
Joint Assortment Optimization and Customization under a Mixture of

Multinomial Logit Models: Value of Personalized Assortments

Omar El Housni Huseyin Topaloglu
School of Operations Research and Information Engineering, Cornell Tech, New York, NY 10044

{oe46,ht88}@cornell.edu

November 23, 2021

Abstract

We consider a joint assortment optimization and customization problem under a mixture of

multinomial logit models. In this problem, a firm faces customers of different types, each

making a choice within an offered assortment according to the multinomial logit model with

different parameters. The problem takes place in two stages. In the first stage, the firm picks

an assortment of products to carry subject to a cardinality constraint. In the second stage,

a customer of a certain type arrives into the system. Observing the type of the customer,

the firm customizes the assortment that it carries by, possibly, dropping products from the

assortment. The goal of the firm is to find an assortment of products to carry and a customized

assortment to offer to each customer type that can arrive in the second stage to maximize the

expected revenue from a customer visit. The problem arises, for example, in online platforms,

where retailers commit to a selection of products before the start of the selling season, but

they can potentially customize the displayed assortment for each customer type. We refer

to this problem as the Customized Assortment Problem (CAP). Letting m be the number

of customer types, we show that the optimal expected revenue of CAP can be Ω(m) times

greater than the optimal expected revenue of the corresponding model without customization

and this bound is tight. We establish that CAP is NP-hard to approximate within a factor better

than 1 − 1/e, so we focus on providing an approximation framework for CAP. As our main

technical contribution, we design a novel algorithm, which we refer to as Augmented Greedy,

and building on it, we give a Ω(1/ logm)-approximation algorithm to CAP. Also, we present

a fully polynomial-time approximation scheme for CAP when the number of customer types is

constant. In our computational experiments, we demonstrate the value of customization by using

a dataset from Expedia and check the practical performance of our approximation algorithm.

1 Introduction

Discrete choice models have been seeing steadily increasing attention to capture the customer choice

in revenue management. Using discrete choice models, we can model the fact that customers choose

and substitute among the products. If a product is not offered, then a portion of the demand for

this product shifts to other products, while the remaining portion is lost. Given that the customer

demand can be shaped by changing the assortment of products offered to the customers, a natural

question for the retailers is to choose an assortment of products to offer to their customers to

maximize their expected revenues. There is significant amount of literature indicating that both

brick-and-mortar stores and online retailers can increase their revenues by carefully choosing the

assortment of products they carry. In contrast to brick-and-mortar stores, online retailers have

access to tremendous amount of customer browsing and purchasing data. As a result, in addition to

picking the assortment of products they carry, online retailers can display a customized assortment

1

of products to each customer based on what is known about the preferences of the customer.

A personalized assortment can potentially allow enhancing the customer experience, as well as

improving the revenue of the retailer.

In this paper, we study a joint assortment optimization and customization problem under a

mixture of multinomial logit models. In this problem, a firm faces different customer types, each

making a choice with an offered assortment according to the multinomial logit model with different

parameters. The problem takes place in two stages. In the first stage, the firm picks an assortment

of products to carry, subject to a cardinality constraint. In the second stage, a customer of a

certain type arrives into the system. Observing the type of the customer, the firm customizes the

assortment that it carries by, possibly, dropping products from the assortment. The goal of the firm

is to find an assortment of products to carry and a customized assortment to offer to each customer

type to maximize the expected revenue from a customer visit. We refer to this problem as the

Customized Assortment Problem (CAP). This problem is faced by almost all online retailers. For

example, online grocers make an initial decision of what product variety to carry in each product

category, but the grocery choices of different customer segments dramatically differ from each other.

Thus, they can adjust the assortment offered to each customer based on what is known about the

segment of the customer. Often times, online grocers operate warehouses in urban centers and

they are severely limited by the variety of products they can inbound to these warehouses. The

cardinality constraints may capture such limitations. Though not exactly, cardinality constraints

may also serve as proxy to budget or storage limitations.

Despite its ubiquitous nature, to our knowledge, CAP remained fully unexplored until our work.

A closely related problem is the assortment optimization under a mixture of multinomial logit

models without customization (Rusmevichientong et al., 2014; Bront et al., 2009). In this problem,

the firm still faces multiple customer types, each choosing according to a multinomial logit model

with different parameters. The firm picks an assortment of products to carry, possibly subject to a

cardinality constraint, but does not have the opportunity to customize the assortment. Customers

of each type are offered the same assortment carried by the firm. The goal of the firm is to find an

assortment of products to carry to maximize the expected revenue from a customer visit. We refer

to this problem as Mixed Multinomial Logit Assortment Problem (MMNL). For MMNL, letting m

be the number of customer types, there is no polynomial time algorithm with an approximation

factor better than O(1/m1−ε) for any ε > 0 (Désir et al., 2014). On one hand, CAP is operationally

more complicated than MMNL with the presence of a second stage to customize the assortment. On

the other hand, if there is no cardinality constraint in the first stage, then the optimal solution

in CAP is for the firm to carry all products, so the decision in the first stage becomes trivial. In

contrast, MMNL is NP-hard even when there is no cardinality constraint. Thus, the computational

complexity of CAP is not clear at the first glance. If CAP is not solvable in polynomial time, then

it is not clear to what accuracy we can approximate the problem.

1.1 Contributions

Our main contributions are in characterizing the complexity of CAP, giving tight bounds on the

value of customization, and developing approximation algorithms CAP.

Model and computational complexity. We show that CAP is NP-hard to approximate within

a factor better than (1− 1
e − ε) for any ε > 0 even in the special case where all the product revenues

2

are equal and customers of each type arrive with equal probabilities. In view of this hardness result,

we turn out attention to developing approximation algorithms for CAP.

Value of customization. We show that CAP, by customizing the assortment offered to each

customer type, can substantially increase the expected revenue obtained by MMNL, which does

not customize the assortment offered to different customer types. In particular, we give a family of

instances for which the optimal expected revenue of CAP exceeds the optimal expected revenue of

MMNL by a factor of Ω(m), where m is the number of customer types. Furthermore, this bound is

tight in the sense that the expected revenue provided by CAP cannot exceed the expected revenue

provided by MMNL by more than this factor (Theorem 3.1).

Augmented Greedy and approximation algorithms. As our main technical contribution, we

develop an approximation framework for CAP. In particular, we design a novel algorithm that we

refer to as Augmented Greedy. This algorithm is the building block of our algorithmic framework.

Augmented Greedy considers a small number of subsets of products based on the ranking of the

product revenues. For each subset, it executes a standard greedy algorithm that iteratively picks

the product that provides the highest increase in the objective function and adds this product

to the offered assortment. Augmented Greedy returns the assortment with the highest expected

revenue over all considered subsets. Our main structural result lower bounds the expected revenue

of the assortment returned by Augmented Greedy with a constant factor of the optimal expected

revenue from a certain portion of customer types (Theorem 4.2). Since we can compare the expected

revenue from the Augmented Greedy assortment with the optimal expected revenue from only a

portion of customer types, this result does not immediately give an approximation for CAP.

Nevertheless, we show that Augmented Greedy gives Ω(1/ logm)-approximation to CAP when

all customer types have the same arrival probabilities (Theorem 5.1). Building on this result, we

design an algorithm that gives Ω(1/ logm)-approximation to CAP for general arrival probabilities

(Theorem 5.2). The latter algorithm is based on applying Augmented Greedy recursively on several

subsets of customer types and combining the solutions using a tractable dynamic program. Thus,

our work demonstrates the stark difference between the complexity of CAP and MMNL. While

MMNL does not admit a polynomial-time algorithm with an approximation factor better than

O(1/m1−ε) for any ε > 0, we are able to give an approximation algorithm for CAP with an

approximation factor of Ω(1/ logm), establishing that the ability to customize the assortment

offered to each customer type also makes the assortment optimization problem dramatically more

tractable. As discussed earlier in this section, at a first glance, it is not clear whether CAP should

be easier or harder to approximate than MMNL and our work closes this gap.

We also extend our approximation algorithm to the case where we have a knapsack constraint

on the subset of products that we pick in the first stage of CAP, rather than a cardinality constraint.

We give Ω(1/ logm)-approximation to CAP under a knapsack constraint.

Fully polynomial-time approximation scheme. We give a fully polynomial-time approximation

scheme (FPTAS) for CAP when the number of customer types is constant (Theorem 6.1). Our

FPTAS uses a geometric grid to guess the expected revenue from each customer type and solves a

dynamic program to find a first stage assortment that realizes the guessed expected revenues. We

show that CAP is NP-hard even with two customer types, so FPTAS is the best approximation

guarantee we can aim for under a constant number of customer types. We also build on our

3

approach for the FPTAS to give an integer programming formulation for CAP.

Computational study. We use a dataset from Expedia to demonstrate the value of customization.

Our computational study indicates that customization can be rather important for certain customer

types. In particular, we can achieve significantly higher expected revenues by offering customized

assortments for such customer types, as opposed to offering a single assortment to all customer

types. In addition, we check the practical performance of our approximation algorithms and

integer programming formulation on randomly generated problem instances. Our approximation

algorithms perform remarkably well, obtaining near-optimal solutions for an overwhelming majority

of our problem instances.

1.2 Related literature

There is significant work on assortment optimization under the multinomial logit model, but

none of this work focuses on customization. Gallego et al. (2004) and Talluri and van Ryzin

(2004) study the assortment optimization problem under the multinomial logit model with a single

customer type. They show that the optimal assortment is revenue-ordered in the sense that it

includes a certain number of products with the largest revenues. Rusmevichientong et al. (2010)

study the same problem when there is a constraint on the number of offered products, whereas

Sumida et al. (2020) incorporate constraints that can be characterized by a totally unimodular

constraint structure. Wang (2012) studies joint pricing and assortment optimization under the

multinomial logit model. Jagabathula (2016) examines the performance of exchange heuristics that

incrementally improve the assortment on hand by adding or removing products.

Assortment optimization problem under a mixture of multinomial logit models is also relevant

to our work. In this problem, we have customers of different types, each choosing according to a

multinomial logit model with different parameters. The goal is to find a single assortment that

maximizes the expected revenue from a customer visit. Bront et al. (2009) show that the problem is

NP-hard when the number of customer types is as large as number of products and give an integer

programming formulation. Rusmevichientong et al. (2014) show that the problem is still NP-hard

even with two customer types and study the performance of revenue-ordered assortments. Désir

et al. (2014) give an inapproximability result and develop an FPTAS when the number of customer

types is fixed. Méndez-Dı́az et al. (2014) give valid cuts for the integer programming formulation

of the problem, whereas Sen et al. (2018) study a more efficiently solvable conic programming

formulation. Berbeglia and Joret (2020) analyze the performance of revenue-ordered assortments

for general class of random utility maximization models, sharpening some of the earlier performance

bounds. Feldman and Topaloglu (2015) give a tractable upper bound on the optimal expected

revenue, which is useful as a benchmark when checking the optimality gap of heuristics.

Our joint assortment optimization and customization model can be interpreted as one way

of enhancing the operational flexibility of the multinomial logit model. Feldman and Topaloglu

(2018) seek to enhance the operational flexibility of the multinomial logit model by incorporating

consideration sets, where each customer arrives into the system with a specific consideration set,

ignores all offered products that are not in her consideration set, and chooses within the remaining

products according to the multinomial logit model. The authors give an FPTAS when the possible

consideration sets have a nested structure. Aouad et al. (2019) give a PTAS when the consideration

4

set of a customer includes each product with a fixed probability. Wang and Sahin (2018) work with

a variant of the multinomial logit model in which the customers tradeoff product search effort with

the utility to form their consideration sets. Aouad et al. (2018) study the assortment optimization

problem under dynamic substitution, where the assortment viewed by the customer corresponds to

the set of products with remaining inventories and the goal is to pick the initial inventory levels of

the products. Gao et al. (2020) study the assortment optimization problem under the multinomial

logit model when the offered assortment is gradually revealed, as in online search results.

Several recent papers studied customization, focusing on either developing sophisticated choice

models or solving pricing problems. Jagabathula and Vulcano (2018) develop a choice model to

predict personal preferences. In their model, each customer has a partial order between the products

that is encoded by a directed acyclic graph. In each store visit, the customer samples a preference

ranking over the full set of products, while staying consistent with her partial order. She drops

some of the products in the preference ranking that are not in her consideration set. Among the

remaining products, she purchases the highest ranking product that is also available in the offered

assortment. Jagabathula et al. (2020) use a similar model for running personalized promotions.

Aouad et al. (2020) develop a choice model with multiple customer segments by segmenting the

customers with the help of trees, but they do not consider personalized assortment optimization

or pricing problems. Berbeglia et al. (2021) study assortment optimization problems in which the

firm can make certain products unattractive to customers, which is modeled by allowing the firm

to change the utilities of the products. In our paper, we give a Ω(1/ logm)-approximation to CAP.

After our work, Udwani (2021) gave a constant-factor approximation for CAP. His work studies

optimization problems where one maximizes set functions that satisfy only a limited version of

submodularity defined over a fixed permutation of the ground set. The author shows that the

objective function of CAP satisfies this limited version of submodularity.

The rest of the paper is organized as follows. In Section 2, we formulate CAP and characterize

its computational complexity. In Section 3, we give tight bounds on the benefit of customization.

In Section 4, we describe the Augmented Greedy algorithm. In Section 5, we develop and analyze

our Ω(1/ logm)-approximation algorithm for CAP. In Section 6, we give our FPTAS. Building the

approach that we use to develop of FPTAS, we also provide an integer programming formulation for

CAP. In Section 7, we extend our approximation algorithm to the case where we have a knapsack

constraint on the subset of products that we pick in the first stage of CAP, rather than a cardinality

constraint. In Section 8, we give computational experiments to check the value of customization

on a dataset from Expedia. In Section 9, we check the practical performance of our approximation

algorithms, as well as our integer programming formulation.

2 Problem formulation and complexity

We give a formulation of our model and characterize its complexity. We consider a set of products

N = {1, . . . , n}. For each product i ∈ N , let ri denote its revenue. Without loss of generality, we

assume that the products are indexed such that

r1 ≥ r2 ≥ . . . ≥ rn > 0.

5

We use M = {1, . . . ,m} to denote the set of customer types. The probability that a customer

of type j arrives into the system is θj , where
∑

j∈M θj = 1. A customer of a certain type makes

a choice among the products offered to her according to the multinomial logit (MNL) model. In

the multinomial logit model, let vij denote the preference weight that customer type j attaches to

product i. For all customer types, we normalize the preference weights of the no-purchase option to

one. Under the MNL model, given that we offer the set of products Sj to a customer of type j, she

purchases product i ∈ Sj with probability vij/(1 +
∑

`∈Sj
v`j). In this case, given that we offer the

set of products Sj to a customer of type j, the expected revenue that we obtain from the customer

is (
∑

i∈Sj
ri vij)/(1 +

∑
i∈Sj

vij).

In the first stage of our problem, we select a subset of at most K products. We use S ⊆ N
to capture this subset. In the second stage, we observe the type of the arriving customer and

offer her a personalized assortment, which is a subset of the products in S carried initially. We

use Sj to capture the personalized set of products offered to customer type j, where Sj ⊆ S. For

each customer type j ∈ M and an initial subset of products S ⊆ N , let fj(S) denote the optimal

expected revenue from customer type j when the universe of products is S, i.e.,

fj(S) = max
Sj⊆S

∑
i∈Sj

ri vij

1 +
∑

i∈Sj
vij
.

Our goal is to find a set of at most K products to carry in the first stage to maximize the expected

revenue over all customer types. We refer to this problem as the Customized Assortment Problem

(CAP). In particular, we want to solve the problem

zCAP = max
S⊆N ,|S|≤K

∑
j∈M

θj fj(S). (CAP)

For fixed S, computing fj(S) corresponds to finding an assortment Sj ⊆ S that maximizes the

expected revenue from a single customer of type j. This problem is well-studied (Gallego et al.,

2004; Talluri and van Ryzin, 2004). Thus, for fixed S, we can efficiently compute fj(S).

In the next theorem, we provide an inapproximability result for CAP. In particular, we show

that it is NP-hard to approximate CAP within a factor better than (1 − 1
e − ε) for any ε > 0

even in the special case where the product revenues are all equal and customers of all types arrive

with equal probabilities. We use a reduction from the maximum coverage problem to show this

inapproximability result. The proof of the theorem is deferred to Appendix A.

Theorem 2.1. Unless P = NP , there is no polynomial-time algorithm that approximates CAP

within a factor better than (1 − 1
e − ε) for any ε > 0 even when we have ri = 1 for all i ∈ N and

θj = 1
m for all j ∈M.

While the proof of the inapproximability result in Theorem 2.1 necessitates a large number

of customer types, we also show a weaker hardness result for constant number of customer

types. In particular, we show in Appendix A that CAP is NP-hard even with two customer

types. Motivated by these inapproximability and hardness results, we will focus on developing

approximation algorithms for CAP. Before presenting our algorithmic framework, we discuss in the

next section the value of customization capability provided by our model.

6

3 Value of customization

We quantify the value of customization by comparing CAP to a model where the decision-maker

offers the selected products in the first stage to all customer types without customization. In

particular, to contrast CAP, which customizes the products selected in the first stage to each

arriving customer, with a model that does not use customization, we write CAP as

zCAP = max
S⊆N , |S|≤K

∑
j∈M

θj · max
Sj⊆S

∑
i∈Sj

ri vij

1 +
∑

i∈Sj
vij
.

The problem without customization corresponds to the assortment optimization problem under

a mixture of MNL models with a cardinality constraint. We refer to this problem as Mixed

Multinomial Logit (MMNL) problem, which is given by

zMMNL = max
S⊆N , |S|≤K

∑
j∈M

θj ·
∑

i∈S ri vij

1 +
∑

i∈S vij
. (MMNL)

Note that CAP is a relaxation of MMNL, so the optimal expected revenue of CAP is at least

as large as the optimal expected revenue of MMNL. In the next theorem, we show that the

optimal expected revenue of CAP is at most m times the optimal expected revenue of MMNL.

More importantly, we show that this bound is tight by presenting a family of instances where the

optimal expected revenue of CAP can be Ω(m) times larger than the optimal expected revenue of

MMNL. This result shows the power of customization, as the expected revenue of our model can

be significantly larger when compared to a model without customization.

Theorem 3.1. Let zMMNL be the the optimal objective value of MMNL and zCAP be the optimal

objective value of CAP. Then, we have zMMNL ≤ zCAP ≤ m · zMMNL. Moreover, there are instances

such that zCAP = Ω(m) · zMMNL.

Proof. The inequality zMMNL ≤ zCAP is immediate because CAP is a relaxation of MMNL. To

show the other inequality, let S∗ be the optimal solution of CAP. For each j ∈ M, let S∗j ⊆ S∗

be the optimal assortment to offer to customer type j in CAP. Let q ∈ M be the customer type

with the largest value of θjfj(S
∗) for j ∈ M, i.e., θjfj(S

∗) ≤ θqfq(S
∗) for all j ∈ M. Therefore,

zCAP ≤ m · θqfq(S∗). Since S∗q ⊆ S∗, we have |S∗q | ≤ K, so S∗q is feasible for MMNL, yielding

θqfq(S
∗) = θq ·

∑
i∈S∗q ri viq

1 +
∑

i∈S∗q viq
≤
∑
j∈M

θj ·

∑
i∈S∗q ri vij

1 +
∑

i∈S∗q vij
≤ zMMNL.

Therefore, zCAP ≤ m · zMMNL. To show the tightness of the bound, we give the following problem

instance. We consider a problem instance where the number of products n is equal to the number

of customer types m, which is, in turn, equal to the cardinality K, i.e., n = m = K. We use m to

7

denote all three parameters. Let us consider the instance given by

θj =
α

aj
∀ j ∈ {1, . . . ,m}, ri = ai ∀ i ∈ {1, . . . ,m},

vij =

{
bm−i+1 if i ≤ j
0 otherwise

∀ i, j ∈ {1, . . . ,m},

where α is a normalizing constant, i.e., α = (
∑m

j=1 1/aj)−1. The scalars a and b will be chosen

such that a� b� 1. We will shortly specify the exact values of a and b.

Since the cardinality of products K allowed in an assortment is equal to the number of

products n, the optimal solution of CAP is S∗ = N . Moreover, the optimal assortment to offer to

a customer type j in CAP is the solution of the assortment optimization problem under her MNL

model with universe of products N . Thus, we have

zCAP ≥
m∑
j=1

θj
rjvjj

1 + vjj
= α

m∑
j=1

bm−j+1

1 + bm−j+1
≥ α · m

2
,

where the first inequality holds because the optimal expected revenue of CAP is greater than the

expected revenue of the solution where, for each j ∈ {1, . . . ,m}, we only offer product j to customer

type j. The second inequality holds because b ≥ 1.

Now, consider a set of products S and fix j ∈ {1, . . . ,m}. Let Revj(S) denote the expected

revenue of assortment S under the MNL model of customer type j, i.e.,

Revj(S) =

∑
i∈S ri vij

1 +
∑

i∈S vij
=

∑
i∈S a

i · 1(i ≤ j) · bm−i+1

1 +
∑

i∈S 1(i ≤ j) · bm−i+1
.

We have

θj · Revj(S) = θj ·
∑

i∈S a
i · 1(i ≤ j − 1) · bm−i+1

1 +
∑

i∈S 1(i ≤ j) · bm−i+1
+ α · 1(j ∈ S) · bm−j+1

1 +
∑

i∈S 1(i ≤ j) · bm−i+1
. (3.1)

We bound the first term on the right side of (3.1) as

θj ·
∑

i∈S a
i · 1(i ≤ j − 1) · bm−i+1

1 +
∑

i∈S 1(i ≤ j) · bm−i+1
≤ θj

∑
i∈S

ai · 1(i ≤ j − 1) · bm−i+1

≤ θj · bm
∑
i∈S

ai · 1(i ≤ j − 1) ≤ θj · bm
j−1∑
i=1

ai ≤ θj · bm · 2aj−1 = 2αbm/a,

where the last inequality holds because
∑j−1

i=1 a
i = aj−a

a−1 ≤ 2aj−1 for a ≥ 2. Letting `S be the

smallest index in S, we bound the second term on the right side of (3.1) as

α · 1(j ∈ S) · bm−j+1

1 +
∑

i∈S 1(i ≤ j) · bm−i+1
≤ α · 1(j ∈ S) · bm−j+1

bm−`S+1
= α · 1(j ∈ S) · b`S−j .

8

Moreover, we have

m∑
j=1

1(j ∈ S) · b`S−j ≤ 1 +
∑

`S<j≤m
b`S−j ≤ 1 +

m− 1

b
.

Therefore, we obtain

m∑
j=1

θj · Revj(S) ≤ α · 2mbm

a
+ α ·

(
1 +

m− 1

b

)
.

Choosing b = m − 1 and a = 2m(m − 1)m, we get
∑m

j=1 θj · Revj(S) ≤ 3α for any S ⊆ N . Thus,

we have zMMNL ≤ 3α. Noting that zCAP ≥ α · m2 , we get zCAP = Ω(m) · zMMNL.

4 Augmented Greedy algorithm

In view of the computational complexity of CAP discussed in Section 2, we focus on providing

approximation algorithms for CAP. Our algorithmic framework is based on a novel algorithm that

we design and refer to as Augmented Greedy. Before introducing our algorithm, we define the

following notation. For any subset of customer types C ⊆ M, let

fC =
∑
j∈C

θjfj .

Thus, fC(S) corresponds to the optimal expected revenue from customer types C given that we

initially pick the subset of products S. Let us also define

f = fM.

In this case, CAP corresponds to the problem of maximizing the set function f subject to a

cardinality constraint K, i.e.,
zCAP = max

S⊆N , |S|≤K
f(S).

The function f is monotone increasing, i.e., f(A) ≤ f(B) for any A ⊆ B ⊆ N , because we

obtain larger expected revenue when we select more products in the first stage of CAP. However,

the function f is not submodular1. Nemhauser et al. (1978) show that a greedy algorithm, which

iteratively picks the element providing the largest increase in the objective function and adding it

to the solution, gives (1−1/e)-approximation to the problem of maximizing monotone submodular

functions subject to a cardinality constraint. Our function f is not submodular in general, so this

classical result does not apply to our problem. In Appendix B, we give a counterexample with

only one customer type and three products to show that the function f is not submodular. This

observation necessitates developing a more general algorithm for approximating CAP.

1We say that a set function g is submodular on a finite set Ω if for every A,B ⊆ Ω with A ⊆ B and every i ∈ Ω \B
we have that g(A ∪ {i})− g(A) ≥ g(B ∪ {i})− g(B) .

9

4.1 Description of Augmented Greedy algorithm

We present our algorithm, referred to as Augmented Greedy, which will constitute the building

block of our algorithmic framework for approximating CAP. The algorithm takes as input a subset

of customer types C ⊆ M and an integer k. The goal is to find an assortment ∆ of size at most k

that maximizes fC(∆). In general, this problem cannot be approximated in polynomial time

within a factor better than (1− 1/e) due to Theorem 2.1. Augmented Greedy returns a candidate

assortment for this problem that we refer to as AugGreedy(C, k). This candidate assortment verifies

a key structural property that we will present in the next subsection.

We use the classical Greedy algorithm as a subroutine in our design of Augmented Greedy.

Greedy takes as input a set function g defined over a set of products P along with a scalar k,

and tries to find an assortment of size at most k that maximizes the set function g over the set

of products P. In particular, Greedy picks iteratively a product that provides the largest increase

in the objective value until reaching the cardinality k. By the discussion at the beginning of this

section, if g were monotone submodular, then Greedy would return a (1 − 1/e)-approximation to

the problem maxS⊆P,|S|≤k g(S). Below, we state the details of Greedy for completeness.

Greedy

1: Input: set function g, products P, cardinality k
2: ∆← ∅
3: while |∆| < k and P \∆ 6= ∅ do
4: Add to ∆ a product i ∈ P \∆ that maximizes g(∆ ∪ i)
5: end while
6: return ∆

With the details of Greedy in place, we can describe Augmented Greedy. Recall that the

products in N are indexed such that r1 ≥ r2 ≥ . . . ≥ rn. We consider the products in descending

order of revenues. For each i ∈ N , let Vi be the subset of products with revenues at least as

large as ri, i.e., Vi = {1, 2, . . . , i}. For each i ∈ N , we use Greedy to maximize the set function

S −→
∑

j∈C θj min(fj(S), ri) over the set of products Vi, subject to a cardinality constraint k. We

let ∆i be the assortment returned by Greedy. Augmented Greedy returns the assortment that

maximizes fC over all n candidates ∆i for i ∈ N . Here are the details of Augmented Greedy.

Augmented Greedy

1: Input: customer types C ⊆ M, cardinality k
2: for i = 1, 2, . . . , n do
3: Let Vi = {1, 2, . . . , i}
4: Use Greedy to get an approximate solution to

max
S⊆Vi,|S|≤k

∑
j∈C

θj min(fj(S), ri)

Let ∆i be the assortment returned by Greedy
5: end for
6: return AugGreedy(C, k) = argmaxi∈N {fC(∆i)}

10

4.2 Lower bound on the performance of Augmented Greedy algorithm

In this subsection, we present our key structural result that gives a guarantee on the expected

revenue of the assortment returned by Augmented Greedy. Consider a subset of customer types

C ⊆ M and an integer k. Let AugGreedy(C, k) be the assortment returned by Augmented Greedy.

We will show that this assortment provides a constant fraction of the optimal expected revenue from

a certain subset of customer types in C. To formally present our structural result, let us introduce

some definitions. Let S∗ be the optimal solution of CAP, and for each j ∈ M, let S∗j ⊆ S∗ be the

optimal assortment to offer to customer type j in CAP.

Definition 4.1. Consider a subset of products P ⊆ N . We say that customer type j is complete

with respect to P if and only if P ∩ S∗j = P ∩ S∗.

For a subset of customer types C ⊆ M and a subset of products P ⊆ N , we let CP denote the

set of all customer types in C that are complete with respect to P, i.e.,

CP = {j ∈ C : P ∩ S∗j = P ∩ S∗}.

In the next theorem, we present our main result in this section. We show that the subset of

products ∆ = AugGreedy(C, k) returned by Augmented Greedy gives an expected revenue fC(∆)

that is at least a constant fraction of fCP (P ∩ S∗) for any subset of products P ⊆ N such that

|P ∩ S∗| ≤ k. Note that fCP (P ∩ S∗) is the expected revenue that we obtain from the complete

customer types CP with the set of products P ∩ S∗.

Theorem 4.2. For any subset of customer types C ⊆ M and any subset of products P ⊆ N , let

CP be the set of complete customer types with respect to P. Let k ∈ N be such that |P ∩ S∗| ≤ k

and let ∆ = AugGreedy(C, k). Then, we have

fC(∆) ≥
(

1− 1

e

)
· fCP (P ∩ S∗).

To prove Theorem 4.2, we will use a key lemma, where we show that, for any i ∈ N and

j ∈ C, the set function S −→ min(fj(S), ri) is submodular on Vi. Recall that we say that a

set function g is submodular on Ω if for every A,B ⊆ Ω with A ⊆ B and every i ∈ Ω \B
we have that g(A ∪ {i}) − g(A) ≥ g(B ∪ {i}) − g(B). By our counterexample in Appendix B,

the set function S → fj(S) is not necessarily submodular on Vi. In contrast, the set function

S −→ min(fj(S), ri) turns out to be submodular on Vi. Throughout the paper, we will often use

the fact that fj is monotone increasing and subadditive, i.e., fj(A) ≤ fj(B) for any A ⊆ B ⊆ N
and fj(A ∪ B) ≤ fj(A) + fj(B) for any A,B ⊆ N . These two properties are straightforward to

show. For completeness, we provide their proofs in Appendix C.

Lemma 4.3. For each j ∈ C and i ∈ N , the set function S −→ min(fj(S), ri) is submodular on Vi.

We give the proof of Lemma 4.3 in Appendix D. Building on this lemma, we present the proof

of Theorem 4.2.

Proof of Theorem 4.2. Let p be the product with the smallest revenue in P ∩ S∗. Execute

Augmented Greedy with inputs C and k. Consider the p-th iteration of Augmented Greedy, i.e., the

11

iteration of the for loop corresponding to product p. In this iteration, we have Vp = {1, . . . , p}. Let

∆p ⊆ Vp be the assortment of products returned at this p-th iteration. Let us define the function

h such that, for all S ⊆ Vp, we have

h(S) =
∑
j∈C

θj min(fj(S), rp).

Multiplying submodular functions by positive constants and adding them up yields a

submodular function. Thus, by Lemma 4.3, h is submodular on Vp. Moreover, since fj is

monotone increasing, h is also monotone increasing. In this case, by Nemhauser et al. (1978),

the greedy algorithm provides a (1− 1/e)-approximate solution to the problem of maximizing h

subject to a cardinality constraint k. Recall that ∆p is the output of Greedy to the problem

of maximizing h subject to a cardinally k. Furthermore, noting that |P ∩ S∗| ≤ k, P ∩ S∗ is a

feasible solution to the problem of maximizing h subject to a cardinality k, in which case, we obtain

h(∆p) ≥ (1− 1
e) · h(P ∩ S∗). Therefore, we have

fC(∆) ≥ fC(∆p) =
∑
j∈C

θjfj(∆p) ≥
∑
j∈C

θj min(fj(∆p), rp) = h(∆p) ≥
(

1− 1

e

)
· h(P ∩ S∗).

For a complete customer type j ∈ CP , we know that P∩S∗ = P∩S∗j , which implies that p ∈ S∗j . By

a standard result for assortment optimization under the MNL model, a product is in the revenue-

maximizing assortment if and only if the revenue of the product is greater than or equal to the

optimal expected revenue of the assortment optimization problem. For completeness, we prove this

property in Appendix E. Thus, by this property, for all j ∈ CP , we have

rp ≥

∑
i∈S∗j

rivij

1 +
∑

i∈S∗j
vij

= fj(S
∗) ≥ fj(P ∩ S∗),

where the equality follows by the definition of S∗j . Therefore, we get

h(P∩S∗) =
∑
j∈C

θj min(fj(P∩S∗), rp) ≥
∑
j∈CP

θj min(fj(P∩S∗), rp) =
∑
j∈CP

θjfj(P∩S∗) = fC
P

(P∩S∗),

which concludes the proof.

In Augmented Greedy, rather than trying to find a maximizer of the function
∑

j∈C fj(S) over

the ground set Vi subject to a cardinality constraint of k, we try to find a maximizer of the

function
∑

j∈C θj min(fj(S), ri). Note that the advantage of working with the latter problem is

that the function S →
∑

j∈C θj min(fj(S), ri) is submodular on Vi. However, due the fact that

the latter problem tries to find a maximizer of
∑

j∈C θj min(fj(S), ri), rather than
∑

j∈C θjfj(S),

Augmented Greedy recovers 1−1/e fraction of the optimal expected revenue only from the complete

customer types, as indicated in Theorem 4.2. As a result, Theorem 4.2 does not immediately yield

an approximation guarantee for CAP, but this theorem will form an important building block when

we design an approximation algorithm for CAP.

12

5 Approximation algorithm

In this section, we give approximation algorithms for CAP. We start by considering the case where

all customer types arrive with equal probability, and show that the output of Augmented Greedy

is a Ω(1/m)-approximate solution to CAP. Following this result, we consider the more general case

where different customer types have different arrival probabilities. We build on our result with

equal arrival probabilities to give a Ω(1/ logm)-approximation algorithm to CAP.

5.1 Homogenous arrival probabilities

We consider the case where the arrival probabilities {θj : j ∈M} are equal, i.e., θj = 1
m for

all j ∈M. We show that if we execute Augmented Greedy with the input M for the customer

types and K for the cardinality constraint, then we immediately get a Ω(1/ logm)-approximation

to CAP, despite the fact that Augmented Greedy with the input M for the set of customer types

focuses on the objective function
∑

j∈M θj min(fj(S), ri) for each i ∈ N .

Theorem 5.1. Suppose that θj = 1
m for all j ∈M. Let zCAP be the optimal objective value of CAP

and ∆ = AugGreedy(M,K). Then, we have

f(∆) = Ω(1/ logm) · zCAP.

Proof. Let S∗ be the optimal solution of CAP. For each j ∈ M, let S∗j ⊆ S∗ be the optimal

assortment to offer to customer type j in CAP. We use log x to denote the logarithm of x in base 2.

We partition the customer types as follows. For each ` = 1, . . . , dlogme+ 1, we set

G` =
{
j ∈M

∣∣∣ m · zCAP
2`

< fj(S
∗) ≤ m · zCAP

2`−1

}
.

To capture the remaining customer types, we set

GL =
{
j ∈M

∣∣∣ fj(S∗) ≤ m · zCAP
2dlogme+1

}
.

Because zCAP = 1
m

∑
j∈M fj(S

∗), we have fj(S
∗) ≤ m · zCAP, which implies that the partitions

{G` : ` = 1, . . . , dlogme+ 1} along with GL collectively include all customer types. Noting the

objective function of CAP, we have

zCAP = f(S∗) =
1

m
·
dlogme+1∑

`=1

∑
j∈G`

fj(S
∗) +

1

m
·
∑
j∈GL

fj(S
∗).

Focusing on the customer types in GL and using the fact that |GL| ≤ m, we get

1

m

∑
j∈GL

fj(S
∗) ≤ 1

m

∑
j∈GL

m · zCAP
2dlogme+1

≤ 1

m
· |GL| ·

m · zCAP
2m

≤ zCAP
2

.

13

Because the total expected revenue from all customer types is zCAP, we get

1

m
·
dlogme+1∑

`=1

∑
j∈G`

fj(S
∗) ≥ zCAP

2
,

so there exists a group of customers `∗ ∈ {1, 2, . . . , dlogme+ 1} such that

1

m

∑
j∈G`∗

fj(S
∗) = Ω(1/ logm) · zCAP. (5.1)

For notational brevity, let δ = m·zCAP
2`∗

so that δ < fj(S
∗) ≤ 2δ for all j ∈ G`∗ . Let p be the product

with the smallest revenue, but no smaller than δ, i.e.,

p = arg min
i∈N

{ri : ri ≥ δ} .

When executing Augmented Greedy with inputs M and K, consider the p-th iteration of this

algorithm, i.e., the iteration of the for loop corresponding to product p. In this iteration, we have

Vp = {1, . . . , p}. Let ∆p ⊆ Vp the solution returned at this p-th iteration. The solution ∆p is

obtained by using Greedy on the function S → 1
m

∑
j∈Mmin(fj(S), rp) over the ground set Vp

with cardinality constraint K. Because this function is submodular over Vp by Lemma 4.3, ∆p

is a (1− 1/e)-approximate solution to the problem maxS⊆Vp,|S|≤K
1
m

∑
j∈Mmin(fj(S), rp). On the

other hand, since |S∗| ≤ K, we have |Vp ∩S∗| ≤ K, so Vp ∩S∗ is only a feasible solution to the last

problem. In this case, we obtain

f(∆) ≥ f(∆p) =
1

m

∑
j∈M

fj(∆p) ≥
1

m

∑
j∈M

min(fj(∆p), rp) ≥
(

1− 1

e

)
1

m

∑
j∈M

min(fj(Vp ∩ S∗), rp).

As discussed in the proof of Theorem 4.2, considering the assortment optimization problem under

the MNL model, in Appendix E, we show that a product is in the revenue-maximizing assortment

if and only if the revenue of the product is greater than or equal to the optimal expected revenue

of the assortment optimization problem. Thus, we have S∗j = {i ∈ S∗ : ri ≥ fj(S
∗)}. Note that

fj(S
∗) ≥ δ for each j ∈ G`∗ , so S∗j ⊆ {i ∈ N : ri ≥ δ} = Vp, where the last equality follows from

the definition of product p. Therefore, using the fact that S∗j ⊆ S∗, we have S∗j ⊆ Vp ∩ S∗, which

implies that fj(Vp ∩ S∗) = fj(S
∗). Hence, the chain of inequalities above yields

f(∆) ≥
(

1− 1

e

)
1

m

∑
j∈G`∗

min(fj(S
∗), rp).

For each j ∈ G`∗ , we have min(fj(S
∗), rp) ≥ δ ≥ fj(S

∗)/2. Thus, by the inequality above, we get

f(∆) ≥ (1− 1
e) 1
m

∑
j∈G`∗

fj(S
∗)/2 = Ω(1/ logm) · zCAP, where the equality is by (5.1).

5.2 Heterogenous arrival probabilities

In this section, we present our main algorithm and show that it gives a Ω(1/ logm)-approximation

to CAP in the general case where different customer types have different arrival probabilities. Our

14

approximation algorithm is based on using our Augmented Greedy algorithm several times, where

at each time, we compute an assortment of a certain size for a certain subset of customer types,

and then, we combine these assortments using a dynamic program that can be solved in polynomial

time. More specifically, we define several groups of customer types based on the values of their

arrival probabilities {θj : j ∈M}. We use a tree structure to describe these groups. For each group

of customer types and a given assortment size, we compute an assortment of products of this size

using Augmented Greedy. Finally, we combine all the solutions together using a tractable dynamic

program to get the assortment that gives Ω(1/ logm)-approximation to CAP. The performance

guarantee for the algorithm exploits Theorem 5.1, which gives a Ω(1/ logm)-approximation to CAP

in the case of equal arrival probabilities, as well as the structural result of Augmented Greedy in

Theorem 4.2. Below, we describe the steps of our algorithm.

Step 1. (Round arrival probabilities) Consider j ∈M and let ` ∈ Z such that

1

m`+1
≤ θj <

1

m`
.

We round the arrival probablity θj to θ̂j =
bθjm`+1c
m`+1 . Because θjm

`+1 ≥ 1, we have bθjm`+1c ≥
1
2 θjm

`+1, so
θj
2 ≤ θ̂j ≤ θj . Thus, we lose at most a factor 2 by this rounding. We will focus on

giving a Ω(1/ logm)-approximation algorithm for CAP with the arrival probabilities {θ̂j : j ∈M}.
For ease of notation, we simply use {θj : j ∈M} to denote the rounded values in the rest.

Step 2. (Construct a tree of customer types) For ` ∈ Z, we define the group of customer types

M(`) =

{
j ∈M

∣∣∣ 1

m`+1
≤ θj <

1

m`

}
.

The customer types M are given by the union of M(`) for ` ∈ Z. There are at most m of the

subsets {M(`) : ` ∈ Z} that are non-empty because |M| = m. We partition the customer typesM
into non-empty customer groups of the form {M(`) : ` ∈ Z}, i.e.,

M = G1 ∪G2 ∪ . . . ∪GL,

where, for each i ∈ {1, . . . , L}, we have Gi =M(`i) for some `i ∈ Z and Gi is non-empty. We index

the customer groups such that `1 > `2 > . . . > `L. Note that, if i < i′ then `i > `i′ , so for any

p ∈ Gi and any q ∈ Gi′ , we have θp < θq. In particular, customer types in G1 have the smallest

values of θj and customer types in GL have the highest values of θj among all customer types.

Based on this order, we construct a tree T as follows. At the root of T , we split the customer

types into two subsets, the left subtree contains {G1, . . . , GbL/2c} and the right subtree contains

{GbL/2c+1, . . . , GL}. Similarly, at each node, we keep splitting the group of customer types into two

subsets such that half of the groups go the left subtree and the other half go to the right one until

we arrive to the leaves, where each leaf of T contains a unique group. In Figure 1, we show the tree

resulting from this procedure. Note that at each split, the customer types of the left subtree have

smaller values of θj than the customer types of the right subtree. Therefore, the leaves of T from

left to right are in the order G1, . . . , GL. The depth of T is O(logL), which is at most O(logm),

since the number of non-empty groups L is smaller than m. For each node in T , we associate a

15

Figure 1: Tree of customer types T

subtree that includes all descendant of that node as well as the node itself. Let L denote the set of

all these subtrees. In Figure 1, the dashed boxes show two subtrees in L corresponding to nodes a

and b. For each subtree T ∈ L, let CT denote the set of customer types that belong to the groups

in the leaves of T . For instance, in Figure 1, if we denote by T the subtree that corresponds to

node a, then CT is the set of customer types that are in the groups {G1, G2, G3, G4}.

Step 3. (Execute Augmented Greedy) Recall that K is the the bound on the number of products

that we can offer in CAP. For each subtree T ∈ L and each k = 1, . . . ,K, we use Augmented

Greedy to compute the assortment

∆Tk = AugGreedy(CT , k),

and denote its corresponding expected revenue by

RTk = fCT (∆Tk).

Step 4. (Synthesize a solution) Finally, we solve the maximization problem

max
∑
T∈L

K∑
k=1

RTk · xTk (5.2)

st
∑
T∈L

K∑
k=1

k · xTk ≤ K

K∑
k=1

(xTk + xT ′k) ≤ 1, ∀T ∈ L, T ′ ⊆ T, T ′ 6= T

xTk ∈ {0, 1}, ∀T ∈ L, k = 1, . . . ,K.

In the second constraint, we write T ′ ⊆ T if all the nodes of the subtree T ′ belong to the subtree

T , i.e., the root of T ′ is a node in T . In problem (5.2), we choose a collection of subtrees to maximize

the total expected revenue. The first constraint ensures that the total number of products in the

assortment ∆Tk for the chosen subtrees does not exceed K. The second constraint ensures that the

chosen subtrees are disjoint. Furthermore, for each chosen subtree T , there exists only one capacity

16

value k such that xTk = 1. We can solve problem (5.2) efficiently by using a dynamic program.

Dynamic programming formulation for problem (5.2). Let g(T, k) be the optimal objective

value of problem (5.2) when we can choose only assortments ∆T ′k for the subtrees T ′ ⊆ T and

the total number of products in the chosen assortments cannot exceed k. We compute the value

functions {g(T, k) : T ∈ L, k = 1, . . . ,K} as follows. In the boundary condition, if T is a leaf, then

we set g(T, k) = RTk. Otherwise, we set

g(T, k) = max

{
RTk, max

k1+k2=k
{g(T1, k1) + g(T2, k2)}

}
,

where T1 and T2 are respectively the left and right subtrees of T . The optimal objective value of

problem (5.2) is given by g(T ,K).

Letting {x∗Tk : T ∈ L, k = 1, . . . ,K} be the optimal solution of problem (5.2), our candidate

solution for CAP is

∆ =

{ ⋃
T∈L, k=1,...,K

∆Tk : x∗Tk = 1

}
. (5.3)

In the next theorem, we show that the solution in (5.3) is a Ω(1/ logm)-approximation to CAP.

Theorem 5.2. Let zCAP be the optimal objective value of CAP and ∆ be the assortment in (5.3).

Then, we have

f(∆) = Ω(1/ logm) · zCAP.

We give the proof of Theorem 5.2 in Appendix F. The outline of the proof is as follows. First,

the customer types located at a single leaf of the tree have the same arrival probabilities, so we use

an argument similar to the one in the proof of Theorem 5.1 to show that Augmented Greedy, when

applied to the these customer types, obtains Ω(1/ logm) fraction of the optimal expected revenue

from these customer types. Second, using Theorem 4.2, we show that instead of offering some

subset of products to the customers in a tree, we can partition the subset of products into two and

offer the products in each partition separately to the customers in the left and right subtrees, while

incurring a loss in the expected revenue of 1 − 1/ logm. Because the depth of the tree is at most

logm, the total loss in this partitioning scheme is bounded by (1 − 1
logm)logm which is equivalent

to 1/e, for large m. Joining the two parts of the argument ultimately gives the desired guarantee.

6 Fully polynomial-time approximation scheme

We develop an FPTAS for CAP for the case where the number of customer types m is constant. In

particular, for any desired accuracy δ > 0, we design a polynomial-time algorithm that outputs an

assortment S such that f(S) ≥ (1− δ) · zCAP. The idea behind our FPTAS is to guess the optimal

expected revenue from each customer type. Once we guess the optimal expected revenue from each

customer type, we solve a dynamic program to check whether there exists an assortment to pick

in the first stage that allow us to achieve the guesses for the optimal expected revenue from each

customer type. By trying guesses over a geometric grid and choosing the best achievable guess, we

obtain an approximate solution with the desired accuracy.

Let S be the assortment that we pick in the first stage in CAP. There exists an assortment

Sj ⊆ S that provides an expected revenue of tj or more from customer type j if and only if there

17

exists an assortment Sj ⊆ S such that ∑
i∈Sj

ri vij

1 +
∑

i∈Sj
vij
≥ tj .

The inequality above is equivalent to
∑

i∈Sj
vij (ri − tj) ≥ tj . Thus, there exists an assortment

Sj ⊆ S that provides an expected revenue of tj or more from customer type j if and only if

there exists an assortment Sj ⊆ S such that
∑

i∈Sj
vij (ri − tj) ≥ tj . There exists an assortment

Sj ⊆ S that satisfies the last inequality if and only if maxSj⊆S
{∑

i∈Sj
vij (ri− tj)

}
≥ tj . In the last

maximization problem, it is optimal to include each product i ∈ S in the solution Sj if ri − tj ≥ 0.

Thus, the optimal objective value of the last maximization problem is
∑

i∈S vij (ri − tj)+. Thus,

the discussion in this paragraph establishes that if we pick the assortment S in the first stage in

CAP, then we can obtain an expected revenue of tj or more from customer type j if and only if∑
i∈S

vij (ri − tj)+ ≥ tj .

Thus, by the discussion so far in this section, for each customer type j, we have fj(S) ≥ tj if

and only if
∑

i∈S vij (ri − tj)+ ≥ tj . Using this observation, our FPTAS is based on an alternative

formulation for CAP. In the alternative formulation, we guess lower bounds on the optimal expected

revenue from each customer type. Using these lower bounds on the optimal expected revenue

for each customer type, we obtain a lower bound on the optimal objective value of CAP. In our

alternative formulation, we maximize this latter lower bound on the optimal objective value of

CAP. In particular, let t = (t1, . . . , tm) be the vector of lower bound guesses for the optimal

expected revenue from each of the m customer types. Using S ⊆ N to denote the assortment that

we pick in the first stage in CAP, consider the problem

max
∑
j∈M

θj tj (6.1)

st
∑
i∈S

vij (ri − tj)+ ≥ tj ∀ j ∈M

|S| ≤ K
S ⊆ N , t ∈ Rm+ ,

where the decision variables are S and t = (t1, . . . , tm). The first constraint ensures that if we pick

the assortment S in the first stage, then the optimal total expected revenue from customer type j

is lower bounded by tj . The second constraint ensures that the assortment that we pick in the first

stage includes no more than K products. In the objective function,
∑

j∈M θj tj is a lower bound on

the optimal expected revenue from all customer types and we maximize this lower bound. We can

show that if (S∗, t∗) is an optimal solution to problem (6.1), then S∗ is also an optimal solution to

CAP. We do not pursue showing this result, because CAP is NP-hard, which implies the same for

the problem above. We focus on approximating problem (6.1).

Our approximate version of problem (6.1) is based on two observations. First, instead of using

lower bounded guesses on the optimal expected revenues that take values over real numbers, we

use guesses that take values over a geometric grid. To construct our geometric grid, let rmax =

18

max{ri : i ∈ N} and rmin = min{ri : i ∈ N} be the largest and smallest product revenues and

vmin = min{vij : i ∈ N , j ∈ M, vij > 0} be the smallest non-zero preference weight. In

this case, the expected revenue from any customer type lies in [rmin
vmin

1+vmin
, rmax] ∪ {0}. Letting

Bmin = rmin
vmin

1+vmin
and Bmax = rmax for notational brevity, for a fixed accuracy parameter ε > 0,

we consider the grid points on the geometric grid

Grid =
{

(1 + ε)k : k =
⌊ logBmin

log(1 + ε)

⌋
, . . . ,

⌈ logBmax

log(1 + ε)

⌉}
∪ {0}.

Second, we modify the first constraint in problem (6.1) so that we can solve this problem through

a dynamic program. We write the first constraint equivalently as
∑

i∈S
vij (ri−tj)+

tj
· nε ≥

n
ε . We

consider an approximate version of the constraint given by

∑
i∈S

⌈vij (ri − tj)+

tj
· n
ε

⌉
≥
⌊n
ε

⌋
.

The constraint above is a relaxation of the first constraint in problem (6.1), because any (S, tj)

pair that satisfies the first constraint in problem (6.1) also satisfies the constraint above. Letting

σij(tj) = dvij (ri−tj)+

tj
· nε e for notational brevity, we write the constraint above as

∑
i∈S σij(tj) ≥ b

n
ε c.

Note that σij(tj) takes on integer values.

Replacing the first constraint in problem (6.1) with
∑

i∈S σij(tj) ≥ b
n
ε c and focusing on the

lower bound guesses t = (t1, . . . , tm) that take values in Gridm, we consider an approximate version

of problem (6.1) given by

max
∑
j∈M

θj tj (6.2)

st
∑
i∈S

σij(tj) ≥
⌊n
ε

⌋
∀ j ∈M

|S| ≤ K
S ⊆ N , t ∈ Gridm.

Our FPTAS is based on solving the problem above by using a dynamic program. For each set of

lower bound guesses t, we can check whether there exists an assortment S ⊆ N that satisfies the

first two constraints in problem (6.2) by solving the dynamic program

Vi(q1, . . . , qm, `; t)= max
{
Vi+1(q1 + σi1(t1), . . . , qm + σim(tm), `+ 1; t), Vi+1(q1, . . . , qm, `; t)

}
, (6.3)

with the boundary condition that

Vn+1(q1, . . . , qm, `; t) =

0 if ` ≤ K and qj ≥
⌊n
ε

⌋
for all j ∈M

−∞ otherwise.
(6.4)

The two terms in the max operator in (6.3) correspond to including and not including

product i in the assortment S in problem (6.2). The state variable qj accumulates the quantities

{σij(tj) : i ∈ N} for the products included in the assortment S, whereas the state variable ` tracks

19

the number of products in the assortment S. In the boundary condition, if qj ≥ bnε c for all j ∈M
and ` ≤ K, then there exists an assortment S with |S| ≤ K such that

∑
i∈N σij(tj) ≥ b

n
ε c. Noting

that σij(tj) is an integer, all components of the state variable take on integer values.

Observe that there are O
(log(Bmax/Bmin)

ε

)
points in Grid, yielding a total of O

(logm(Bmax/Bmin)
εm

)
lower bound guesses t ∈ Gridm. In the next theorem, accounting for the running time to solve

the dynamic program in (6.3) for each t ∈ Gridm so that we can check whether there exists an

assortment S that satisfies the two constraints in problem (6.2), along with tracking the error

introduced by using a geometric grid for the lower bound guesses, we give an FPTAS for CAP for

constant m. We give the proof of the theorem in Appendix G.

Theorem 6.1. There exists an algorithm, where, for any ε ∈ (0, 1), the algorithm returns a

(1− ε)-approximate solution to CAP in running time O
(

logm(Bmax
Bmin

) n
m+2

ε2m

)
, which is polynomial

in the input size and ε for constant m.

Another useful aspect of our FPTAS is that we can build on the approach for developing our

FPTAS to give an integer programming formulation for CAP. The running time for our FPTAS can

get excessive when the number of customer types is large. The integer programming formulation

we give can be interpreted as a practically appealing version of our FPTAS.

Integer programming formulation. In our integer programming formulation, we build on

problem (6.1), but focus on the lower bound guesses that take place over the geometric grid. For

notational brevity, we denote the elements of the grid by {τ1, . . . , τL} with L = |Grid|. We have

two sets of binary decision variables. The decision variable xi takes value 1 if we pick product i to

include in the assortment in the first stage of CAP, whereas the decision variable zj` takes value 1 if

we chose the `-th point in Grid as the lower bound on the optimal expected revenue from customer

type j. In this case, we consider the integer program

max
∑
j∈M

θj

L∑
`=1

τ ` zj` (6.5)

st
∑
i∈N

vij (ri − τ `)+ xi ≥ τ ` zj` ∀ j ∈M, ` = 1, . . . , L∑
i∈N

xi ≤ K

L∑
`=1

zj` = 1 ∀ j ∈M

xi, zj` ∈ {0, 1} ∀ i ∈ N , j ∈M, ` = 1, . . . , L.

In the problem above, the first two constraints are analogues of the first two constraints in

problem (6.1). The right side of the first constraint above takes value τ ` if we choose the `-th point

in Grid as the lower bound on the optimal expected revenue from customer type j. In this case,

if the assortment that we pick in the first stage of CAP is characterized by the decision variables

{xi : i ∈ N}, then we know that the optimal expected revenue from customer type j is lower

bounded by τ ` if and only if
∑

i∈N vij (ri−τ `)+ xi ≥ τ `, which is the condition imposed by the first

constraint. The second constraint limits the size of the assortment that we pick in the first stage

20

of CAP to K. The third constraint ensures that we pick one lower bound on the optimal expected

revenue from each customer type. In the objective function, we maximize the lower bound on the

optimal expected revenue over all customer types.

The first constraint in (6.5) is driven by the same idea we used in our FPTAS. In Appendix H,

noting that ε is the accuracy parameter for Grid, we show that if {x∗i : i ∈ N} is an optimal solution

to problem (6.5), then the assortment S∗ = {i ∈ N : x∗i = 1} is a (1− ε)-approximation to

CAP and we can obtain an upper bound on the optimal objective value of CAP by using problem

(6.5). Our integer program returns a (1 − ε)-approximate solution, but in the literature, integer

programming formulations under the MNL model with multiple customer types require big-M

constraints (Bront et al., 2009). In contrast, problem (6.5) does not require such constraints.

7 Extensions to a knapsack constraint

In CAP, we have a cardinality constraint on the assortment picked in the first stage. In this section,

we extend our algorithmic results to give Ω(1/ logm)-approximation to CAP under a knapsack

constraint. In particular, we consider the setting where product i uses wi units of capacity. The

total capacity consumption of the products that we pick in the first stage of CAP is bounded

by C. Thus, the first-stage assortment S should verify the knapsack constraint
∑

i∈S wi ≤ C.

Letting W (S) =
∑

i∈S wi for notational brevity, we write the knapsack constraint as W (S) ≤ C,

so Customized Assortment Problem with a Knapsack Constraint (CAP-Knap) is given by

zKnap = max
S⊆N ,W (S)≤C

∑
j∈M

θjfj(S). (CAP-Knap)

The goal of this section is to show that the algorithmic framework we developed for

giving Ω(1/ logm)-approximation to CAP can be extended, modulo some modifications, to give

Ω(1/ logm)-approximation to CAP-Knap. We use a slightly modified version of Augmented

Greedy, where instead of using the classical greedy algorithm as a subroutine for maximizing a

monotone submodular set function subject to a cardinality constraint, we use the greedy algorithm

given by Sviridenko (2004) for maximizing a monotone submodular set function subject to a

knapsack constraint. In particular, Sviridenko (2004) shows that a greedy algorithm gives a

(1− 1
e)-approximate solution for the problem maxS⊆N ,W (S)≤C g(S), when the set function g is

monotone submodular. At each iteration, the greedy algorithm adds a product i to the current

solution S such that the product maximizes (g(S∪{i})−g(S))/wi and does not violate the knapsack

constraint. In this way, the algorithm prioritizes products that yield the largest increase in the

objective function relative to the capacity consumption. In his analysis, Sviridenko (2004) shows

that the iterations of the greedy algorithm actually generate a (1− 1
e)-approximate solution for the

problem maxS⊆N ,W (S)≤q g(S) for all q ∈ [0, C]. Moreover, the collection of (1− 1
e)-approximate

solutions for the problem maxS⊆N ,W (S)≤q g(S) for all q ∈ [0, C] includes O(n4) solutions. This

property will be useful in our analysis. We proceed to discussing how we incorporate the greedy

algorithm by Sviridenko (2004) to extend our algorithmic framework for a knapsack constraint.

Augmented Greedy for CAP-Knap. Recall that we index the products so that r1 ≥ r2 ≥ . . . ≥ rn
and Vi = {1, 2, . . . , i} is the subset of products with revenues greater than or equal to ri. Consider

a subset of customer types C and a knapsack capacity q ∈ [0, C]. For each i ∈ N , we use the greedy

21

algorithm in Sviridenko (2004) to maximize the set function S −→
∑

j∈C θj min(fj(S), ri) over the

set of products Vi subject to the knapsack constraint W (S) ≤ q. Let ∆i denote the assortment

returned by this algorithm. Augmented Greedy returns the assortment that maximizes fC over all

the n candidates {∆i : i ∈ N}. We summarize Augmented Greedy for CAP-Knap below.

Augmented Greedy for CAP-Knap

1: Input: customer types C ⊆ M, capacity q
2: for i = 1, 2, . . . , n do
3: Let Vi = {1, 2, . . . , i}
4: Use the greedy algorithm in Sviridenko (2004) to get an approximate solution to

max
S⊆Vi,W (S)≤q

∑
j∈C

θj min(fj(S), ri) (7.1)

Let ∆i be the assortment returned the greedy algorithm
5: end for
6: return AugGreedy(C, q) = argmaxi∈N {fC(∆i)}

Performance guarantees of Augmented Greedy. By Lemma 4.3, for each j ∈ C and i ∈ N , the

set function S −→ min(fj(S), ri) is submodular on Vi. Moreover, this set function is monotone. Thus,

the greedy algorithm in Sviridenko (2004) provides a (1− 1
e)-approximate solution for problem (7.1).

This is the analogue of the approximation guarantee we had in the case with a cardinality constraint,

where we use the classical greedy algorithm to maximize the set function S −→
∑

j∈C θj min(fj(S), ri)

over the ground set Vi subject to a cardinality constraint. Using Augmented Greedy for CAP-Knap,

Theorem 4.2 goes through with minor modifications under a knapsack constraint. In particular,

this theorem takes the following form under a knapsack constraint.

• For any subset of customer types C ⊆ M and any subset of products P ⊆ N , let CP be the

set of complete customer types with respect to P. Let q ≥ 0 be such that W (P ∩ S∗) ≤ q

and let ∆ = AugGreedy(C, q). Then, we have

fC(∆) ≥
(

1− 1

e

)
· fCP (P ∩ S∗).

As in Section 5.1, consider the case where the arrival probabilities for all customer types are

the same, i.e., θj = 1
m for all j ∈ M. We can follow the proof of Theorem 5.1 line by line to show

that if we execute Augmented Greedy for CAP-Knap with the inputs M for the customer types

and C for the capacity, then we get a Ω(1/ logm)-approximation to CAP-Knap. In the rest of this

section, we discuss how to modify our algorithm in Section 5.2 to get a Ω(1/ logm)-approximation

for CAP-Knap when the arrival probabilities for different customer types are different.

Approximation algorithm for heterogenous arrival probabilities. Our approach follows

the same four steps in Section 5.2. The critical difference occurs when solving a variant of the

integer program in (5.2). Below are the steps that we follow under a knapsack constraint.

Step 1. (Round arrival probabilities) We round the arrival probabilities of the customer types

{θj : j ∈M} in the same way we do in Step 1 of Section 5.2.

22

Step 2. (Construct a tree of customer types) We construct the tree L of customer types in the

same way we do in Step 2 of Section 5.2. For each subtree T ∈ L, we continue using CT to denote

the set of customer types that belong to the groups in the leaves of T .

Step 3. (Execute Augmented Greedy) For each subtree T ∈ L, we execute Augmented Greedy for

CAP-Knap with the inputs CT for the set of customer types and C for the capacity.

As we execute Augmented Greedy for CAP-Knap with the inputs CT and C, we use the greedy

algorithm in Sviridenko (2004) to get a (1− 1/e)-approximate solution to the problem

max
S⊆Vi,W (S)≤C

∑
j∈C

θj min(fj(S), ri).

By the discussion at the beginning of this section, during the course of its iterations, the greedy

algorithm generates a (1 − 1
e)-approximate solution to the problem maxS⊆S,W (S)≤q g(S) for all

q ∈ [0, C]. Moreover, the collection of these (1− 1
e)-approximate solutions for the problem

maxS⊆S,W (S)≤q g(S) for all q ∈ [0, C] includes O(n4) solutions. Therefore, if we execute Augmented

Greedy for CAP-Knap once with the set customer types CT and capacity C, then we obtain

the output of the Augmented greedy with the set of customer types CT and capacity q for

all q ∈ [0, C]. Moreover, since we use the greedy algorithm in Sviridenko (2004) n times

during the execution of Augmented Greedy, the collection of outputs to Augmented Greedy

{AugGreedy(CT , q) : q ∈ [0, C]} includes at most O(n5) solutions. Consequently, we denote the

collection of solutions {AugGreedy(CT , q) : q ∈ [0, C]} as{
AugGreedy(CT , q) : q ∈ FT

}
,

where FT is a finite set of capacity levels with |FT | = O(n5). For each subtree T ∈ L and each

capacity level q ∈ FT , define the solution

∆Tq = AugGreedy(CT , q),

and denote its corresponding expected revenue by RTq = fCT (∆Tq).

Step 4. (Synthesize a solution) Finally, we solve a variant of problem (5.2) by replacing the

cardinality constraint with a knapsack constraint. This variant is given by

max
∑
T∈L

∑
q∈FT

RTq · xTq (7.2)

st
∑
T∈L

∑
q∈FT

q · xTq ≤ C∑
q∈FT

xTq +
∑
q∈FT ′

xT ′q ≤ 1 ∀T ∈ L, T ′ ⊆ T, T ′ 6= T

xTq ∈ {0, 1} ∀T ∈ L, q ∈ FT .

The two main ingredients of the proof of Theorem 5.2 are Theorems 4.2 and 5.1, which

extend to the case with a knapsack constraint. Therefore, following the same outline in the

proof of Theorem 5.2, we can show that if {x∗Tk : T ∈ L, q ∈ FT } is an optimal solution to

23

problem (7.2), then the solution ∆ =
{⋃

T∈L, q∈FT
∆Tq : x∗Tq = 1

}
is a Ω(1/ logm)-approximation

to CAP-Knap. However, noting that the first constraint in problem (7.2) is of knapsack type, it

is straightforward to show that problem (7.2) is NP-hard, preventing us from finding an optimal

solution to this problem in polynomial time. In Appendix I, we give a dynamic program that

provides a (1−δ)-approximation to problem (7.2) for any δ > 0 with running time that is polynomial

in input size and 1/δ. Therefore, we can obtain a solution to problem (7.2) in polynomial time, while

incurring a constant factor loss in the optimal expected revenue. In this case, for any δ ∈ (0, 1),

let {x̃Tq : T ∈ L, q ∈ FT } be a (1 − δ)-approximate solution to problem (7.2). The solution

∆ =
{⋃

T∈L, q∈FT
∆Tq : x̃Tq = 1

}
is a Ω(1/ logm)-approximation to CAP-Knap.

8 Computational study: Value of customization

We use a dataset from Expedia, as well as synthetically generated datasets, to demonstrate the

value of customization, when compared to offering the same assortment to all customers.

8.1 Expedia data

We use a dataset provided by Expedia as a part of a Kaggle competition (Kaggle, 2013).

Description of the dataset. The dataset gives the results of search queries for hotels on

Expedia. The rows of the dataset correspond to different hotels that are displayed in different

search queries by different customers. The columns give information on the characteristics of the

displayed hotels in a search query, the characteristics of the customer making the search query, and

the booking decision of the customer. In Table 1, we demonstrate the structure of the dataset by

giving a small excerpt that includes five rows from the dataset. There are two queries in the excerpt.

The customer making the first booking query was shown three hotels, whereas the customer making

the second booking query was shown two hotels. Each row in the data corresponds to a displayed

hotel in a search query. The columns in the dataset have the following interpretation: The first

column is the unique code of the search query in which the hotel was displayed. Using this column,

we have access to all the displayed hotels in a search query, providing the set of hotels among which

the customer needed to make a choice. The second column gives the name of the hotel, but we do

not use this information, The following eight columns show the attributes of the displayed hotel:

Star rating, review score, an indicator showing whether the hotel is a part of a chain, location

score, accessibility score, average historical price, displayed price for the current customer, and an

indicator showing whether the hotel was on promotion. The last four columns give information

about the characteristics of the customer making the search query: An indicator showing whether

the customer booked early, the number of adults in the intended booking, the number of children in

the intended booking, and lastly, an indicator of whether the customer is making a Saturday night

booking. These four columns will be useful to define our customer types. A booking is classified as

an early booking as long as it is made more than a week before the night of stay. The last column

in the dataset is an indicator of whether the customer booked the hotel in the search query. This

corresponds to the purchase decision of the customer. A customer can book at most one hotel or

leave without making any booking. For example, the first customer in the table booked the second

displayed hotel, whereas the second customer did not book any hotels.

24

Qry. Hotel Rvw. Loc. Acc. Past Curr. No No
No Name Star Scr. Chain? Scor. Scor. Price Price Prom? Early? Adlt. Chld. Sat? Booked?

1 SGE 4 5.8 Y 8.3 6.2 140 116 Y Y 2 2 Y N
1 PSC 5 9.0 N 7.8 9.9 146 179 N Y 2 2 Y Y
1 MQU 3 7.3 N 5.2 6.6 253 223 N Y 2 2 Y N
2 UCA 5 6.6 N 9.6 6.4 286 270 Y N 1 0 N N
2 OKB 2 9.9 N 8.0 5.8 228 245 N N 1 0 N N

Table 1: Excerpt from the Expedia dataset.
Rvw. Loc. Acc. Past Curr.

Star Scr. Chain? Scor. Scor. Price Price Prom?
β0j β1j β2j β3j β4j β5j β6j β7j β8j

-2.45 0.49 0.15 0.01 -0.26 0.60 -0.05 -1.69 0.12

Table 2: Example of fitted MNL parameters for customer type 3.

We preprocessed the dataset to remove missing and uninterpretable values by using the same

approach in Gao et al. (2020). For booking queries for multiple nights, the price was sometimes

quoted for the whole duration of the stay and was sometimes quoted on a per night basis. It was not

possible to distinguish in the dataset which approach is used for which booking queries. To avoid

ambiguity, we dropped all booking queries for multiple nights of stay, focusing only on single-night

queries. The resulting dataset contains 595,965 rows, representing 34,561 queries.

Customer types and preference weights. We define 16 types of customers based on the

following four criteria: Whether the customer makes an early booking request, whether the customer

makes a booking request for a single adult, whether the customer makes a booking request that

includes children, and lastly, whether the customer makes a booking request for a Saturday night

stay. We use the 11-th to 14-th columns of the dataset to identify the type of the customer making

the booking query. These four binary criteria give us 24 = 16 customer types.

The customer did not make a booking in 83% of the search queries in the dataset. To enrich

our experiments, we generate three datasets with different fractions of the no-purchase outcome

by randomly dropping some rows that correspond to a no-purchase. In particular, we construct

a first dataset with 30% of the queries resulting in a no-purchase, a second dataset with 50% of

the queries resulting in a no-purchase, and a third one with 70% of the queries resulting in a no-

purchase. For each dataset, we use the eight features of the displayed hotels to estimate an MNL

model separately for each customer type. We fit the MNL model for each customer type using

maximum likelihood estimation. The preference weight a customer type of j associates with hotel

i has the form vij = exp(β0j +
∑8

`=1 β`jxi`), where xi` is the value of the `-th attribute of hotel i

and the parameters β`j for ` = 0, 1, . . . , 8 are estimated parameters for customer type j.

Considering the dataset with 30% of the search queries resulting in a no-purchase, in Table 2,

we show an example of the estimated parameters of the MNL model for customer type 3. Customer

type 3 corresponds to customers making an early booking query with more than one adult and no

children for a non-Saturday night stay. We had 1095 customers of this type making booking queries

in our dataset. For instance, we observe from the table that the coefficient for the review score is

0.15 which means that higher review score positively affects the preference weight that customer

type 3 attaches to a hotel, while the coefficient for the displayed price is −1.69, which implies that

higher price negatively affects the preference weight.

Experimental setup. To demonstrate the value of customization, we compare the expected

revenues obtained in the following two situations: (i) The platform identifies the type of the

25

customer and makes a customized assortment offer accordingly, (ii) the platform offers the same

assortment to all customers without paying attention to the customer type. By the discussion in

the previous two paragraphs, we can estimate the preference weight vij that a customer of each type

j attaches to each hotel i. We do not have access to the universe of hotels that we could potentially

show to the customer, so we consider the set of hotels that are displayed to a customer in her

search query as our universe. Let Ut be the set of hotels displayed to the customer making the t-th

search query in the dataset and jt be the type of the customer making the t-th search query. The

maximum and average size of Ut in our data are, respectively, 34 and 17. If the platform identifies

the type of the customer making the search query and makes a customized assortment offer, then

the assortment that maximizes the expected revenue from the customer making the t-th query is

Scust
t = arg max

S⊆Ut

∑
i∈S ri vi,jt

1 +
∑

i∈S vi,jt
,

where ri is the price of hotel i ∈ Ut in the t-th search query. Here, Scust
t stands for the optimal

customized assortment for the customer making the t-th query.

On the other hand, if the platform offers the same assortment to all customers without paying

attention to the customer type, then it can maximize the expected revenue from a customer visit

by solving an assortment optimization problem under a mixture of multinomial logit models. In

this problem, a customer making a search query is of type j with probability θj , where θj is the

fraction of type j customers in the dataset. Thus, the non-customized assortment that we offer to

the customer making the t-th search query is obtained by solving the problem

Snon-cust
t = arg max

S⊆Ut

∑
j∈M

θj

∑
i∈S ri vij

1 +
∑

i∈S vij
,

where M corresponds to the set of 16 customer types in our dataset. Here, Snon-cust
t stands for

the optimal non-customized assortment for the customer making the t-th search query. We can

formulate the problem above as an integer program with big-M constraints (Méndez-Dı́az et al.,

2014). We use Revj(S) =
∑

i∈S ri vij
1+

∑
i∈S vij

to denote the expected revenue that we obtain from a customer

of type j when we offer the assortment S to this customer. In this case, the percent improvement in

the expected revenue by offering a customized assortment to the customer making the t-th search

query, as opposed to a non-customized assortment, is given by

γt = 100 · Revjt(S
cust
t)− Revjt(S

non-cust
t)

Revjt(S
non-cust
t)

.

We group the queries in our datasets by customer types. For each customer type and each

dataset, we report the mean, 95-th percentile and maximum value of γt over all search queries

made by that customer type. Our results are given in Tables 3, 4 and 5. Each table corresponds to

one of our three datasets with different fractions of no-purchase outcome. The first column in our

tables indicates the customer type. The second column gives the number of queries that correspond

to the customer type. The last three columns show the statistics of γt.

Results. We observe from Tables 3, 4 and 5 that there is a significant number of instances where

the value of customization γt is high. There are customer types for which the value of customization

26

γt (%)

Cust. No Queries Mean 95% Max

1 354 0.11 0.46 5.26

2 499 2.08 7.17 24.75

3 1095 0.73 2.59 12.65

4 815 0.10 0.47 4.67

5 137 1.93 7.82 32.58

6 117 4.52 15.91 52.57

7 350 0.62 2.49 24.20

8 170 1.27 5.09 34.62

γt (%)

Cust. No Queries Mean 95% Max

9 324 1.16 5.42 22.17

10 405 1.03 4.01 11.16

11 1667 0.24 1.12 7.43

12 1319 0.08 0.39 6.58

13 151 1.20 4.09 8.97

14 143 3.55 14.07 51.57

15 459 0.96 4.49 25.62

16 349 0.30 1.10 35.42

Table 3: Value of customization in the Expedia dataset with 30% fraction of no-purchase queries.
γt (%)

Cust. No Queries Mean 95% Max

1 504 0.04 0.19 1.44

2 594 2.59 8.90 29.56

3 1611 0.43 1.84 9.97

4 1125 0.07 0.31 15.69

5 181 1.02 3.74 15.71

6 141 4.52 20.07 47.12

7 476 0.23 0.82 11.66

8 231 0.55 2.74 13.29

γt (%)

Cust. No Queries Mean 95% Max

9 481 0.44 2.17 10.08

10 548 0.25 1.04 3.20

11 2448 0.16 0.85 3.34

12 1866 0.04 0.15 4.68

13 206 0.52 2.62 5.93

14 182 1.99 9.58 36.32

15 647 0.30 1.38 15.53

16 454 0.10 0.58 2.76

Table 4: Value of customization in the Expedia dataset with 50% fraction of no-purchase queries.

can reach 15% on average. Over all search queries in the dataset, on average, customization achieves

an expected revenue increase of about 1%. We emphasize that even a few percentage point increase

in the expected revenue can translate into a substantial increase in the expected profit of a firm,

so even a few percentage points is significant in revenue management applications. The value

of customization is higher for the customer types with small market size, indicating that there is

significant value in customizing the offered assortment for these customer types rather than offering

them the same assortment that is driven by the majority of the market. Note that γt tends to be

large for the dataset where the fraction of the no-purchase queries is 30% as compared to the two

other datasets. This observation is expected since there is no value of customization in the queries

that ended up with a no-purchase. Overall, our findings suggest that there is significant value

in identifying the type of customers and personalizing the assortment of hotels according to the

customer type preferences.

γt (%)

Cust. No Queries Mean 95% Max

1 792 0.01 0.05 0.50

2 928 0.45 2.19 8.93

3 2775 0.07 0.45 3.11

4 1807 0.01 0.04 1.65

5 276 0.44 2.41 12.91

6 209 1.09 6.41 22.33

7 774 0.04 0.18 2.00

8 358 0.12 0.60 7.58

γt (%)

Cust. No Queries Mean 95% Max

9 829 0.07 0.45 3.06

10 849 0.07 0.41 2.32

11 4363 0.05 0.27 4.80

12 3169 0.01 0.01 3.41

13 329 0.10 0.63 2.13

14 260 0.59 3.67 12.71

15 1088 0.05 0.24 4.60

16 687 0.03 0.15 1.72

Table 5: Value of customization in the Expedia dataset with 70% fraction of no-purchase queries.

27

8.2 Synthetic data

We test the value of customization by also using synthetically generated datasets, which allow us

to vary the number of products and customer types in consideration.

Experimental setup. We generate our test problems as follows. There are n products and we vary

n. We generate the revenue of each product independently from the exponential distribution with

parameter 1. We consider m customer types with equal arrival probabilities, i.e., θj = 1/m for all

j ∈M. We vary the number of customer types as well. We generate the preference weight for each

product and customer type independently. The preference weight that a customer of type j attaches

to product i is of the form vij = Bij Xij , where Bij is sampled from the Bernoulli distribution with

parameter 1/2 and Xij is sampled from the folded standard normal distribution. Recall that folded

standard normal random variable is the absolute value of a standard normal random variable. In

this way, Bij captures whether customers of type j are interested in product i. Conditional on

customers of type j being interested in product i, Xij captures the attractiveness that customers of

this type attach to product i. Our goal is to generate problem instances where customers of different

types have strong preferences between the different products. The samples {Bij : i ∈ N} indicate

whether customers of type j would even be interested in purchasing each product i. If Bij = 0,

then product i is not even considered for purchase by customer type j. We also tried exponential

and uniform distributions, rather than the folded standard normal, for the samples {Xij : i ∈ N}
and our results were qualitatively the same. Our focus in this section is to characterize the value

of customization, rather than finding near-optimal solutions for CAP. Thus, we focus on the case

where the limit on the number of products in the first stage of CAP is K = n, so the optimal

solution of CAP is given by S∗ = N . Once we generate a problem instance by using the approach

described in this paragraph, for this problem instance, we solve CAP and MMNL as formulated

in Section 3. Letting zCAP and zMMNL, respectively, be the optimal objective values of CAP and

MMNL, for each problem instance t, we define the ratio

vt = 100 · zCAP − zMMNL

zMMNL
.

Here, vt can be interpreted as the percentage gain in the optimal expected revenue for problem

instance t due to customization.

We vary the number of products over n ∈ {5, 10, 15, 20} and the number of customer types over

m ∈ {5, 10, 50, 100, 500}. For each value of n and m, we generate 100 problem instances by using

the approach in the previous paragraph and report the mean, 95-th percentile and maximum value

of vt over all 100 instances. We restrict the number of products to 20, because for large problem

instances, it is computationally challenging to solve MMNL by using the integer programming

formulation with big-M constraints in Méndez-Dı́az et al. (2014), especially considering that we

solve 100 problem instance for each m and n combination. Thus, the computational bottleneck

here is MMNL, rather than CAP. Our results are presented in Table 6.

Results. We observe from Table 6 that the optimal expected revenue of CAP can be significantly

larger than the optimal expected revenue of MMNL. The average value of customization vt is

around 5% over all our test instances and the maximum value of vt is above 20%. Thus, there is

significant value in customizing the assortments offered to each customer type, when compared to

28

vt (%)

n m Mean 95% Max

5

5 2.86 10.17 23.42
10 4.65 12.22 18.09
50 5.06 12.36 18.78
100 5.64 11.38 20.01
500 5.51 13.46 16.94

10

5 2.76 7.74 23.45
10 4.72 10.89 20.32
50 5.99 14.65 17.98
100 5.76 11.79 15.77
500 5.95 10.61 19.10

vt (%)

n m Mean 95% Max

15

5 2.81 8.97 15.28
10 3.94 11.04 17.74
50 5.14 9.95 18.98
100 5.99 11.73 18.02
500 6.61 12.73 26.54

20

5 2.79 8.83 14.31
10 4.00 8.98 20.94
50 5.09 10.54 16.33
100 6.06 14.24 21.59
500 5.28 10.74 16.10

Table 6: Value of customization on synthetic datasets.

offering the same assortment to all the customer types. Our numerical results indicate that the

value of vt tends to increase with the number of customer types m, so customization becomes more

beneficial as the number of customer types gets larger.

9 Computational study: Solution quality

We present computational experiments on synthetically generated problem instances to numerically

evaluate the performance of Augmented Greedy and our integer programming formulation.

Experimental setup. We generate random instances of CAP in the same way we did in Section

8.2. In particular, we sample the revenue of each product independently from the exponential

distribution with parameter 1. The preference weight that a customer of type j associates with

product i has the form vij = Bij Xij , where we sample Bij from the Bernoulli distribution with

parameter 1/2 and we sampleXij from the folded standard normal distribution. The customer types

have equal arrival probabilities. We vary the number of customer types over m ∈ {10, 50, 100} and

the number of products over n ∈ {50, 100}. We vary the upper bound on the number of products

that we can pick in the first stage over K ∈ { 1
10 n,

1
2 n}. Practical values of m, n and K are

highly dependent on the application setting. For example, mid-size online grocers stock K = 10

to 50 varieties in product categories such as yoghurt, olive oil and ice cream, out of a total of

n = 50 to 500 product varieties available to them. Going more towards the larger end of the

spectrum, large outdoor equipment suppliers offer K = 100 to 200 varieties in product categories

such as tents, sleeping bags and hiking boots, out of a total of n = 250 to 1000 varieties available

to them. Going towards the smaller end of the spectrum, cellphone service providers offer K = 10

to 50 phone varieties to their customers out of n = 50 to 200 viable phone models in the market.

The number of customer types depends on how the customers are segmented. Segmenting the

customers by the boroughs or zip codes in an urban area, one ends up with 10 to 20 customer

types. Considering additional demographic factors, such as age and gender, increases the number

of customer types to 50 to 100. One can work with more customer types depending on the amount

of available data, but as the number of customer segments increases, the amount of data to estimate

the choice model governing the behavior of each customer segment shrinks.

For each combination of m, n and K, we generate 50 problem instances of CAP. For each

problem instance, we use Augmented Greedy to obtain a solution. By Theorem 5.1, Augmented

Greedy gives Ω(1/ logm)-approximate solution to CAP when customer types have equal arrival

29

Augmented Greedy

γ1t (%)
m n K Mean 5% Min

10
50

5 99.4 99.3 96.3
25 98.7 97.0 94.0

100
10 99.0 97.7 95.0
50 98.9 96.9 95.5

50
50

5 99.5 99.4 99.2
25 99.4 99.1 98.8

100
10 99.5 99.4 99.2
50 99.5 99.3 99.3

100
50

5 99.5 99.5 99.5
25 99.5 99.3 99.1

100
10 99.5 99.5 99.5
50 99.4 99.3 99.3

Integer Program

γ2t (%)
m n K Mean 5% Min

10
50

5 99.5 99.3 99.3
25 99.5 99.4 99.3

100
10 99.5 99.4 99.3
50 99.5 99.4 99.2

50
50

5 99.5 99.5 99.4
25 99.5 99.4 99.4

100
10 99.5 99.4 99.4
50 99.5 99.4 99.4

100
50

5 99.5 99.5 99.5
25 99.5 99.4 99.4

100
10 99.5 99.5 99.5
50 99.5 99.4 99.4

Table 7: Quality of the solutions from Augmented Greedy and the integer programming formulation.

probabilities. Also, for each problem instance, we use the integer programming formulation in

(6.5) to obtain a solution. By the discussion in Appendix H, this integer programming formulation

provides a (1− ε)-approximate solution to CAP, where ε is the accuracy parameter of Grid. We use

ε = 0.01 in our numerical experiments. Furthermore, letting zIP be the optimal objective value of

the integer program in (6.5), in the same appendix, we show that (1+ε) zIP is an upper bound on the

optimal objective value of CAP. For each problem instance t, let RevAUGt be the objective value of

CAP evaluated at the solution provided by Augmented Greedy, RevIPt be the objective value of CAP

evaluated at the solution provided by the integer programming formulation, and UBt be the upper

bound on the optimal objective value of CAP provided by the integer programming formulation.

For each problem instance t that we generate, we compute the two ratios

γ1t = 100 · Rev
AUG
t

UBt
and γ2t = 100 · Rev

IP
t

UBt
.

Note that γ1t and γ2t are upper bounds on the optimality gaps of the solutions from Augmented

Greedy and the integer program. These quantities are upper bounds on the optimality gaps because

we compare the expected revenues of the solutions with an upper bound on the optimal objective

value of CAP, rather than the optimal objective value itself.

We consider values of n ∈ {50, 100}, m ∈ {10, 50, 100} and K ∈ { 1
10n,

1
2n}. For each value of n,

m and K, we generate 50 problem instances and report the mean, 5% percentile and minimum of

the ratios γ1t and γ2t in our numerical experiments. Our results are shown in Table 7.

Results. We observe from Table 7 that Augmented Greedy has strong empirical performance.

In an overwhelming majority of instances, the expected revenues of the solutions obtained by

Augmented Greedy are within 1% of the upper bound on the optimal expected revenue. By

the discussion in Appendix H, we know that the expected revenue of the assortment provided

by the integer programming formulation is at least (1 − ε) = 99% fraction of the upper bound

on the optimal expected revenue. The performance of the integer program is noticeably better

than this 99% benchmark. Over all of our instances, on average, the assortment from the integer

programming formulation obtains 99.5% of the upper bound on the optimal expected revenue. The

running time for Augmented greedy scales roughy linearly with the number of customer types

30

m, quadratically with the number of products n, and linearly with the limit on the number of

offered products K. The running time for solving the integer programming formulation is somewhat

unpredictable. For our largest test problems with m = 100 and n = 100, the solution times for the

integer programming formulation can range from 30 seconds to 4200 seconds.

We also test Augmented Greedy to solve CAP with heterogeneous arrival probabilities. In

our theoretical results, the algorithm that gives Ω(1/ logm)-approximation for this case uses

Augmented Greedy recursively as a subroutine and finally solves a dynamic program. Here, we

directly apply Augmented Greedy to test its empirical performance for this case of heterogeneous

arrival probabilities, although we do not have theoretical guarantees under heterogeneous arrival

probabilities. We randomly sample the arrival probabilities from a uniform distribution [0, 1] and

normalize them such that their sum is equal to 1. We present our results in Table 8 in Appendix J.

Augmented Greedy continues to provide near-optimal assortments for an overwhelming majority of

instances and the same conclusions we have in this section for the case of equal probabilities carry

out to the case of heterogeneous probabilities.

10 Conclusions

We considered a joint assortment optimization and customization problem under a mixture of

MNL models, where the firm commits to an assortment in the first stage, but can customize this

assortment based on the type of the customer arriving in the second stage. This problem models the

situation faced by many online retailers that can customize the assortment displayed to a customer.

Despite its ubiquitous nature, however, to our knowledge, our joint assortment optimization and

customization problem setup was unexplored until our work and it opens a number of research

directions.

Constraints in the second stage. We can consider a variety of constraints on the assortments

offered in the first and second stages. In our formulation, we used a cardinality constraint on

the assortment offered in the first stage, but also showed how to extend our work to a knapsack

constraint. One can also consider constraints on the assortment offered to each customer type

in the second stage. Our Ω(1/ logm)-approximation exploits the properties of the unconstrained

assortment optimization problem with a single customer type under the MNL model, as discussed

in Appendix E. We lose these properties when there is a constraint on the assortment offered

to each customer type in the second stage. However, considering the case where we can include

at most K products in the first stage assortment and p products in the second stage assortment

offered to each customer type (p ≤ K), we can give a Ω(1/
√
m logm)-approximation. Here, we

assume that p ≤ K < mp, because if K ≥ mp, then we can focus on each customer type separately

and find an assortment with no more than p products to maximize the expected revenue from each

customer type. In this case, the union of these assortments would include at most mp products,

but since K ≥ mp, we can offer this union in the first stage. Assuming that p ≤ K < mp, we

can proceed as follows to get a Ω(1/
√
m logm)-approximation. Using the subadditivity property of

the expected revenue function discussed in Appendix C, we can show that if we can offer at most

K ′ ≤ K products in the first stage, instead of K, then the optimal expected revenue of CAP changes

by at most a factor of Ω(K ′/K). With this observation in place, we construct two solutions. First,

we solve CAP with a cardinality constraint of p, instead of K in the first stage. By doing so, the

31

loss in the optimal expected revenue is by a factor of Ω(p/K), but since we can solve CAP only with

Ω(1/ logm) guarantee, we obtain a Ω(p/(K logm))-approximate solution. Second, we focus on each

customer type one by one and find an assortment with no more than p products that maximizes

the expected revenue from each customer type. We can find these assortments in polynomial time

by maximizing the expected revenue from a single customer type under a cardinality constraint

(Rusmevichientong et al., 2010). The union of these assortments would include O(mp) products.

By using the subadditivity property of the expected revenue function, we can split this assortment

into O(mp/K) assortments each with at most K products, so that the sum of the expected revenues

from the O(mp/K) assortments is at least as large as the optimal objective value of CAP, which

means that one of the O(mp/K) assortments is a Ω(K/(mp))-approximation to CAP. Considering

the two solutions that we construct, we get an approximation guarantee of

Ω

(
max

{
p

K
· 1

logm
,
K

p
· 1

m

})
.

For a ≥ 0, the minimum of max{a 1
logm ,

1
a

1
m} occurs at a =

√
logm/m. Thus, the expression

above is at least Ω(1/
√
m logm). The approximation guarantee of Ω(1/

√
m logm) is better than

O(1/m1−ε) for ε > 0, which is the best possible approximation without customization. We were

able to get this guarantee by exploiting the results that we already have, but it may be possible

to use an entirely new argument to give an even better approximation guarantee for CAP under a

cardinality constraint for the second stage assortment.

Other choice models. Our development exploited the properties of the revenue-maximizing

assortment under the MNL model that we discussed in Appendix E. Another research direction is

to study joint assortment optimization and customization problems under other choice models. For

example, our efforts to extend our results to the case where each customer type follows a nested

logit model, which is closely related to the MNL model, were not successful and it appears that we

need a new line of attack.

References

A. Aouad, R. Levi, and D. Segev. Greedy-like algorithms for dynamic assortment planning under multinomial logit
preferences. Operations Research, 66(5):1321–1345, 2018.

A. Aouad, J. Feldman, D. Segev, and D. J. Zhang. Click-based MNL: Algorithmic frameworks for modeling click
data in assortment optimization. Technical report, Washington University, St. Louis, MO, 2019.

A. Aouad, A. N. Elmachtoub, K. J. Ferreira, and R. McNellis. Market segmentation trees. Technical report, Columbia
University, New York, NY, 2020.

G. Berbeglia and G. Joret. Assortment optimisation under a general discrete choice model: A tight analysis of
revenue-ordered assortments. Algorithmica, 82:681–720, 2020.

G. Berbeglia, A. Flores, and G. Gallego. Refined assortment optimization. Technical report, University of Melbourne,
Melbourne, Australia, 2021.

J. J. M. Bront, I. Méndez-Dı́az, and G. Vulcano. A column generation algorithm for choice-based network revenue
management. Operations research, 57(3):769–784, 2009.

A. Désir, V. Goyal, and J. Zhang. Near-optimal algorithms for capacity constrained assortment optimization. Available
at SSRN 2543309, 2014.

U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM (JACM), 45(4):634–652, 1998.

J. Feldman and H. Topaloglu. Bounding optimal expected revenues for assortment optimization under mixtures of
multinomial logits. Production and Operations Management, 24(10):1598–1620, 2015.

32

J. Feldman and H. Topaloglu. Technical note: Capacitated assortment optimization under the multinomial logit
model with nested consideration sets. Operations Research, 66(2):380–391, 2018.

G. Gallego, G. Iyengar, R. Phillips, and A. Dubey. Managing flexible products on a network. Computational
Optimization Research Center Technical Report TR-2004-01, Columbia University, 2004.

P. Gao, Y. Ma, N. Chen, G. Gallego, A. Li, P. Rusmevichientong, and H. Topaloglu. Assortment optimization and
pricing under the multinomial logit model with impatient customers: Sequential recommendation and selection.
Operations Research, (to appear), 2020.

S. Jagabathula. Assortment optimization under general choice. Technical report, NYU, New York, NY, 2016.

S. Jagabathula and G. Vulcano. A partial-order-based model to estimate individual preferences using panel data.
Management Science, 64(4):1609–1628, 2018.

S. Jagabathula, D. Mitrofanov, and G. Vulcano. Personalized retail promotions through a DAG-based representation
of customer preferences. Operations Research, (to appear), 2020.

Kaggle. Personalize expedia hotel searches. last checked: August 5, 2019., 2013. https://www.kaggle.com/c/

expedia-personalized-sort.

R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer computations, pages 85–103.
Springer, 1972.

I. Méndez-Dı́az, J. J. M. Bront, G. Vulcano, and P. Zabala. A branch-and-cut algorithm for the latent-class logit
assortment problem. Discrete Applied Mathematics, 164:246–263, 2014.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set
functions-i. Mathematical programming, 14(1):265–294, 1978.

P. Rusmevichientong and H. Topaloglu. Robust assortment optimization in revenue management under the
multinomial logit choice model. Operations Research, 60(4):865–882, 2012.

P. Rusmevichientong, Z.-J. M. Shen, and D. B. Shmoys. Dynamic assortment optimization with a multinomial logit
choice model and capacity constraint. Operations Research, 58(6):1666–1680, 2010.

P. Rusmevichientong, D. Shmoys, C. Tong, and H. Topaloglu. Assortment optimization under the multinomial logit
model with random choice parameters. Production and Operations Management, 23(11):2023–2039, 2014.

A. Sen, A. Atamturk, and P. Kaminsky. Technical note – A conic integer optimization approach to the constrained
assortment problem under the mixed multinomial logit model. Operations Research, 66(4):994–1003, 2018.

M. Sumida, G. Gallego, P. Rusmevichientong, H. Topaloglu, and J. M. Davis. Revenue-utility tradeoff in assortment
optimization under the multinomial logit model with totally unimodular constraints. Management Science, (to
appear), 2020.

Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack constraint. Operations
Research Letters, 32(1):41–43, 2004.

K. Talluri and G. van Ryzin. Revenue management under a general discrete choice model of consumer behavior.
Management Science, 50(1):15–33, 2004.

R. Udwani. Submodular order functions and assortment optimization. Technical report, University of California,
Berkeley, CA, 2021.

R. Wang. Capacitated assortment and price optimization under the multinomial logit model. Operations Research
Letters, 40(6):492–497, 2012.

R. Wang and O. Sahin. The impact of consumer search cost on assortment planning and pricing. Management
Science, 64(8):3649–3666, 2018.

33

A Appendix: Hardness results

We start by presenting the maximum coverage problem that we use in the proof of Theorem 2.1.

Maximum coverage problem. Given elements {1, 2, . . . ,m} and sets {S1, S2, . . . , Sn} with

Si ⊆ {1, 2, . . . ,m} for each i = 1, . . . , n, we say that set Si covers element j if j ∈ Si. For a

given K, the goal of the maximum coverage problem is to find at most K sets such that the total

number of covered elements is maximized. This problem is NP-hard to approximate within a factor

better than (1− 1
e) unless P = NP (Feige, 1998).

Proof of Theorem 2.1. Consider an instance of the maximum coverage problem. We construct

an instance of CAP as follows. The products N correspond to the sets {S1, S2, . . . , Sn} and the

customer types M correspond to the elements {1, 2, . . . ,m}. Fix ε > 0 and let ε′ = (1− 1/e)ε. Let

Γ = 1/ε′ − 1. In CAP, for all i ∈ N and j ∈M, the preference weights are given by

vij =

{
Γ if j ∈ Si
0 otherwise.

The product revenues are given by ri = 1 for all i ∈ N and the arrival probabilities of the customer

types are given by θj = 1/m for all j ∈M.

Suppose there exists a maximum coverage solution with an objective value z, i.e., there are z

covered elements. We construct a solution for CAP using exactly the K products corresponding to

the K sets in this maximum coverage solution. There are z customer types that are covered by these

sets. Hence, for each customer type j among these z customer types, there exists a product i such

that vij = Γ. Therefore, we get at least an expected revenue of Γ
1+Γ from each of these customer

types. Let R be the objective value of our solution for CAP. We have

R ≥ 1

m
· Γ

1 + Γ
· z =

1

m
· (1− ε′)z.

Now, let us consider a solution of CAP. Without loss of generality, the solution has K products

and let R be its objective value. We construct a feasible solution for the maximum coverage problem

by choosing exactly the sets corresponding to the K products in the solution of CAP. Let z be

the resulting total number of covered elements, and for each j ∈ M, let qj be the number of sets

that cover element j. If an element j is not covered, then qj = 0 and the expected revenue of the

customer type j is 0. Otherwise, if qj ≥ 1, then the expected revenue from customer type j is given

by
qjΓ

1+qjΓ ≤ 1. Therefore, the objective value of our solution for CAP is given by

R =
1

m

m∑
j=1

qjΓ

1 + qjΓ
≤ 1

m
· z.

We know that unless P = NP, it is NP-hard to approximate the maximum coverage problem with

a factor better than (1− 1
e) (Feige, 1998). Thus, it is NP-hard to approximate CAP within a factor

better than (1− 1
e)(1− ε′) = 1− 1

e − ε for any ε > 0.

In the next theorem, we show that CAP is NP-hard even with two customer types. This

34

NP-hardness result holds even when all products have the same revenue. We use a reduction from

the subset sum problem, which is defined as follows.

Subset sum problem. Given weights w1, w2, . . . , wn and a cardinality K, the goal of the subset

sum problem is to find a subset S ⊆ {1, . . . , n} of size K such that
∑

i∈S wi = 0. This problem is

NP-complete. (Karp, 1972).

Theorem A.1. CAP is NP-hard even with two customer types and ri = 1 for all i ∈ N .

Proof. Consider an instance {w1, w2, . . . , wn} of the subset sum problem and assume without loss

of generality that w1 = maxi=1,...,nwi. We define an instance of CAP with two customer types such

that θ1 = θ2 = 1/2, and n products such that, for all i ∈ N , we have

ri = 1, vi1 = w1 + wi, vi2 = w1 − wi.

For i ∈ N , let yi be a binary variable that captures whether product i is in the optimal

assortment of CAP. Let S = {i ∈ N : yi = 1}. Since all the products have the same revenue,

it is optimal to offer all the products in S to both customer types. Hence, CAP is equivalent to

maximizing
1

2
·
∑

i∈N vi1yi

1 +
∑

i∈N vi1yi
+

1

2
·
∑

i∈N vi2yi

1 +
∑

i∈N vi2yi
,

subject to the constraint
∑

i∈N yi ≤ K. Since
∑

i∈N vi1yi
1+

∑
i∈N vi1yi

and
∑

i∈N vi2yi
1+

∑
i∈N vi2yi

are both increasing in

yi for any i ∈ N , we have
∑

i∈N yi = K in an optimal solution to CAP. Let

X =
∑
i∈N

vi1 yi and α = 2w1K.

After simple algebraic manipulations, the objective function of CAP becomes

1

2
· X

1 +X
+

1

2
· α−X

1 + α−X
= 1− 1 + α/2

1 + α+X(α−X)
.

Maximizing the above objective function is equivalent to maximizing X(α−X). In this case, since

(X − α
2)2 ≥ 0, we get

X(α−X) ≤ α2

4
,

with the inequality above holding as equality if and only if X = α/2, which is equivalent to∑
i∈N vi1yi = w1K, i.e.,

∑
i∈N wiyi = 0. Therefore, solving CAP implies finding whether there

exists a subset S of size K such that
∑

i∈S wi = 0. Since the subset sum problem is NP-hard, it

follows that CAP is NP-hard.

B Appendix: Counterexample to submodularity of the expected revenue

We give a counterexample to demonstrate that f is not submodular. Consider and instance of CAP

with three products n = 3, along with revenues r1 = 3, r2 = 2, r3 = 1, and one customer type

m = 1. Dropping the index for the single customer type, the preference weights of the customer

type are given by v1 = 1, v2 = 1, v3 = 100. Let us denote the expected revenue function as

35

R(S) =
∑

i∈S rivi
1+

∑
i∈S vi

, in which case, f(S) = maxQ⊆S R(Q). Consider the following sets S = {3} and

T = {2, 3}. We obtain the expected revenues

f(S) = R({3}) =
100

101

f(S ∪ {1}) = max
Q⊆S∪{1}

R(Q) =
3

2

f(T) = max
Q⊆T

R(Q) = 1

f(T ∪ {1}) = max
Q⊆T∪{1}

R(Q) =
5

3
,

which yields f(T ∪ {1})− f(T) = 2
3 >

1
2 + 1

101 = f(S ∪ {1})− f(S). Thus, f is not submodular.

C Appendix: Properties of the expected revenue

In this section, we show that the function fj is monotone and subadditive for each j ∈M. Because

f is obtained by a positive linear combination of these functions, monotonicity and subadditivity

properties transfer to f as well.

Monotonicity. For any j ∈M, fj is increasing, i.e., for any A ⊆ B ⊆ N , we have fj(A) ≤ fj(B).

In particular, for A ⊆ B ⊆ N , we have

fj(A) = max
S⊆A

∑
i∈S rivij

1 +
∑

i∈S vij
≤ max

S⊆B

∑
i∈S rivij

1 +
∑

i∈S vij
= fj(B).

Therefore, f =
∑

j∈M θjfj is increasing as well.

Subadditivity. For any j ∈M, fj is subadditive, i.e., fj(A∪B) ≤ fj(A)+fj(B) for any A,B ⊆ N .

In fact, for A,B ⊆ N , we have

fj(A ∪B) = max
S⊆A∪B

∑
i∈S rivij

1 +
∑

i∈S vij
=

∑
i∈S rivij

1 +
∑

i∈S vij
,

for some S ⊆ A ∪ B. Let us write S as S = S1 ∪ S2, where S1 ⊆ A, S2 ⊆ B and S1 ∩ S2 = ∅. In

this case, we obtain

fj(A ∪B) =

∑
i∈S1

rivij +
∑

i∈S2
rivij

1 +
∑

i∈S1
vij +

∑
i∈S2

vij
≤

∑
i∈S1

rivij

1 +
∑

i∈S1
vij

+

∑
i∈S2

rivij

1 +
∑

i∈S2
vij

≤ max
S⊆A

∑
i∈S rivij

1 +
∑

i∈S vij
+ max

S⊆B

∑
i∈S rivij

1 +
∑

i∈S vij
= fj(A) + fj(B).

Therefore, f =
∑

j∈M θjfj is subadditive as well.

D Appendix: Proof of Lemma 4.3

In this section, we give a proof for Lemma 4.3. Fix j ∈ C and i ∈ N . Let g(S) = min(fj(S), ri). Note

that g is monotone increasing because fj is monotone increasing by the discussion in Appendix C.

36

Let S ⊆ T ⊆ Vi and p ∈ Vi \ T . The goal is to show that g(S ∪ {p})− g(S) ≥ g(T ∪ {p})− g(T).

We are going to distinguish three cases in our proof.

Case 1. Suppose that fj(T) ≥ ri. In this case, by monotonicity of fj , we get fj(T ∪ {p}) ≥
fj(T) ≥ ri. Therefore, we have g(T ∪ {p})− g(T) = ri− ri = 0 ≤ g(S ∪ {p})− g(S), where the last

inequality holds by monotonicity of g.

Case 2. Suppose that fj(T∪{p}) ≥ ri ≥ fj(T). Hence, we have g(T∪{p})−g(T) = ri−fj(T). By

monotonicity of fj , we get fj(S) ≤ fj(T) ≤ ri, so g(S) = fj(S). If we have g(S ∪ {p}) = ri, then

having g(S∪{p})−g(S) ≥ g(T ∪{p})−g(T) is equivalent to having fj(S) ≤ fj(T), which holds by

the monotonicity of fj and the desired result follows. Therefore, throughout the rest of this case,

we assume that g(S ∪ {p}) = fj(S ∪ {p}).
Having g(S ∪ {p}) = fj(S ∪ {p}) implies that fj(S ∪ {p}) ≤ ri. Since product i has the

smallest revenue among the products in Vi, we get fj(S ∪ {p}) ≤ rs for all s ∈ Vi. A standard

property of the assortment optimization problem under the MNL model is that a product is in the

revenue-maximizing assortment if and only if the revenue of the product is greater than or equal to

the optimal expected revenue of the assortment optimization problem. For completeness, we show

this property in Appendix E.

By the property in the previous paragraph, having rs ≥ fj(S ∪ {p}) for all s ∈ Vi ⊇ S ∪ {p}
implies that if the assortment in the first stage of CAP is S ∪ {p}, then it is optimal to offer all

products in S ∪ {p} to customer type j, i.e.,

fj(S ∪ {p}) =

∑
`∈S∪{p} r` v`j

1 +
∑

`∈S∪{p} v`j
.

Similarly, because we have fj(S) ≤ fj(T) ≤ ri, by the same property of the assortment optimization

problem under the MNL model, we get

fj(S) =

∑
`∈S r` v`j

1 +
∑

`∈S v`j
, fj(T) =

∑
`∈T r` v`j

1 +
∑

`∈T v`j
.

Therefore, we obtain

g(S ∪ {p})− g(S) = fj(S ∪ {p})− fj(S) =
vpj

1 + vpj +
∑

`∈S v`j
· (rp − fj(S))

≥ vpj
1 + vpj +

∑
`∈T v`j

· (rp − fj(T)) =

∑
`∈T∪{p} r` v`j

1 +
∑

`∈T∪{p} v`j
−
∑

`∈T r` v`j

1 +
∑

`∈T v`j

=

∑
`∈T∪{p} r` v`j

1 +
∑

`∈T∪{p} v`j
− g(T),

where the first two equalities use algebraic manipulations and the inequality holds because we

fj(S) ≤ fj(T),
∑

`∈S v`j ≤
∑

`∈T v`j and rp − fj(T) ≥ 0. Hence, it is sufficient to show that∑
`∈T∪{p} r` v`j

1 +
∑

`∈T∪{p} v`j
≥ ri, (D.1)

in which case, noting that we have g(T ∪ {p}) = ri, the previous chain of inequalities would yield

37

g(S ∪ {p})− g(S) ≥ g(T ∪ {p})− g(T), as desired. Thus, we finish this case by establishing that

(D.1) holds. Let fj(T ∪ {p}) =
∑

`∈A r` v`j
1+

∑
`∈A v`j

for some A ⊆ T ∪ {p} and let B = T ∪ {p} \ A. Note

that ri = min{r` : ` ∈ Vi} by the definition of Vi, but since T ∪ {p} ⊆ Vi, we have ri ≤ r` for all

` ∈ B. In this case, we get∑
`∈T∪{p} r` v`j

1 +
∑

`∈T∪{p} v`j

=
1 +

∑
`∈A v`j

1 +
∑

`∈A v`j +
∑

`∈B v`j
·
∑

`∈A r` v`j

1 +
∑

`∈A v`j
+

∑
`∈B v`j

1 +
∑

`∈A v`j +
∑

`∈B v`j
·
∑

`∈B r` v`j∑
`∈B v`j

≥
1 +

∑
`∈A v`j

1 +
∑

`∈A v`j +
∑

`∈B v`j
· ri +

∑
`∈B v`j

1 +
∑

`∈A v`j +
∑

`∈B v`j
· ri = ri,

where the inequality holds because fj(T ∪ {p}) ≥ ri in the current case we consider and ri ≤ r` for

all ` ∈ B so that ri ≤
∑

`∈B r` v`j∑
`∈B v`j

.

Case 3. Suppose that ri ≥ fj(T∪{p}). By the monotonicity of fj we get ri ≥ fj(T∪{p}) ≥ fj(T)

and ri ≥ fj(T ∪ {p}) ≥ fj(S ∪ {p}) ≥ fj(S). By using the standard property of the assortment

optimization problem under the MNL model, these two chains of inequalities implies that if we

pick the assortment T ∪ {p}, S ∪ {p}, S or T in the first stage of CAP, then it would be optimal to

offer the full available assortment T ∪ {p}, S ∪ {p}, S or T to customer type j, i.e.,

fj(S ∪ {p}) =

∑
`∈S∪{p} r` v`j

1 +
∑

`∈S∪{p} v`j
, fj(T ∪ {p}) =

∑
`∈T∪{p} r` v`j

1 +
∑

`∈T∪{p} v`j
, fj(S) =

∑
`∈S r` v`j

1 +
∑

`∈S v`j
,

fj(T) =

∑
`∈T r` v`j

1 +
∑

`∈T v`j
. (D.2)

Therefore, we get

g(S ∪ {p})− g(S) = fj(S ∪ {p})− fj(S) =
vpj

1 + vpj +
∑

`∈S v`j
· (rp − fj(S))

≥ vpj
1 + vpj +

∑
`∈T v`j

· (rp − fj(T)) = fj(T ∪ {p})− fj(T) = g(T ∪ {p})− g(T),

where the second and third equalities follow by using (D.2) along with algebraic manipulations,

whereas the inequality holds because fj(S) ≤ fj(T),
∑

`∈S v`j ≤
∑

`∈T v`j and rp − fj(T) ≥ 0.

E Appendix: Assortment optimization under the multinomial logit model

We consider the assortment optimization problem under the MNL model and give a characterization

of the revenue-maximizing assortment. We use this characterization at several places throughout

the paper. We use N = {1, . . . , n} to denote the set of products. There is a single customer type. A

customer associates the preference weight vi with product i. The revenue of product i is ri. Thus,

if we offer the assortment S ⊆ N , then we obtain an expected revenue of
∑

i∈N ri vi
1+

∑
i∈N vi

. We want to

38

solve the problem

max
S⊆N

∑
i∈S ri vi

1 +
∑

i∈S vi
. (E.1)

In the next lemma, we give a characterization of an optimal solution to the problem above.

Lemma E.1. Letting z∗ be the optimal objective value of problem (E.1), there exists an optimal

solution S∗ to this problem that satisfies

S∗ = {i ∈ N : ri ≥ z∗}.

Proof. Let R(S) =
∑

i∈S ri vi
1+

∑
i∈S vi

be the objective function of problem (E.1) and let W (S) =
∑

i∈S ri vi∑
i∈S vi

for notational brevity. For any S,A ⊆ N with S ∩A = ∅, we have

R(S ∪A) =

∑
i∈S ri vi +

∑
i∈A ri vi

1 +
∑

i∈S vi +
∑

i∈A vi

=
1 +

∑
i∈S vi

1 +
∑

i∈S vi +
∑

i∈A vi
·
∑

i∈S rivi

1 +
∑

i∈S vi
+

∑
i∈A vi

1 +
∑

i∈S vi +
∑

i∈A vi
·
∑

i∈A ri vi∑
i∈A vi

=
1 +

∑
i∈S vi

1 +
∑

i∈S vi +
∑

i∈A vi
·R(S) +

∑
i∈A vi

1 +
∑

i∈S vi +
∑

i∈A vi
·W (A),

so R(S ∪ A) is a convex combination R(S) and W (A) and the latter quantity can be viewed as a

weighted average of the revenues of the products in A.

Let S be any optimal solution to problem (E.1) and Ŝ = {i ∈ N : ri ≥ z∗}. Assume that

S \ Ŝ 6= ∅. Note that ri < z∗ for each i ∈ S \ Ŝ, so we have W (S \ Ŝ) < z∗. By the equality above,

R(S) is a convex combination of R(S ∩ Ŝ) and W (S \ Ŝ), so since R(S) = z∗ > W (S \ Ŝ), it must

be the case that R(S ∩ Ŝ) ≥ R(S). Thus, S ∩ Ŝ is an optimal solution to problem (E.1) as well, so

there exists an optimal solution to problem (E.1) that is a subset of Ŝ = {i ∈ N : ri ≥ z∗}.
Let S̃ be an optimal solution to problem (E.1) that is a subset of Ŝ = {i ∈ N : ri ≥ z∗}.

Assume that Ŝ \ S̃ 6= ∅. Note that we have ri ≥ z∗ for each i ∈ Ŝ \ S̃, so W (Ŝ \ S̃) ≥ z∗. Using

the fact that S̃ ⊆ Ŝ, by the equality above, R(Ŝ) is a convex combination of R(S̃) and W (Ŝ \ S̃),

so because W (Ŝ \ S̃) ≥ z∗ = R(S̃), it must be the case that R(Ŝ) ≥ R(S̃), which implies that

Ŝ = {i ∈ N : ri ≥ z∗} is an optimal solution to problem (E.1), as desired.

The above lemma is a standard result in assortment optimization under the MNL model and it is

stated in various forms in Talluri and van Ryzin (2004), Gallego et al. (2004) and Rusmevichientong

and Topaloglu (2012).

F Appendix: Proof of Theorem 5.2

In this section, we give a proof for Theorem 5.2. We will use two auxiliary lemmas in the proof. We

start by stating and proving these two lemmas. Following the two lemmas, we conclude this section

with a proof for Theorem 5.2.

39

F.1 Auxiliary lemmas

The first lemma shows the existence of a subset of customers X such that the optimal expected

revenue from the customers in X is a constant fraction of the optimal expected revenue of CAP and

the expected revenues from the customer types in X satisfy a certain monotonicity property based

on where they lie on the leaf nodes of the tree.

Lemma F.1. Let S∗ be the optimal solution of CAP and zCAP be its optimal objective value. There

exists a subset of customer types X ⊆M that satisfies the following properties.

(i) For all j, q ∈ X , if j ∈ Gi and q ∈ Gi′ with i < i′, then fj(S
∗) ≥ fq(S∗).

(ii) fX (S∗) ≥ 1
4 · zCAP.

Proof. Recall that the set of all customer types is given byM =
{⋃L

i=1M(`i)
}

. We partition the

customer types M as

Meven =

{
L⋃
i=1

M(`i)
∣∣∣ `i is even

}
and Modd =

{
L⋃
i=1

M(`i)
∣∣∣ `i is odd

}
.

Hence,

fMeven(S∗) + fModd(S∗) = fM(S∗) = zCAP.

One of the two terms on the left hand side should be at least zCAP/2. Let us assume without loss

of generality that

fMeven(S∗) ≥ zCAP
2

.

Let I = {i = 1, . . . , L | `i is even} and recall that Gi =M(`i). In particular,

Meven =
⋃
i∈I

Gi.

Let i∗ ∈ I be the largest index in I. In other words, Gi∗ is the group of customer types with the

highest values of θj among the groups in Meven. We construct the subset of customer types X as

follows. We first add all customer types in the group Gi∗ to X . Then, we go in descending order

from i∗ − 1 to 1, where at each i ∈ {i∗ − 1, . . . , 2, 1}, we first check if i belongs to I. If we have

i ∈ I, then we consider the set of customer types

C =
{
j ∈ Gi : fj(S

∗) ≥ max
q∈X

fq(S
∗)
}
,

where the max is taken over the set X constructed up to the current iteration. We update X by

adding the customer types in C and move on to the next group of customers Gi−1. If we have i /∈ I,

then we move directly to the next group of customers Gi−1. By construction, when we are at a

group Gi and i ∈ I, we add a customer type j ∈ Gi to X only if fj(S
∗) is greater than fq(S

∗) for

all customer types q in the groups that we have already checked, i.e., the groups Gi′ with i′ > i.

Therefore, X satisfies the first property in the lemma.

In the remainder of the proof, we will establish that the subset of customers X satisfies the

second property. Consider a customer type j ∈Meven, so j ∈ Gi for some i ∈ I. If we have j /∈ X ,

40

then by construction, there exists a customer type q ∈ X such that fq(S
∗) > fj(S

∗). Moreover, the

customer type q was added to X before we arrive at iteration i. Hence, we have q ∈ Gi′ for some

i′ ∈ I such that i′ > i. By our definition of the groups Gi, this observation implies that

1

m`i′+1
≤ θq <

1

m`i′
and

1

m`i+1
≤ θj <

1

m`i
,

where `i > `i′ . However, since both `i and `i′ are even, we get `i ≥ `i′ + 2. Therefore, we have

θq ≥
1

m`i′+1
≥ 1

m`i−1
≥ m · θj .

Since, fq(S
∗) > fj(S

∗) and q ∈ X , it follows that

θjfj(S
∗) ≤ 1

m
· θqfq(S∗) ≤

1

m
· fX (S∗).

Hence, by summing over all customer types in Meven \ X which, number at most m, we get

fMeven\X (S∗) ≤ fX (S∗).

Thus, we get

2fX (S∗) ≥ fX (S∗) + fMeven\X (S∗) = fMeven(S∗) ≥ zCAP
2

.

The same argument holds if we assume that fModd(S∗) ≥ zCAP
2 .

Before we present the second lemma, we introduce some additional notation. Let S∗ be the

optimal solution of CAP. For each j ∈ M, let S∗j ⊆ S∗ be the optimal subset to offer to customer

type j in CAP. For a subset of customer types C ⊆ M and a subset of products A ⊆ N , we define

the expected revenue function

hC(A) =
∑
j∈C

θj

∑
i∈A∩S∗j

rivij

1 +
∑

i∈A∩S∗j
vij
.

Note that hC(A) corresponds to the total expected revenue from customer types C when we offer

assortment A ∩ S∗j to customer type j ∈ C. Recall that

fC(A) =
∑
j∈C

θj · max
Sj⊆A

∑
i∈Sj

rivij

1 +
∑

i∈Sj
vij
.

Therefore, for any A ⊆ N and any C ⊆ M,

fC(A) ≥ hC(A). (F.1)

Our second lemma shows that for any subset of products A of size k and any subtree of customer

types T ∈ L, we either give a lower bound on the expected revenue RTk of the assortment provided

by Augmented Greedy or show the existence of a partition of products A that verifies a certain

inequality. In particular, we have the following lemma.

41

Lemma F.2. Consider a pair (A, T) where A ⊆ S∗ is a subset of the optimal set of products to

offer in CAP and T ∈ L is a subtree of customer types. Let |A| = k, T1 be the left subtree of T

and T2 be the right subtree of T . Lastly, let X be the set of customer types defined in Lemma F.1.

Then, at least one of the following two statements holds for the pair (A, T).

(i) RTk = Ω(1/ logm) · hX∩CT (A).

(ii) There exists a partition of A, i.e., A = A1 ∪A2, A1 ∩A2 = ∅ such that,

hX∩CT1 (A1) + hX∩CT2 (A2) ≥ (1− 1

logm
) · hX∩CT (A).

Proof. First, let us address the case where T is a leaf of T . We will show that the first statement

in the lemma is verified in this case. Since T is a leaf of T , it contains a unique group of customer

types. In particular, we have CT = Gi for some i ∈ {1, . . . , L}. By definition, each customer type j

in the group Gi has its arrival probability θj between 1/m`i and 1/m`i+1 for some `i ∈ Z. Moreover,

the rounded values of the arrival probabilities are such that θjm
`i+1 is an integer between 1 and m.

Therefore, a customer type j ∈ CT is equivalent to θjm
`i+1 copies of customer types with the same

preference weights {v`j : ` ∈ N} such that each one of them has arrival probability 1/m`i+1. Since

1 ≤ θjm`i+1 ≤ m, we can view CT as a group of at most m2 customer types, where each customer

type has the same arrival probability. We know from Theorem 5.1 that Augmented Greedy gives

Ω(1/ logm)-approximation to CAP when the number of customer types is m and they all have the

same arrival probability. Therefore, Augmented Greedy gives Ω(1/ log(m2))-approximation to CAP

with the input customer types CT . Recall that ∆Tk = AugGreedy(CT , k) is the assortment returned

by Augmented Greedy with the inputs CT for the set of customer types and k for the cardinality

constraint. Thus, for any A ⊆ N such that |A| = k, we have

fCT (∆Tk) = Ω(1/ log(m2)) · fCT (A) = Ω(1/ logm) · fCT (A).

Moreover,

fCT (A) ≥ fX∩CT (A) ≥ hX∩CT (A),

where the last inequality follows from (F.1). Therefore,

RTk = fCT (∆Tk) = Ω(1/ logm) · hX∩CT (A).

Next, suppose that T is not a leaf. Let G` be the group among {G1, . . . , GL} that contains the

customer type j that has the smallest arrival probability θj among those in X ∩ CT2 . Let

q = arg max{fj(S∗) : j ∈ X ∩ CT2 ∩G`}, (F.2)

i.e., q is the customer type with the highest fj(S
∗) value among all customer types in G` that

belong to X ∩ CT2 . Let us show the following claim.

Claim. For any j ∈ X ∩ CT1 , we have S∗j ⊆ S∗q , whereas for any j ∈ X ∩ CT2 , we have S∗q ⊆ S∗j .

Let us start with the first inclusion. Consider j ∈ X ∩ CT1 , and let `′ ∈ {1, . . . , L} be such that

j ∈ G`′ . We know that q ∈ X ∩ CT2 ∩G`. Since T1 is on the left of T2, we get that `′ < `. Hence,

42

from the first property of Lemma F.1, for all j ∈ X ∩ CT1 , we have

fj(S
∗) ≥ fq(S∗).

By Lemma E.1 in Appendix E, a product is in the optimal assortment that we offer to a customer

type if and only if its revenue is greater than the optimal expected revenue from the customer type.

Recall that fj(S
∗) is the optimal expected revenue for customer type j with universe of products

S∗ and the optimal solution for this problem is S∗j . Therefore, for any j ∈M, we have

S∗j = {i ∈ S∗ : ri ≥ fj(S∗)}.

In particular, for any j ∈ X ∩ CT1 and any i ∈ S∗j , we get ri ≥ fj(S
∗) ≥ fq(S

∗). Therefore, i ∈ S∗q ,

which implies that S∗j ⊆ S∗q .

Now, let us show the second inclusion in the claim. Let j ∈ X ∩ CT2 . If we have j ∈ G`, then

j ∈ X ∩ CT2 ∩G`, and by definition (F.2) of customer type q, we have fq(S
∗) ≥ fj(S

∗). On the

other hand, consider the case j /∈ G`. By its definition, G` contains the customer type with the

smallest arrival probability among customer types X ∩CT2 . In this case, we get j ∈ G`′ with `′ > `.

Hence, from the first property in Lemma F.1, we get that fq(S
∗) ≥ fj(S

∗). Therefore, for all

j ∈ X ∩CT2 , we have fq(S
∗) ≥ fj(S∗). Similar to the proof of the first part of the claim, by Lemma

E.1, we get S∗q ⊆ S∗j for any j ∈ X ∩ CT2 which concludes the proof of the claim.

We partition A as

A1 = A ∩ S∗q and A2 = A \A1.

For j ∈ X ∩CT1 , from the above claim, we have S∗q ∩S∗j = S∗j . Hence, we get A1∩S∗j = A∩S∗q ∩S∗j =

A ∩ S∗j . Therefore, it follows that

hX∩CT1 (A) =
∑

j∈X∩CT1

θj

∑
i∈A∩S∗j

ri vij

1 +
∑

i∈A∩S∗j
vij

=
∑

j∈X∩CT1

θj

∑
i∈A1∩S∗j

ri vij

1 +
∑

i∈A1∩S∗j
vij

= hX∩CT1 (A1).

We have CT = CT1 ∪ CT2 with CT1 ∩ CT2 = ∅, thus

hX∩CT (A) = hX∩CT1 (A) + hX∩CT2 (A).

On the other hand, by subadditivity of the function hC , we get

hX∩CT2 (A1) + hX∩CT2 (A2) ≥ hX∩CT2 (A).

Therefore, putting all together,

hX∩CT1 (A1) + hX∩CT2 (A1) + hX∩CT2 (A2) ≥ hX∩CT (A). (F.3)

For j ∈ X ∩CT2 , from the above claim, we have S∗q ∩S∗j = S∗q , so A1 ∩S∗j = A∩S∗q ∩S∗j = A∩S∗q =

A1 = A1∩S∗ where the last equality holds simply because A1 ⊆ S∗. Therefore, the customer types

in X ∩ CT2 are complete with respect to A1. Moreover, |A1| ≤ |A| = k. Hence, by Theorem 4.2, it

43

follows that

RTk = fCT (∆Tk) ≥
(

1− 1

e

)
· fX∩CT2 (A1) ≥

(
1− 1

e

)
· hX∩CT2 (A1),

where the last inequality uses (F.1). Lastly, if hX∩CT2 (A1) ≥ 1
logm · h

X∩CT (A), then the inequality

yields RTk = Ω(1/ logm) · hX∩CT (A), which establishes that the first property in the lemma is

verified. Otherwise, if hX∩CT2 (A1) < 1
logm · h

X∩CT (A), then (F.3) implies that

hX∩CT1 (A1) + hX∩CT2 (A2) ≥
(

1− 1

logm

)
· hX∩CT (A),

which establishes that the second property in the lemma is verified.

F.2 Proof of the main result

We use the two auxiliary lemmas earlier in this section to give a proof for Theorem 5.2. Let ∆ be

the assortment defined in (5.3). The goal is to show that the solution ∆ is feasible to CAP and

its expected revenue satisfies f(∆) = Ω(1/ logm) · zCAP. We will follow the following steps in our

proof. First, we will show that the solution ∆ is feasible for CAP. Second, we will show that the

expected revenue f(∆) corresponding to the solution is at least as large as the optimal objective

value of problem (5.2). Thus, it is sufficient to show that the optimal objective value of problem

(5.2) is Ω(1/ logm) · zCAP. To achieve the latter goal, building on Lemma F.1 and Lemma F.2, we

will construct a feasible solution for problem (5.2) and establish that this feasible solution has an

objective value of at least Ω(1/ logm) · zCAP.

Feasibility. Let {x∗Tk : T ∈ L, k = 1, . . . ,K} be the optimal solution of problem (5.2) and ∆ be the

assortment defined in (5.3). Recall ∆Tk in the definition of ∆ in (5.3) is given by AugGreedy(CT , k),

so ∆Tk has at most k products. Therefore,

|∆| ≤
∑
T∈L

K∑
k=1

|∆Tk| · x∗Tk ≤
∑
T∈L

K∑
k=1

k · x∗Tk ≤ K,

where the last inequality follows from the first constraint of problem (5.2). Hence, ∆ is a feasible

solution for CAP.

Lower bound for f(∆). By the definition of L, if T, T ′ ∈ L with T ∩T ′ 6= ∅, then either T ⊆ T ′ or

T ′ ⊆ T . Hence, the second constraint of (5.2) ensures that the subtrees {T ∈ L :
∑K

k=1 x
∗
Tk = 1} are

disjoint, i.e., if there exists T, T ′ ∈ L such that
∑K

k=1 x
∗
Tk = 1 and

∑K
k=1 x

∗
T ′k = 1, then T ∩T ′ = ∅.

Therefore, the sets {CT :
∑K

k=1 x
∗
Tk = 1} for T ∈ L are disjoint subsets of M. Thus,

f(∆) = fM(∆) ≥
∑
T∈L

fCT (∆) ·
K∑
k=1

x∗Tk ≥
∑
T∈L

K∑
k=1

fCT (∆Tk) · x∗Tk =
∑
T∈L

K∑
k=1

RTk · x∗Tk,

where the second inequality uses the monotonicity of fCT and ∆Tk ⊆ ∆ for x∗Tk = 1. Thus, to

prove Theorem 5.2, we can show that the optimal objective value of (5.2) is Ω(1/ logm) · zCAP.

44

Feasible solution for problem (5.2). We construct a solution for problem (5.2) with an objective

value of Ω(1/ logm) · zCAP, which implies that the optimal objective value of problem (5.2) is

Ω(1/ logm) · zCAP. Our construction is as follows. We initialize all the variables of problem (5.2)

at 0. Consider the set X given in Lemma F.1. Let us start at the root of the tree T . For ease

of notation, let αT = hX∩CT (S∗) = hX (S∗). Initially, we apply Lemma F.2 with the pair (S∗, T).

We know that at least one of the two statements of Lemma F.2 should be true. Suppose, the first

statement is true, i.e., RTK = Ω(1/ logm) · hX (S∗), in which case, we get

RTK = Ω(1/ logm) · αT .

In that case, we let xTK = 1, truncate all the descendant nodes after the root and stop.

If the first statement of Lemma F.2 for the pair (S∗, T) is not true, then the second statement

must be true, i.e., there exists a partition of S∗ = A1 ∪A2 and A1 ∩A2 = ∅ such that

hX∩CT1 (A1) + hX∩CT2 (A2) ≥
(

1− 1

logm

)
· hX (S∗),

where T1 is the left subtree of T and T2 is the right subtree of T . We let αT1 = hX∩CT1 (A1) and

αT2 = hX∩CT2 (A2). Hence, we have

αT1 + αT2 ≥
(

1− 1

logm

)
· αT .

We repeat the same argument for the pairs (A1, T1) and (A2, T2). In general, each time we

consider a pair (A, T), we let αT = hX∩CT (A). If the first statement of Lemma F.2 is true for the

pair (A, T), then we set xTk = 1 for k = |A| and truncate all the descendant nodes of the root of

T , i.e., we do not further explore T . By Lemma F.2, we know that

RTk = Ω(1/ logm) · αT . (F.4)

Otherwise, if the first statement is not true, then the second statement of the lemma must be true,

so there exists a partition of A = A1 ∪A2 and A1 ∩A2 = ∅ such that hX∩CT1 (A1) + hX∩CT2 (A2) ≥
(1 − 1

logm) · hX∩CT (A), where T1 is the left subtree of T and T2 is the right subtree of T . Letting

αT1 = hX∩CT1 (A1) and αT2 = hX∩CT2 (A2), we have

αT1 + αT2 ≥
(

1− 1

logm

)
· αT . (F.5)

We repeat the same argument again for (A1, T1) and (A2, T2). Note that at each node, we either

truncate the tree or move to the next level. If we arrive at a pair (A, T) where the subtree T is

simply a leaf of T , then we know from the proof of Lemma F.2 that the first statement should be

true for this pair and therefore (F.4) is verified for T .

Let {xTk : T ∈ L, k = 1, . . . ,K} be the solution that we have constructed as above. Let us

show that this solution is feasible for problem (5.2). Consider the pairs (A, T) for which we set

xTk = 1 where k = |A|. Each pair (A, T) among these pairs is such that T correspond to a red node

in Figure 2. Let us index them with (Ai, Ti) for i ∈ I, where I is an index set. By our construction,

45

Figure 2: Truncated Tree of customer types.

the subsets Ai for i ∈ I form a partition of S∗. In particular, we have

K∑
k=1

∑
T∈L

k · xTk =
∑
i∈I
|Ai| = |S∗| ≤ K.

Therefore, our solution verifies the first constraint of problem (5.2). Moreover, if xTiki = 1 for some

i ∈ I, then our construction implies that xTik = 0 for any k 6= |Ai|. The tree was truncated after

the node that corresponds to the subtree Ti, hence xTk = 0 for any subtree T that correspond to

a descendant node of Ti and for any k = 1, . . . ,K. Furthermore, the subtrees T that correspond

to the parent nodes of Ti are such that XTk = 0 for any k = 1, . . . ,K. Thus, it follows that∑K
k=1(xTk + xT ′k) ≤ 1 for all T ∈ L, T ′ ⊆ T , T ′ 6= T , which implies that our solution satisfies the

second constraint of problem (5.2) as well.

Performance guarantee. To complete our proof, let us show that the solution constructed above

provides an expected revenue of Ω(1/ logm) · zCAP for problem (5.2). Consider a node in the

truncated tree and let T be the corresponding subtree in L. Let depth(T) be the depth of T in the

truncated tree and leaves(T) be the leaves of T in the truncated tree. The depth of a subtree is

defined as the distance between its root and the farthest leaf. By convention, the distance between

two consecutive levels is 1. Note that leaves(T) must be among the red nodes in Figure 2. For

instance, in Figure 2, the dashed box shows the subtree that corresponds to node a. The subtree

T ∈ L that corresponds to node a in the original tree has four leaves. The subtree that corresponds

to node a in the truncated tree has three leaves labeled as red nodes, i.e., |leaves(T)| = 3. The

depth of T in the truncated tree is depth(T) = 2. First, let us show that

∑
T ′∈leaves(T)

αT ′ ≥
(

1− 1

logm

)depth(T)

αT . (F.6)

We show the above inequality using induction on depth(T).

Base case. Consider a node in the truncated tree and let T ∈ L be the corresponding subtree.

Assume that T has depth one in the truncated tree. Hence, T has exactly two leaves and both are

46

red nodes. Therefore, (F.6) follows directly from (F.5).

Induction. Suppose that the inequality in (F.6) holds for the subtrees with depth d in the truncated

tree. Consider a subtree T ∈ L that has depth d+1 in the truncated tree. Let T1 be its left subtree

and T2 be its right subtree. By (F.5), we have

αT1 + αT2 ≥ (1− 1

logm
) · αT .

Since, T1 and T2 have depth d, by the induction hypothesis, for i ∈ {1, 2}, we have

∑
T ′∈leaves(Ti)

αT ′ ≥
(

1− 1

logm

)d
αTi .

Therefore,

∑
T ′∈leaves(T)

αT ′ =
∑

T ′∈leaves(T1)

αT ′+
∑

T ′∈leaves(T2)

αT ′ ≥
(

1− 1

logm

)d
(αT1+αT2) ≥

(
1− 1

logm

)d+1

αT ,

which concludes the induction.

Applying the inequality in (F.6) to the full tree T , we get

∑
T ′∈leaves(T)

αT ′ ≥
(

1− 1

logm

)depth(T)

αT .

We know that the depth of T is at most logm. Hence,

∑
T ′∈leaves(T)

αT ′ ≥
(

1− 1

logm

)logm

αT = Θ(e−1) · αT , (F.7)

where the last equality holds for sufficiently large m. Finally, each leaf node in the truncated tree,

which are the red nodes in Figure 2, verifies (F.4), i.e., for all i ∈ I, RTi,ki = Ω(1/ logm) · αTi .
Thus, we have ∑

i∈I
RTiki = Ω(1/ logm)

∑
T ′∈leaves(T)

αT ′ . (F.8)

Moreover, we have

αT = hX (S∗) =
∑
j∈X

θj

∑
i∈S∗∩S∗j

rivij

1 +
∑

i∈S∗∩S∗j
vij

= fX (S∗) ≥ 1

4
· zCAP, (F.9)

where the last inequality follows from Lemma F.1 . Therefore, from (F.7), (F.8) and (F.9), we get∑
i∈I

RTiki = Ω(1/ logm) · zCAP,

i.e., our solution provides an expected revenue of Ω(1/ logm) · zCAP. This concludes our proof.

47

G Appendix: Proof of Theorem 6.1

In this section, we give a proof for Theorem 6.1. In the next lemma, we give a performance

guarantee for CAP that is provided by an optimal solution to problem (6.2).

Lemma G.1. Let zCAP be the optimal objective value of CAP and (Ŝ, t̂) be an optimal solution to

problem (6.2). Then, we have ∑
j∈M

θj fj(Ŝ) ≥ (1− 3ε) · zCAP.

Proof. Let S∗ be an optimal solution to CAP. By the definition of Grid, for each j ∈ M, there

exists t∗j ∈ Grid such that t∗j ≤ fj(S
∗) ≤ (1 + ε) t∗j . We claim that (S∗, t∗) with t∗ = (t∗1, . . . , t

∗
m) is

a feasible solution to problem (6.2). In particular, by the discussion at the beginning of Section 6,

we have fj(S) ≥ tj if and only if
∑

i∈S vij (ri − tj)+ ≥ tj . Thus, since fj(S
∗) ≥ t∗j , it follows that∑

i∈S∗ vij (ri − t∗j)+ ≥ t∗j , which we write equivalently as

∑
i∈S∗

vij (ri − t∗j)+

t∗j
· n
ε
≥ n

ε
,

in which case, the inequality above yields

⌊n
ε

⌋
≤
∑
i∈S∗

⌈vij (ri − t∗j)+

t∗j
· n
ε

⌉
=
∑
i∈S∗

σij(t
∗
j).

Thus, the solution (S∗, t∗) satisfies the first constraint in problem (6.2). Since S∗ is an optimal

solution to CAP, we have |S∗| ≤ K, which implies that the second constraint in problem (6.2) is

also satisfied. By our choice of t∗j , we have t∗ ∈ Gridm as well. Therefore, the claim follows and

(S∗, t∗) is feasible to problem (6.2).

Next, recalling that (Ŝ, t̂) is an optimal solution to problem (6.2), they satisfy the first constraint

in this problem. In this case, using the fact that bac ≥ a− 1 and dae ≤ a+ 1, we have

n

ε
− 1 ≤

⌊n
ε

⌋
≤
∑
i∈Ŝ

σij(t̂j) =
∑
i∈Ŝ

⌈vij (ri − t̂j)+

t̂j
· n
ε

⌉
≤
∑
i∈Ŝ

(
vij (ri − t̂j)+

t̂j
· n
ε

+ 1

)
≤
∑
i∈Ŝ

(
vij (ri − t̂j)+

t̂j
· n
ε

)
+ n,

where the last inequality holds because |Ŝ| ≤ n. Arranging the terms in the inequality above, we

obtain ∑
i∈Ŝ

vij (ri − t̂j)+

t̂j
≥ ε

n

(n
ε
− 1− n

)
≥ 1− 2ε.

Thus, we obtain (1− 2ε) t̂j ≤
∑

i∈Ŝ vij (ri − t̂j)+ ≤
∑

i∈Ŝ vij (ri − (1− 2ε) t̂j)
+. Once again, by the

discussion at the beginning of Section 6, we have fj(S) ≥ tj if and only if
∑

i∈S vij (ri − tj)+ ≥ tj .

48

Thus, the last inequality implies that fj(Ŝ) ≥ (1 − 2ε) t̂j for each j ∈ M. In this case, we obtain

the chain of inequalities∑
j∈M

θj fj(Ŝ) ≥ (1− 2ε)
∑
j∈M

θj t̂j ≥ (1− 2ε)
∑
j∈M

θj t
∗
j ≥

1− 2ε

1 + ε

∑
j∈M

θj fj(S
∗) =

1− 2ε

1 + ε
zCAP,

where the second inequality holds because (Ŝ, t̂) is is an optimal solution to problem (6.2), but

(S∗, t∗) is only a feasible solution as shown in the claim at the beginning of the proof, and the third

inequality holds by noting that (1 + ε) t∗j ≥ fj(S∗) by our choice of t∗j .

By the lemma above, for any given δ ∈ (0, 1), if we construct the geometric grid in problem

(6.2) with an accuracy parameter of ε = δ/3, then an optimal solution to this problem is a

(1− δ)-approximation to CAP. We use this observation to give a proof for Theorem 6.1.

Proof of Theorem 6.1. For any δ ∈ (0, 1), we construct the geometric grid in problem (6.2)

with an accuracy parameter of ε = δ/3. By the discussion in the previous paragraph, an optimal

solution to problem (6.2) is a (1− δ)-approximation to CAP.

To show Theorem 6.1, it remains to argue that we can obtain an optimal solution to problem

(6.2) in running time O
(

logm(Bmax
Bmin

) n
m+2

δ2m

)
. We obtain an optimal solution to problem (6.2) as

follows. By the definition of Grid, the number of points in Grid is

O

(
log(Bmax/Bmin)

log(1 + ε)

)
= O

(
log(Bmax/Bmin)

ε

)
,

which yields a total of O
(logm(Bmax/Bmin)

εm

)
lower bound guesses t ∈ Gridm. For each value of

t ∈ Gridm, we can use the dynamic program in (6.3) to check whether there exists an assortment S

that satisfies the constraints in problem (6.2).

We proceed to accounting for the running time for solving the dynamic program. All components

of the state variable (q1, . . . , qm, `) in (6.3) take on integer values. The value of the state variable

qj only increases from one decision epoch to the next. Thus, if qj ≥ bnε c at any decision epoch,

then we can set the value of this state variable to bnε c at all future decision epochs because the

boundary condition only depends on whether qj exceeds bnε c. This discussion indicates that there

are O(nε) possible values for the state variable qj . Moreover, the state variable ` takes on O(n)

possible values. Thus, there are O((nε)mn) possible values for the state variable (q1, . . . , qm, `), so

noting that there are n decision epochs in the dynamic program, for fixed t ∈ Gridm, we can solve

the dynamic program in (6.3) in O((nε)m n2) operations.

Putting the discussion in the previous two paragraphs together, we can obtain an optimal

solution to problem (6.2) by checking each value of t ∈ Gridm, and for each t ∈ Gridm, using the

dynamic program in (6.3) to see whether there exists an assortment S that satisfies the constraints

of problem (6.2). The total number of operations to do so is

O

(
logm(Bmax/Bmin)

εm

(n
ε

)m
n2

)
= O

(
logm

(
Bmax

Bmin

)
nm+2

ε2m

)
.

Evaluating the running time above with ε = δ/3 yields the desired result.

49

H Appendix: Integer programming formulation

Let {x∗i : i ∈ N} and {z∗j` : j ∈ M, ` = 1, . . . , L} be an optimal solution to problem (6.5). Using

this optimal solution, define the assortment S∗ = {i ∈ N : x∗i = 1}. Noting the second constraint

in problem (6.5), we have |S∗| ≤ K. Letting zIP be the optimal objective value of problem (6.5),

in this section, we show that ∑
j∈M

θj fj(S
∗) ≥ zIP ≥

1

1 + ε
zCAP.

Thus, the solution S∗ is a (1− ε)-approximation to CAP and (1 + ε) zIP is an upper bound on the

optimal objective value of CAP.

We start by arguing that
∑
∈M θj fj(S

∗) ≥ zIP. For each j ∈M, let kj = 1, . . . , L be such that

z∗j,kj = 1. Thus, the first constraint in problem (6.5) implies that
∑

i∈N vij (ri − τkj)+ x∗i ≥ τkj ,

which, by using the definition of S∗, is equivalent to∑
i∈S∗

vij (ri − τkj)+ ≥ τkj .

By the discussion at the beginning of Section 6, fj(S) ≥ tj if and only if
∑

i∈S vij (ri − tj)+ ≥ tj .

Thus, the inequality above implies that fj(S
∗) ≥ τkj for each j ∈ M. In this case, we obtain the

chain of inequalities

∑
j∈M

θj fj(S
∗) ≥

∑
j∈M

θj τ
kj =

∑
j∈M

θj

L∑
`=1

τ ` z∗j` = zIP,

where the first equality uses the definition of kj .

Next, we argue that zIP ≥ 1
1+ε zCAP. Let Ŝ be an optimal solution to CAP. For each i ∈ N ,

define x̂i ∈ {0, 1} as x̂i = 1 if and only if i ∈ Ŝ. For each j ∈M, let k̂j = 1, . . . , L be such that

τ k̂j ≤ fj(Ŝ) ≤ (1 + ε) τ k̂j .

By the definition of Grid, such k̂j is guaranteed to exist. Lastly, for each j ∈ M and ` = 1, . . . , L,

define ẑj` ∈ {0, 1} as ẑj` = 1 if and only if ` = k̂j . If we can show that {x̂i : i ∈ N} and

{ẑj` : j ∈M, ` = 1, . . . , L} is a feasible solution to problem (6.5), then it follows that

zIP ≥
∑
j∈M

θj

L∑
`=1

τ `ẑj` =
∑
j∈M

θj τ
k̂j ≥ 1

1 + ε

∑
j∈M

θj fj(Ŝ) =
1

1 + ε
zCAP,

where the first inequality holds because {x̂i : i ∈ N} and {ẑj` : j ∈ M, ` = 1, . . . , L} is a feasible,

but not necessarily an optimal, solution to problem (6.5), whereas the second inequality holds

because we chose k̂j to satisfy fj(Ŝ) ≤ (1 + ε) τ k̂j . The chain of inequalities yields zIP ≥ 1
1+ε zCAP,

which is the desired result.

It remains to show that {x̂i : i ∈ N} and {ẑj` : j ∈ M, ` = 1, . . . , L} is a feasible solution

to problem (6.5). Once again, by the discussion at the beginning of Section 6, fj(S) ≥ tj if and

50

only if
∑

i∈S vij (ri − tj)+ ≥ tj . Therefore, noting that fj(Ŝ) ≥ τ k̂j by our choice of k̂j , we get∑
i∈Ŝ vij (ri − τ k̂j)+ ≥ τ k̂j . We equivalently write the last inequality as∑

i∈N
vij (ri − τ k̂j)+ x̂i =

∑
i∈Ŝ

vij (ri − τ k̂j)+ ≥ τ k̂j = τ k̂
j
ẑj,k̂j ,

where the first equality uses the definition of x̂i and the last equality uses the definition of ẑj`. Thus,

the solution {x̂i : i ∈ N} and {ẑj` : j ∈ M, ` = 1, . . . , L} satisfies the first constraint in problem

(6.5) for each j ∈ M and ` = k̂j . When ` 6= k̂j , ẑj` = 0, in which case, the right side of the first

constraint takes value zero. Therefore, the solution {x̂i : i ∈ N} and {ẑj` : j ∈ M, ` = 1, . . . , L}
satisfies the first constraint in problem (6.5) for each j ∈M and ` 6= k̂j as well.

Since Ŝ is an optimal solution to CAP, we have |Ŝ| ≤ K, but by the definition of x̂i, we have∑
i∈N x̂i = |Ŝ|. Thus, {x̂i : i ∈ N} and {ẑj` : j ∈M, ` = 1, . . . , L} satisfies the second constraint in

problem (6.5). Lastly, by the definition of ẑj`, we have
∑L

`=1 ẑj` = ẑj,k̂j = 1, so the third constraint

in problem (6.5) is satisfied as well.

I Appendix: Synthesizing a solution under a knapsack constraint

We give an approach to obtain a (1 − δ)-approximate solution to the integer program in (7.2) in

running time that is polynomial in input size and 1/δ, for any δ > 0. Our approach closely follows

the one that we used to develop our FPTAS. For r ≥ 0, we define

H(r) = min
∑
T∈L

∑
q∈FT

q · xTq (I.1)

st
∑
T∈L

∑
q∈FT

RTq · xTq ≥ r∑
q∈FT

xTq +
∑
q∈FT ′

xT ′q ≤ 1 ∀T ∈ L, T ′ ⊆ T, T ′ 6= T

xTq ∈ {0, 1} ∀T ∈ L, q ∈ FT .

Comparing the problem above with problem (7.2), note that H(r) is the minimum capacity

consumption that yields an expected revenue of r or more. For certain values of r, the problem

above can be infeasible, in which case, we set H(r) = ∞. Let bmin and bmax be lower and upper

bounds on the expected revenue over all customer types. For example, similar to our discussion in

Section 6, letting rmax = max{ri : i ∈ N} and rmin = min{ri : i ∈ N} be the largest and smallest

product revenues, vmin = min{vij : i ∈ N , j ∈ M, vij > 0} and θmin = minj∈M{θj : θj > 0}, the

expected revenue from all customer types lies in the interval
[
θmin

rmin vmin
1+vmin

, rmax]. Thus, we can set

bmin = θmin
rmin vmin
1+vmin

and bmax = rmax. In this case, problem (7.2) is equivalent to

max {r : H(r) ≤ C, bmin ≤ r ≤ bmax} . (I.2)

The number of leaf nodes in the tree in Figure 1 is at most equal to the number of customer

types. Because of the second constraint in problem (I.1), whenever a decision variable corresponding

to tree T takes a positive value, none of the decision variables corresponding to tree T ′ ⊆ T can

51

take a positive value. Therefore, at most m decision variables in problem (I.1) can take value one,

which is to say that, any feasible solution to problem (I.1) satisfies∑
T∈L

∑
q∈FT

xTq ≤ m.

We fix ε > 0. Expressing the first constraint in problem (I.1) as
∑

T∈L
∑

q∈FT

RTq

r
m
ε · xTq ≥

m
ε , we

consider an approximate version of problem (I.1) given by

G(r) = min
∑
T∈L

∑
q∈FT

q · xTq (I.3)

∑
T∈L

∑
q∈FT

⌈RTq
r

m

ε

⌉
· xTq ≥

⌊m
ε

⌋
∑
q∈FT

xTq +
∑
q∈FT ′

xT ′q ≤ 1 ∀T ∈ L, T ′ ⊆ T, T ′ 6= T

xTq ∈ {0, 1}, ∀T ∈ L, q ∈ FT .

We consider the grid points that cover the interval [bmin, bmax]. In particular, for the value of ε

in the previous paragraph, we consider the geometric grid

Grid =
{

(1 + ε)k : k =
⌊ log bmin

log(1 + ε)

⌋
, . . . ,

⌈ log bmax

log(1 + ε)

⌉}
.

Using the geometric grid, we can construct an approximate version of problem (I.2). In the

approximate version, we use G(r) in (I.3) and consider the values of r ∈ Grid, yielding

max {r : G(r) ≤ C, r ∈ Grid} . (I.4)

For each r ∈ Grid, we will show that we can solve problem (I.3) in polynomial time using a

dynamic program. Thus, we can solve problem (I.4) by enumerating over all r ∈ Grid and finding

the largest value of r that is feasible to problem (I.4). By doing so, it turns out that we will obtain

an approximate solution to the integer program in (7.2), which is our main goal. We use two

preliminary lemmas. Throughout this section, we let z∗ be the optimal objective value of problem

(7.2). By the discussion at the beginning of this section, we have bmin ≤ z∗ ≤ bmax. Thus, there

exists some r̃ ∈ Grid such that r̃ ≤ z∗ ≤ (1 + ε) r̃. In the next lemma, we show that such an r̃ is

feasible to problem (I.4).

Lemma I.1. Let r̃ ∈ Grid be such that r̃ ≤ z∗ ≤ (1 + ε)r̃. Then, G(r̃) ≤ C.

Proof. Let {x∗Tq : T ∈ L, q ∈ FT } be an optimal solution to problem (7.2). Noting that the

optimal objective value of this problem is z∗, we have∑
T∈L

∑
q∈FT

RTq · x∗Tq = z∗ ≥ r̃,

where the inequality is by our choice of r̃ in the lemma. The inequality above implies that∑
T∈L

∑
q∈FT
dRTq

r̃
m
ε e · x

∗
Tq ≥ b

m
ε c, so the solution {x∗Tq : T ∈ L, q ∈ FT } satisfies the first

52

constraint in problem (I.3) when we solve this problem with r = r̃. Moreover, since this solution

is optimal to problem (7.2), it satisfies the second constraint in problem (7.2). Thus, the solution

{x∗Tq : T ∈ L, q ∈ FT } satisfies the second constraint in problem (I.3) as well. In this case, it

follows that the solution {x∗Tq : T ∈ L, q ∈ FT } is feasible to problem (I.3) when we solve this

problem with r = r̃. Therefore, noting that the optimal objective value of problem (I.3) with r = r̃

is given by G(r̃), we obtain

G(r̃) ≤
∑
T∈L

∑
q∈FT

q · x∗Tq.

Lastly, because {x∗Tq : T ∈ L, q ∈ FT } is an optimal solution to problem (7.2), it satisfies the first

constraint in this problem, yielding
∑

T∈L
∑

q∈FT
q · x∗Tq ≤ C, in which case, by the last inequality

and the inequality above, we get G(r̃) ≤ C.

In the next lemma, we show that a feasible solution to problem (I.3) approximately satisfies the

first constraint in problem (I.1).

Lemma I.2. Let {x̂Tq : T ∈ L, q ∈ FT } be a feasible solution to problem (I.3) when we solve this

problem with r = r̂. Then, ∑
T∈L

∑
q∈FT

RTq · x̂Tq ≥ (1− 2ε) r̂.

Proof. By the first constraint in problem (I.3), we have
∑

T∈L
∑

q∈FT
dRTq

r̂
m
ε e · x̂Tq ≥ b

m
ε c. Noting

that dae ≤ a+ 1 and bac ≥ a− 1, the last inequality implies that we have

∑
T∈L

∑
q∈FT

(
RTq
r̂

m

ε
+ 1

)
· x̂Tq ≥

m

ε
− 1.

By the discussion at the beginning of this section, we have
∑

T∈L
∑

q∈FT
x̂Tq ≤ m, so by the

inequality above, we get ∑
T∈L

∑
q∈FT

RTq
r̂

m

ε
· x̂Tq +m ≥ m

ε
− 1.

In this case, arranging the terms in the inequality above, it follows that
∑

T∈L
∑

q∈FT
RTq · x̂Tq ≥

r̂ ε
m (mε − 1−m) ≥ r̂ (1− 2ε), which is the desired result.

Finally, we use the lemmas above to show that we can obtain an approximate solution to

problem (7.2) via problem (I.4). Recall that z∗ is the optimal objective value of problem (7.2).

Theorem I.3. Let r̂ be an optimal solution to problem (I.4) and {x̂Tq : T ∈ L, q ∈ FT } be an

optimal solution to problem (I.3) when we solve this problem with r = r̂. Then,∑
T∈L

∑
q∈FT

RTq · x̂Tq ≥ (1− 3ε) z∗.

Furthermore, the solution {x̂Tq : T ∈ L, q ∈ FT } is feasible to problem (7.2).

53

Proof. Let r̃ ∈ Grid be such that r̃ ≤ z∗ ≤ (1 + ε)r̃. By Lemma I.1, we have G(r̃) ≤ C, so the

solution r̃ is feasible to problem (I.4). Since r̂ is an optimal solution to problem (I.4), but r̃ is only

a feasible solution to this problem, we have r̂ ≥ r̃ ≥ z∗

1+ε . Since {x̂Tq : T ∈ L, q ∈ FT } is an optimal

solution to problem (I.3) when we solve this problem with r = r̂, by Lemma I.2, we have∑
T∈L

∑
q∈FT

RTq · x̂Tq ≥ (1− 2ε) r̂ ≥ 1− 2ε

1 + ε
z∗ ≥ (1− 3ε) z∗.

We next argue that the solution {x̂Tq : T ∈ L, q ∈ FT } is feasible to problem (7.2). Since r̂ is

an optimal solution to problem (I.4), it must be feasible to the same problem, so G(r̂) ≤ C. Also,

using the fact that {x̂Tq : T ∈ L, q ∈ FT } is an optimal solution to problem (I.3) when we

solve this problem with r = r̂, we have G(r̂) =
∑

T∈L
∑

q∈FT
q · x̂Tq, in which case, we obtain∑

T∈L
∑

q∈FT
q · x̂Tq = G(r̂) ≤ C. Thus, the solution {x̂Tq : T ∈ L, q ∈ FT } satisfies the first

constraint in problem (7.2). Lastly, because {x̂Tq : T ∈ L, q ∈ FT } is an optimal solution to

problem (I.3), it satisfies the second constraint in this problem, which implies that the solution

{x̂Tq : T ∈ L, q ∈ FT } satisfies the second constraint in problem (7.2) as well.

If we can efficiently solve problem (I.3) for fixed r, then we can compute G(r) efficiently, in which

case, we can solve problem (I.4) by enumerating over each r ∈ Grid, checking whether G(r) ≤ C for

each r and picking the largest value of r that satisfies G(r) ≤ C. In this way, we obtain the value

of r̂ in the last theorem above. In this case, solving problem (I.3) once more with r = r̂, we obtain

{x̂Tq : T ∈ L, q ∈ FT } in the last theorem above, which, by the theorem, is a (1−3ε)-approximation

to problem (7.2). Thus, by choosing the accuracy parameter in the geometric grid as ε = δ/3, we

obtain a (1− δ)-approximate solution to problem (7.2), as desired.

It only remains to argue that we can efficiently solve problem (I.3) for fixed r. We give a

dynamic program to solve problem (I.3). Note that dRTq

r
m
ε e and bmε c in problem (I.3) are integers.

We consider a dynamic program with the state variable (T,Rev), where we have T ∈ L and

Rev ∈ {0, 1, . . . , bmε c}. The value function g(T,Rev) is the optimal objective value of problem (I.3)

when we consider only the customers in subtree T and replace the right side of the first constraint

with Rev. We compute the value functions {g(T,Rev) : T ∈ L, Rev ∈ {0, 1, . . . , bmε c} as follows.

• If T is a leaf, then

g(T,Rev) = min

{
q ∈ FT :

⌈RTq
r

m

ε

⌉
≥ Rev

}
.

• Otherwise,

g(T,Rev) = min

{
min

{
q ∈ FT :

⌈RTq
r

m

ε

⌉
≥ Rev

}
, min
R1 +R2 = Rev,

(R1, R2) ∈ Z2
+

{g(T1, R1) + g(T2, R2)}

}
,

where T1 and T2 are respectively the left and right subtrees of T .

The optimal objective value of problem (I.3) is given by g(T , bmε c) where T is the full tree of

customer types. In g(T,Rev), Rev is an integer that never takes a value greater than bmε c, so we

can solve the dynamic program in polynomial time.

54

J Appendix: Numerical experiments for heterogeneous arrival probabilities

In this section, we provide computational experiments under heterogeneous arrival probabilities for

different customer types. Our results are in Table 8. The format of this table is identical to that

of Table 7. Augmented Greedy continues to provide near-optimal assortments with less than 1%

optimality gaps in an overwhelming majority of our problem instances.

Augmented Greedy

γ1t (%)
m n K Mean 5% Min

10
50

5 98.6 97.1 96.9
25 98.5 96.2 95.5

100
10 99.3 99.1 99.0
50 99.3 99.2 99.2

50
50

5 99.5 99.4 99.4
25 99.4 99.2 99.1

100
10 99.5 99.5 99.4
50 99.5 99.4 99.4

100
50

5 99.5 99.5 99.4
25 99.5 99.5 99.5

100
10 99.5 99.5 99.5
50 99.5 99.5 99.5

Integer Program

γ2t (%)
m n K Mean 5% Min

10
50

5 99.4 99.4 99.4
25 99.5 99.4 99.4

100
10 99.5 99.4 99.4
50 99.5 99.4 99.4

50
50

5 99.5 99.4 99.4
25 99.5 99.4 99.4

100
10 99.5 99.5 99.5
50 99.5 99.4 99.4

100
50

5 99.5 99.5 99.5
25 99.5 99.5 99.5

100
10 99.5 99.5 99.5
50 99.5 99.5 99.5

Table 8: Quality of the solutions from Augmented Greedy and the integer programming formulation
for problem instances with heterogeneous arrival probabilities.

55

