S*) < ¢
and let A = AugGreedy(C, ¢q). Then, we have

() > (1 - i) (PN S,

As in Section 5.1, consider the case where the arrival probabilities for all customer types are
the same, i.e., 0; = % for all j € M. We can follow the proof of Theorem 5.1 line by line to show
that if we execute Augmented Greedy for CAP-Knap with the inputs M for the customer types
and C for the capacity, then we get a ©(1/logm)-approximation to CAP-Knap. In the rest of this
section, we discuss how to modify our algorithm in Section 5.2 to get a ©(1/log m)-approximation
for CAP-Knap when the arrival probabilities for different customer types are different.

Approximation algorithm for heterogenous arrival probabilities. Our approach follows
the same four steps in Section 5.2. The critical difference occurs when solving a variant of the
integer program in (5.2). Below are the steps that we follow under a knapsack constraint.

Step 1. (Round arrival probabilities) We round the arrival probabilities of the customer types
{0; : j € M} in the same way we do in Step 1 of Section 5.2.

22

Step 2. (Construct a tree of customer types) We construct the tree £ of customer types in the
same way we do in Step 2 of Section 5.2. For each subtree T' € L, we continue using Cr to denote
the set of customer types that belong to the groups in the leaves of T

Step 3. (Execute Augmented Greedy) For each subtree T' € L, we execute Augmented Greedy for
CAP-Knap with the inputs Cr for the set of customer types and C' for the capacity.

As we execute Augmented Greedy for CAP-Knap with the inputs Cr and C, we use the greedy
algorithm in Sviridenko (2004) to get a (1 — 1/e)-approximate solution to the problem

SCVLW(5)<C = 6; min(f; (), 7).

By the discussion at the beginning of this section, during the course of its iterations, the greedy
algorithm generates a (1 — 1)-approximate solution to the problem maxgcg. w(s)<q9(S) for all
g € [0,C]. Moreover, the collection of these (1 — %)—approximate solutions for the problem
maxgcs, w(s)<q 9(S) for all ¢ € [0, C] includes O(n*) solutions. Therefore, if we execute Augmented
Greedy for CAP-Knap once with the set customer types Cr and capacity C, then we obtain
the output of the Augmented greedy with the set of customer types Cr and capacity ¢ for
all ¢ € [0,C]. Moreover, since we use the greedy algorithm in Sviridenko (2004) n times
during the execution of Augmented Greedy, the collection of outputs to Augmented Greedy
{AugGreedy(Cr,q) : ¢ € [0,C]} includes at most O(n®) solutions. Consequently, we denote the
collection of solutions {AugGreedy(Cr,q) : ¢ € [0,C]} as

{AugGreedy(CT, q):q€ FT}7

where Fr is a finite set of capacity levels with |[Fr| = O(n®). For each subtree T € £ and each
capacity level g € Fp, define the solution

Aty = AugGreedy(Cr, q),

and denote its corresponding expected revenue by Rr, = ch(ATq).

Step 4. (Synthesize a solution) Finally, we solve a variant of problem (5.2) by replacing the
cardinality constraint with a knapsack constraint. This variant is given by

max Z Z Rrq - 21 (7.2)

TGEQEFT
N g, <0
TGE(]EFT
S wpgt+ Y wpg <1 NTel, T'CT, T'+T
qeFr qGFT/
e € {0,1} VYT €L, q€ Fr.

The two main ingredients of the proof of Theorem 5.2 are Theorems 4.2 and 5.1, which
extend to the case with a knapsack constraint. Therefore, following the same outline in the
proof of Theorem 5.2, we can show that if {z}, :7T € L, ¢ € Fr} is an optimal solution to

23

problem (7.2), then the solution A = {UTGL, qery Brq 1 Ty = 1} is a Q(1/log m)-approximation
to CAP-Knap. However, noting that the first constraint in problem (7.2) is of knapsack type, it
is straightforward to show that problem (7.2) is NP-hard, preventing us from finding an optimal
solution to this problem in polynomial time. In Appendix I, we give a dynamic program that
provides a (1—4d)-approximation to problem (7.2) for any § > 0 with running time that is polynomial
in input size and 1/§. Therefore, we can obtain a solution to problem (7.2) in polynomial time, while
incurring a constant factor loss in the optimal expected revenue. In this case, for any § € (0, 1),
let {Zr, : T € L, ¢ € Fr} be a (1 — 0)-approximate solution to problem (7.2). The solution
A= {UTG& gy ATq 1 T1g = 1} is a Q(1/log m)-approximation to CAP-Knap.

8 Computational study: Value of customization

We use a dataset from Expedia, as well as synthetically generated datasets, to demonstrate the
value of customization, when compared to offering the same assortment to all customers.

8.1 Expedia data
We use a dataset provided by Expedia as a part of a Kaggle competition (Kaggle, 2013).

Description of the dataset. The dataset gives the results of search queries for hotels on
Expedia. The rows of the dataset correspond to different hotels that are displayed in different
search queries by different customers. The columns give information on the characteristics of the
displayed hotels in a search query, the characteristics of the customer making the search query, and
the booking decision of the customer. In Table 1, we demonstrate the structure of the dataset by
giving a small excerpt that includes five rows from the dataset. There are two queries in the excerpt.
The customer making the first booking query was shown three hotels, whereas the customer making
the second booking query was shown two hotels. Each row in the data corresponds to a displayed
hotel in a search query. The columns in the dataset have the following interpretation: The first
column is the unique code of the search query in which the hotel was displayed. Using this column,
we have access to all the displayed hotels in a search query, providing the set of hotels among which
the customer needed to make a choice. The second column gives the name of the hotel, but we do
not use this information, The following eight columns show the attributes of the displayed hotel:
Star rating, review score, an indicator showing whether the hotel is a part of a chain, location
score, accessibility score, average historical price, displayed price for the current customer, and an
indicator showing whether the hotel was on promotion. The last four columns give information
about the characteristics of the customer making the search query: An indicator showing whether
the customer booked early, the number of adults in the intended booking, the number of children in
the intended booking, and lastly, an indicator of whether the customer is making a Saturday night
booking. These four columns will be useful to define our customer types. A booking is classified as
an early booking as long as it is made more than a week before the night of stay. The last column
in the dataset is an indicator of whether the customer booked the hotel in the search query. This
corresponds to the purchase decision of the customer. A customer can book at most one hotel or
leave without making any booking. For example, the first customer in the table booked the second
displayed hotel, whereas the second customer did not book any hotels.

24

Qry. Hotel Rvw. Loc. Acc. Past | Curr. No No
No Name || Star| Scr. |Chain?| Scor. | Scor. | Price | Price | Prom? || Early? | Adlt. | Chld. | Sat? || Booked?
1 SGE 4 5.8 Y 8.3 6.2 140 116 Y Y 2 2 Y N
1 PSC 5 9.0 N 7.8 9.9 146 179 N Y 2 2 Y Y
1 MQU 3 7.3 N 5.2 6.6 253 223 N Y 2 2 Y N
2 UCA 5 6.6 N 9.6 6.4 286 270 Y N 1 0 N N
2 OKB 2 9.9 N 8.0 5.8 228 245 N N 1 0 N N
Table 1: Excerpt from the Expedia dataset.
Rvw. Loc. | Acc. | Past | Curr.

Star Scr. |Chain?| Scor. | Scor. | Price | Price | Prom?

Boj | Py Ba2; Bs; Baj Bs; Be; Br; Bs;
[-245]049] 0.15 | 0.01 [-0.26 [0.60 [-0.05 [-1.69 [0.12 |

Table 2: Example of fitted MNL parameters for customer type 3.

We preprocessed the dataset to remove missing and uninterpretable values by using the same
approach in Gao et al. (2020). For booking queries for multiple nights, the price was sometimes
quoted for the whole duration of the stay and was sometimes quoted on a per night basis. It was not
possible to distinguish in the dataset which approach is used for which booking queries. To avoid
ambiguity, we dropped all booking queries for multiple nights of stay, focusing only on single-night
queries. The resulting dataset contains 595,965 rows, representing 34,561 queries.

Customer types and preference weights. We define 16 types of customers based on the
following four criteria: Whether the customer makes an early booking request, whether the customer
makes a booking request for a single adult, whether the customer makes a booking request that
includes children, and lastly, whether the customer makes a booking request for a Saturday night
stay. We use the 11-th to 14-th columns of the dataset to identify the type of the customer making
the booking query. These four binary criteria give us 2* = 16 customer types.

The customer did not make a booking in 83% of the search queries in the dataset. To enrich
our experiments, we generate three datasets with different fractions of the no-purchase outcome
by randomly dropping some rows that correspond to a no-purchase. In particular, we construct
a first dataset with 30% of the queries resulting in a no-purchase, a second dataset with 50% of
the queries resulting in a no-purchase, and a third one with 70% of the queries resulting in a no-
purchase. For each dataset, we use the eight features of the displayed hotels to estimate an MNL
model separately for each customer type. We fit the MNL model for each customer type using
maximum likelihood estimation. The preference weight a customer type of j associates with hotel
i has the form v;; = exp(fBo; + 2321 Bejie), where x; is the value of the ¢-th attribute of hotel i
and the parameters 3y; for £ = 0,1,...,8 are estimated parameters for customer type j.

Considering the dataset with 30% of the search queries resulting in a no-purchase, in Table 2,
we show an example of the estimated parameters of the MNL model for customer type 3. Customer
type 3 corresponds to customers making an early booking query with more than one adult and no
children for a non-Saturday night stay. We had 1095 customers of this type making booking queries
in our dataset. For instance, we observe from the table that the coefficient for the review score is
0.15 which means that higher review score positively affects the preference weight that customer
type 3 attaches to a hotel, while the coeflicient for the displayed price is —1.69, which implies that
higher price negatively affects the preference weight.

Experimental setup. To demonstrate the value of customization, we compare the expected
revenues obtained in the following two situations: (i) The platform identifies the type of the

25

customer and makes a customized assortment offer accordingly, (ii) the platform offers the same
assortment to all customers without paying attention to the customer type. By the discussion in
the previous two paragraphs, we can estimate the preference weight v;; that a customer of each type
j attaches to each hotel 7. We do not have access to the universe of hotels that we could potentially
show to the customer, so we consider the set of hotels that are displayed to a customer in her
search query as our universe. Let U; be the set of hotels displayed to the customer making the ¢-th
search query in the dataset and j; be the type of the customer making the ¢-th search query. The
maximum and average size of U; in our data are, respectively, 34 and 17. If the platform identifies
the type of the customer making the search query and makes a customized assortment offer, then
the assortment that maximizes the expected revenue from the customer making the ¢-th query is

2ics Ti Vi
Sz:ust — arg max €S Jt 7
SgUt 1 + Z’LGS Ui,jt

where r; is the price of hotel i € U; in the ¢-th search query. Here, S5 stands for the optimal
customized assortment for the customer making the ¢-th query.

On the other hand, if the platform offers the same assortment to all customers without paying
attention to the customer type, then it can maximize the expected revenue from a customer visit
by solving an assortment optimization problem under a mixture of multinomial logit models. In
this problem, a customer making a search query is of type j with probability ¢;, where 6; is the
fraction of type j customers in the dataset. Thus, the non-customized assortment that we offer to
the customer making the ¢-th search query is obtained by solving the problem

non-cust __] } :iES Ti Vij
S = arg max 0, ==
¢ SCU, 4~ 1+ _svij’
JEM €S

where M corresponds to the set of 16 customer types in our dataset. Here, SP°"<Ust stands for
the optimal non-customized assortment for the customer making the t-th search query. We can
formulate the problem above as an integer program with big-M constraints (Méndez-Diaz et al.,
2014). We use Rev;(S) = E;Sﬁ to denote the expected revenue that we obtain from a customer
of type 7 when we offer the assortment S to this customer. In this case, the percent improvement in
the expected revenue by offering a customized assortment to the customer making the ¢-th search

query, as opposed to a non-customized assortment, is given by

Rew;, (55*) — Rev;, (7<)

=100 -
Ve Rert (S?on-cust)

We group the queries in our datasets by customer types. For each customer type and each
dataset, we report the mean, 95-th percentile and maximum value of 7, over all search queries
made by that customer type. Our results are given in Tables 3, 4 and 5. Each table corresponds to
one of our three datasets with different fractions of no-purchase outcome. The first column in our
tables indicates the customer type. The second column gives the number of queries that correspond
to the customer type. The last three columns show the statistics of ;.

Results. We observe from Tables 3, 4 and 5 that there is a significant number of instances where
the value of customization - is high. There are customer types for which the value of customization

26

v (%) v (%)

Cust. No| Queries | Mean | 95% | Max Cust. No| Queries | Mean | 95% | Max
1 354 0.11 0.46 5.26 9 324 1.16 5.42 22.17
2 499 2.08 7.17 24.75 10 405 1.03 4.01 11.16
3 1095 0.73 2.59 12.65 11 1667 0.24 1.12 7.43
4 815 0.10 0.47 4.67 12 1319 0.08 0.39 6.58
5 137 1.93 7.82 32.58 13 151 1.20 4.09 8.97
6 117 4.52 15.91 | 52.57 14 143 3.55 14.07 | 51.57
7 350 0.62 2.49 24.20 15 459 0.96 4.49 25.62
8 170 1.27 5.09 34.62 16 349 0.30 1.10 35.42

Table 3: Value of customization in the Expedia dataset with 30% fraction of no-purchase queries.
7 (%) ve (%)

Cust. No| Queries | Mean | 95% | Max Cust. No| Queries | Mean | 95% | Max
1 504 0.04 0.19 1.44 9 481 0.44 2.17 | 10.08
2 594 2.59 8.90 29.56 10 548 0.25 1.04 3.20
3 1611 0.43 1.84 9.97 11 2448 0.16 0.85 3.34
4 1125 0.07 0.31 15.69 12 1866 0.04 0.15 4.68
5 181 1.02 3.74 15.71 13 206 0.52 2.62 5.93
6 141 4.52 20.07 | 47.12 14 182 1.99 9.58 | 36.32
7 476 0.23 0.82 11.66 15 647 0.30 1.38 | 15.53
8 231 0.55 2.74 13.29 16 454 0.10 0.58 2.76

Table 4: Value of customization in the Expedia dataset with 50% fraction of no-purchase queries.

can reach 15% on average. Over all search queries in the dataset, on average, customization achieves
an expected revenue increase of about 1%. We emphasize that even a few percentage point increase
in the expected revenue can translate into a substantial increase in the expected profit of a firm,
so even a few percentage points is significant in revenue management applications. The value
of customization is higher for the customer types with small market size, indicating that there is
significant value in customizing the offered assortment for these customer types rather than offering
them the same assortment that is driven by the majority of the market. Note that «4 tends to be
large for the dataset where the fraction of the no-purchase queries is 30% as compared to the two
other datasets. This observation is expected since there is no value of customization in the queries
that ended up with a no-purchase. Overall, our findings suggest that there is significant value
in identifying the type of customers and personalizing the assortment of hotels according to the
customer type preferences.

ve (%) ve (%)
Cust. No| Queries | Mean | 95% | Max Cust. No| Queries | Mean | 95% | Max
1 792 0.01 0.05 | 0.50 9 829 0.07 0.45 | 3.06
2 928 0.45 2.19 8.93 10 849 0.07 0.41 2.32
3 2775 0.07 0.45 | 3.11 11 4363 0.05 0.27 | 4.80
4 1807 0.01 0.04 1.65 12 3169 0.01 0.01 3.41
5 276 0.44 241 | 12.91 13 329 0.10 0.63 2.13
6 209 1.09 6.41 | 22.33 14 260 0.59 3.67 | 12.71
7 774 0.04 0.18 2.00 15 1088 0.05 0.24 4.60
8 358 0.12 0.60 | 7.58 16 687 0.03 0.15 1.72

Table 5: Value of customization in the Expedia dataset with 70% fraction of no-purchase queries.

27

8.2 Synthetic data

We test the value of customization by also using synthetically generated datasets, which allow us
to vary the number of products and customer types in consideration.

Experimental setup. We generate our test problems as follows. There are n products and we vary
n. We generate the revenue of each product independently from the exponential distribution with
parameter 1. We consider m customer types with equal arrival probabilities, i.e., §; = 1/m for all
j € M. We vary the number of customer types as well. We generate the preference weight for each
product and customer type independently. The preference weight that a customer of type j attaches
to product 7 is of the form v;; = B;; X;;, where B;; is sampled from the Bernoulli distribution with
parameter 1/2 and Xj; is sampled from the folded standard normal distribution. Recall that folded
standard normal random variable is the absolute value of a standard normal random variable. In
this way, B;; captures whether customers of type j are interested in product i. Conditional on
customers of type j being interested in product ¢, X;; captures the attractiveness that customers of
this type attach to product i. Our goal is to generate problem instances where customers of different
types have strong preferences between the different products. The samples {B;; : i € N'} indicate
whether customers of type j would even be interested in purchasing each product i. If B;; = 0,
then product ¢ is not even considered for purchase by customer type j. We also tried exponential
and uniform distributions, rather than the folded standard normal, for the samples {X;; : i € N'}
and our results were qualitatively the same. Our focus in this section is to characterize the value
of customization, rather than finding near-optimal solutions for CAP. Thus, we focus on the case
where the limit on the number of products in the first stage of CAP is K = n, so the optimal
solution of CAP is given by S* = N. Once we generate a problem instance by using the approach
described in this paragraph, for this problem instance, we solve CAP and MMNL as formulated
in Section 3. Letting zcap and zmmnL, respectively, be the optimal objective values of CAP and
MMNL, for each problem instance ¢, we define the ratio

ZCAP — ZMMNL
ZMMNL

vy = 100 -

Here, v; can be interpreted as the percentage gain in the optimal expected revenue for problem
instance ¢t due to customization.

We vary the number of products over n € {5,10, 15,20} and the number of customer types over
m € {5,10,50,100,500}. For each value of n and m, we generate 100 problem instances by using
the approach in the previous paragraph and report the mean, 95-th percentile and maximum value
of v; over all 100 instances. We restrict the number of products to 20, because for large problem
instances, it is computationally challenging to solve MMNL by using the integer programming
formulation with big-M constraints in Méndez-Diaz et al. (2014), especially considering that we
solve 100 problem instance for each m and n combination. Thus, the computational bottleneck
here is MMNL, rather than CAP. Our results are presented in Table 6.

Results. We observe from Table 6 that the optimal expected revenue of CAP can be significantly
larger than the optimal expected revenue of MMNL. The average value of customization v is
around 5% over all our test instances and the maximum value of v; is above 20%. Thus, there is
significant value in customizing the assortments offered to each customer type, when compared to

28

ve (%) ve (%)

n m | Mean | 95% Max n m | Mean | 95% Max
5 2.86 10.17 | 23.42 5 2.81 8.97 15.28

5 10 4.65 12.22 | 18.09 15 10 3.94 11.04 | 17.74
50 5.06 12.36 | 18.78 50 5.14 9.95 18.98

100 5.64 11.38 | 20.01 100 5.99 11.73 | 18.02

500 5.51 13.46 | 16.94 500 6.61 12.73 | 26.54

5 2.76 7.74 23.45 5 2.79 8.83 14.31

10 10 4.72 10.89 | 20.32 2 10 4.00 8.98 20.94
50 5.99 14.65 | 17.98 50 5.09 10.54 | 16.33

100 5.76 11.79 | 15.77 100 6.06 14.24 | 21.59

500 5.95 10.61 | 19.10 500 5.28 10.74 | 16.10

Table 6: Value of customization on synthetic datasets.

offering the same assortment to all the customer types. Our numerical results indicate that the
value of v; tends to increase with the number of customer types m, so customization becomes more
beneficial as the number of customer types gets larger.

9 Computational study: Solution quality

We present computational experiments on synthetically generated problem instances to numerically
evaluate the performance of Augmented Greedy and our integer programming formulation.

Experimental setup. We generate random instances of CAP in the same way we did in Section
8.2. In particular, we sample the revenue of each product independently from the exponential
distribution with parameter 1. The preference weight that a customer of type j associates with
product ¢ has the form v;; = B;; X;;, where we sample B;; from the Bernoulli distribution with
parameter 1/2 and we sample X;; from the folded standard normal distribution. The customer types
have equal arrival probabilities. We vary the number of customer types over m € {10, 50,100} and
the number of products over n € {50,100}. We vary the upper bound on the number of products
that we can pick in the first stage over K € {% n,%n} Practical values of m, n and K are
highly dependent on the application setting. For example, mid-size online grocers stock K = 10
to 50 varieties in product categories such as yoghurt, olive oil and ice cream, out of a total of
n = 50 to 500 product varieties available to them. Going more towards the larger end of the
spectrum, large outdoor equipment suppliers offer K = 100 to 200 varieties in product categories
such as tents, sleeping bags and hiking boots, out of a total of n = 250 to 1000 varieties available
to them. Going towards the smaller end of the spectrum, cellphone service providers offer K = 10
to 50 phone varieties to their customers out of n = 50 to 200 viable phone models in the market.
The number of customer types depends on how the customers are segmented. Segmenting the
customers by the boroughs or zip codes in an urban area, one ends up with 10 to 20 customer
types. Considering additional demographic factors, such as age and gender, increases the number
of customer types to 50 to 100. One can work with more customer types depending on the amount
of available data, but as the number of customer segments increases, the amount of data to estimate
the choice model governing the behavior of each customer segment shrinks.

For each combination of m, n and K, we generate 50 problem instances of CAP. For each
problem instance, we use Augmented Greedy to obtain a solution. By Theorem 5.1, Augmented
Greedy gives (1/logm)-approximate solution to CAP when customer types have equal arrival

29

Augmented Greedy Integer Program

Y1t (%) Y2t (%)

m n K | Mean | 5% | Min m n K | Mean | 5% | Min
50 5 99.4 99.3 | 96.3 50 5 99.5 99.3 | 99.3

10 25 98.7 97.0 | 94.0 10 25 99.5 99.4 | 99.3
100 10 99.0 97.7 | 95.0 100 10 99.5 99.4 | 99.3

50 98.9 96.9 | 95.5 50 99.5 99.4 | 99.2

50 5 99.5 99.4 | 99.2 50 5 99.5 99.5 | 994

50 25 99.4 99.1 | 98.8 50 25 99.5 994 | 994
100 10 99.5 99.4 | 99.2 100 10 99.5 99.4 | 994

50 99.5 99.3 | 99.3 50 99.5 994 | 994

50 5 99.5 99.5 | 99.5 50 5 99.5 99.5 | 99.5

100 25 99.5 99.3 | 99.1 100 25 99.5 994 | 994
100 10 99.5 99.5 | 99.5 100 10 99.5 99.5 | 99.5

50 99.4 99.3 | 99.3 50 99.5 99.4 | 994

Table 7: Quality of the solutions from Augmented Greedy and the integer programming formulation.

probabilities. Also, for each problem instance, we use the integer programming formulation in
(6.5) to obtain a solution. By the discussion in Appendix H, this integer programming formulation
provides a (1 — €)-approximate solution to CAP, where € is the accuracy parameter of Grid. We use
€ = 0.01 in our numerical experiments. Furthermore, letting zp be the optimal objective value of
the integer program in (6.5), in the same appendix, we show that (1+4¢) zjp is an upper bound on the
optimal objective value of CAP. For each problem instance ¢, let RevfUG be the objective value of
CAP evaluated at the solution provided by Augmented Greedy, Rev'tP be the objective value of CAP
evaluated at the solution provided by the integer programming formulation, and UB; be the upper
bound on the optimal objective value of CAP provided by the integer programming formulation.
For each problem instance ¢ that we generate, we compute the two ratios

RevAUG Rev!P
=100 —1 d =100 —.
Y1t 00 UB, an Yot 00 UB,

Note that ~1; and =9 are upper bounds on the optimality gaps of the solutions from Augmented
Greedy and the integer program. These quantities are upper bounds on the optimality gaps because
we compare the expected revenues of the solutions with an upper bound on the optimal objective
value of CAP, rather than the optimal objective value itself.

We consider values of n € {50,100}, m € {10,50,100} and K € {;5n, $n}. For each value of n,
m and K, we generate 50 problem instances and report the mean, 5% percentile and minimum of
the ratios v+ and 79 in our numerical experiments. Our results are shown in Table 7.

Results. We observe from Table 7 that Augmented Greedy has strong empirical performance.
In an overwhelming majority of instances, the expected revenues of the solutions obtained by
Augmented Greedy are within 1% of the upper bound on the optimal expected revenue. By
the discussion in Appendix H, we know that the expected revenue of the assortment provided
by the integer programming formulation is at least (1 —e) = 99% fraction of the upper bound
on the optimal expected revenue. The performance of the integer program is noticeably better
than this 99% benchmark. Over all of our instances, on average, the assortment from the integer
programming formulation obtains 99.5% of the upper bound on the optimal expected revenue. The
running time for Augmented greedy scales roughy linearly with the number of customer types

30

m, quadratically with the number of products n, and linearly with the limit on the number of
offered products K. The running time for solving the integer programming formulation is somewhat
unpredictable. For our largest test problems with m = 100 and n = 100, the solution times for the
integer programming formulation can range from 30 seconds to 4200 seconds.

We also test Augmented Greedy to solve CAP with heterogeneous arrival probabilities. In
our theoretical results, the algorithm that gives Q(1/logm)-approximation for this case uses
Augmented Greedy recursively as a subroutine and finally solves a dynamic program. Here, we
directly apply Augmented Greedy to test its empirical performance for this case of heterogeneous
arrival probabilities, although we do not have theoretical guarantees under heterogeneous arrival
probabilities. We randomly sample the arrival probabilities from a uniform distribution [0, 1] and
normalize them such that their sum is equal to 1. We present our results in Table 8 in Appendix J.
Augmented Greedy continues to provide near-optimal assortments for an overwhelming majority of
instances and the same conclusions we have in this section for the case of equal probabilities carry
out to the case of heterogeneous probabilities.

10 Conclusions

We considered a joint assortment optimization and customization problem under a mixture of
MNL models, where the firm commits to an assortment in the first stage, but can customize this
assortment based on the type of the customer arriving in the second stage. This problem models the
situation faced by many online retailers that can customize the assortment displayed to a customer.
Despite its ubiquitous nature, however, to our knowledge, our joint assortment optimization and
customization problem setup was unexplored until our work and it opens a number of research
directions.

Constraints in the second stage. We can consider a variety of constraints on the assortments
offered in the first and second stages. In our formulation, we used a cardinality constraint on
the assortment offered in the first stage, but also showed how to extend our work to a knapsack
constraint. One can also consider constraints on the assortment offered to each customer type
in the second stage. Our Q(1/logm)-approximation exploits the properties of the unconstrained
assortment optimization problem with a single customer type under the MNL model, as discussed
in Appendix E. We lose these properties when there is a constraint on the assortment offered
to each customer type in the second stage. However, considering the case where we can include
at most K products in the first stage assortment and p products in the second stage assortment
offered to each customer type (p < K), we can give a (1/v/mlogm)-approximation. Here, we
assume that p < K < mp, because if K > mp, then we can focus on each customer type separately
and find an assortment with no more than p products to maximize the expected revenue from each
customer type. In this case, the union of these assortments would include at most mp products,
but since K > mp, we can offer this union in the first stage. Assuming that p < K < mp, we
can proceed as follows to get a Q(1/v/mlog m)-approximation. Using the subadditivity property of
the expected revenue function discussed in Appendix C, we can show that if we can offer at most
K’ < K products in the first stage, instead of K, then the optimal expected revenue of CAP changes
by at most a factor of Q(K’/K). With this observation in place, we construct two solutions. First,

we solve CAP with a cardinality constraint of p, instead of K in the first stage. By doing so, the

31

loss in the optimal expected revenue is by a factor of Q(p/K), but since we can solve CAP only with
2(1/log m) guarantee, we obtain a Q(p/(K log m))-approximate solution. Second, we focus on each
customer type one by one and find an assortment with no more than p products that maximizes
the expected revenue from each customer type. We can find these assortments in polynomial time
by maximizing the expected revenue from a single customer type under a cardinality constraint
(Rusmevichientong et al., 2010). The union of these assortments would include O(mp) products.
By using the subadditivity property of the expected revenue function, we can split this assortment
into O(mp/K) assortments each with at most K products, so that the sum of the expected revenues
from the O(mp/K) assortments is at least as large as the optimal objective value of CAP, which
means that one of the O(mp/K) assortments is a Q(K/(mp))-approximation to CAP. Considering
the two solutions that we construct, we get an approximation guarantee of

P 1 K 1
Q(maxq — - , —— .
K logm’ p m
For a > 0, the minimum of max{aloglm, 113 occurs at @ = y/logm/m. Thus, the expression

above is at least (1/y/mlogm). The approximation guarantee of Q(1/y/mlogm) is better than
O(1/m!=¢) for € > 0, which is the best possible approximation without customization. We were

able to get this guarantee by exploiting the results that we already have, but it may be possible
to use an entirely new argument to give an even better approximation guarantee for CAP under a
cardinality constraint for the second stage assortment.

Other choice models. Our development exploited the properties of the revenue-maximizing
assortment under the MNL model that we discussed in Appendix E. Another research direction is
to study joint assortment optimization and customization problems under other choice models. For
example, our efforts to extend our results to the case where each customer type follows a nested
logit model, which is closely related to the MNL model, were not successful and it appears that we
need a new line of attack.

References

A. Aouad, R. Levi, and D. Segev. Greedy-like algorithms for dynamic assortment planning under multinomial logit
preferences. Operations Research, 66(5):1321-1345, 2018.

A. Aouad, J. Feldman, D. Segev, and D. J. Zhang. Click-based MNL: Algorithmic frameworks for modeling click
data in assortment optimization. Technical report, Washington University, St. Louis, MO, 2019.

A. Aouad, A. N. Elmachtoub, K. J. Ferreira, and R. McNellis. Market segmentation trees. Technical report, Columbia
University, New York, NY, 2020.

G. Berbeglia and G. Joret. Assortment optimisation under a general discrete choice model: A tight analysis of
revenue-ordered assortments. Algorithmica, 82:681-720, 2020.

G. Berbeglia, A. Flores, and G. Gallego. Refined assortment optimization. Technical report, University of Melbourne,
Melbourne, Australia, 2021.

J. J. M. Bront, I. Méndez-Diaz, and G. Vulcano. A column generation algorithm for choice-based network revenue
management. Operations research, 57(3):769-784, 2009.

A. Désir, V. Goyal, and J. Zhang. Near-optimal algorithms for capacity constrained assortment optimization. Available
at SSRN 2543309, 2014.

U. Feige. A threshold of Inn for approximating set cover. Journal of the ACM (JACM), 45(4):634-652, 1998.

J. Feldman and H. Topaloglu. Bounding optimal expected revenues for assortment optimization under mixtures of
multinomial logits. Production and Operations Management, 24(10):1598-1620, 2015.

32

J. Feldman and H. Topaloglu. Technical note: Capacitated assortment optimization under the multinomial logit
model with nested consideration sets. Operations Research, 66(2):380-391, 2018.

G. Gallego, G. Iyengar, R. Phillips, and A. Dubey. Managing flexible products on a network. Computational
Optimization Research Center Technical Report TR-2004-01, Columbia University, 2004.

P. Gao, Y. Ma, N. Chen, G. Gallego, A. Li, P. Rusmevichientong, and H. Topaloglu. Assortment optimization and
pricing under the multinomial logit model with impatient customers: Sequential recommendation and selection.
Operations Research, (to appear), 2020.

S. Jagabathula. Assortment optimization under general choice. Technical report, NYU, New York, NY, 2016.

S. Jagabathula and G. Vulcano. A partial-order-based model to estimate individual preferences using panel data.
Management Science, 64(4):1609-1628, 2018.

S. Jagabathula, D. Mitrofanov, and G. Vulcano. Personalized retail promotions through a DAG-based representation
of customer preferences. Operations Research, (to appear), 2020.

Kaggle. Personalize expedia hotel searches. last checked: August 5, 2019., 2013. https://www.kaggle.com/c/
expedia-personalized-sort.

R. M. Karp. Reducibility among combinatorial problems. In Complezity of computer computations, pages 85-103.
Springer, 1972.

1. Méndez-Diaz, J. J. M. Bront, G. Vulcano, and P. Zabala. A branch-and-cut algorithm for the latent-class logit
assortment problem. Discrete Applied Mathematics, 164:246-263, 2014.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set
functions-i. Mathematical programming, 14(1):265-294, 1978.

P. Rusmevichientong and H. Topaloglu. Robust assortment optimization in revenue management under the
multinomial logit choice model. Operations Research, 60(4):865-882, 2012.

P. Rusmevichientong, Z.-J. M. Shen, and D. B. Shmoys. Dynamic assortment optimization with a multinomial logit
choice model and capacity constraint. Operations Research, 58(6):1666-1680, 2010.

P. Rusmevichientong, D. Shmoys, C. Tong, and H. Topaloglu. Assortment optimization under the multinomial logit
model with random choice parameters. Production and Operations Management, 23(11):2023-2039, 2014.

A. Sen, A. Atamturk, and P. Kaminsky. Technical note — A conic integer optimization approach to the constrained
assortment problem under the mixed multinomial logit model. Operations Research, 66(4):994-1003, 2018.

M. Sumida, G. Gallego, P. Rusmevichientong, H. Topaloglu, and J. M. Davis. Revenue-utility tradeoff in assortment
optimization under the multinomial logit model with totally unimodular constraints. Management Science, (to
appear), 2020.

Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack constraint. Operations
Research Letters, 32(1):41-43, 2004.

K. Talluri and G. van Ryzin. Revenue management under a general discrete choice model of consumer behavior.
Management Science, 50(1):15-33, 2004.

R. Udwani. Submodular order functions and assortment optimization. Technical report, University of California,
Berkeley, CA, 2021.

R. Wang. Capacitated assortment and price optimization under the multinomial logit model. Operations Research
Letters, 40(6):492-497, 2012.

R. Wang and O. Sahin. The impact of consumer search cost on assortment planning and pricing. Management
Science, 64(8):3649-3666, 2018.

33

A Appendix: Hardness results

We start by presenting the maximum coverage problem that we use in the proof of Theorem 2.1.

Maximum coverage problem. Given elements {1,2,...,m} and sets {Si,Ss,...,5,} with
S; €{1,2,...,m} for each i = 1,...,n, we say that set S; covers element j if j € S;. For a
given K, the goal of the maximum coverage problem is to find at most K sets such that the total
number of covered elements is maximized. This problem is NP-hard to approximate within a factor
better than (1 — 1) unless P = NP (Feige, 1998).

Proof of Theorem 2.1. Consider an instance of the maximum coverage problem. We construct
an instance of CAP as follows. The products N correspond to the sets {S1,S2,...,S,} and the
customer types M correspond to the elements {1,2,...,m}. Fix e > 0 and let ¢ = (1 — 1/e)e. Let
I'=1/¢ — 1. In CAP, for all i € N and j € M, the preference weights are given by

- r ifjes;
1 0 otherwise.

The product revenues are given by r; = 1 for all i« € N and the arrival probabilities of the customer
types are given by 6; = 1/m for all j € M.

Suppose there exists a maximum coverage solution with an objective value z, i.e., there are z
covered elements. We construct a solution for CAP using exactly the K products corresponding to
the K sets in this maximum coverage solution. There are z customer types that are covered by these

sets. Hence, for each customer type j among these z customer types, there exists a product ¢ such
r

I+T

types. Let R be the objective value of our solution for CAP. We have

that v;; = I'. Therefore, we get at least an expected revenue of from each of these customer

;'1_’1:‘]__"22;’(1—6/)2.

Now, let us consider a solution of CAP. Without loss of generality, the solution has K products
and let R be its objective value. We construct a feasible solution for the maximum coverage problem
by choosing exactly the sets corresponding to the K products in the solution of CAP. Let z be
the resulting total number of covered elements, and for each j € M, let g; be the number of sets
that cover element j. If an element j is not covered, then ¢; = 0 and the expected revenue of the
customer type j is 0. Otherwise, if ¢; > 1, then the expected revenue from customer type j is given

by 1%&} < 1. Therefore, the objective value of our solution for CAP is given by

m
R:i q]rrgi
mj:11+qj m

*Z.

We know that unless P = NP, it is NP-hard to approximate the maximum coverage problem with
a factor better than (1 — %) (Feige, 1998). Thus, it is NP-hard to approximate CAP within a factor
better than (1 —1)(1 —¢') =1—1 — ¢ for any € > 0. O

In the next theorem, we show that CAP is NP-hard even with two customer types. This

34

NP-hardness result holds even when all products have the same revenue. We use a reduction from
the subset sum problem, which is defined as follows.

Subset sum problem. Given weights wy,wo, ..., w, and a cardinality K, the goal of the subset
sum problem is to find a subset S C {1,...,n} of size K such that)", g w; = 0. This problem is
NP-complete. (Karp, 1972).

Theorem A.1. CAP is NP-hard even with two customer types and r; = 1 for alli € N.

Proof. Consider an instance {wy,ws,...,wy,} of the subset sum problem and assume without loss
of generality that w; = max;—1 ., w;. We define an instance of CAP with two customer types such
that 61 = 6 = 1/2, and n products such that, for all i € N, we have

=1, Vi1 = w1 + w;, Vig = W1 — Wj.

For ¢ € N, let y; be a binary variable that captures whether product i is in the optimal
assortment of CAP. Let S = {i € N : y; = 1}. Since all the products have the same revenue,
it is optimal to offer all the products in S to both customer types. Hence, CAP is equivalent to
maximizing

—

1 Diewvinyi 1 Ylicnvioyi
2 1+Y vy 2 1+ vy

Zie/\f VilYi Zi€.’\f Vi2Yi
2 ien vilYi L4+ e VinYs
y; for any ¢ € N, we have > ien¥i = K in an optimal solution to CAP. Let

and

subject to the constraint) . \-y; < K. Since g are both increasing in

X = Z Vi1 Vi and a=2u K.
ieN

After simple algebraic manipulations, the objective function of CAP becomes

1 X 1 a-X 1+ /2

2 11X T2 14a-X ' TfatrXa—x)

Maximizing the above objective function is equivalent to maximizing X (o — X). In this case, since
(X —§)* >0, we get

a2

Xa-X) < —,

4
with the inequality above holding as equality if and only if X = «a/2, which is equivalent to
Yien ity = wiK, ie., >y wiy; = 0. Therefore, solving CAP implies finding whether there
exists a subset S of size K such that), gw; = 0. Since the subset sum problem is NP-hard, it

follows that CAP is NP-hard. O

B Appendix: Counterexample to submodularity of the expected revenue

We give a counterexample to demonstrate that f is not submodular. Consider and instance of CAP
with three products n = 3, along with revenues r; = 3,72 = 2,r3 = 1, and one customer type
m = 1. Dropping the index for the single customer type, the preference weights of the customer
type are given by v; = 1,vo = 1,v3 = 100. Let us denote the expected revenue function as

35

R(S) = Efif;”;, in which case, f(S) = maxgcg R(Q). Consider the following sets S = {3} and

T = {2,3}. We obtain the expected revenues

() = R({3}) = %

3
SV = e, B =3
J(T) = max R(Q) = 1

5
oty = QCTUL) R@Q) =3

which yields f(TU{1}) — f(T) = 2 > L + 1&; = f(SU{1}) — f(S). Thus, f is not submodular.

C Appendix: Properties of the expected revenue

In this section, we show that the function f; is monotone and subadditive for each j € M. Because
f is obtained by a positive linear combination of these functions, monotonicity and subadditivity
properties transfer to f as well.

Monotonicity. For any j € M, f; is increasing, i.e., for any A C B C N, we have f;(A) < f;(B).
In particular, for A C B C N, we have
2ies Tivij 2 ies Tivij

(A) =max =252~ Y < max —=2 " Y — f.(B).
fj() SCA 1+ZieSvij ~ SCB 1+Ziesvij f]()

Therefore, f = ZjeM 0 f; is increasing as well.

Subadditivity. For any j € M, f; is subadditive, i.e., f;(AUB) < f;(A)+f;(B) for any A, B C N.
In fact, for A, B C N, we have

[i(AUB) = max DiesTilii _ 2 ies Tivij 7
SCAUB 1+ 3 icgvij 14 X ieqvij

for some S C AU B. Let us write S as S = S; U Sy, where S; C A, So C Band S1 NSy =@. In
this case, we obtain

fi(AUB) = Ziesl TiVij + ZiGSQ T'iVij ZieSl T3 Vij ZieSQ V4
’ 1+ Eieéﬁ vij + ZiESQ vij — 1+ Ziesl vij 1+ ZZESQ Vij
o T4 TV

T SCA 14 cqvi SCB 14) i g4

Therefore, f =) jem 95 fj is subadditive as well.

D Appendix: Proof of Lemma 4.3

In this section, we give a proof for Lemma 4.3. Fix j € C andi € N. Let ¢g(S) = min(f;(S), ;). Note
that g is monotone increasing because f; is monotone increasing by the discussion in Appendix C.

36

Let S CT CV; and p € V; \ T. The goal is to show that g(S U {p}) — g(S) > g(T"U{p}) — 9(T).
We are going to distinguish three cases in our proof.

Case 1. Suppose that f;(T) > r;. In this case, by monotonicity of f;, we get f;(T°U {p}) >
f;(T) > r;. Therefore, we have g(T'U{p}) —g(T) =r; —r;i =0 < g(SU{p}) — g(S), where the last
inequality holds by monotonicity of g.

Case 2. Suppose that f;(TU{p}) > r; > f;(T'). Hence, we have g(TU{p})—g(T") = ri—f;(T). By
monotonicity of f;, we get f;(S) < f;(T) < ri, so g(S) = f;(5). If we have g(S U {p}) = r;, then
having g(SU{p}) —g(S) > g(T'U{p}) — g(T) is equivalent to having f;(S) < f;(T"), which holds by
the monotonicity of f; and the desired result follows. Therefore, throughout the rest of this case,
we assume that g(S U {p}) = f;(SU{p}).

Having ¢g(S U {p}) = f;(S U {p}) implies that f;(S U {p}) < 7. Since product ¢ has the
smallest revenue among the products in V;, we get f;(S U {p}) < r, for all s € V;. A standard
property of the assortment optimization problem under the MNL model is that a product is in the
revenue-maximizing assortment if and only if the revenue of the product is greater than or equal to
the optimal expected revenue of the assortment optimization problem. For completeness, we show
this property in Appendix E.

By the property in the previous paragraph, having rs > f;(SU {p}) for all s € V; DO SU {p}
implies that if the assortment in the first stage of CAP is S U {p}, then it is optimal to offer all
products in S U {p} to customer type j, i.e.,

Zeew{ y e Ve
fi(Suip}) = . -
’ L+ EzeSu{p} Uej

Similarly, because we have f;(S) < f;(T") < r;, by the same property of the assortment optimization
problem under the MNL model, we get

F:(5) = 2=tes TV (T) = 2ter et
’ 1+ e vy’ ’ L+ 2 et vej

Therefore, we obtain

9SULPY) = 9(8) = S(SUPD = £(S) = 1B (= £5(5)
X (1 () = i Berrits

1+ vp; + ZEET Vgj
ZZETU{p} Te Vg
1+ ZfeTu{p} Vej

L+ 3 rerugpy v 1+ X per ve

where the first two equalities use algebraic manipulations and the inequality holds because we
[i(8) < fi(T), Y pesvej < D pervej and 17, — f;(T) > 0. Hence, it is sufficient to show that

ZfeTu{p} T2 Vej

2 Ti, (Dl)
L+ rerugpy V4

in which case, noting that we have g(T'U {p}) = r;, the previous chain of inequalities would yield

37

g(SU{p}) —g(S) > g(T'U{p}) — g(T), as desired. Thus, we finish this case by establishing that

(D.1) holds. Let f;(T"U{p}) = % for some A C T'U {p} and let B =T U {p} \ A. Note
S J

that r; = min{r, : £ € V;} by the definition of V;, but since T'U {p} C V;, we have r; < r; for all

£ € B. In this case, we get

ZfeTu{p} Te Vg
1+ Z(ZGTU{p} Vej

_ 1+ 2 pea vy AL 2 1eB Vi eV
L+ peaves + 2 0ep Ve 14+ 0cavey 142 0caVej + D 0ep Ve Dooep Ve
14+ Vi Vg
ZZEA J -1+ ZKEB J T = T

T L+ Y pea vt D pep Vg L4 pea Ve + 2 pep Ve

where the inequality holds because f;(T'U{p}) > r; in the current case we consider and r; < r, for

. 2B TEVL
all £ € B so that r; < Sy

Case 3. Suppose that r; > f;(TU{p}). By the monotonicity of f; we get r; > f;(TU{p}) > f;(T)
and r; > f;(T'U{p}) > f;(SU{p}) > f;(S). By using the standard property of the assortment
optimization problem under the MNL model, these two chains of inequalities implies that if we
pick the assortment T'U{p}, SU{p}, S or T in the first stage of CAP, then it would be optimal to
offer the full available assortment 7'U {p}, S U {p}, S or T to customer type j, i.e.,

Zeew{p} Te Vej ZeeTu{p} Te Vej > _1es TVl
(S — , (T — 7 (S) = ’
/(50 ph L+ > resuqp) U fiT O Apd) L+ ierugp) Ve 11(5) 142 s vey

fi(T) = E’“’g;vi;. (D.2)
Therefore, we get
_ — f _ (S — Ypj A — s
9V D —9(8) = fi(S U D) = () = T (= H(8)
g (rp = f5(1) = [;(T U{p}) — f5(T") = g(T U{p}) — g(T),

>
L+ vpj + D et Vej

where the second and third equalities follow by using (D.2) along with algebraic manipulations,
whereas the inequality holds because f;(S) < fi(T), > jcqvej < D per vej and 17, — f5(T) > 0.

E Appendix: Assortment optimization under the multinomial logit model

We consider the assortment optimization problem under the MNL model and give a characterization
of the revenue-maximizing assortment. We use this characterization at several places throughout
the paper. We use N' = {1,...,n} to denote the set of products. There is a single customer type. A

customer associates the preference weight v; with product i. The revenue of product ¢ is ;. Thus,
2 ien Ti Vi

= e want to
14+3 e vi W

if we offer the assortment S C A/, then we obtain an expected revenue of

38

solve the problem

g T Vi
max @ (E.1)

In the next lemma, we give a characterization of an optimal solution to the problem above.

Lemma E.1. Letting z* be the optimal objective value of problem (E.1), there exists an optimal
solution S* to this problem that satisfies

S*={ieN :r>z2"}

Proof. Let R(S) = Ezisir;? be the objective function of problem (E.1) and let W (S) = 7%€S;;vl
i€ ? ic i
for notational brevity. For any S; A C N with SN A = &, we have

D ies TiVit D e aTiVi

REu4)= L+ > ies Vit 2 ica vi
_ 14 iesvi | 2iesTivi 2 icA Vi XicATiVi
T+ iesVitDieavi 142 eqvi 14D eqVi+Dcai Djca Vi
L+ s vi DicA Vi

1+ ZiGS v; + ZieA Ui

W(A),

1+ Zz‘es v; + ZieA Ui

so R(SU A) is a convex combination R(S) and W (A) and the latter quantity can be viewed as a
weighted average of the revenues of the products in A.

Let S be any optimal solution to problem (E.1) and S = {i € N :r; > z*}. Assume that
S\ S # @. Note that r; < z* for each i € S\ S, so we have W (S \ S) < z*. By the equality above,
R(S) is a convex combination of R(S N S) and W (S \ 5), so since R(S) = z* > W (S \ 9), it must
be the case that R(SNS) > R(S). Thus, SN S is an optimal solution to problem (E.1) as well, so
there exists an optimal solution to problem (E.1) that is a subset of $ = {i € N : r; > 2*}.

Let S be an optimal solution to problem (E.1) that is a subset of § = {i € N : r; > z*}.
Assume that S\ S # @. Note that we have r; > z* for each i € 5\ S, so W(§\ §) > z*. Using
the fact that § C S, by the equality above, R(S) is a convex combination of R(S) and W (S \ S),
so because W (S \ S) > z* = R(S), it must be the case that R(S) > R(S), which implies that
S ={ieN:r; >z} is an optimal solution to problem (E.1), as desired. O

The above lemma is a standard result in assortment optimization under the MNL model and it is
stated in various forms in Talluri and van Ryzin (2004), Gallego et al. (2004) and Rusmevichientong
and Topaloglu (2012).

F Appendix: Proof of Theorem 5.2

In this section, we give a proof for Theorem 5.2. We will use two auxiliary lemmas in the proof. We
start by stating and proving these two lemmas. Following the two lemmas, we conclude this section
with a proof for Theorem 5.2.

39

F.1 Auxiliary lemmas

The first lemma shows the existence of a subset of customers X such that the optimal expected
revenue from the customers in X is a constant fraction of the optimal expected revenue of CAP and
the expected revenues from the customer types in X’ satisfy a certain monotonicity property based
on where they lie on the leaf nodes of the tree.

Lemma F.1. Let S* be the optimal solution of CAP and zcap be its optimal objective value. There
exists a subset of customer types X C M that satisfies the following properties.

(i) For all j,q€ X, if j € G; and q € Gy with t <1, then f;(S*) > fo(5%).
(it) f¥(S*) > 1 2cap-

Proof. Recall that the set of all customer types is given by M = {UiL:1 M(&)} We partition the
customer types M as

L L
Meven — {U M(4;) ’ l; is even} and M°C4 = {U M(4;) ‘ t; is Odd} :
i=1 i=1

Hence,
fMeven(S*) _|_ fModd (S*) — fM(S*) = ZCAP-

One of the two terms on the left hand side should be at least zcap/2. Let us assume without loss
of generality that

Meven S* > ZCAP
i (57) > 7

Let Z={i=1,...,L| ¥ is even} and recall that G; = M(¥;). In particular,

Meven — U Gz

€L

Let i* € Z be the largest index in Z. In other words, G;+ is the group of customer types with the
highest values of §; among the groups in M®®". We construct the subset of customer types X as
follows. We first add all customer types in the group G;« to X. Then, we go in descending order
from i* — 1 to 1, where at each ¢ € {i* —1,...,2,1}, we first check if i belongs to Z. If we have
1 € Z, then we consider the set of customer types

¢ ={j Gt f(8) > max fy(57)].

where the max is taken over the set X constructed up to the current iteration. We update X by
adding the customer types in C and move on to the next group of customers G;_;. If we have i ¢ Z,
then we move directly to the next group of customers G;_1. By construction, when we are at a
group G; and i € Z, we add a customer type j € G; to X only if f;(S*) is greater than f,(S*) for
all customer types ¢ in the groups that we have already checked, i.e., the groups G with i’ > i.
Therefore, X satisfies the first property in the lemma.

In the remainder of the proof, we will establish that the subset of customers X satisfies the
second property. Consider a customer type j € Meyen, 50 j € G; for some i € Z. If we have j ¢ X,

40

then by construction, there exists a customer type ¢ € X such that f,(5*) > f;(S*). Moreover, the
customer type ¢ was added to X before we arrive at iteration ¢. Hence, we have ¢ € G; for some
1" € T such that ¢/ > i. By our definition of the groups G;, this observation implies that

1 1
méi/—l-l —

1
and —— <0 <

mei/ m&-—i—l - méi ’

where ¢; > £;. However, since both ¢; and ¢;; are even, we get ¢; > £;; + 2. Therefore, we have

1 1
0y 2 bt = i1 > m - 0;.
Since, f4(S*) > f;(S*) and ¢ € X, it follows that
* 1 * 1 X *
OIS € & 0,0 (57 < - FY(SY).

Hence, by summing over all customer types in Meyen \ X which, number at most m, we get

FHeY(5) < (S,

Thus, we get
2
QfX(S*) 2 fX(S*) + fMeven\X(S*) — fMeven(S*) Z %
The same argument holds if we assume that f/os(§*) > e O

Before we present the second lemma, we introduce some additional notation. Let S* be the
optimal solution of CAP. For each j € M, let S C S* be the optimal subset to offer to customer
type j in CAP. For a subset of customer types C C M and a subset of products A C N, we define
the expected revenue function

Y ieAns: Tivij
he(A) = 9, ! .
; 142 ieans; vij

Note that h€(A) corresponds to the total expected revenue from customer types C when we offer
assortment AN .S7 to customer type j € C. Recall that

S Tivij
FE(A) =56, - max _ies; v
jec Sng 1 + ZiESj 'Uij

Therefore, for any A C N and any C C M,
FE(A) = hE(A). (F.1)

Our second lemma shows that for any subset of products A of size k and any subtree of customer
types T' € L, we either give a lower bound on the expected revenue Ry of the assortment provided
by Augmented Greedy or show the existence of a partition of products A that verifies a certain
inequality. In particular, we have the following lemma.

41

Lemma F.2. Consider a pair (A,T) where A C S* is a subset of the optimal set of products to
offer in CAP and T € L is a subtree of customer types. Let |A| = k, Ty be the left subtree of T
and Ts be the right subtree of T. Lastly, let X be the set of customer types defined in Lemma F.1.
Then, at least one of the following two statements holds for the pair (A,T).

(i) R = Q(1/logm) - h¥7Cr (4).

(i) There exists a partition of A, i.e., A= Ay U Az, A1 N Ay = & such that,

hXﬂCTl (Al) 4 hXﬁCTQ (AQ) Z (1 N 1) . hXﬂCT(A)

logm

Proof. First, let us address the case where T is a leaf of 7. We will show that the first statement
in the lemma is verified in this case. Since T is a leaf of T, it contains a unique group of customer
types. In particular, we have Cr = G; for some i € {1,..., L}. By definition, each customer type j

li+1

in the group G; has its arrival probability 6; between 1/ mb and 1 /m for some ¢; € Z. Moreover,

the rounded values of the arrival probabilities are such that Hjméi“ is an integer between 1 and m.

L+l copies of customer types with the same

Therefore, a customer type j € Cr is equivalent to 0;m
preference weights {vy; : £ € N'} such that each one of them has arrival probability 1/ mb*1. Since
1< 6?jm£iJrl < m, we can view Cr as a group of at most m? customer types, where each customer
type has the same arrival probability. We know from Theorem 5.1 that Augmented Greedy gives
Q(1/log m)-approximation to CAP when the number of customer types is m and they all have the
same arrival probability. Therefore, Augmented Greedy gives (1/log(m?))-approximation to CAP
with the input customer types Cr. Recall that Ap, = AugGreedy(Cr, k) is the assortment returned
by Augmented Greedy with the inputs Cr for the set of customer types and k for the cardinality

constraint. Thus, for any A C N such that |A| = k, we have
T (Ary) = 1/ log(m?)) - [T (A) = Q(1/logm) - [T (A).

Moreover,
FET(A) > fA0T(A) > BT (A),

where the last inequality follows from (F.1). Therefore,
Ry = f (Ary) = Q(1/logm) - h¥7r (A).

Next, suppose that T is not a leaf. Let Gy be the group among {G1,...,Gr} that contains the
customer type j that has the smallest arrival probability ; among those in X N Cr,. Let

g = argmax{f;(S*) : j€ XNCpn, NG}, (F.2)

i.e., g is the customer type with the highest f;(S*) value among all customer types in G, that
belong to X N Cp,. Let us show the following claim.
Claim. For any j € X NCry, we have ST C S7, whereas for any j € X NCr,, we have Sg C S7.

Let us start with the first inclusion. Consider j € X NCr,, and let ¢/ € {1,..., L} be such that
j € Gp. We know that ¢ € X N Cp, N Gy. Since T} is on the left of Th, we get that ¢ < ¢. Hence,

42

from the first property of Lemma F.1, for all j € X NCr,, we have

[i(5%) = [4(57).

By Lemma E.1 in Appendix E, a product is in the optimal assortment that we offer to a customer
type if and only if its revenue is greater than the optimal expected revenue from the customer type.
Recall that f;(S*) is the optimal expected revenue for customer type j with universe of products
S* and the optimal solution for this problem is S;‘. Therefore, for any j € M, we have

Si={ies" :ri>f;(S)}

In particular, for any j € X NCp, and any i € S}, we get r; > f;(5*) > fo(S*). Therefore, i € 57,
which implies that ST C .57.

Now, let us show the second inclusion in the claim. Let j € X NCp,. If we have j € Gy, then
Jj € XNCr, NGy, and by definition (F.2) of customer type ¢, we have f,(S*) > f;(5*). On the
other hand, consider the case j ¢ Gy. By its definition, Gy contains the customer type with the
smallest arrival probability among customer types X NCr,. In this case, we get j € Gy with ¢/ > £.
Hence, from the first property in Lemma F.1, we get that f,(S*) > f;(5*). Therefore, for all
Jj € XNCr,, we have f(S*) > f;(S*). Similar to the proof of the first part of the claim, by Lemma
E.1, we get S C Sj for any 7 € X N Cp, which concludes the proof of the claim.

We partition A as
AleﬂS; and AQIA\Al

For j € XNCr,, from the above claim, we have 5;N57 = 57, Hence, we get AlﬂS;f = AOS(’I‘HS;" =
AN S5 . Therefore, it follows that

XNCr _ , Ziemsf nivig , Zie“‘l”s}‘ "V yeer
R4y =) = > = h*0Om (Ay).
]1+Z x Vjq J1+Z x Ujq
jEXﬁCTl zGAﬂS]-) jeXﬁch lGAﬂTSJ-)

We have Cr = Cp, U Crp, with Cr, NCp, = &, thus
RAOCT (A) = hX0CT (A) 4 B¥NCT (),
On the other hand, by subadditivity of the function h¢, we get
hYOCTS (Ay) + h¥0CTs (Ay) > h¥N0Ts (A).
Therefore, putting all together,
RANCTL(A) 4 hYCTs (A7) 4 RECT (45) > RECT(4), (F.3)

For j € X NCrpy, from the above claim, we have S OS; =5y, 80 A1 ﬂS;‘ =ANS; ﬁS; =ANS; =
Ay = A1 NS* where the last equality holds simply because A1 C S*. Therefore, the customer types
in X N Crp, are complete with respect to A;. Moreover, |A;| < |A| = k. Hence, by Theorem 4.2, it

43

follows that

ey = [(Agy) > (1 - 1) ATy (4,) > (1 - 1) WO (4)),

(& (&

where the last inequality uses (F.1). Lastly, if hY7C72 (A4;) > - . h¥MCT(A), then the inequality

= logm

yields Ry, = Q(1/logm) - h¥7°T(A), which establishes that the first property in the lemma is
verified. Otherwise, if h¥"C72 (A1) < —L— - h*7CT (A), then (F.3) implies that

logm
1
hXﬂCT A thCT A > (1= . thCT A
(A + BV (Ag) 2 (1= (4),
which establishes that the second property in the lemma is verified. O

F.2 Proof of the main result

We use the two auxiliary lemmas earlier in this section to give a proof for Theorem 5.2. Let A be
the assortment defined in (5.3). The goal is to show that the solution A is feasible to CAP and
its expected revenue satisfies f(A) = Q(1/logm) - zcap. We will follow the following steps in our
proof. First, we will show that the solution A is feasible for CAP. Second, we will show that the
expected revenue f(A) corresponding to the solution is at least as large as the optimal objective
value of problem (5.2). Thus, it is sufficient to show that the optimal objective value of problem
(5.2) is ©2(1/logm) - zcap. To achieve the latter goal, building on Lemma F.1 and Lemma F.2, we
will construct a feasible solution for problem (5.2) and establish that this feasible solution has an
objective value of at least Q(1/logm) - zcap-

Feasibility. Let {«7, : T'€ £,k =1,..., K} be the optimal solution of problem (5.2) and A be the
assortment defined in (5.3). Recall Apy, in the definition of A in (5.3) is given by AugGreedy(Cr, k),
so A7 has at most k products. Therefore,

K K
ALY Y A ay <Y 0D keahy <K,

TeLl k=1 TeLl k=1

where the last inequality follows from the first constraint of problem (5.2). Hence, A is a feasible
solution for CAP.

Lower bound for f(A). By the definition of £, if T, 7" € £ with TNT" # &, then either T' C T” or
T" C T. Hence, the second constraint of (5.2) ensures that the subtrees {T € L : Zszl x. = 1} are
disjoint, i.e., if there exists T, 7" € £ such that Zszl xy. =1 and Zszl thy =1, then TNT' = @.
Therefore, the sets {Cr : Zszl aiy. = 1} for T' € L are disjoint subsets of M. Thus,

K K K
FOA) = P2 DT (A) D @ = Y Y S (Am) @ = Y Y R wy,
k=1

TeLl TeLl k=1 TeLl k=1

where the second inequality uses the monotonicity of f°T and Ap, C A for . = 1. Thus, to
prove Theorem 5.2, we can show that the optimal objective value of (5.2) is Q(1/logm) - zcap-

44

Feasible solution for problem (5.2). We construct a solution for problem (5.2) with an objective
value of ©(1/logm) - zcap, which implies that the optimal objective value of problem (5.2) is
Q(1/logm) - zcap. Our construction is as follows. We initialize all the variables of problem (5.2)
at 0. Consider the set X given in Lemma F.1. Let us start at the root of the tree 7. For ease
of notation, let ar = h*"C7(S*) = h¥(S*). Initially, we apply Lemma F.2 with the pair (S*, 7).
We know that at least one of the two statements of Lemma F.2 should be true. Suppose, the first
statement is true, i.e., Rrx = Q(1/logm) - h*(S*), in which case, we get

Ry =Q(1/logm) - ar.

In that case, we let z7x = 1, truncate all the descendant nodes after the root and stop.
If the first statement of Lemma F.2 for the pair (S*,7T) is not true, then the second statement
must be true, i.e., there exists a partition of S* = A; U Ay and A; N Ay = @& such that

)1,

hXﬂCTl (Al) + hXﬂCT2 <A2) > (1 _
logm

where T is the left subtree of 7 and T} is the right subtree of 7. We let ap, = h¥"°71(A4;) and
aq, = h*"C72 (Ay). Hence, we have

1
o, +ar, > <1 — > e %8

We repeat the same argument for the pairs (A;,71) and (A2,7%). In general, each time we
consider a pair (A4,T), we let ar = h¥7CT(A). If the first statement of Lemma F.2 is true for the
pair (A, T), then we set z7, = 1 for k = |A| and truncate all the descendant nodes of the root of
T, i.e., we do not further explore T. By Lemma F.2, we know that

Ry, = Q(1/logm) - ar. (F.4)

Otherwise, if the first statement is not true, then the second statement of the lemma must be true,
so there exists a partition of A = A; U Ay and A; N Ay = & such that ¥ 7 (A) + pANCry (Ag) >
(1— @) - h*7CT(A), where Ty is the left subtree of T and T is the right subtree of T. Letting
ar, = h*CTi(Ay) and ag, = kY772 (Ay), we have

ary + ary > <1 — 10g1m> s aT. (F5)
We repeat the same argument again for (A;,77) and (Az,T2). Note that at each node, we either
truncate the tree or move to the next level. If we arrive at a pair (A,7T) where the subtree 7' is
simply a leaf of 7, then we know from the proof of Lemma F.2 that the first statement should be
true for this pair and therefore (F.4) is verified for 7.

Let {xpr : T € L, k =1,...,K} be the solution that we have constructed as above. Let us
show that this solution is feasible for problem (5.2). Consider the pairs (A,7T) for which we set
xrr = 1 where k = |A|. Each pair (A, T) among these pairs is such that T" correspond to a red node
in Figure 2. Let us index them with (A;, T;) for i € Z, where Z is an index set. By our construction,

45

Figure 2: Truncated Tree of customer types.

the subsets A; for i € 7 form a partition of S*. In particular, we have

K

k=1TeLl €T

Therefore, our solution verifies the first constraint of problem (5.2). Moreover, if 27,5, = 1 for some
i € Z, then our construction implies that x7,;, = 0 for any k # |A;|. The tree was truncated after
the node that corresponds to the subtree T;, hence zp, = 0 for any subtree T' that correspond to
a descendant node of T; and for any £ = 1,..., K. Furthermore, the subtrees T that correspond
to the parent nodes of T; are such that Xpi = 0 for any £ = 1,..., K. Thus, it follows that
Zle(ka +apyp) <lforall T e L, T'CT, T # T, which implies that our solution satisfies the
second constraint of problem (5.2) as well.

Performance guarantee. To complete our proof, let us show that the solution constructed above
provides an expected revenue of (1/logm) - zcap for problem (5.2). Consider a node in the
truncated tree and let T' be the corresponding subtree in L. Let depth(T') be the depth of T" in the
truncated tree and leaves(T) be the leaves of T' in the truncated tree. The depth of a subtree is
defined as the distance between its root and the farthest leaf. By convention, the distance between
two consecutive levels is 1. Note that leaves(T) must be among the red nodes in Figure 2. For
instance, in Figure 2, the dashed box shows the subtree that corresponds to node a. The subtree
T € L that corresponds to node a in the original tree has four leaves. The subtree that corresponds

to node a in the truncated tree has three leaves labeled as red nodes, i.e., |leaves(T)| = 3. The
depth of T" in the truncated tree is depth(7") = 2. First, let us show that
1 depth(T)
Z o Z <1 — > aT. (FG)
logm

T'€leaves(T)

We show the above inequality using induction on depth(T").

Base case. Consider a node in the truncated tree and let T" € £ be the corresponding subtree.
Assume that T has depth one in the truncated tree. Hence, T" has exactly two leaves and both are

46

red nodes. Therefore, (F.6) follows directly from (F.5).

Induction. Suppose that the inequality in (F.6) holds for the subtrees with depth d in the truncated
tree. Consider a subtree T' € £ that has depth d+1 in the truncated tree. Let T} be its left subtree
and T be its right subtree. By (F.5), we have

1
logm

o, +ap, > (1 —

)-aT.

Since, T7 and T5 have depth d, by the induction hypothesis, for i € {1,2}, we have

1 d
Z arr > (1 — > ar;.
logm

T’ €leaves(T;)

Therefore,
1 d 1 d+1
Z ar = Z O[T/+ Z (0% Z (1 - logm) (aT1+O[T2) 2 <1 - logm> aT,
T'€leaves(T) T'€leaves(Ty) T’ €leaves(T»)

which concludes the induction.
Applying the inequality in (F.6) to the full tree T, we get

1 depth(T)
g apr > (1 —) arT.
logm

T’€leaves(T)

We know that the depth of 7 is at most logm. Hence,

) anz<1 !)bgmafr:@@—l)-a% (F.7)

T'€leaves(T) logm

where the last equality holds for sufficiently large m. Finally, each leaf node in the truncated tree,
which are the red nodes in Figure 2, verifies (F.4), i.e., for all i € Z, Ry, i, = (1/logm) - ;.
Thus, we have

Z Ry, = Q(1/logm) Z apr. (F.8)

i€l T’ €leaves(T)

Moreover, we have

2iestns; Tivij
1+ Zz’es*ms; Vij

= f¥(S*) > ~ - zcap, (F.9)

e

ar =h¥(s) =0

JjeEX
where the last inequality follows from Lemma F.1 . Therefore, from (F.7), (F.8) and (F.9), we get

ZRTiki = Q(l/log m) * ZCAP,
€T

i.e., our solution provides an expected revenue of 2(1/logm) - zcap. This concludes our proof.

47

G Appendix: Proof of Theorem 6.1

In this section, we give a proof for Theorem 6.1. In the next lemma, we give a performance
guarantee for CAP that is provided by an optimal solution to problem (6.2).

Lemma G.1. Let zcap be the optimal objective value of CAP and (S',f) be an optimal solution to
problem (6.2). Then, we have

D 0; £i(8) = (1-3€) - zcap.

JEM
Proof. Let S* be an optimal solution to CAP. By the definition of Grid, for each 7 € M, there
exists ¢ € Grid such that ¢7 < f;(5*) < (1 +¢€)t;. We claim that (S*,¢*) with t* = (¢],...,1},) is
a feasible solution to problem (6.2). In particular, by the discussion at the beginning of Section 6,
we have f;(S) > t; if and only if 37, gwij (r; — t;)* > t;. Thus, since f;(S*) > t%, it follows that
> iese Vij (ri —t5)T > t%, which we write equivalently as

vij (ri —t5)" n _n
2T eze
icS* J
in which case, the inequality above yields
n vig (ri —=t5)" n
D e ALY
(IS J (IS

Thus, the solution (S*,t*) satisfies the first constraint in problem (6.2). Since S* is an optimal
solution to CAP, we have |S*| < K, which implies that the second constraint in problem (6.2) is
also satisfied. By our choice of ¢7, we have t* € Grid™ as well. Therefore, the claim follows and
(S*,t") is feasible to problem (6.2).

Next, recalling that (5’ ,t) is an optimal solution to problem (6.2), they satisfy the first constraint
in this problem. In this case, using the fact that |a] > a — 1 and [a] < a + 1, we have

n n iy vij (ri —t))" n
o1 [2] £ S - T [0 1]
€S €S

~

v (1 — fj)+ n vy (1 — tj)+ n
33| CLEU ISR ST CILE A
A t; € t; €
€S

i€S

where the last inequality holds because |S | < n. Arranging the terms in the inequality above, we
obtain

3 (ri —1;)"
€8 J
Thus, we obtain (1 —2€)t; < 3. s vij (ri —)" <32, gvij (ri — (1 — 2€) £;)*. Once again, by the

discussion at the beginning of Section 6, we have f;(S) > t; if and only if Y, _gvi; (r; — t;)T > t;.

48

Thus, the last inequality implies that fj(S’) > (1 — 2¢)t; for each j € M. In this case, we obtain
the chain of inequalities

1—2e
1+e€

ZCAP,

. . 1-2
D0 f(8) = (1-20) Y 0t >(1-2¢) Y 6,85 > ﬁ: > 0 fi(57) =
JEM

JEM JEM JEM

where the second inequality holds because (S,#) is is an optimal solution to problem (6.2), but
(S*,t*) is only a feasible solution as shown in the claim at the beginning of the proof, and the third
inequality holds by noting that (1 +¢€)t; > f;(S*) by our choice of ¢]. O

By the lemma above, for any given 6 € (0,1), if we construct the geometric grid in problem
(6.2) with an accuracy parameter of e = ¢/3, then an optimal solution to this problem is a
(1 — d)-approximation to CAP. We use this observation to give a proof for Theorem 6.1.

Proof of Theorem 6.1. For any § € (0,1), we construct the geometric grid in problem (6.2)
with an accuracy parameter of € = /3. By the discussion in the previous paragraph, an optimal
solution to problem (6.2) is a (1 — d)-approximation to CAP.

To show Theorem 6.1, it remains to argue that we can obtain an optimal solution to problem

(6.2) in running time O(log™(Zmax) ";;2). We obtain an optimal solution to problem (6.2) as

follows. By the definition of Grid, the number of points in Grid is

o <10g§OBgr?iX_{_B;;mn)> _0 (log(Bmaex/Bmm)>

)

which yields a total of O(W(BIE‘W) lower bound guesses t € Grid™. For each value of
t € Grid™, we can use the dynamic program in (6.3) to check whether there exists an assortment S
that satisfies the constraints in problem (6.2).

We proceed to accounting for the running time for solving the dynamic program. All components
of the state variable (qi,...,qmn,¢) in (6.3) take on integer values. The value of the state variable
q; only increases from one decision epoch to the next. Thus, if ¢; > %] at any decision epoch,
then we can set the value of this state variable to [Z] at all future decision epochs because the
boundary condition only depends on whether ¢; exceeds |”]. This discussion indicates that there
are O(2) possible values for the state variable g;. Moreover, the state variable £ takes on O(n)
possible values. Thus, there are O((%)™n) possible values for the state variable (q1,...,q¢n,£), so
noting that there are n decision epochs in the dynamic program, for fixed ¢t € Grid™, we can solve
the dynamic program in (6.3) in O((%)™ n?) operations.

Putting the discussion in the previous two paragraphs together, we can obtain an optimal
solution to problem (6.2) by checking each value of ¢ € Grid™, and for each t € Grid™, using the
dynamic program in (6.3) to see whether there exists an assortment S that satisfies the constraints
of problem (6.2). The total number of operations to do so is

logm(Bmax/Bmin) n\™ o9\ m Briax nmt2
O< em <Z> w) =0 loe™\ 3) ")

Evaluating the running time above with € = §/3 yields the desired result. O

49

H Appendix: Integer programming formulation

Let {z] :i € N} and {2},: j € M, £=1,..., L} be an optimal solution to problem (6.5). Using
this optimal solution, define the assortment S* = {i € N : «f = 1}. Noting the second constraint
in problem (6.5), we have |S*| < K. Letting zp be the optimal objective value of problem (6.5),
in this section, we show that

1
1+¢€

0 f5(5T) = ap >

JEM

ZCAP-

Thus, the solution S* is a (1 — €)-approximation to CAP and (1 + €) zp is an upper bound on the
optimal objective value of CAP.
We start by arguing that), 0; f;(S*) > zip. For each j € M, let k; = 1,..., L be such that

*
Zjk;

which, by using the definition of S*, is equivalent to

Z v (ry — M) > ki

1€S*

= 1. Thus, the first constraint in problem (6.5) implies that Y, vij (i — %) T2 > 7,

By the discussion at the beginning of Section 6, f;(S) > t; if and only if Y, g vij (r; — ;)T > t;.
Thus, the inequality above implies that f;(S*) > 7% for each j € M. In this case, we obtain the
chain of inequalities

L
D0 (S =Y 057 = 0) 7 =z,

JEM JEM JEM (=1

where the first equality uses the definition of k;.
Next, we argue that zp > %JFE zcap- Let S be an optimal solution to CAP. For each i € N,
define &; € {0,1} as #; = 1 if and only if i € S. For each j € M, let l%j =1,...,L be such that

< (8) < (1+)R,
By the definition of Grid, such l%j is guaranteed to exist. Lastly, for each j e Mand ¢ =1,...,L,

define 2j € {0,1} as 2j, = 1 if and only if £ = k;. If we can show that {#; : i € N} and
{2je:jeM, £=1,...,L} is a feasible solution to problem (6.5), then it follows that

L
) L1 . 1
zp 2> Z ejZTZZjZZ Z 9j7'k] > T+e Z 0; fi(S) = ﬁZCAPv
JEM

JjeEM U=1 JjeM

where the first inequality holds because {#; : i € N} and {Zjp: j € M, £ =1,...,L} is a feasible,
but not necessarily an optimal, solution to problem (6.5), whereas the second inequality holds
because we chose l;:j to satisfy f](S’)< (1+4¢) 7%i . The chain of inequalities yields zjp > l%re ZCAP,
which is the desired result.

It remains to show that {Z; : ¢ € N} and {2;0 : j € M, £ =1,...,L} is a feasible solution
to problem (6.5). Once again, by the discussion at the beginning of Section 6, f;(S) > t; if and

50

only if Y, cqvij (ri —t;)T > t;. Therefore, noting that fJ(S) > ki by our choice of I%j, we get
> cquij (ri — m8)T > 7 We equivalently write the last inequality as

€S

Foot ks W ok

D v (ri =) T =Y i (r =) 27 =1 Ziiky
iEN ieS

where the first equality uses the definition of #; and the last equality uses the definition of 2;,. Thus,
the solution {#; : ¢ € N'} and {Zj, : j € M, € =1,..., L} satisfies the first constraint in problem
(6.5) for each j € M and ¢ = l%j. When ¢ # l%j, Zj¢ = 0, in which case, the right side of the first
constraint takes value zero. Therefore, the solution {#; : i € N} and {2, : j e M, £=1,...,L}
satisfies the first constraint in problem (6.5) for each j € M and ¢ # l%j as well.

Since S is an optimal solution to CAP, we have \5’ | < K, but by the definition of Z;, we have
Yien i = |S]. Thus, {# :4 € N} and {%0:j € M, £ =1,..., L} satisfies the second constraint in
problem (6.5). Lastly, by the definition of Z;,, we have ZZL:1 Zjg = éj,fcj =1, so the third constraint
in problem (6.5) is satisfied as well.

I Appendix: Synthesizing a solution under a knapsack constraint

We give an approach to obtain a (1 — §)-approximate solution to the integer program in (7.2) in
running time that is polynomial in input size and 1/, for any 6 > 0. Our approach closely follows
the one that we used to develop our FPTAS. For r > 0, we define

H(r) = min Z Z q-x7q (I.1)

TeL quT

st Z ZRTq-quZT

TEEQEFT

Soarg+ Y wpy<1l VT EL T'CT, T #T
qeFr qEF 1,

xrq € {0,1} VT €L, q€ Fr.

Comparing the problem above with problem (7.2), note that H(r) is the minimum capacity
consumption that yields an expected revenue of r or more. For certain values of r, the problem
above can be infeasible, in which case, we set H(r) = oco. Let byin and byax be lower and upper
bounds on the expected revenue over all customer types. For example, similar to our discussion in
Section 6, letting ryax = max{r; : i € N'} and ryy = min{r; : i € N'} be the largest and smallest
product revenues, vmin = min{v;; : i € N, j € M, v;; > 0} and Opin = minjepmq{6; : 6; > 0}, the

expected revenue from all customer types lies in the interval [Gmin Ti"jr“v”“_““ , Tmax). Thus, we can set
min

brnin = Hmin%ﬁ‘? and byax = max. In this case, problem (7.2) is equivalent to

max {T : H(T) <C, bpin <1 < bmax} . (12)

The number of leaf nodes in the tree in Figure 1 is at most equal to the number of customer
types. Because of the second constraint in problem (I.1), whenever a decision variable corresponding
to tree T takes a positive value, none of the decision variables corresponding to tree 7/ C T can

51

take a positive value. Therefore, at most m decision variables in problem (I.1) can take value one,
which is to say that, any feasible solution to problem (I.1) satisfies

Z Z:Uqum.

TEE quT

We fix € > 0. Expressing the first constraint in problem (L.1) as) ;. ZQEFT Ly > T we
consider an approximate version of problem (I.1) given by

TEﬁqGFT
R
S PR e 2 |2
T €
TeLl qeFr
S wrgt Y wpg<1l VT EL T'CT, T #T
qeFr qEF T/

z7q € {0,1}, VT €L, qe€ Fr.

We consider the grid points that cover the interval [byin, bmax]. In particular, for the value of €

in the previous paragraph, we consider the geometric grid

Grid:{(1+e)k:k: Lmj[m]}

Using the geometric grid, we can construct an approximate version of problem (I.2). In the
approximate version, we use G(r) in (I.3) and consider the values of r € Grid, yielding

max{r : G(r) < C, r € Grid}. (1.4)

For each r € Grid, we will show that we can solve problem (I.3) in polynomial time using a
dynamic program. Thus, we can solve problem (I.4) by enumerating over all r € Grid and finding
the largest value of r that is feasible to problem (I.4). By doing so, it turns out that we will obtain
an approximate solution to the integer program in (7.2), which is our main goal. We use two
preliminary lemmas. Throughout this section, we let z* be the optimal objective value of problem
(7.2). By the discussion at the beginning of this section, we have by, < z* < bpax. Thus, there
exists some 7 € Grid such that 7 < z* < (1 + ¢€)7. In the next lemma, we show that such an 7 is
feasible to problem (I.4).

Lemma I.1. Let 7 € Grid be such that 7 < z* < (14 €)7. Then, G(7) < C.

Proof. Let {27, : T € L, ¢ € Fr} be an optimal solution to problem (7.2). Noting that the
optimal objective value of this problem is z*, we have

E E Ryg-ap, =2" 2T,
TeL qEFT

where the inequality is by our choice of 7 in the lemma. The inequality above implies that
S rer 2gery [@m] ~xy, > |'¢], so the solution {z7, : T" € L, q € Fr} satisfies the first

s €

52

constraint in problem (I.3) when we solve this problem with r = 7. Moreover, since this solution
is optimal to problem (7.2), it satisfies the second constraint in problem (7.2). Thus, the solution
{27, : T € L, q € Pr} satisfies the second constraint in problem (L.3) as well. In this case, it
follows that the solution {27, : T € L, ¢ € Fr} is feasible to problem (1.3) when we solve this
problem with r = 7. Therefore, noting that the optimal objective value of problem (I1.3) with r = 7
is given by G(7), we obtain

GH <Y > q-ah,

TeLl qEFT

Lastly, because {27, : T' € £, q € Fr} is an optimal solution to problem (7.2), it satisfies the first
constraint in this problem, yielding > o, > geFp 4 %7, < C, in which case, by the last inequality
and the inequality above, we get G(7) < C. O

In the next lemma, we show that a feasible solution to problem (I.3) approximately satisfies the
first constraint in problem (I.1).

Lemma 1.2. Let {7, : T € L, q € Fr} be a feasible solution to problem (1.3) when we solve this

>N Rpgdrg = (1—26)7.

TeL (]EFT

problem with r = #. Then,

Proof. By the first constraint in problem (L.3), we have > e p > ocp, [R—Tqmw “Zrq > |2]. Noting

T €

that [a] <a+ 1 and |a] > a — 1, the last inequality implies that we have

Zz(qufH).@quT_L

TeLl qEFT

By the discussion at the beginning of this section, we have ;.. qu FpITq < M, so by the
inequality above, we get

D RT‘J%-Q:«TqJsz%—L

,f.
TeLl qEFT

In this case, arranging the terms in the inequality above, it follows that) ;... qu pp Brq - T1q 2

7o (™ —1—m) >7(1— 2¢), which is the desired result. O
Finally, we use the lemmas above to show that we can obtain an approximate solution to

problem (7.2) via problem (I.4). Recall that z* is the optimal objective value of problem (7.2).

Theorem 1.3. Let 7 be an optimal solution to problem (1.4) and {7y : T € L, q € Fr} be an
optimal solution to problem (1.3) when we solve this problem with r = #. Then,

Z Z RTq'{Z‘Tq Z (1 —36)2*.

TEL: quT

Furthermore, the solution {1 : T € L, q € Fr} is feasible to problem (7.2).

93

Proof. Let 7 € Grid be such that 7 < z* < (1 + ¢€)7. By Lemma 1.1, we have G(7) < C, so the
solution 7 is feasible to problem (I.4). Since 7 is an optimal solution to problem (I.4), but 7 is only
a feasible solution to this problem, we have + > 7 > f—; Since {@7q : T € L, q € Fr} is an optimal
solution to problem (I.3) when we solve this problem with » = #, by Lemma 1.2, we have

1-2
ZZRTq-ﬁ;TqZ(l—Qe)fZ 1 62*2(1—36)2*.
TEEqGFT +6

We next argue that the solution {#7, : T' € L, ¢ € Fr} is feasible to problem (7.2). Since 7 is
an optimal solution to problem (I.4), it must be feasible to the same problem, so G(#) < C. Also,
using the fact that {Zp, : T" € L, ¢ € Fr} is an optimal solution to problem (I.3) when we
solve this problem with r = 7, we have G(7) = > e, > e, 4 - £1¢, in Which case, we obtain
drer 2aqery 4 1 = G(7) < C. Thus, the solution {Zrq : T' € L, q € Fr} satisfies the first
constraint in problem (7.2). Lastly, because {7, : T € L, ¢ € Fr} is an optimal solution to
problem (I.3), it satisfies the second constraint in this problem, which implies that the solution
{@1q: T € L, q € Fr} satisfies the second constraint in problem (7.2) as well. O

If we can efficiently solve problem (1.3) for fixed r, then we can compute G(r) efficiently, in which
case, we can solve problem (I.4) by enumerating over each r € Grid, checking whether G(r) < C for
each r and picking the largest value of r that satisfies G(r) < C. In this way, we obtain the value
of 7 in the last theorem above. In this case, solving problem (I.3) once more with r = 7, we obtain
{@1q: T € L, q € Fr} in the last theorem above, which, by the theorem, is a (1—3¢)-approximation
to problem (7.2). Thus, by choosing the accuracy parameter in the geometric grid as e = §/3, we
obtain a (1 — ¢)-approximate solution to problem (7.2), as desired.

It only remains to argue that we can efficiently solve problem (I.3) for fixed r. We give a

Rt
fora

dynamic program to solve problem (I.3). Note that [and || in problem (I.3) are integers.
We consider a dynamic program with the state variable (7, Rev), where we have T' € £ and
Rev € {0,1,...,[™]}. The value function g(7',Rev) is the optimal objective value of problem (I.3)
when we consider only the customers in subtree T" and replace the right side of the first constraint

with Rev. We compute the value functions {g(T,Rev) : T' € L, Rev € {0,1,...,]} as follows.
e If T is a leaf, then

€

9(T,Rev) = min {q € Fr: {% Tw > Rev} .
r

e Otherwise,

R
9(T, Rev) = min { min {q e Fr : {ﬁ m—‘ > Rev} , min {9(T1, R1) + g(T2, Rz)}},
r o€ R1 + R2 = Rev,
(R1,R2) € Zi
where T7 and T5 are respectively the left and right subtrees of T.

The optimal objective value of problem (I1.3) is given by g(7, |2 |) where T is the full tree of
customer types. In g(7T',Rev), Rev is an integer that never takes a value greater than [], so we
can solve the dynamic program in polynomial time.

o4

J Appendix: Numerical experiments for heterogeneous arrival probabilities

In this section, we provide computational experiments under heterogeneous arrival probabilities for
different customer types. Our results are in Table 8. The format of this table is identical to that
of Table 7. Augmented Greedy continues to provide near-optimal assortments with less than 1%
optimality gaps in an overwhelming majority of our problem instances.

Augmented Greedy Integer Program
Y1t (%) Y2t (%)

m n K | Mean | 5% | Min m n K | Mean | 5% | Min
50 5 98.6 | 97.1 | 96.9 50 5 99.4 | 99.4 | 994

10 25 | 98.5 | 96.2 | 95.5 10 25 1 995 | 994 | 99.4
100 10 | 99.3 | 99.1 | 99.0 100 10 | 99.5 | 99.4 | 99.4

50 | 99.3 | 99.2 | 99.2 50 | 99.5 | 99.4 | 99.4

50 5 99.5 99.4 | 99.4 50 5 99.5 99.4 | 99.4

50 25 | 994 | 99.2 | 99.1 50 25 | 99.5 | 994 | 99.4
100 10 | 99.5 | 99.5 | 99.4 100 10 | 99.5 | 99.5 | 99.5

50 99.5 99.4 | 99.4 50 99.5 99.4 | 99.4

50 5 99.5 | 99.5 | 99.4 50 5 99.5 | 99.5 | 99.5

100 25 | 99.5 | 99.5 | 99.5 100 25 | 99.5 | 99.5 | 99.5
100 10 99.5 99.5 | 99.5 100 10 99.5 99.5 | 99.5

50 | 99.5 | 99.5 | 99.5 50 | 99.5 | 99.5 | 99.5

Table 8: Quality of the solutions from Augmented Greedy and the integer programming formulation
for problem instances with heterogeneous arrival probabilities.

95

