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Abstract
This is the second part of a three part series abut delocalization for band matrices. In this
paper, we consider a general class of N × N random band matrices H = (Hi j ) whose
entries are centered random variables, independent up to a symmetry constraint. We assume
that the variances E|Hi j |2 form a band matrix with typical band width 1 � W � N . We
consider the generalized resolvent of H defined as G(Z) := (H − Z)−1, where Z is a
deterministic diagonal matrix such that Zi j = (

z11�i�W + z̃1i>W
)
δi j , with two distinct

spectral parameters z ∈ C+ := {z ∈ C : Im z > 0} and z̃ ∈ C+ ∪ R. In this paper, we prove
a sharp bound for the local law of the generalized resolvent G for W � N 3/4. This bound
is a key input for the proof of delocalization and bulk universality of random band matrices
in Bourgade et al. (arXiv:1807.01559, 2018). Our proof depends on a fluctuations averaging
bound on certain averages of polynomials in the resolvent entries, which will be proved in
Yang and Yin (arXiv:1807.02447, 2018).
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1 TheModel and the Results

1.1 TheModel

Our goal in this paper is to establish estimates on Green’s functions which were used in
the proof of delocalization conjecture and bulk universality for random band matrices. All
results in this paper apply to both real and complex bandmatrices. For simplicity of notations,
we consider only the real symmetric case. Random band matrices are characterized by the
property that the matrix element Hi j becomes negligible if dist(i, j) exceeds the band width
W . We shall restrict ourselves to the convention that i, j ∈ ZN = Z ∩ (−N/2, N/2], and
i − j is defined modular N . More precisely, we consider the following matrix ensembles.

Definition 1.1 (Band matrix HN with bandwidth WN ) Let HN be an N × N matrix with real
centered entries (Hi j : i, j ∈ ZN ) which are independent up to the condition Hi j = Hji . We
say that HN is a random band matrix with (typical) bandwidth W = WN if

si j := E|Hi j |2 = f (i − j) (1.1)

for some non-negative symmetric function f : ZN → R+ satisfying
∑

x∈ZN

f (x) = 1, (1.2)

and there exist some (small) positive constant cs and (large) positive constant Cs such that

cs W
−1 · 1|x |�W � f (x) � Cs W

−1 · 1|x |�CsW , i, j ∈ ZN . (1.3)

The method in this paper also allows to treat cases with exponentially small mass away
from the band width (e.g. f (x) � CsW−1e−cs |x |2/W 2

). We work under the hypothesis (1.3)
mainly for simplicity.

We assume that the random variables Hi j have arbitrarily high moments, in the sense that
for any fixed p ∈ N, there is a constant μp > 0 such that

max
i, j

(
E|Hi j |p

)1/p � μp Var
(
Hi j

)1/2 (1.4)

uniformly in N .
In this paper, we will not need the following moment condition assumed in Part I of this

series [2]: there is fixed εm > 0 such that for |i− j | � W , min|i− j |�W

(
E ξ4i j − (E ξ3i j )

2 − 1
)

� N−εm , where ξi j := Hi j (si j )−1/2 is the normalized random variable with mean zero and
variance one.

All the results in this paper will depend on the parameters cs , Cs in (1.3) and μp in (1.4).
But we will not track the dependence on cs , Cs and μp in the proof.

Denote the eigenvalues of HN by λ1 � · · · � λN . It is well-known that the empirical
spectral measure 1

N

∑N
k=1 δλk converges almost surely to the Wigner semicircle law with

density

ρsc(x) = 1

2π

√
(4 − x2)+.

The aim of this paper is to estimate “the generalized resolvent” G(z, z̃ ) of HN defined by

G(z, z̃ ) :=
(
HN −

(
z IW×W 0

0 z̃ I(N−W )×(N−W )

))−1

, z, z̃ ∈ C
+ ∪ R, (1.5)
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whereC+ denotes the upper half complex planeC+ := {z ∈ C : Im z > 0}. The generalized
resolvent is an important quantity used in Part I of this series [2]. The key point of this
generalization, compared with the usual resolvent, is the freedom to choose different z and
z̃. To the best of our knowledge, the local law for this type of generalized resolvent has
only been studied in the preceding paper [1], where it was assumed that W � cN for some
constant c > 0.

To understand the role of the generalized resolvent, we block-decompose the band matrix
HN and its eigenvectors as

HN =
(
A B∗
B D

)
, ψ j :=

(
w j

p j

)
,

where A is a W × W Wigner matrix. From the eigenvector equation Hψ j = λ jψ j , we get

Qλ jw j = λ jw j , Qe := A − B∗ 1

D − e
B.

Thus w j is an eigenvector of Qe := A − B∗(D − e)−1B with eigenvalue λ j when e = λ j .
A key input to the proof of universality and QUE for random band matrices is an estimate on
the Green’s function of Qe. Since some eigenvalues of D can be very close to e, the matrix
(D − e)−1 can be very singular. It is thus very difficult (if possible) to estimate the Green’s
function of Qe directly. On the other hand, the Green’s function of Qe is just the W × W
minor of the generalized resolventG(z, e) of HN , which we find to be relatively more doable.

Due to the need in Part I, we will consider generalized resolvent for a general class of band
matrices. More precisely, we introduce the following Definition 1.2. Here and throughout
the rest of this paper, we will use the notation that for any a, b ∈ Z,

[[ a, b ]] := [a, b] ∩ Z.

Definition 1.2 (Definition of Hg
ζ ) For any sufficiently small ζ > 0 and any g =

(g1, g2, · · · , gN ) ∈ R
N , Hζ and Hg

ζ will denote N × N real symmetric matrices satis-
fying the following properties. The entries (Hζ )i j are centered and independent up to the
symmetry condition, satisfy (1.4), and have variances

E|(Hζ )i j |2 = (sζ )i j := si j − ζ(1 + δi j )

W
1i, j∈[[ 1,W ]],

where si j , i, j ∈ ZN , satisfy the conditions in Definition 1.1. Then the matrix Hg
ζ is defined

by

(Hg
ζ )i j := (Hζ )i j − giδi j .

We denote by S0 and 	 the matrices with entries (S0)i j = si j and 	i j = (1+δi j )

W 1i, j∈[[ 1,W ]],
respectively. Then the matrix of variances is

Sζ := S0 − ζ	, (Sζ )i j = (sζ )i j .

1.2 The Results

The generalized resolvent Gg
ζ (z, z̃ ) of Hg

ζ is defined similarly as in (1.5) by

Gg
ζ (z, z̃ ) :=

(
Hg

ζ −
(
z IW×W 0

0 z̃ I(N−W )×(N−W )

))−1

.
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1192 P. Bourgade et al.

Define
(
(Mg

ζ )i (z, z̃)
)N
i=1 as the solution vector to the system of self-consistent equations

(
(Mg

ζ )i (z, z̃)
)−1 = −z1i∈[[ 1,W ]] − z̃1i /∈[[ 1,W ]] − gi −

∑

j

(sζ )i j (M
g
ζ ) j (z, z̃), (1.6)

for z, z̃ ∈ C
+ ∪ R and i ∈ ZN , with the constraint that

(M0
0 )i (̃z, z̃ ) = msc(̃z + i0+),

where msc denotes the Stieltjes transform of the semicircle law

msc(z) := −z + √
z2 − 4

2
, z ∈ C

+. (1.7)

(The existence, uniqueness and continuity of the solution is given by Lemma 1.3 below.) For
simplicity of notations, we denote by Mg

ζ (z, z̃) the diagonal matrix with entries

(Mg
ζ )i j := (Mg

ζ )iδi j .

Wewill show that Mg
ζ (z, z̃) is the asymptotic limit of the generalized resolvent Gg

ζ (z, z̃ ). We

now list some properties of Mg
ζ needed for the proof of local law stated in Theorem 1.4. Its

proof is delayed to Sect. 4.

Lemma 1.3 Assume |Re z̃ | � 2 − κ and |̃z| � κ−1 for some (small) constant κ > 0. Then
there exist constants c,C > 0 such that the following statements hold.

• (Existence and Lipschitz continuity) If

ζ + ‖g‖∞ + |z − z̃| � c, (1.8)

then there exist (Mg
ζ )i (z, z̃), i ∈ ZN , which satisfy (1.6) and

max
i

∣∣∣(Mg
ζ )i (z, z̃) − msc(̃z + i0+)

∣∣∣ � C (ζ + ‖g‖∞ + |z − z̃| ) . (1.9)

If, in addition, we have ζ ′ + ‖g′‖∞ + |z′ − z̃ ′| � c, then

max
i

∣∣∣(Mg′
ζ ′ )i (z

′, z̃ ′) − (Mg
ζ )i (z, z̃)

∣∣∣ � C
(‖g − g′‖∞ + |z′ − z| + |̃z ′ − z̃| + |ζ ′ − ζ |) .

(1.10)
• (Uniqueness) The solution vector

(
(Mg

ζ

)
i (z, z̃)

)N
i=1 to (1.6) is unique under (1.8) and the

constraint

max
i

∣∣∣(Mg
ζ )i (z, z̃) − msc(̃z + i0+)

∣∣∣ � c.

We now state our results on the generalized resolvent of Hg
ζ . In this paper, we will always

use τ to denote an arbitrarily small positive constant independent of N , and D to denote an
arbitrarily large positive constant independent of N . Define for any matrix X the max norm

‖X‖max := max
i, j

|Xi j |.

The notations η∗, η∗ and r in next theorem were used in Assumptions 2.3 and 2.4 of Part I
of this series [2]. Their meanings are not important for this paper and the reader can simply
view them as some parameters. In this paper, all the statements hold for sufficiently large N
and we will not repeat it everywhere.
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Theorem 1.4 (Local law) Define a set of parameters with some constants ε∗, ε∗ > 0:

η∗ := N−ε∗ , η∗ := N−ε∗
r := N−ε∗+3ε∗

, T := N−ε∗+ε∗
, 0 < ε∗ � ε∗/20. (1.11)

Fix any |e| < 2 − κ for some constant κ > 0. Then for any deterministic z, ζ , g satisfying

|Re z − e| � r , η∗ � Im z � η∗, 0 � ζ � T , ‖g‖∞ � W−3/4, (1.12)

and W , ε∗, ε∗ satisfying

logN W � max

{
6

7
+ ε∗, 3

4
+ 3

4
ε∗ + ε∗

}
, (1.13)

we have that for any fixed τ > 0 and D > 0,

P

(
‖Gg

ζ (z, e) − Mg
ζ (z, e)‖max � N τ

(
1√

W Im z
+ N 1/2

W

))
� N−D . (1.14)

In fact, the last estimate holds under the weaker assumption

logN W � max

{
3

4
+ ε∗, 1

2
+ ε∗ + ε∗

}
. (1.15)

We will refer to the first statement, i.e., (1.14) under the assumption (1.13), as the weak
form of this theorem, and the statement (1.14) under assumption (1.15) as the strong form.
This paper gives a full and self-contained proof for the weak form, which helps the reader
understand the basic strategy of our proof. On the other hand, the proof for the strong form
is much more involved, and we include a substantial part into a separate paper [10]. Only the
strong form of Theorem 1.4was used in part I of this series [2], wherewe took logN W > 3/4,
ε∗ < 1/4 and ε∗ to be a sufficiently small constant.

The main purpose of this part and part III [10] of this series is to prove the above Theorem
1.4. In fact, the bound (1.14) is almost optimal under our setting in the sense that it (at
least) gives the correct size of E|(Gg

ζ )i j |2 for i 
= j up to an N τ factor. This sharp bound
is very important for the proof of the complete delocalization of eigenvectors and the bulk
universality of random band matrices in part I [2]. As explained there, the bound must be
of order o(W/N ) to allow the application of the so-called mean field reduction method,
which was introduced in [1] and is the starting point of this series. Compared with the local
law for regular resolvents, the main difficulty in proving the local law for the generalized
resolvents is due to the small and even vanishing imaginary part of z̃. As a result, some key
inputs, such as Ward’s identity [see (3.2)] for the regular resolvents estimates are missing.
In fact, as discussed before, the case ‖G(z, z̃)‖max = ∞ could occur when z̃ = e is real.
This difficulty has already appeared in the case W � cN in [1], where some “uncertainty
principle” was introduced to solve this problem. Unfortunately, this method seems difficult
to apply in the W � N case. Instead, in this paper, we shall use a totally different strategy,
i.e, the T -equation method, which was introduced in [7]. Moreover, we have to improve the
induction (bootstrap) argument used in [7], as explained below. We remark that the proofs of
the weak form and strong form of Theorem 1.4 are completely parallel, except that we will
apply a stronger T -equation estimate (Lemma 2.14) than the one (Lemma 2.8) used in the
proof of the weak form. We shall give a simple proof of the weak T -equation estimate using
the standard fluctuation averaging mechanism as in the previous proof of local semicircle law
[5,8]. The proof of the strong T -equation estimate is based on an improved (and substantially
more involved) fluctuation averaging result, whose proof is delayed to part III of this series
[10].
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1.3 Sketch of Proof

In the following discussion, for two random variables X and Y , we shall use the notation
X ≺ Y if for any fixed τ > 0, |X | � N τ |Y | with high probability for large enough N .

We define the T matrix with entries

Ti j :=
∑

k

Sik |Gkj |2, G ≡ Gg
ζ , Sik ≡ (Sζ )ik, (1.16)

With a standard self-consistent equation estimate (see Lemma 2.1), one can show that

‖G − M‖2max ≺ ‖T ‖max, M ≡ Mg
ζ . (1.17)

Our proof of Theorem 1.4 is based on an induction argument combined with a self-consistent
T -equation estimate as explained below. We introduce the following notation:

|||G|||2(z, z̃) := max
j

∑

1�i�N

|Gi j (z, z̃)|2, 
(z, z̃) := ‖G − M‖max (z, z̃). (1.18)

Fix z and Re z̃ = e. We perform the induction with respect to the imaginary part of z̃. Define
a sequence of z̃n such that

Im z̃n = N−nε Im z, Re z̃n = e,

for small enough constant ε > 0. In the n = 0 case with Im z̃0 = Im z, using the methods in
[5,8], we can obtain the local law (1.14) for G(z, z̃0). Suppose we has proved the local law
for G(z, z̃n−1):


(z, z̃n−1) ≺ �goal, �goal := 1√
W Im z

+ N 1/2

W
. (1.19)

Then with Im z̃n = N−ε Im zn−1 and a simple (but quite sharp up to an N 2ε factor) L2-
estimate, we get a bound on the n-th level:

|||G|||2(z, z̃n) ≺ N�̃2, �̃2 := N 2ε�2
goal, (1.20)

which gives a rough bound �(0) by the self-consistent equation estimate (1.17):

‖T ‖max(z, z̃n) � Cs

W
|||G|||2(z, z̃n) ≺ (�(0))2 ⇒ 
(z, z̃n) ≺ �(0), �(0) :=

√
N

W
�̃,

(1.21)
where Cs is the constant from (1.3). Note that �̃ is very close to �goal, while �(0) is not.
Now with the strong T -equation estimate (see Lemma 2.14), one can get an improved bound
(�(1))2 on T as follows:

‖T ‖max(z, z̃n) ≺ (�(1))2 ⇒ 
(z, z̃n) ≺ �(1), �(1) := �2
goal

+
(

N

W Im z
+ N 2

W 2

) (
�̃2 + N−1/2) (�(0))2, (1.22)

where we used (1.17) to get a better bound 
(z, z̃n) ≺ �(1). With (1.15), one can verify that
�(1) � �goal + N−ε′

�(0) for some constant ε′ > 0. After at most l := 1/ε′ many iterations
with (1.22) and (1.17), i.e. �(0) → �(1) → · · · → �(l), we can obtain the local law (1.19)
for G(z, z̃n), which is used as the input for the next induction. The key point of this induction
argument is that one has a good L2-bound (1.20) inherited from the local law on the upper
level, and this L2-bound can be used in the T -equation estimate (1.22) to give an improved
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Λ ≺ Φgoal z̃0

|||G||| ≺ Φ Λ ≺ Φ(0) Λ ≺ Φ(1) · · · Λ ≺ Φgoal z̃1

· · ·

Λ ≺ Φgoal z̃n−1

|||G||| ≺ Φ Λ ≺ Φ(0) Λ ≺ Φ(1) · · · Λ ≺ Φgoal z̃n

L2 bound

(S) (T+S) (T+S) (T+S)

L2 bound

(S) (T+S) (T+S) (T+S)

Fig. 1 The diagram for the induction argument with respect to n. At each level n − 1, we obtain the local
law (1.19), which gives the rough bound �(0) on level n through (1.20) and (1.21). Applying (1.22) and
(1.17) iteratively, one can improve the initial bound �(0) to the sharp bound �goal. In the diagram, (S) stands
for an application of the self-consistent equation estimate (1.17), and (T+S) stands for an application of the
T -equation estimate (1.22) followed by a self-consistent equation estimate (1.17)

bound for 
(z, z̃n) on this level. Finally, after finitely many inductions in n, we can obtain
the local law (1.14) for, say,G(z, e+ iN−10). Then with a continuity argument, we can prove
the local law (1.14) for G(z, e). In Fig. 1, we illustrate the flow of the induction argument
with a diagram.

We remark that the above induction argument is not a continuity argument, as used e.g.
in the works [3,5,8] on local semicircle law of regular resolvents. The multiplicative steps
Im z̃n → N−ε Im z̃n that we made are far too large for a continuity argument to work. The
main reason for choosing this multiplicative step is that the T -equation estimate can only be
applied for O(1) number of times due to the degrade of the probability set (see Remark 2.9).

The main difficulty of our proof lies in establishing the T -equation estimate (1.22). The
starting point is a self-consistent equation for the T matrix, i.e. the T -equation, see (2.14)
below. In this paper, we focus on proving the stability of the T -equation, i.e. bounding

‖ (1 − S|M |2)−1
S‖max in (2.14), where we abbreviate S ≡ Sζ . For regular resolvent of

generalized Wigner matrices (i.e. z̃ = z, ζ = 0 and g = 0), we have |M | � 1 − c Im z for
some constant c > 0. However, in our general setting and in particular when Im z̃ is small, we
actually have ‖M‖∞ > 1 and ‖S|M |2‖l∞→l∞ > 1. Therefore, the usual Taylor expansion
approach cannot be used (in fact, it is not even easy to see that 1 is outside the spectrum of
|M |2S). In this paper, we will establish the following bound

∥∥(1 − S|M |2)−1S
∥∥
max = O

(
1

W Im z
+ N

W 2

)
.

One important component for the proof is the estimate
∑

i (|Mi |2−1) � −cW Im z for some
constant c > 0. To see this bound is useful, we can intuitively view (|M |2S)n as an n-step
inhomogeneous random walk on ZN with annihilation, where the average annihilation rate
is −W Im z/N by the above bound. This shows that we can explore some decay properties
of (|M |2S)n as n increase, which may give some useful bounds on the Taylor expansion
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1196 P. Bourgade et al.

of (1 − S|M |2)−1. However, our proof actually will not follow this heuristic argument, see
Sect. 4.

Finally, to finish the proof of the strong version of the T -equation estimate (Lemma 2.14),
we need a fluctuation averaging results for a quantity of the form N−1∑

k Ek , where Ek’s are
some polynomials of the generalized resolvent entries. The proof involves a new graphical
method and we include it in part III of this series [10].

2 Tools for the Proof of Theorem 1.4

The basic strategy to prove Theorem 1.4 is to apply the self-consistent equation estimate:
Lemma 2.1, and the T -equation estimate: Lemma 2.8 or 2.14, in turns. We collect these
results in this section, and use them to prove Theorem 1.4 in next section.

For simplicity, wewill often drop the superscripts ζ and g from our notations. In particular,
G and M are always understood as Gg

ζ and Mg
ζ , while H and S are understood as Hζ and

Sζ in the rest of this paper. Also for simplicity, we will often use 1 to denote the identity
matrices. The exact meaning of “1” will be clear from the context and should not cause any
confusion.

In the proof, for quantities AN and BN , we will use the notations AN = O(BN ) and
AN � BN to mean that |AN | � C |BN | and C−1|BN | � |AN | � C |BN |, respectively, for
some constant C > 0.

2.1 The Self-Consistent Equation Estimate

The self-consistent equation estimate is the starting point of almost every proof of the local
law of the (generalized) resolvents of random matrices. We now state the self-consistent
equation estimate for our model.

Lemma 2.1 (Self-consistent equation estimate) Suppose that |Re z̃ | � 2 − κ for some con-
stant κ > 0. Then there exists constant c0 > 0 such that if

ζ + ‖g‖∞ + |z − z̃| � c0,

then the following statement holds. If there exist some fixed δ > 0 and some deterministic
parameter � � W−1/2 such that

‖G(z, z̃) − M(z, z̃)‖max � N−δ, ‖T ‖max � �2, (2.1)

in a subset � of the sample space of the random matrices, then for any fixed τ > 0 and
D > 0,

P
(
1�‖G(z, z̃) − M(z, z̃)‖max � N τ�

)
� N−D . (2.2)

Note that by the definition of T -matrix in (1.16), we have

‖T ‖max � ‖G(z, z̃) − M(z, z̃)‖2max + O(W−1).

Hence we can always choose � = O(N−δ) in (2.1). The proof of Lemma 2.1 follows the
standard idea of using a vector-level self consistent equation method [5,8]. In preparation for
the proof, we recall the following definition of minors.

123



Random Band Matrices in the Delocalized Phase, II… 1197

Definition 2.2 (Minors) For any N × N matrix A and T ⊂ {1, . . . , N }, we define the minor
of the first kind A[T] as the (N − |T|) × (N − |T|) matrix with

(A[T])i j := Ai j , i, j /∈ T.

For any N × N invertible matrix B, we define the minor of the second kind B(T) as the
(N − |T|) × (N − |T|) matrix with

(B(T))i j =
(
(B−1)[T])−1

i j
, i, j /∈ T,

whenever (B−1)[T] is invertible. Note that we keep the names of indices when defining the
minors. By definition, for any sets U,T ⊂ {1, . . . , N }, we have

(A[T])[U] = A[T∪U], (B(T))(U) = B(T∪U).

For convenience, we shall also adopt the convention that for i ∈ T or j ∈ T,

(A[T])i j = 0, (B(T))i j = 0.

For T = {a} or T = {a, b}, we shall abbreviate ({a}) ≡ (a) and ({a, b}) ≡ (ab).

Remark 2.3 In previous works, e.g. [4,5], we have used the notation (·) for both the minor of
the first kind and the minor of the second kind. Here we try to distinguish between (·) and
[·] in order to be more rigorous.

The following identities were proved in [5, Lemma 4.2] and [4, Lemma 6.10].

Lemma 2.4 (Resolvent identities) For an invertible matrix B ∈ C
N×N and k /∈ {i, j}, we

have

Bi j = B(k)
i j + Bik Bk j

Bkk
,

1

Bii
= 1

B(k)
i i

− Bik Bki

B(k)
i i Bii Bkk

, (2.3)

and
1

Bii
= (B−1)i i −

(i)∑

k,l

(B−1)ik B
(i)
kl (B−1)li . (2.4)

Moreover, for i 
= j we have

Bi j = −Bii

(i)∑

k

(B−1)ik B
(i)
k j = −Bj j

( j)∑

k

B( j)
ik (B−1)k j . (2.5)

The above equalities are understood to hold whenever the expressions in them make sense.

Since the N τ factor and the N−D bound for small probability event appear very often in
our proof, we introduce the following notations.

Definition 2.5 For any non-negative A, we denote

Oτ (A) := O(NO(τ )A).

We shall say an event EN holds with high probability (w.h.p.) if for any fixed D > 0,

P(EN ) � 1 − N−D
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for sufficiently large N . Moreover, we say EN holds with high probability in � if for any
fixed D > 0,

P(� \ EN ) � N−D

for sufficiently large N .

The following lemma gives standard large deviation bounds that will be used in the proof
of Lemma 2.1.

Lemma 2.6 (Lemma 3.5 of [9]) Let (Xi ) be a family of independent random variables and
(bi ), (Bi j ) be deterministic families of complex numbers, where i, j = 1, . . . , N. Suppose
the entries Xi satisfy EXi = 0, E|Xi |2 = 1 and the bound (1.4). Then for any fixed τ > 0,
we have

∣
∣
∣
∣
∣

∑

i

bi Xi

∣
∣
∣
∣
∣
� N τ

(
∑

i

∣
∣bi

∣
∣2
)1/2

,

∣
∣
∣
∣
∣∣

∑

i, j

X̄i Bi j X j

∣
∣
∣
∣
∣∣
� N τ

⎛

⎝
∑

i, j

∣
∣Bi j

∣
∣2
⎞

⎠

1/2

,

with high probability.

The following lemmaprovides estimates on the entries of (1−M2S)−1 and
(
1 − S|M |2)−1

S. It will be used in the proof of Lemma 2.1 and Theorem 1.4, and its proof is delayed until
Sect. 4.

Lemma 2.7 Suppose that the assumptions for the strong form of Theorem 1.4, i.e., (1.11),
(1.12) and (1.15), hold. If z̃ satisfies

Re z̃ = e, 0 � Im z̃ � Im z,

then we have for M ≡ Mg
ζ (z, z̃) and S ≡ Sζ ,

[
(1 − M2S)−1]

i j =
{

δi j + O(W−1), if |i − j | � (log N )2W

O(N−c log N ), if |i − j | > (log N )2W
, (2.6)

and ∥∥∥
(
1 − S|M |2)−1

S
∥∥∥
max

= O

(
1

W Im z
+ N

W 2

)
. (2.7)

Now we can give the proof of Lemma 2.1.

Proof of Lemma 2.1 The following proof is fairly standard in random matrix theory and we
will omit some details. For simplicity, we drop ζ and g in superscripts. Using (2.5), we have
Gi j = −Gii

∑(i)
k HikG

(i)
k j for i 
= j . Since the elements in {Hik}Nk=1 are independent ofG

(i),
by the standard large deviations estimates in Lemma 2.6, we have that for any fixed τ > 0
and D > 0,

P

(

|Gi j |2 � N τ |Gii |2
∑

k

Sik |G(i)
k j |2

)

� 1 − N−D, i 
= j . (2.8)

Since Gii � 1 in �, (2.8) implies that

P

(

1�|Gi j |2 = Oτ

(
∑

k

Sik |G(i)
k j |2

))

� 1 − N−D, i 
= j .
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By (2.3), the definition of T in (1.16), and the bound for T in (2.1), we have

∑

k

Sik |G(i)
k j |2 � 2

∑

k

Sik |Gkj |2 + 2
∑

k

Sik
|GkiGi j |2

|Gii |2 = O(�2) in �.

Therefore, we obtain (2.2) for the i 
= j case.
For the diagonal case, we define

Zi := Qi

⎛

⎝
(i)∑

k,l

Hik HilG
(i)
kl

⎞

⎠ − Hii .

Using (2.4), (2.3), the off-diagonal case for (2.2) we just proved, and the standard large
deviations estimates in Lemma 2.6, we can get that for any fixed τ > 0,

1

Gii
= −z1i∈[[1,W ]] − z̃1i /∈[[1,W ]] − gi −

∑

j

Si j G j j − Zi + Oτ (�
2), with Zi = Oτ (�) ,

holds with high probability in �. With the definition of Mi in (1.6), we have

G−1
i i − M−1

i = −
∑

j

Si j
(
G j j − Mj

) + Oτ (�), w.h.p. in �,

which implies

Mi − Gii = −
∑

j

M2
i Si j

(
G j j − Mj

) + Oτ (�) + O

(
max
i

|Gii − Mi |2
)

, w.h.p. in �.

We rewrite the above estimate as

∑

j

(1 − M2S)i j
(
G j j − Mj

) = Oτ (�) + O

(
max
i

|Gii − Mi |2
)

.

Then with (2.6) and the first bound in (2.1), we can get (2.2) for the diagonal entries and
complete the proof of Lemma 2.1 ��

2.2 The T-Equation Estimate

A key component for the proof of Theorem 1.4 is the self-consistent equation for the T
variables. It leads to a self-improved bound on ‖G − M‖max. This kind of approach was
also used in [7] to prove a weak type delocalization result for random band matrices. To help
the reader understand the proof, we first prove a weak T -equation estimate, i.e. Lemma 2.8,
which will give the weak form of Theorem 1.4. The stronger T -equation estimate will be
stated in Lemma 2.14, and its proof is put in the companion paper [10].

Lemma 2.8 (Weak T -equation estimate)Under the assumptions of Theorem 1.4 (i.e., (1.11),
(1.12), (1.15) and the assumption on e), the following statements hold. Let z̃ satisfy

Re z̃ = e, N−10 � Im z̃ � Im z, (2.9)

and � be any deterministic parameter satisfying

W−1 � �2 � N−δ
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for some fixed δ > 0. Fix some z and z̃ (which can depend on N ). If for any constants τ ′ > 0
and D′ > 0,

P

(
‖G(z, z̃) − M(z, z̃)‖max � N τ ′

�
)

� N−D′
, (2.10)

then for any fixed (small) τ > 0 and (large) D > 0, we have

P
(‖T (z, z̃)‖max � N τ (�w

# )2
)

� N−D, (�w
# )2 :=

(
N

W Im z
+ N 2

W 2

)
(�3 + N−1).

(2.11)
Furthermore, if the parameter � satisfies

� � min

{
W

N 1+ε∗+ε∗ ,
W 2

N 2+ε∗

}
, (2.12)

then for any fixed τ > 0 and D > 0 we have

‖G(z, z̃) − M(z, z̃)‖max � �N− 1
3 ε∗ + N τ

(
1√

W Im z
+ N 1/2

W

)
(2.13)

with probability at least 1 − N−D.

Remark 2.9 The above statements should be understood as follows. For any small constant
τ > 0 and large constant D > 0, (2.11) and (2.13) hold if (2.10) holds for some constants
τ ′, D′ that depend on τ and D. In general, we need to take τ ′ < τ to be sufficiently small
and D′ > D to be sufficiently large. Compared with Lemma 2.1, we lose a much “larger”
portion of the probability set. Hence Lemma 2.8 can only be iterated for O(1) number of
times, while Lemma 2.1 can be applied for O(NC ) times for any fixed C > 0.

Proof of Lemma 2.8 From the defining equation (1.16) of T , we add and subtract
∑

k Sik|Mk |2Tkj so that

Ti j =
∑

k

Sik |Mk |2Tkj +
∑

k

Sik
(|Gkj |2 − |Mk |2Tkj

)
.

Therefore, we have

Ti j =
∑

k

[(
1 − S|M |2)−1

S
]

ik

(|Gkj |2 − |Mk |2Tkj
)
. (2.14)

Isolating the diagonal terms, we can write the T -equation as

Ti j = T 0
i j +

∑

k 
= j

[
(1 − S|M |2)−1S

]
ik

(|Gkj |2 − |Mk |2Tkj
)
, (2.15)

where

T 0
i j := [

(1 − S|M |2)−1S
]
i j

(|G j j |2 − |Mj |2Tj j
)
.

By the definition of T , the assumption (2.10) and the estimate (1.9) on Mi , we can get the
simple bounds G j j = O(1) and Tj j = Oτ (�

2). Applying these bounds to the definition of
T 0
i j , we get

T 0
i j = O

([
(1 − S|M |2)−1S

]
i j

)
, (2.16)
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which will be shown to be the main term of Ti j up to an N τ factor. By (2.7) and the condition
(1.12) on Im z, we have

[
(1 − S|M |2)−1S

]
i j = O

(
1

W Im z
+ N

W 2

)
. (2.17)

Definition 2.10 (Ek , Pk and Qk) We define Ek as the partial expectation with respect to
the k-th row and column of H , i.e. Ek(·) := E(·|H [k]). For simplicity, we will also use the
notations

Pk := Ek, Qk := 1 − Ek . (2.18)

Using this definition and the bound (2.17), we rewrite the off-diagonal terms in (2.15)
into two parts:

∑

k 
= j

[
(1 − S|M |2)−1S

]
ik

(|Gkj |2 − |Mk |2Tkj
)

=
(

N

W Im z
+ N 2

W 2

)
⎛

⎝
∑

k 
= j

ck
(
Ek |Gkj |2 − |Mk |2Tkj

) +
∑

k 
= j

ck Qk |Gkj |2
⎞

⎠ , (2.19)

where ck is a sequence of deterministic numbers satisfying

ck := [
(1 − S|M |2)−1S

]
ik

(
N

W Im z
+ N 2

W 2

)−1

= O(N−1).

The following two lemmas provide estimates for the two parts in (2.19), where Lemma 2.12
is a standard fluctuation averaging lemma.

Lemma 2.11 Suppose that bk , k ∈ ZN , are deterministic coefficients satisfying maxk |bk | =
O(N−1). Then under the assumptions of Lemma 2.8, we have that for any fixed (small) τ > 0,

∑

k 
= j

bk
(
Ek |Gkj |2 − |Mk |2Tkj

) = Oτ

(
�3) , j ∈ ZN , (2.20)

with high probability.

Proof By (2.5) and (2.10), we have−∑(k)
l HklG

(k)
l j = Gkj/Gkk = Oτ (�) and Gkk −Mk =

Oτ (�) (w.h.p.). Then we can obtain that for k 
= j ,

Ek |Gkj |2 = Ek |Mk |2
∣∣∣∣∣∣

(k)∑

l

HklG
(k)
l j

∣∣∣∣∣∣

2

+ Oτ (�
3) = |Mk |2

(k)∑

l

skl
∣∣∣G(k)

l j

∣∣∣
2 + Oτ (�

3) (2.21)

with high probability. Using (2.3), we have

G(k)
l j = Gl j + Oτ (|Glk ||Gkj |) = Gl j + Oτ (�

2), l, j 
= k,

with high probability. Inserting it into (2.21) and using the definition (1.16), we can obtain
(2.20). ��
Lemma 2.12 Suppose that bk , k ∈ ZN are deterministic coefficients satisfying maxk |bk | =
O(N−1). Then under the assumptions of Lemma 2.8, we have for any fixed (large) p ∈ 2N
and (small) τ > 0,

E

∣∣∣∣∣∣

∑

k 
= j

bk Qk |Gkj |2
∣∣∣∣∣∣

p

�
(
N τ�3)p , j ∈ ZN . (2.22)
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Proof Our proof follows the arguments in [8, Appendix B]. We consider the decomposition
of the space of random variables using Pk and Qk defined in (2.18). It is evident that Pk and
Qk are projections, Pk + Qk = 1, PkQk = 0, and all of these projections commute with
each other. For a set A ⊂ ZN , we denote PA := ∏

k∈A Pk and QA := ∏
k∈A Qk . Now fix

any j ∈ ZN , we set Xk := Qk |Gkj |2. Then for p ∈ 2N, we can write

E

∣
∣
∣
∣
∣
∣

∑

k 
= j

bk Xk

∣
∣
∣
∣
∣
∣

p

=
∗∑

k1,k2,...,kp

ckE
p∏

s=1

Xks =
∗∑

k

ckE
p∏

s=1

( p∏

r=1

(
Pkr + Qkr

)
Xks

)

=
∗∑

k

ck
∑

A1,...,Ap⊂[k]

E

p∏

s=1

(
PAc

s
QAs Xks

)
,

where k := (k1, k2, . . . , kp), [k] := {k1, k2, . . . , kp}, ∑∗ means summation with indices
not equal to j , and ck are deterministic coefficients satisfying ck = O(N−p). Then with the
same arguments as in [8] (more specifically, the ones between (B.21)–(B.24)), we see that to
conclude (2.22), it suffices to prove that for k ∈ A ⊂ ZN \ { j} and any fixed τ > 0,

|QAXk | = Oτ

(
�|A|+1

)
w.h.p. (2.23)

We first recall the following simple bound for partial expectations, which is proved in
Lemma B.1 of [8]. Given a nonnegative random variable X and a deterministic control
parameter � such that X � � with high probability. Suppose � � N−C and X � NC

almost surely for some constant C > 0. Then for any fixed τ > 0, we have

max
i

Pi X = Oτ (�) w.h.p. (2.24)

In fact, (2.24) follows from Markov’s inequality, using high-moments estimates combined
with the definition of high probability events in Definition 2.5 and Jensen’s inequality for
partial expectations. In the application to resolvent entries, the deterministic bound follows
from ‖G‖ � (Im z̃)−1 � N 10 by (2.9).

Now the bound (2.23) in the case |A| = 1 follows from (2.24) directly. For the case
|A| = n � 2, we assumewithout loss of generality that j = 1, k = 2 and A = {2, . . . , n+1}.
It suffices to prove that

Qn+1 · · · Q3|G21|2 = Oτ

(
�n+1) . (2.25)

Using the identity (2.3), we can write

Q3|G21|2 = Q3

(
G(3)

21 + G23G31

G33

)(
G(3)

21 + G23G31

G33

)

= Q3

(

G(3)
21

G23G31

G33
+ G(3)

21
G23G31

G33
+
∣∣∣∣
G23G31

G33

∣∣∣∣

2
)

.

Note that the leading term Q3

∣∣∣G(3)
21

∣∣∣
2
vanishes since G(3)

21 is independent of the 3rd row

and column of H , and the rest of the three terms have at least three off-diagonal resolvent
entries. We now act Q4 on these terms, apply (2.3) with k = 4 to each resolvent entry, and
multiply everything out. This gives a sum of fractions, where all the entries in the numerator
are off-diagonal and all the entries in the denominator are diagonal. Moreover, the leading
order terms vanish,
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Q4Q3

⎛

⎝G(34)
21

G(4)
23 G

(4)
31

G(4)
33

+ G(34)
21

G(4)
23 G

(4)
31

G(4)
33

⎞

⎠ = 0,

and each of the surviving term has at least four off-diagonal resolvent entries. We then
continue in this manner, and at each step the number of off-diagonal resolvent entries in the
numerator increases at least by one. Finally, Qn+1 · · · Q3|Gkj |2 is a sum of fractions where
each of them contains at least n + 1 off-diagonal entries in the numerator. Together with
(2.24), this gives the estimate (2.25), which further proves (2.23). ��

Remark 2.13 Lemma 2.12 asserts that the Qk operation yields an improvement by a factor�.
In fact, for the regular resolvents of bandmatrices, a stronger version of averaging fluctuation
results was proved in [6].We believe that following themethods there, the bounds in Lemmas
2.11 and 2.12 can be improved to

Oτ

(
�4 + W−1/2�2) . (2.26)

In this paper, however, we will skip the discussion on the strategy in [6], since its proof is
rather involved, and more importantly, we will prove an even stronger bound, i.e., (2.30)
below, in Part III of this series [10]. With (2.26), the �w

# in (2.11) can be improved to

(�w
# )2 =

(
N

W Im z
+ N 2

W 2

)
(�4 + W−1/2�2 + N−1),

and the condition (2.12) becomes

�2 � min

{
W

N 1+ε∗+ε∗ ,
W 2

N 2+ε∗

}
. (2.27)

Using this estimate, the conditions (1.13) can be weaken to

logN W � max

{
4

5
+ ε∗, 2

3
+ 2

3
ε∗ + ε∗

}
. (2.28)

Now we finish the proof of Lemma 2.8. Using (2.19), Lemmas 2.11, 2.12 and Markov’s
inequality, we can get that

∑

k 
= j

[
(1 − S|M |2)−1S

]
ik

(|Gkj |2 − |Mk |2Tkj
) = Oτ

((
N

W Im z
+ N 2

W 2

)
�3

)

with high probability. Note that it only includes the off-diagonal terms, i.e. k 
= j terms.
Now plugging it into the T -equation (2.15) and using (2.16), we obtain (2.11).

Finally, we need to prove (2.13). Clearly, if (2.12) holds, then � � N−δ and (�w
# )2 �

N−2δ for some constant δ > 0. Thus (2.1) is satisfied, and then (2.13) follows from an
application of (2.11) and Lemma 2.1. This completes the proof of Lemma 2.8. ��

The following lemma gives a stronger form of Lemma 2.8. It will be proved in the com-
panion paper [10]. Here we recall the notation in (1.18).

Lemma 2.14 (Strong T -equation estimate) Suppose the assumptions of Theorem 1.4 (i.e.,
(1.11), (1.12), (1.15) and the assumption on e) and (2.9) hold. Let � and �̃ be deterministic
parameters satisfying

W−1 � �̃2 � �2 � �̃ � N−δ (2.29)
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for some constant δ > 0. Fix some z and z̃ (which can depend on N ). If for any constants
τ ′ > 0 and D′ > 0,

P

(
‖G(z, z̃) − M(z, z̃)‖max � N τ ′

�
)

+ P

(
|||G|||2(z, z̃) � N 1+τ ′

�̃2
)

� N−D′
,

then for any fixed (small) τ > 0 and (large) D > 0, we have

P
(‖T (z, z̃)‖max � N τ �2

#

)
� N−D, �2

# :=
(

N

W Im z
+ N 2

W 2

) (
�2�̃2 + �2N−1/2 + N−1) .

(2.30)
Furthermore, if the parameter �̃ satisfies

�̃2 � min

{
W

N 1+ε∗+ε∗ ,
W 2

N 2+ε∗

}
, (2.31)

then for any fixed τ > 0 and D > 0 we have

‖G(z, z̃) − M(z, z̃)‖max � �N− 1
3 ε∗ + N τ

(
1√

W Im z
+ N 1/2

W

)
(2.32)

with probability at least 1 − N−D.

TheRemark 2.9 also applies to this lemma.Note that (2.13) or (2.32) gives a self-improved
bound on ‖G − M‖max, which explains how we can improve the estimate on G (from � to
�#) via T equations. As long as we have an initial estimate such that (2.12) or (2.31) holds,

we can then iterate the proof and improve the estimate on G to �goal =
(

1√
W Im z

+ N1/2

W

)

in (1.14).

Proof of Lemma 2.14 See the proof of Theorem 2.7 in part III of this series [10]. ��

3 Proof of Theorem 1.4

Fix a parameter 0 < ε0 < ε∗/5. We define

z̃n := Re z̃ + iN−nε0 Im z,

so that Im z̃n+1 = N−ε0 Im z̃n . The basic idea in proving Theorem 1.4 is to use mathematical
induction on n ∈ N.

The proofs of the weak form and strong form of Theorem 1.4 are completely parallel. In
the following proof, we will only remark on the minor differences between them.

Step 0 The special case with z̃ = z and ζ = 0, g = 0 (i.e. G(H , z) is the ordinary resolvent
of a generalized Wigner matrix) was proved in [8]. The proof given there can be carried
over to our case without changes under the assumptions of Theorem 1.4 when z̃ = z and
Im z � W−1+δ for some fixed δ > 0.

This gives that

P

(
‖G(z, z) − M(z, z)‖max � N τ

√
W Im z

)
� N−D,

for any fixed τ > 0. This bound is clearly stronger than the one in (1.14).

Step 1 Consider the case n = 0, i.e., G(z, z̃0), where we have

Re z̃0 = Re z̃, Im z̃0 = Im z.
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We claim that for any w, w̃ ∈ C+,

‖G(w, w̃)‖L2→L2 � 1

min(Imw, Im w̃)
. (3.1)

To prove it, we first assume that Imw = a + Im w̃ with a � 0. We write

G(w, w̃) = (A − ia J − i Im w̃)−1, Jkl = 1k∈[[ 1,W ]]δkl ,

where A is a symmetric matrix. Then

(A − ia J − i Im w̃)∗(A − ia J − i Im w̃) = (A − ia J )∗(A − ia J ) + 2a(Im w̃)J

+(Im w̃)2 � (Im w̃)2.

Obviously, we have a similar estimate with Im w̃ replaced by Imw when Imw � Im w̃. This
proves the claim (3.1).

Now by the definition of T and (1.3), we know

|Ti j (z, z̃0)| � Cs

W

∑

k

|Gkj (z, z̃0)|2 = Cs ImG j j (z, z̃0)

W Im z
,

where in the second step we used the so-called Ward identity that for any symmetric matrix
A and η > 0,

∑

k

|Rkj (A, iη)|2 = Im R j j (A, iη)

η
, R(A, iη) := (A − iη)−1. (3.2)

Obviously, the same argument gives that

‖T (z, z̃0(t))‖max � Cs max j ImG j j (z, z̃0(t))

W Im z
, z̃0(t) := (1− t)z+ t̃ z0, t ∈ [0, 1]. (3.3)

Now we claim that for any small enough τ > 0,

sup
s∈[0,1]

P

(
‖G(z, z̃0(t)) − M(z, z̃0(t))‖max � N τ

√
W Im z

)
� N−D . (3.4)

To prove (3.4), we first note that for any w,w′ ∈ C,

G(z, w) = G(z, w′) + G(z, w)(w − w′) J̃G(z, w′), J̃kl = 1k /∈[[ 1,W ]]δkl . (3.5)

This implies that

‖∂̃zG(z, z̃)‖max �
√
N‖G(z, z̃)‖L2→L2‖G(z, z̃)‖max �

√
N

min(Im z, Im z̃)
‖G‖max.

In particular, in this step we have

‖∂sG(z, z̃0(t))‖max � CN 1/2+ε∗ |z − z̃0|‖G(z, z̃0(t))‖max. (3.6)

This provides some continuity estimate onG(z, z̃0(t)), which shows that (3.4) can be obtained
from the following estimate:

max
k∈[[0,N5]]

P

(∥∥∥G(z, z̃0(kN
−5)) − M(z, z̃0(kN

−5))

∥∥∥
max

� N τ

√
W Im z

)
� N−D . (3.7)

From Step 0, this estimate holds for k = 0. By induction, we assume that (3.7) holds for
k = k0. Then using (3.6) and (1.10), we know that the first estimate of (2.1) holds for
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G(z, z̃0(t)) with t = (k0 + 1)N−5. Then by (3.3) and applying Lemma 2.1, we obtain (3.7)
for k = k0 + 1. This completes the proof of (3.7) and (3.4). Note that the estimate (3.4)
applied to G(z, z̃0(1)) is the result we want for this step
Step 2 Suppose that for some n ∈ N with Im z̃n � N−10, (1.14) holds for G(z, z̃n) and
M(z, z̃n) for any large D > 0. We first prove the following estimate for G(z, z̃n+1) −
M(z, z̃n+1), which is weaker than (1.14):

P

(
‖G(z, z̃n+1) − M(z, z̃n+1)‖max � N τ

(
N 1/2+ε0

W
√
Im z

+ N 1+ε0

W 3/2

))
� N−D (3.8)

for any fixed τ > 0.
For any w,w′ ∈ C

+ satisfying

Rew = Rew′, N−ε0 Imw′ � Imw � Imw′, (3.9)

using (3.9) and (3.5), we have

∑

i

|Gi j (z, w)|2 � 2
(
1 + |w − w′|2 ‖G(z, w)‖2L2→L2

)∑

i

|Gi j (z, w
′)|2

� 2
(
1 + (Imw′)2

(Imw)2

)∑

i

|Gi j (z, w
′)|2 � 3N 2ε0

∣∣∣∣∣∣G(z, w′)
∣∣∣∣∣∣2,

where we have used (3.1) to bound ‖G(z, w)‖2L2→L2 . We apply this inequality with w′ = z̃n
and w satisfying (3.9). Using (1.14) and the definition (1.18), we can bound |||G(z, z̃n)|||2 as

sup
Rew=Re z̃n ,

Im z̃n+1�Imw�Im z̃n

‖T (z, w)‖max � sup
Rew=Re z̃n ,

Im z̃n+1�Imw�Im z̃n

C

W
|||G(z, w)|||2

= Oτ

(
N 1+2ε0

W 2 Im z
+ N 2+2ε0

W 3

)
(3.10)

with high probability for any fixed τ > 0.
We now consider interpolation between z̃n and z̃n+1:

z̃n,m = z̃n − i(Im z̃n − Im z̃n+1)mN−50, m ∈ [[0, N 50 ]] .

We would like to use Lemma 2.1 and induction to prove that (3.8) holds for G(z, z̃n,m) −
M(z, z̃n,m) for all m. First, we know (3.8) holds for G(z, z̃n). Then suppose (3.8) holds for
G(z, z̃n, j ) for all j � m−1.We now verify that (2.1) holds forG(z, z̃n,m)with�2 = N τ�2

0
for any fixed τ > 0, where

�2
0 := N 1+2ε0

W 2 Im z
+ N 2+2ε0

W 3 .

To this end, we note that (3.10) already verifies the bound on ‖T (z, z̃n,m)‖max in (2.1)
for all m ∈ [[0, N 50 ]]. By using ‖∂̃z G‖max � N‖G‖2max (which follows from (3.5)), (1.10),
|̃zn,m−1− z̃n,m | � N−50, and (3.10) (to bound ‖G‖2max by |||G|||2), we note that for sufficiently
small constant δ > 0,

‖G(z, z̃n,m−1) − M(z, z̃n,m−1)‖max � N−2δ �⇒ ‖G(z, z̃n,m) − M(z, z̃n,m)‖max � N−δ.
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This proves the first bound in (2.1) for G(z, z̃n,m). Then Lemma 2.1 asserts that (2.2) holds
for G(z, z̃n,m) with N τ�0 for any fixed τ > 0. This proves (3.8) (i.e. the m = N 50 case) by
induction.

Step 3 Suppose that for some n ∈ N with Im z̃n � N−10, (1.14) holds for G(z, z̃n) and
M(z, z̃n) for any large D > 0. We have proved that (3.8) and (3.10) hold for G(z, z̃n+1). We
now apply Lemma 2.8 to prove the weak form of Theorem 1.4. First, the condition (2.10)

holds with � = N1/2+ε0

W
√
Im z

+ N1+ε0

W 3/2 . In order for the condition (2.12) to hold, we need

N 1/2+ε0

W
√
Im z

+ N 1+ε0

W 3/2 � min

{
W

N 1+ε∗+ε∗ ,
W 2

N 2+ε∗

}
, (3.11)

which is satisfied if

W � 2max
(
N

6
7+ 2

7 ε0+ 2
7 ε∗

, N
3
4+ 3

4 ε∗+ 1
2 ε0+ 1

2 ε∗)
.

If we take ε0 < ε∗, (2.10) implies (2.13) under the condition (1.13). We then apply Lemma
2.8 again, and after at most 3/ε∗ iterations we obtain that

‖G(z, z̃n+1) − M(z, z̃n+1)‖max � N τ

(
1√

W Im z
+ N 1/2

W

)
. (3.12)

By induction on n (with the number of inductions � 10/ε0), the main estimate (3.12) for
G(z, z̃n) holds for all n as long as Im z̃n � N−10.

Similarly, we can apply Lemma 2.14 to prove the strong form of Theorem 1.4. As in the
previous argument, (3.8) and (3.10) hold for G(z, z̃n+1) assuming (1.14) for G(z, z̃n) and
Im z̃n � N−10. Therefore, we can choose � and �̃ as

� = N 1/2+ε0

W
√
Im z

+ N 1+ε0

W 3/2 , �̃ = N ε0

√
W Im z

+ N 1/2+ε0

W
,

where the choice of �̃ follows from using (3.10). It is easy to see that (2.29) holds. In order
to apply Lemma 2.14, we need (2.31), i.e.,

(
N ε0

√
W Im z

+ N 1/2+ε0

W

)2

� min

{
W

N 1+ε∗+ε∗ ,
W 2

N 2+ε∗

}
,

which is satisfied if

W � 2max
(
N

3
4+ 1

2 ε0+ 1
4 ε∗

, N
1
2+ε∗+ε0+ 1

2 ε∗)
.

Clearly, the assumption (1.15) guarantees this condition if we choose ε0 < ε∗/2. Again, we
can apply Lemma 2.14 iteratively until we get (3.12) for G(z, z̃n+1). The rest of the proof
for the strong form of Theorem 1.4 is the same as the proof for the weak form.

Step 4We now prove (1.14) for G(z, z̃) with Im z̃ = 0 by using continuity from the estimate
for G(z, z̃) with Im z̃ = N−10 established in Step 3. It is easy to see that

∂̃z ‖G(z, z̃ )‖max � ‖∂̃z G(z, z̃ )‖max � N‖G(z, z̃ )‖2max. (3.13)

With (3.13) and using (3.12) for G(z,Re z̃ + iN−10), we can obtain that

sup
0�η�N−10

‖G(z,Re z̃ + iη)‖max = O(1), w.h.p.

Then using (1.10), (3.5) and (3.12) for G(z,Re z̃ + iN−10), we obtain that (1.14) holds for
G(z,Re z̃).
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Remark 3.1 If we use the bound in Remark 2.13 and the condition (2.27) instead of (2.12),
then the restriction (3.11) becomes

(
N 1/2+ε0

W
√
Im z

+ N 1+ε0

W 3/2

)2

� min

{
W

N 1+ε∗+ε∗ ,
W 2

N 2+ε∗

}

which gives restriction in (2.28). So we get a result in between the weak and strong forms of
Theorem 1.4.

4 Properties ofM

The main goal of this section is to derive some deterministic estimates related to (Mg
ζ )i ,

i ∈ ZN . In particular, we will finish the proof of Lemmas 1.3 and 2.7.

4.1 The Stability

The system of self-consistent equations (1.6) is a perturbation of the standard self-consistent
equation

m−1
sc = −̃z − msc

for msc(̃z). Thus our basic strategy is to use the standard perturbation theory (see (4.13)
below) combined with a stability estimate for the self-consistent equation (i.e. the operator
bound (4.4)). We first recall the following elementary properties ofmsc, which can be proved
directly using (1.7).

Lemma 4.1 We have for all z = E + iη with η > 0 that

|msc(z)| = |msc(z) + z|−1 � 1.

Furthermore, there is a constant c > 0 such that for E ∈ [−10, 10] and η ∈ (0, 10] we have
c � |msc(z)| � 1 − cη , (4.1)

|∂zmsc(z)| � c−1(κ + η)−1/2,

|1 − m2
sc(z)| � √

κ + η , (4.2)

as well as

Immsc(z) �
{√

κ + η if |E | � 2
η√
κ+η

if |E | � 2
,

where κ := ∣∣|E | − 2
∣∣ denotes the distance of E to the spectral edges.

The following lemma will be used in the proof of Lemmas 1.3 and 2.7. Recall that S0 is
the matrix with entries si j , which is defined in Definition 1.2.

Lemma 4.2 Assume |Re z̃| � 2− κ for some constant κ > 0 and denote m = msc(̃z + i0+).
Then for any fixed τ > 0, there exist constants c1,C1 > 0 such that

∥∥∥∥∥

(
m2S0 + τ

1 + τ

)2
∥∥∥∥∥
L∞→L∞

< 1 − c1. (4.3)
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Furthermore, ∥
∥(1 − m2S0)

−1
∥
∥
L∞→L∞ � C1. (4.4)

Proof For some small constant τ > 0 we write

(1 − m2S0)
−1 = 1

1 + τ

∞∑

k=0

(
m2S0 + τ

1 + τ

)k

. (4.5)

Assuming (4.3), we get that

‖(1 − m2S0)
−1‖L∞→L∞ � 1

1 + τ

(
1 +

∥∥
∥∥
m2S0 + τ

1 + τ

∥∥
∥∥
L∞→L∞

) ∞∑

j=0

∥∥
∥∥
m2S0 + τ

1 + τ

∥∥
∥∥

2 j

L∞→L∞
� C1,

which proves (4.4).
We now prove (4.3). Suppose that there is a vector v ∈ C

N so that ‖v‖∞ = 1 and
∣
∣
∣
∣
[(m2S0 + τ)2v]i

(1 + τ)2

∣
∣
∣
∣ = 1 − ε

for some i ∈ ZN and ε ≡ εN → 0+. Hence

(1 + 2τ + τ 2)(1 − ε) = ∣∣m4b + 2τm2a + τ 2vi
∣∣ � |b| + 2τ |a| + τ 2|vi | � 1 + 2τ + τ 2,

(4.6)

where a := (S0v)i , b := (S20v)i and we have used the bounds |m| � 1, |a| � 1 and |b| � 1
(since ‖S0‖L∞→L∞ = 1). It will be clear that the |m| = 1 case is most difficult and we will
assume this condition in the following proof. Moreover, we assume with loss of generality
that vi > 0 (by changing the global phase of v). Now m, a and b are complex numbers,
and the inequality (4.6) implies that m4b, m2a and vi have almost the same phases. Since
|vi | � 1, |b| � 1 and |a| � 1, (4.6) implies that for some constant C > 0 independent of ε,

vi � 1 − Cε, |b − m−4| � Cε, |a − m−2| � Cε. (4.7)

Since m is a unit modulus complex number with imaginary part of order 1, we have that
δ := |m−2 − m−4| is a number of order 1 and

|a − b| > δ/2.

Fix the index i and denote c j := (S0)i j , d j := (S20 )i j . Then
∑

j c j = 1 = ∑
j d j . Hence

(4.7) implies

1 �
∑

j

c j Re(v j ā) = Re(aā) � 1 − Cε, 1 �
∑

j

d j Re(v j b̄) = Re(bb̄) � 1 − Cε,

for some constant C > 0 independent of ε. For any 0 < r < 1, denote by Ar := { j :
Re(v j ā) � 1 − r} and let αr := ∑

j∈Ar c j . Then we have

αr �
∑

j∈Ar

c j Re(v j ā) � 1−Cε−
∑

j /∈Ar

c j Re(v j ā) � 1−Cε−(1−αr )(1−r) = αr+r−αr r−Cε,

which implies that
∑

j∈Ar

c j = αr � 1 − Cεr−1 ⇒
∑

j /∈Ar

c j � Cεr−1. (4.8)
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Similarly, if we define Br := { j : Re(v j b̄) � 1 − r}, then
∑

j /∈Br
d j � Cεr−1. (4.9)

We claim that if r � C̃ε for some large enough constant C̃ > 0, then Ar ∩ Br 
= ∅. To
see this, we define U := { j : |i − j | � W }. By (1.3) and the definition of c j , we have
c j � csW−1 for j ∈ U . Clearly, we also have d j � 1

2csW
−1 for j ∈ U . Then with (4.8)

and (4.9), we have

#{ j ∈ U \ Ar } � Cεr−1c−1
s W , #{ j ∈ U \ Br } � Cεr−1c−1

s W .

If we choose r = C̃ε for some large enough constant C̃ > 0, then the above two inequalities
imply Ar ∩ Br 
= ∅, since |U | = W . Thus there is an index j such that

Re(v j ā) � 1 − r , Re(v j b̄) � 1 − r . (4.10)

Since |a| � 1, |b| � 1, |v j | � 1 and |a − b| > δ/2, (4.10) is possible only if r � δ, which
contradicts the fact that r → 0 when ε → 0. This proves (4.3). ��

4.2 Proof of Lemma 1.3

With Lemma 4.2, we can now give the proof of Lemma 1.3.

Proof of Lemma 1.3 We first prove the existence and continuity of the solutions to (1.6). The
proof is a standard application of the contraction principle. Denote by z := (z1, . . . , zN ),
x := (x1, . . . , xN ) andM := ((Mg

ζ )1, . . . , (M
g
ζ )N ) with

zi = z1i∈[[ 1,W ]] + z̃ 1i /∈[[ 1,W ]],

and

xi ≡ (xgζ )i (z, z̃) := (Mg
ζ )i (z, z̃)−m, M = x+me1, m := msc (̃z+ i0+ ), e1 = (1, 1, · · · , 1).

(4.11)
Using the above notations and recalling Definition 1.2, we can rewrite (1.6) into the following
form

(m + xi )
−1 = M−1

i = −zi − gi − (S0M)i + ζ(	M)i = −zi − gi − (S0x)i
−m(S0e1)i + ζ(	x)i + ζm(	e1)i . (4.12)

Subtracting m−1 = −̃z − m from the last equation and using S0e1 = e1, we get that

m−1 − (m + xi )
−1 = gi + (zi − z̃) + (S0x)i − ζm(	e1)i − ζ(	x)i .

Then (4.12) is equivalent to

[(1−m2S0)x]i = m2(gi +(zi − z̃ ))+m2
(

1

m + xi
− 1

m
+ xi

m2

)
−ζm3(	e1)i −ζm2(	x)i .

(4.13)
Define iteratively a sequence of vectors xk ∈ C

N such that x0 = 0 ∈ C
N and

[
(1 − m2S0)xk+1

]

i
:= m2(gi + (zi − z̃ )) + m2

(
1

m + (xk)i
− 1

m
+ (xk)i

m2

)
− ζm3(	e1)i

−ζm2(	xk)i . (4.14)
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In other words, (4.14) defines a mapping h : l∞(ZN ) → l∞(ZN ):

xk+1 = h(xk), hi (x) :=
∑

j

(1 − m2S0)
−1
i j

[
m2(g j + (z j − z̃ )) + q(x j ) − ζm3(	e1) j

−ζm2(	xk) j
]
, (4.15)

where

q(x) := m2
(

1

m + x
+ x

m2 − 1

m

)
= x2

m + x
.

Note by the assumptions of Lemma 1.3, cκ � m � 1 for some constant cκ > 0 depending
only on κ . Then with (4.4), it is easy to see that there exists a sufficiently small constant
0 < α < cκ/2, such that h is a self-mapping

h : Br
(
l∞(ZN )

) → Br
(
l∞(ZN )

)
, Br

(
l∞(ZN )

) := {x ∈ l∞(ZN ) : ‖x‖∞ � r},
as long as r � α and

ζ + ‖g‖∞ + |z − z̃| � cr (4.16)

for some constant cr > 0 depending on r . Now it suffices to prove that h restricted to
Br (l∞(ZN )) is a contraction, which then implies that x := limk→∞ xk exists and is a unique
solution to (4.13) subject to the condition ‖x‖∞ � r .

From the iteration relation (4.15), we obtain that

xk+1 − xk = 1

1 − m2S0

[
q(xk) − q(xk−1)

]
− ζm2

1 − m2S0
	(xk − xk−1), (4.17)

where q(x) denotes a vector with components q(xi ). Using |q ′(0)| = 0 and (4.4), we get
from (4.17) that

‖xk+1 − xk‖∞ � Cκ

(
ζ + ‖xk‖∞ + ‖xk−1‖∞

)
· ‖xk − xk−1‖∞

for some constant Cκ > 0 depending only on κ . Thus we can first choose a sufficiently small
constant 0 < r < α and then the constant cr > 0 such that Cκ (cr + 2r) < 1, and h is
a self-mapping on Br (l∞(ZN )) under the condition (4.16). In other words, h is indeed a
contraction, which proves the existence and uniqueness of the solution.

Note that with (4.4) and x0 = 0, we get from (4.15) that

‖x1‖∞ = O (|z − z̃| + ζ + ‖g‖∞) .

With the contraction mapping, we have the bound

‖x‖∞ �
∞∑

k=0

‖xk+1 − xk‖∞ � ‖x1‖∞
1 − Cκ (ζ + 2r)

= O (|z − z̃| + ζ + ‖g‖∞) .

This gives the bound (1.9).

We now prove (1.10). We have proved above that both (Mg
ζ )i (z, z̃) and (Mg′

ζ ′ )i (z′, z̃ ′)
exist and satisfy (1.9). Denote by m′ := msc(̃z ′ + i0+ ) and x ′

i := (Mg′
ζ ′ )i (z′, z̃ ′) − m′. By

(4.2), we have
|m′ − m| = O(|̃z − z̃ ′|). (4.18)
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Then using (4.13) we can obtain that

‖x′ − x‖∞ � C‖(1 − m2S0)
−1‖L∞→L∞ · {|̃z − z̃ ′| · [‖x′‖∞ + ‖g′‖∞ + |z′ − z̃ ′| + ‖x′‖2∞

+ ζ ′(1 + ‖x′‖∞)
] + [‖g − g′‖∞ + |z − z′| + |̃z − z̃ ′| + |ζ − ζ ′|(1 + ‖x′‖∞)

+ (
ζ + ‖x‖∞ + ‖x′‖∞

) · ‖x′ − x‖∞
]}

� C
(
ζ + ‖x‖∞ + ‖x′‖∞

) · ‖x′ − x‖∞
+ C

(‖g − g′‖∞ + |z − z′| + |̃z − z̃ ′| + |ζ − ζ ′|) .

Applying (1.9) to both (Mg
ζ )i (z, z̃) and (Mg′

ζ ′ )i (z′, z̃ ′), we see that for small enough c,

‖x′ − x‖∞ � C
(‖g − g′‖∞ + |z − z′| + |̃z − z̃ ′| + |ζ − ζ ′|) .

Together with (4.18), we obtain (1.10) as desired. ��

4.3 Proof of Lemma 2.7

To prove Lemma 2.7, it suffices to prove the result for the case g = 0, and we will describe
how to relax to the condition g = O(W−3/4) by using the Lipschitz continuity estimate (1.10)
at the end of the proof. In preparation for the proof, we first prove the following lemma.

Lemma 4.3 Suppose that g = 0 and the assumptions (1.11), (1.12) and (1.15) hold. Then
there exist constants c > 0 and C > 0 such that

∣∣∣|(M0
ζ )n |2 − |m|2

∣∣∣ � C (|z − z̃ | + ζ ) e−c |n|
W , n ∈ ZN , (4.19)

and

1

W

∑

n∈ZN

(|m|2|(M0
ζ )n |−2 − 1) � c(Im z − Im z̃) − ζ + O

(
N− 3

2 ε∗ + N−ε∗
Im z̃

)
, (4.20)

where m := msc(̃z + i0+).

Proof of Lemma 4.3 First with (4.5) and the fact that (S0)i j = 0 if |i − j | � CsW , we get
that

[(1 − m2S0)
−1]i j − δi j = [m2(1 − m2S0)

−1S0]i j = O(W−1)
∑

k� |i− j |
CsW

∥∥∥∥
m2S0 + τ

1 + τ

∥∥∥∥

k

L∞→L∞

Therefore with (4.3), we obtain immediately that
∣∣[(1 − m2S0)

−1]i j − δi j
∣∣ � CW−1e−c |i− j |

W (4.21)

for some constants c,C > 0. As in the proof of Lemma 1.3, with xk defined in (4.14), we
know that

xn = Mn − m = x1n +
∑

k�1

(xk+1
n − xkn ), Mn := (M0

ζ )n . (4.22)

(Recall that we have proved that xn = limk→∞ xkn in the proof of Lemma 1.3 above.) In
particular, according to (4.14), x1 is given by

[(1 − m2S0)x1]i = m2(zi − z̃ ) − ζm3(	e1)i . (4.23)
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Then with (4.21) and (4.23), one can show that

|x1n | � Ce−c |n|
W (|z − z̃ | + ζ ) , n ∈ ZN . (4.24)

By (4.17) and (4.21), we have

|xk+1
i − xki | � C

∑

j

(
W−1e−c |i− j |

W + δi j

) [(
|xkj | + |xk−1

j |
)

|xkj − xk−1
j |

+ζ1 j∈[[1,W ]] max
j ′∈[[1,W ]]

|xkj ′ − xk−1
j ′ |

]
.

By induction, it is easy to prove that there are constants c,C > 0 such that

|xk+1
n − xkn | � Ce−c |n|

W (|z − z̃ | + ζ )k+1 . (4.25)

Together with (4.24) and (4.22), this implies

|xn | = |Mn − m| � C (|z − z̃ | + ζ ) e−c |n|
W , n ∈ ZN . (4.26)

This proves (4.19) since
∣
∣|Mn |2 − |m|2∣∣ � |M2

n − m2|.
We now prove (4.20). Using (4.19), we have

1

W

∑

n∈ZN

(|m|2|Mn |−2 − 1) = 1

W |m|2
∑

n∈ZN

(|m|2 − |Mn |2
) + O

(|z − z̃|2 + ζ 2) . (4.27)

By definition (4.11),

|Mn |2 = |m|2 + 2Re(m̄xn) + |xn |2.
Then with (4.26) we get that

1

W

∑

n

(|Mn |2 − |m|2) = 1

W

∑

n

[
2Re(m̄xn) + |xn |2

] = 2

W

∑

n

Re(m̄xn)

+ O(|z − z̃|2 + ζ 2).

By (1.11) and (1.12), we have

ζ 2 + |Re(z − z̃)|2 � T 2 + r2 � N−3ε∗/2, 0 � Im z̃ � Im z � N−ε∗
,

which implies that

ζ 2 + |z − z̃ |2 � ζ 2 + |Re(z − z̃)|2 + Im(z − z̃)2 � N−3ε∗/2 + N−ε∗
Im(z − z̃).

Then using (4.22) and (4.25), we obtain that

1

W

∑

n

(|Mn |2 − |m|2) = 2

W

∑

n

Re(m̄xn) + O
(
N− 3

2 ε∗ + N−ε∗
Im(z − z̃)

)

= 2

W

∑

n

Re
(
m̄x1n

) + O
(
N− 3

2 ε∗ + N−ε∗
Im(z − z̃)

)
. (4.28)

Summing (4.23) over i , we get that (recall that we take g = 0)

(1 − m2)
∑

i

x1i := m2
∑

i

(zi − z̃ ) − ζm3 (W + 1) = m2W (z − z̃) − ζm3W + O(1),
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1214 P. Bourgade et al.

where we used that
∑

i (S0)i j = 1 and (	e1)i = 1 + W−1 for i ∈ [[1,W ]]. Thus for the
second term in the second line of (4.28), we have

∑

n

Re(m̄x1n ) = |m|2W Re

(
(z − z̃ )m − ζm2

1 − m2

)
+ O(1)

= |m2|W
(

ζ

2
− Im z − Im z̃

√
4 − |Re z̃| 2 + O

(
N−ε∗

Im z̃
)
)

+ O(1), (4.29)

where we have used the following special properties of m (̃z + i0+) when z̃ is a real number,
in which case m (̃z + i0+) has unit modulus:

Re
m(a+)

1 − m2(a+)
= 0, Im

m(a+)

1 − m2(a+)
= 1√

4 − a2
, Re

m2(a+)

1 − m2(a+)
= −1

2
,

|a| < 2, a+ := a + i0+. (4.30)

Here the error O
(
N−ε∗

Im z̃
)
in (4.29) is due to |m (̃z)−m(Re z̃+ i0+)| � C Im z̃. Inserting

(4.29) into (4.28), we obtain that for some constant c > 0,

1

W

∑

n

(|Mn |2 − |m|2) � −c(Im z − Im z̃) + ζ |m|2 + O
(
N− 3

2 ε∗ + N−ε∗
Im z̃

)
,

which, together with (4.27), proves (4.20). ��
With Lemma 4.3, we now finish the proof of Lemma 2.7.

Proof of Lemma 2.7 We first assume that g = 0. With (4.3) and a perturbation argument, we
can show that

∥∥∥∥∥

(
M2S + τ

1 + τ

)2
∥∥∥∥∥
L∞→L∞

< 1 − c

for some constant c > 0. Then (2.6) can be proved as in (4.21). Our main task is to prove
(2.7). Assume that

(1 − |M |2S)u0 = v0 (4.31)

for some vectors u0, v0 ∈ R
N . Multiplying (4.31) with u0|M |−2 from the left, we obtain that

(u0, |M |−2v0) =
∑

i

|Mi |−2|u0i |2 −
∑

i, j

Si ju0i u
0
j =

∑

i

|Mi |−2|u0i |2

+
∑

i, j

Si j
1

2

[(
u0i − u0j

)2 − (u0i )
2 − (u0j )

2
]

.

Using Si j = si j − ζ	i j ,
∑

j si j = 1 and
∑

j 	i j = 11�i�W (1 + W−1), we obtain that

∑

i

(|Mi |−2−1)|u0i |2+
∑

1�i�W

ζ(1+W−1)|u0i |2+ 1

2

∑

i, j

Si j
(
u0i − u0j

)2 = (u0, |M |−2v0).

(4.32)
We define a symmetric operator H : L2(T) �→ L2(T), where T := [[− (log N )4W ,

(log N )4W ]] and

H := H0 + H1,
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with

H0 : (u, H0v) = 1

4

∑

i, j∈T
Si j

(
ui − u j

) (
vi − v j

)
, u, v ∈ L2(T),

and

H1 : (H1)i j := δi j
[
(|Mi |−2 − 1) + ζ 11�i�W (1 + W−1)

]
.

For any vector u, we denote by u|T the restriction of u to L2(T). Then we can bound the
left-hand side of (4.32) from below as

∑

i

(|Mi |−2 − 1)|u0i |2 +
∑

1�i�W

ζ(1 + W−1)|u0i |2 + 1

2

∑

i, j

Si j
(
u0i − u0j

)2

�

⎡

⎣
∑

i∈T
(|Mi |−2 − 1)|u0i |2 +

∑

1�i�W

ζ(1 + W−1)|u0i |2
⎤

⎦ + 1

4

∑

i, j∈T
Si j

(
u0i − u0j

)2

+
∑

i /∈T
(|Mi |−2 − 1)|u0i |2 + 1

4

∑

i, j

Si j
(
u0i − u0j

)2

� (u0|T, Hu0|T) + 1

4

∑

i, j

Si j
(
u0i − u0j

)2 − N−10‖u0‖22,

where in the second step we used (4.19) and |m| � 1 to get that

|Mi |−2 − 1 = |m|−2 − 1 + O(e−c(log N )4) � −N−10, i /∈ T.

Inserting it into (4.32), we obtain that

(u0|T, Hu0|T) + 1

4

∑

i, j

Si j
(
u0i − u0j

)2
� (u0, |M |−2v0) + O(N−10)‖u0‖22. (4.33)

First we claim that
H � c Im z(log N )−4 (4.34)

for some constant c > 0. With Temple’s inequality, we have the following estimate on the
ground state energy of H :

H � E0(H) � 〈H〉φ − 〈(H)2〉φ − 〈H〉2φ
E1(H) − 〈H〉φ , (4.35)

for any φ ∈ L2(T) such that ‖φ‖2 = 1 and 〈H〉φ < E1(H), where E0(H) and E1(H) are
the lowest two eigenvalues of H . Applying min-max principle to H � H0 − ‖H1‖L2→L2 ,
we obtain that

E1(H) � E1(H0) − ‖H1‖L2→L2 . (4.36)

By (4.19), we have ‖H1‖L2→L2 = O (|z − z̃ | + ζ + Im z̃). We then claim that

E1(H0) � c(log N )−13 (4.37)

for some constant c > 0. Recall that S ≡ Sζ = S0 − ζ	 with

1

4

∑

i, j∈T
	i j

(
ui − u j

)2 � 1, ∀u ∈ L2(T), ‖u‖2 = 1.
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1216 P. Bourgade et al.

Then again by min-max principle, it suffices to prove the following lemma.

Lemma 4.4 For si j satisfying (1.1)–(1.3), there exists a constant c > 0 such that

1

4

∑

i, j∈T
si j

(
ui − u j

)2 � c(log N )−13, ∀u ∈ L2(T), ‖u‖2 = 1, u ⊥ (1, 1, · · · , 1).

We postpone its proof until we finish the proof of Lemma 2.7. We now choose the trial
state φ ∈ L2(T) as a constant vector in (4.35), i.e.,

(φ0)i = 1√|T| , i ∈ T.

Then by definition, H0φ0 = 0 and 〈H〉φ0 � ‖H1‖L2→L2 � E1(H) by (4.36) and (4.37).
Then by (4.35) and (4.36), we have

H � 〈H1〉φ0 − ‖H1‖2L2→L2

E1(H) − 〈H1〉φ0

� 〈H1〉φ0 − ‖H1‖2L2→L2

E1(H0) − 2‖H1‖L2→L2
. (4.38)

By the definition of H1, we have

〈H1〉φ0 = 1

|T|
∑

n∈T

[
(|Mn |−2 − 1) + ζ 1n∈[[1,W ]](1 + W−1)

]

= 1

|T|
∑

n∈T
(1 − |m|2)|Mn |−2 + 1

|T|
∑

n∈T
(|m|2|Mn |−2 − 1) + ζ(W + 1)

|T|

� c Im z̃ + O(N−10) + 1

|T|
∑

n∈ZN

(|m|2|Mn |−2 − 1) + ζ(W + 1)

|T|

� c Im z(log N )−4 + O
(
N− 3

2 ε∗ + N−ε∗
Im z

)
,

where we used (4.19) and |m|2 � 1− c Im z̃ (by (4.1)) in the third step, and (4.20) in the last

step. Together with (4.38), ‖H1‖2L2→L2 = O(N− 3
2 ε∗ + N−ε∗

Im z) and (4.37), this proves
(4.34).

With (4.34), (4.33) gives that for some c > 0,

c Im z(log N )−4
∑

i∈T
|u0i |2 + 1

4

∑

i, j

Si j
(
u0i − u0j

)2
� (u0, |M |−2v0) + O(N−10)‖u0‖22.

Now for some fixed i0 ∈ ZN , we choose v0 = |M |2Sei0 , where ei0 is the unit vector along
the i0-th coordinate axis. Then the above inequality becomes

c Im z(log N )−4
∑

i∈T
|u0i |2 + 1

4

∑

i, j

Si j
(
u0i − u0j

)2
� (Su0)i0 + O(N−10)‖u0‖22. (4.39)

In the following, we suppose ‖u0‖∞ � W−1, otherwise the proof is done. Since for any
i ∈ ZN ,

(u0 − |M |2Su0)i = (|M |2Sei0)i = O(W−1), (4.40)

we must have

‖u0‖∞ � ‖Su0‖∞.
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Now we decompose u0 as follows:

u0i = u + ũi , with u = 1

N

∑

i∈ZN

u0i ,
∑

i

ũi = 0.

Suppose |u| � 10‖̃u‖∞, then we have

max
i

|u0i | � 2min
i

|u0i |.

Together with (4.39), it implies that if |u| � 10‖̃u‖∞, then

‖u0‖∞ � 2|u| � C(W Im z)−1. (4.41)

On the other hand, if |u| � 10‖̃u‖∞, with (4.31), (4.19) and the definition of S in Definition
1.2, we get that

ũ − |M |2Sũ = O
(
W−1 + (ζ + |z − z̃|)|u|) . (4.42)

Then in this case, with (4.40) and (4.42) it is easy to see that

‖u0‖∞ � ‖Su0‖∞ � ‖̃u‖∞ � ‖Sũ‖∞ � ‖S0ũ‖∞. (4.43)

By (1.2), we have
∑

j

(S0ũ ) j = 0,

which implies
‖S0ũ‖∞ � max

i, j

∣∣(S0ũ ) j − (S0ũ )i
∣∣ . (4.44)

Using (1.2), for fixed i � j ∈ ZN we have

∣∣(S0ũ ) j − (S0ũ )i
∣∣2 =

∣∣∣∣∣

∑

x,y

(S0)i x (S0) j y (̃ux − ũy)

∣∣∣∣∣

2

�
∑

x,y

(S0)i x (S0) j y |̃ux − ũy |2.

(4.45)

The lower bound in (1.3) shows that S0 has a core, i.e., there is a constant cs > 0
such that (S0)xy � csW−1 if |x − y| � W . Then for any fixed i � j ∈ ZN , we choose
x0, x1, x2, · · · , xn for some n = O(N/W ) such that

i = x0 � x1 � x2 � · · · � xn−1 � xn = j, with W/3 � |xk − xk+1| � W/2, ∀k.
Furthermore, set x ′

0 = x and x ′
n = y. Clearly for any choices of x ′

k , 1 � k � n − 1, we have

ũy − ũx =
n∑

k=1

(
ũx ′

k
− ũx ′

k−1

)
⇒ |̃uy − ũx |2 � CN

W

n∑

k=1

∣∣∣̃ux ′
k
− ũx ′

k−1

∣∣∣
2
.

For our goal, we will choose x ′
k’s such that

x ′
k ∈ [[xk − W/4, xk + W/4]] , 1 � k � n − 1.

Taking averaging over all x ′
k , 1 � k � n − 1, in the above regions, we get that

|̃uy − ũx |2 � N

W

(
Averagex ′

1,x
′
2,··· ,x ′

n−1

) n∑

k=1

∣∣∣̃ux ′
k
− ũx ′

k−1

∣∣∣
2
,
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where we define “Average” such that for any function g and x1, · · · , xn−1,

Averagex ′
1,x

′
2,··· ,x ′

n−1
g(x ′

1, · · · , x ′
n−1)

:=
(

2

W

)n−1 ∑

x ′
1,··· ,x ′

n−1

(
n−1∏

i=1

1(|x ′
i − xi | � W/4)

)

g(x ′
1, · · · , x ′

n−1).

Note that by our choices, we always have |x ′
k − x ′

k−1| � W and Sx ′
k x

′
k−1

� 1
2csW

−1 for
2 � k � n − 1, which gives that

Averagex ′
k−1,x

′
k

∣
∣
∣̃ux ′

k
− ũx ′

k−1

∣
∣
∣
2

� 4

W 2

∑

x ′
k ,x

′
k−1∈[[xk−1−W/4,xk+W/4]]

∣
∣
∣̃ux ′

k
− ũx ′

k−1

∣
∣
∣
2

� 8c−1
s

W

∑

x ′
k ,x

′
k−1∈[[xk−1−W/4,xk+W/4]]

Sx ′
k x

′
k−1

∣
∣
∣̃ux ′

k
− ũx ′

k−1

∣
∣
∣
2
.

Together with (4.45), we get that for some constant C > 0,
∣
∣(S0ũ ) j − (S0ũ )i

∣
∣2 �

∑

x,y

(S0)i x (S0) j y

×
⎡

⎢
⎣
CN

W 2

n−1∑

k=2

∑

x ′
k ,x

′
k−1∈[[xk−1−W/4,xk+W/4]]

Sx ′
k x

′
k−1

∣
∣∣̃ux ′

k
− ũx ′

k−1

∣
∣∣
2

⎤

⎥
⎦

+
∑

x,y

(S0)i x (S0) j y
CN

W

⎡

⎣ 2

W

∑

x ′ :|x ′−x1|�W/4

|̃ux ′ − ũx |2 + 2

W

∑

y′ :|y′−xn−1|�W/4

∣
∣̃uy − ũy′

∣
∣2
⎤

⎦ .

For the first term on the right-hand side, we have

n−1∑

k=2

∑

x ′
k ,x

′
k−1∈[[xk−1−W/4,xk+W/4]]

Sx ′
k x

′
k−1

∣∣∣̃ux ′
k
− ũx ′

k−1

∣∣∣
2

� C
∑

k,l∈ZN

Skl (̃uk − ũl)2 .

For the terms in the second line, we notice that

|x ′ − x | � |x ′ − x1| + |x1 − i | + |i − x | � CsW + W

for all x ′ such that |x ′ − x1| � W/4, where Cs is the constant appeared in (1.3). Then we can
subdivide the interval [[x, x ′ ]] or [[x ′, x ]] into subintervals with lengths � W/2, and proceed
as above to get

∑

x

(S0)i x
2

W

∑

|x ′−x1|�W/4

|̃ux ′ − ũx |2 � C

W

∑

1�k,l�N

Skl (̃uk − ũl)2

for some constant C > 0 that is independent of the choice of x ′. In sum, we have obtained
that

∣∣(S0ũ ) j − (S0ũ )i
∣∣2 � CN

W 2

∑

1�k,l�N

Skl (̃uk − ũl)2 = CN

W 2

∑

1�k,l�N

Skl
(
u0k − u0l

)2
.

Then from (4.43) and (4.44), we obtain that

‖u0‖2∞ � CN

W 2

∑

1�k,l�N

Skl
(
u0k − u0l

)2
.
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Plugging it into (4.39), we get that if |u| � 10‖̃u‖∞, then

W 2

N
‖u0‖2∞ � C

∑

1�k,l�N

Skl
(
u0k − u0l

)2 � C‖u0‖∞ + O(N−10)‖u0‖22 ⇒ ‖u0‖∞ � CN

W 2 .

(4.46)
In sum, by our choice of v0 = |M |2Sei0 and (4.31), we have

u0 = (1 − |M |2S)−1|M |2Sei0 = |M |2(1 − S|M |2)−1Sei0 .

Thus we obtain from (4.41) and (4.46) that
∥
∥
∥
(
1 − S|M |2)−1

S
∥
∥
∥
max

� C

(
1

W Im z
+ N

W 2

)
,

which completes the proof of (2.7) in the case with g = 0.
Given any g ∈ R

N such that ‖g‖∞ � W−3/4, we can write

Mg
ζ = M0

ζ + E,

where E is a diagonal matrix with maxi |Ei i | = O(‖g‖∞) = O(W−3/4) by the Lipschitz
continuity estimate (1.10). Then (2.6) can be obtained by combing (2.6) in the case g = 0
with a standard perturbation argument. For (2.7), we write

(
1 − S|Mg

ζ |2
)−1

S =
(
1 − S|M0

ζ |2
)−1

S +
(
1 − S|M0

ζ |2
)−1

S(|Mg
ζ |2 − |M0

ζ |2)
(
1 − S|Mg

ζ |2
)−1

S. (4.47)

Using (2.7) in the case g = 0 and the bound
∥∥∥∥
(
1 − S|M0

ζ |2
)−1

S

∥∥∥∥
L∞→L∞

� N

∥∥∥∥
(
1 − S|M0

ζ |2
)−1

S

∥∥∥∥
max

,

we get from (4.47) that
∥∥∥∥
(
1 − S|Mg

ζ |2
)−1

S

∥∥∥∥
max

�
∥∥∥∥
(
1 − S|M0

ζ |2
)−1

S

∥∥∥∥
max

+O

((
N

W Im z
+ N 2

W 2

)
W−3/4

)∥∥∥∥
(
1 − S|Mg

ζ |2
)−1

S

∥∥∥∥
max

.

Together with (1.15), this implies (2.7) for any g such that ‖g‖∞ � W−3/4. ��
Proof of Lemma 4.4 Since the matrix S0 = (si j ) has a core by (1.3), it suffices to prove that
∑

i, j∈T
ŝi j

(
ui − u j

)2 � c(log N )−13, ∀u ∈ L2(T), ‖u‖2 = 1, u ⊥ (1, 1, · · · , 1), (4.48)

where

ŝi j := 1

W
1|i− j |�W .

Then we define the following two symmetric operators F0,1 : L2(T) �→ L2(T) such that for
any u, v ∈ L2(T),

(u, F0v) = 1

W (log N )5

∑

i, j∈T,|i− j |T�W

(
ui − u j

) (
vi − v j

)
,
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where | · |T denotes the periodic distance on T, and

(u, F1v) =
∑

i, j∈T
s̃i j

(
ui − u j

) (
vi − v j

)
, s̃i j := ŝi j − 1

W (log N )5
1|i− j |T�W .

We first show that for some constant c > 0,

E1(F0) � c(log N )−13, (4.49)

where E1(F0) denotes the second lowest eigenvalue of F0. Without loss of generality, we
can regard F0 as an operator on L2(T,C) consisting of complex L2 vectors. Since F0 is a
periodic operator on L2(T,C), its eigenvectors are the unit complex vectors with Fourier
components:

wp : (wp)k := 1√|T|e
ipk, k ∈ T, with p = 2πn

|T| , n ∈ T.

Then for any p 
= 0, we have

(wp, F0wp) = 1

W (log N )5

∑

|k−l|T�W

∣∣(wp)k − (wp)l
∣∣2

= 1

|T|W (log N )5

∑

|k−l|T�W

[2 − 2 cos(p(k − l))]

= 1

W (log N )5

∑

|n|�W

[2 − 2 cos(pn)] � c

W (log N )5

W 3

|T|2 � c(log N )−13.

This proves (4.49).
We now show that F1 defines a positive operator. For simplicity of notations, we let

L = |T| and shift T to T := [[ 1, L ]]. Then s̃i j can be written as

s̃i j =
(
1 − (log N )−5

)
ŝi j − 1

W (log N )5

(
11�i�W ,L−W+i� j�L + 11� j�W ,L−W+ j�i�L

)
.

(4.50)

Fix any u ∈ L2(T). The following proof is very similar to the one below (4.45), so we shall
omit some details. For any fixed 1 � i � W and L −W � j � L , we choose x0, x1, · · · , xn
for some n = O((log N )4) such that

i = x0 � x1 � x2 � · · · � xn−1 � xn = j, with W/3 � |xk − xk+1| � W/2, ∀k.
Moreover, we set x ′

0 = i and x ′
n = j . Then we can get as before that

|ui − u j |2 � C(log N )4
(
Averagex ′

1,x
′
2,··· ,x ′

n−1

) n∑

k=1

∣∣∣ux ′
k
− ux ′

k−1

∣∣∣
2
,

where we took average over all x ′
k ∈ [[xk − W/4, xk + W/4]], 1 � k � n − 1. Note that by

our choices, we always have |x ′
k − x ′

k−1| � W and ŝx ′
k x

′
k−1

= W−1 for 1 � k � n, which
gives that
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1

W (log N )5

∑

1�i�W ,L−W� j�L

∣
∣ui − u j

∣
∣2

� 1

W (log N )5

∑

1�i�W ,L−W� j�L

×
⎡

⎢
⎣
C(log N )4

W

n−1∑

k=2

∑

x ′
k ,x

′
k−1∈[[xk−1−W/4,xk+W/4]]

ŝx ′
k x

′
k−1

∣
∣
∣ux ′

k
− ux ′

k−1

∣
∣
∣
2

⎤

⎥
⎦

+ 1

W (log N )5

∑

1�i�W ,L−W� j�L

C(log N )4

×
⎡

⎣
∑

x :|x−x1|�W/4

ŝxi |ux − ui |2 +
∑

y:|y−xn−1|�W/4

ŝ j y
∣
∣uy − u j

∣
∣2
⎤

⎦

� C(log N )−1
∑

k,l∈T
ŝkl (uk − ul)2 .

Then by (4.50), it is easy to see that F1 is a positive operator. Thus by min-max principle we
have

E1(F0 + F1) � E1(F0),

which proves (4.48) together with (4.49). ��
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