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Abstract Our inability to predict how populations of cells will evolve is a funda-
mental challenge to human health and biological engineering. In medicine, one 
would like to predict and thwart, or at least have time to adequately prepare for 
potentially catastrophic events such as the emergence of new pathogens, the spread 
of drug resistance, and the progression of chronic infections and cancers. In bioen-
gineering, one would like to stop, or at least delay, evolution that inactivates a de-
signed function, in order to make genetic engineering and synthetic biology more 
reliable and efficient. On a larger scale, one would also like to predict when the 
presence of recombinant DNA or a certain species might pose a threat to nature or 
civilization if it has the potential to evolve to become harmful. 

Bohr's Hydrogen Atom for Evolution? 

Many of these examples of biological systems in which we would like to predict 
evolution are complex: they involve interactions between heterogeneous popula-
tions of cells and our immune system or between cells and entire ecosystems. To 
make headway on this difficult problem, let's first examine what we can predict in 
a stripped-down evolving system that includes just a single type of relatively simple 
cell. Perhaps a good working analogy from chemistry is that we'd like to come up 
with a system and theory on the order of Bohr's model of the hydrogen atom (Turner 
2007). This approach is meant as a first step. We will know from the outset that the 
study system itself lacks some details that are relevant in real world situations (at-
oms with more electrons in our analogy). We will also only be able to predict some 
aspects of evolutionary dynamics and not others (the Rydberg formula but not the 
Zeeman effect in our analogy). Further development on both fronts (systems and 
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models) will ultimately be needed to achieve completeness and accuracy, but this 
model is still an instructive waypoint on the path to more complex systems. 
 A population of Escherichia coli bacteria in an Erlenmeyer flask is our evolu-
tionary hydrogen atom. There is little doubt that E. coli is the best-characterized 
free-living organism due to its long history as a model system for molecular biology 
(Judson 1996). In 1988, Richard Lenski and colleagues began propagating twelve 
E. coli populations in the laboratory under carefully controlled conditions to study 
evolution (Lenski et al. 1991). Every day, 1/100th of each culture is transferred to a 
new flask with fresh nutrients and the E. coli repopulate this flask through ~6.6 
generations of binary cell division. These E. coli reproduce asexually, with no 
means for genetic recombination between cells. Evolutionary dynamics in this en-
vironment are dominated by competition for a limiting supply of the sugar glucose. 
These twelve microcosms, each its own (simplified) world in a flask, began from 
an identical starting point and has now evolved in isolation for more than 60,000 
cell generations.  
 For our discussion of predictability here, we will focus almost entirely on ex-
amining the Lenski long-term evolution experiment (LTEE) with E. coli and a hand-
ful of very similar setups. Before proceeding, it is important to acknowledge that 
there is a vibrant field of experimental evolution that has developed over the past 
few decades. Many similar, and equally iconic, experiments have been carried out 
with viruses, bacteria, yeasts, fruit flies, and mice (Garland and Rose 2009). Most 
of these other experiments have additional layers of complexity. They purposefully 
include sex, development, parasites, ecology, social behavior, and more. As a result, 
they have far richer dynamics than are possible in the "hydrogen atom" of the LTEE. 

Levels of Prediction in Biology 

What does it mean to predict evolution? There are different levels of detail at which 
this question can be approached. In the LTEE, the evolutionary process can be de-
scribed numerically in terms of how well-adapted E. coli cells have become to their 
environment over time. Indeed, fitness is the only quantity that is directly visible to 
natural selection; its relevance to evolution is fundamental. One can measure fitness 
in the LTEE as the relative number of offspring that two different cells contribute 
to the final population when they compete against one another in the same flask 
(Lenski et al. 1991). As each population evolves over many growth cycles, more-
fit E. coli carrying beneficial mutations arise and displace their ancestors and com-
petitors. Thus, the fitness of cells in the population increases over time. Can we 
predict the future course of this upward fitness trajectory, given historical measure-
ments covering previous generations? 
 Changes in fitness may reflect a wide array of possibilities in how an E. coli 
cell functions. All of these qualities are summarized as its phenotype. Phenotype 
encompasses the whole range of observable properties of a cell. Some changes in 
the LTEE are readily visible (under a microscope), such as a cell's size and shape 
(Lenski and Travisano 1994, Philippe et al. 2009). Some reflect a cell's simple 
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behaviors: how quickly it starts growing when nutrients first become available each 
day, how rapidly it replicates while nutrients remain abundant, and to what extent 
it is able to survive once nutrients become scarce (Oxman et al. 2008, Rozen et al. 
2009). Finally, a cell's properties at a molecular level are also part of its phenotype: 
for example, how many copies of an enzyme are in a cell or how one of its proteins 
responds to an environmental signal (Cooper et al, 2003). These various types of 
phenotypic characteristics are often interdependent. A change in the activity of a 
protein in a key metabolic or regulatory network may lead to more rapid growth of 
cells, which in turn may lead to a correlated increase in cell size. Can we predict 
which growth strategies will dominate and how the physiology of cells will evolve? 
 At the most basic level, phenotypic evolution is determined by changes in an 
E. coli cell's genome, i.e., its genotype. Many mutations that alter this DNA se-
quence will change the activity of a gene, leading to differences in cellular physiol-
ogy, behavior, and ultimately fitness. In some cases, it might take multiple muta-
tional steps to rewire cellular networks to achieve a new phenotype. In the LTEE, 
all cells started with the same genotype and evolution is driven by natural selection 
on de novo mutations that arise due to errors in copying and repairing DNA as cells 
replicate. Genetic variation often transiently builds up in the population due to com-
petition between genotypes that are descended from the same cell but have since 
acquired different mutations. Then, genetic diversity typically declines when one 
genotype has a fitness that is so superior to others for long enough that it drives 
them extinct (Barrick and Lenski 2009, Maddamsetti et al. 2015). One outcome is 
certain: over time, mutations will accumulate in the genomes of the successful lin-
eages of cells. Can we predict which genes will mutate? Can we predict how rapidly 
mutations will accumulate over time in the E. coli genome? 

Mutational Stochasticity Limits Predictability 

One major challenge in predicting evolution, at any level, is that the appearance of 
new genotypes due to mutations is random. It turns out that in the LTEE we can 
mostly ignore this stochasticity when making certain types of predictions (much 
like Bohr could ignore the probabilistic parts of quantum theory in his model of the 
hydrogen atom). But, it's important to understand why this is the case for thinking 
more broadly about limits to predicting evolution. 
 A mutation anywhere in the entire E. coli genome occurs just once in every 
~1000 cell divisions (Lee et al. 2012). Among these rare mutations, those that hap-
pen to be beneficial in a given environment are even rarer. On the order of 1% may 
give a fitness benefit in a laboratory flask (Perfeito et al. 2007). Those mutations 
that are at the leading edge of being the most beneficial of these, the ones that will 
drive adaptation and have a reasonable chance of fixing in a population, are much 
rarer still. Fewer than one in a million mutations (<0.0001%) may really matter as 
far as determining the ultimate winners (Gerrish and Lenski 1998, Hegreness et al. 
2006, Woods et al. 2011). Thus, one expects variation in evolutionary outcomes due 
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simply to the uncertainty as to whether a particular new mutation creating a novel 
genotype will appear in a population. 
 Counterbalancing the astronomical odds against an important beneficial muta-
tion appearing in any given cell is the fact that each bacterial culture as a whole has 
many cells. Having a large population size makes evolution more predictable 
(Szendro et al. 2013). For example, an LTEE population grows up to approximately 
half a billion (5×108) cells each day, and about five million (5×106) of these will be 
transferred to the next flask (Lenski et al. 1991). According to the estimates here 
(multiplying cell number times mutation rate), there will be on the order of 5 × 105 
mutations generated in each LTEE flask every day. The genome size of E. coli is 
only ~5 million (5×106) base pairs and it has ~5000 genes. Many mutations will 
have similar effects on a gene and a cell's phenotype, so most of the next moves in 
the evolutionary game will be sampled each day!  
 Of course, many of these mutations, even highly beneficial ones, are lost each 
day due to the 1/100 dilution bottleneck. Less obviously, competition between di-
verged lineages of E. coli that are accumulating different sets of beneficial muta-
tions further limits the chances that any one mutation will matter in determining 
how the population as a whole evolves (Fogle et al. 2008). For example, even a very 
"good" mutation that is unlucky enough to arise in a "bad" genome—i.e., in the 
company of a cohort of prior mutations that is already lagging in fitness in the evo-
lutionary race—is unlikely to win (Lang et al. 2013). Still, in the aggregate, many 
different and similar mutations will appear and have a chance to win in every LTEE 
population. The influence of rare events on the overall outcome, in terms of fitness 
evolution, is thus relatively weak compared to what it would be in a smaller popu-
lation. 
 Evolutionary unpredictability from mutational stochasticity is not, in and of 
itself, insurmountable or even unusual for a complex system. The LTEE and similar 
microbial evolution experiments offer two main ways of dealing with the resulting 
uncertainties. First, even very large bacterial populations require minimal feeding 
and upkeep, so many replicate populations can be started from precisely the same 
initial conditions to survey the array of possible outcomes. Thus, one very important 
aspect of the LTEE was that it consists of not one, but twelve separate populations 
that have all evolved in precisely the same environment. We can attribute variation 
between these cultures in how evolution progresses to chance sampling of initial 
mutations that may cascade into larger differences over time. Other evolution ex-
periments have used even more populations to define the degree to which muta-
tional stochasticity leads to different evolutionary solutions dominating in different 
populations (Tenaillon et al. 2012).  
 As is also common in complex systems, the mutations and phenotypes that are 
successful in the longer term in a population also sometimes critically depend on 
the initial conditions (and subsequent events that, in effect, become new initial con-
ditions for yet later dynamics). Here, mutations that appear and dominate at early 
generations set up a genetic background in each population in which further muta-
tional steps can only appear in genomes with these initial mutations. Interactions 
between the fitness effects of mutations are common in the LTEE. For example, 
combining the first few mutational steps taken in one winning lineage in all possible 
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orders showed that one mutation that was highly beneficial when it occurred would 
have been neutral if it had happened before a certain earlier mutation was already 
present (Khan et al. 2011). The second way that microbial evolution experiments 
can deal with mutational stochasticity is that frozen samples of entire E. coli popu-
lations can be revived to "replay" the dynamics, with additional replication, at var-
ious critical points in this process or from genetically defined starting points to re-
veal these types of contingency in the evolutionary process (Blount et al 2008, 
Woods et al 2011). Imagine the implications for weather and earthquake prediction 
if we could watch for patterns in these phenomena time and time again on different 
earths that were nearly identical before they were set into motion! 

Rates of Fitness and Genome Evolution are Predictable 

Once we recognize the inherent stochasticity of evolution and quantify the uncer-
tainties in the exact outcomes by studying replicate and replay populations, we can 
now put our ability to predict the future trajectory of evolution to the test. We will 
begin at the two levels of prediction that we discussed: changes in the competitive 
fitness of E. coli cells and how quickly mutations accumulate in surviving genomes 
over time. The in-between predictions of phenotypic characteristics are harder. 
We'll revisit them in a later section. 
 Remarkably, most of the replicate populations of E. coli in the LTEE display 
very similar fitness trajectories over the course of the entire >60,000 generation 
experiment (Wiser et al. 2013, Lenski et al. 2015). With a couple of exceptions 
(described in the next section), fitness measurements are surprisingly robust to pos-
sible artifacts that could complicate their interpretation, such as non-transitivity and 
frequency-dependence (Elena and Lenski 1997, Wiser et al. 2013). Precise fitness 
trajectories were measured at various points in the history of the LTEE as it was in 
progress. At each point, modeling of the trajectory was done in an attempt to predict 
how fitness would continue to increase in the future. Originally, it was noted that a 
rectangular hyperbolic curve fit the data well at both 2,000 generations (Lenski et 
al. 1991) and through 10,000 generations (Lenski and Travisano 1994). However, a 
hyperbolic curve assumes an asymptote, a maximal fitness ceiling that can never be 
broken. The asymptote calculated for the data through 2,000 generations was bro-
ken by 10,000 generations. The asymptote predicted with the data through 10,000 
generations was also later surpassed, so it became clear that a hyperbolic model has 
a fatal shortcoming in its functional form and leads to poor long-term predictions. 
 More recently, the rate of fitness increase through 50,000 generations has been 
fit to an improved "diminishing returns" power law curve (Wiser et al. 2013). This 
model reflects an intuitive aspects of evolution toward a fitness optimum: it typi-
cally becomes harder and harder to improve fitness over time with each new bene-
ficial mutation. Even though it neglects the details of interactions between the fit-
ness effects of individual mutations that are known to be more complex (Chou et al. 
2011, Khan et al. 2011) and the detailed dynamics of competition between muta-
tions in a population (Barrick and Lenski 2009, Maddamsetti et al. 2015), this model 
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makes remarkably accurate predictions. Fitting the model to the LTEE fitness data 
from 0 to 5,000 generations can predict quite accurately the fitness trajectory out to 
at least 50,000 generations. Furthermore, extrapolating the model's predictions, 
even to exceptionally long time horizons (2.5 billion bacterial generations), still 
makes physiologically reasonable predictions (an evolved E. coli doubling time of 
~23 minutes) (Wiser et al. 2013). Thus, the average trajectory of fitness evolution 
into the future can be predicted surprisingly well for a typical population in the 
LTEE.  
 With the revolution in next-generation sequencing (Conrad et al. 2011, Barrick 
and Lenski 2013), it became possible to comprehensively reconstruct the dynamics 
with which new mutations accumulate over time in the genomes of E. coli sampled 
at different generations from the LTEE. In an initial study, the rate at which muta-
tions accumulated was found to indistinguishable from a linear model based on data 
from one population (Barrick et al. 2009). However, it was linear in a discontinuous 
fashion, with two different rates early and late in the experiment, and the linearity 
was for two different reasons within each time period. Before 20,000 generations, 
the near linear rate of increase appears to be due to the fitness of the best new gen-
otypes in the population over second-best "also-ran" genotypes remaining near con-
stant, leading to their takeover and fixation in the population happening more or less 
regularly, except possibly for an initial burst when the first mutations are mainly 
competing versus the ancestral genotype.  
 After 20,000 generations, the linear rate at which mutations accumulated in 
genomes in this LTEE population steeply increased by a factor of more than 20-
fold. This acceleration was due to E. coli with a much higher mutation rate—due to 
a defect in a gene that normally prevents the incorporation of damaged nucleotides 
into DNA—evolving and taking over this population. Similarly high mutation rates 
have evolved at some point in five of the other eleven LTEE populations (Snie-
gowski et al. 1997, Tenaillon et al. 2016). Mutations like these, which lead to hy-
permutation, can be successful in asexual microbial populations because genomes 
that contain them have a larger per-capita chance of sampling other beneficial mu-
tations that enable them to be successful (Tenaillon et al. 2001, Wielgoss et al. 
2013). The mutational trajectories in each of these hypermutator LTEE populations 
become constant in way that is typical of the clock-like genetic evolution of neutral 
models (Kimura 1985, Ohta 1992). That is, the accumulation of neutral or nearly 
neutral mutations in the hypermutators now so greatly outpaces the dynamics with 
which beneficial mutations appear and sweep through these populations, that it de-
fines the overall rate. 
 Here, too, analyzing more data has led to a more refined model of the muta-
tional dynamics in the LTEE (Tenaillon et al. 2016). Specifically, after sequencing 
a total of 264 genomes from all twelve populations, a model that mixes in a dimin-
ishing rate of beneficial mutations over time with the normally low clock-like rate 
of neutral mutations was found to fit the curve for the non-mutator populations bet-
ter than the original linear model. The overall effect is a slight decrease in the rate 
of mutations that accumulate over time, though not as strong a deceleration as was 
found for the fitness trajectories. The form of this model, which combines two evo-
lutionary processes, is supported by various genetic signatures of neutral versus 
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adaptive evolution and by an ancillary evolution experiment that observed genome 
dynamics under conditions of relaxed selection to estimate mutation rates (Barrick 
and Lenski 2013, Tenaillon et al. 2016). In conclusion, the rates at which new mu-
tations accumulate in genomes over time in the LTEE can also be predicted into the 
future, except for when hypermutators evolve. Even in these cases, after the switch 
to a different mutation rate, the trajectories settle on new, at least transiently pre-
dictable, rates of genome evolution.  In time, however, these new rates may further 
change as a result of compensatory changes or reversions that readjust the mutation 
rate to lower values (Wielgoss et al. 2013, Tenaillon et al. 2016). 

… Except When Ecology and Innovations Appear 

The environment that the E. coli cells experience has been kept constant for the 
duration of the LTEE, although not in the sense that it remains entirely unchanging. 
Rather, it has seasonal regularity. Every 24 hours the same amount of glucose ap-
pears, cells "wake up" and grow until this nutrient is depleted over the course of 
several hours, and then they become quiescent and "sleep" until the next day. The 
low concentration of glucose, which limits the cell density to about 1/100th of what 
it would be in a typical microbial culture, leaves few opportunities for complex in-
teractions between cells. In dense populations such interactions are often mediated 
by excreted metabolic byproducts released by some cells becoming a food source 
or toxin to other cells, but the LTEE cultures are so sparsely populated that the 
opportunities for these indirect effects are limited. Each cell is essentially competing 
for glucose on its own without any other influence from the rest of the cells in the 
mixture. This is one very important reason that the LTEE behaves so well as a "hy-
drogen atom" for evolution. Nonetheless, in two of the twelve LTEE populations 
more complicated ecology has crept back into the experiment. The populations with 
these deviations were ignored in considering the fitness trajectories in the previous 
section. These departures from the standard model of evolution in this environment 
would have been difficult to predict a priori. 
 In the first case, one population diversified into two types of cells by 6,000 
generations. Each type accumulated a different set of mutations, and these types 
continued to co-exist for tens of thousands of generations (Rozen et al. 2005, Plu-
cain et al. 2014). Apparently, one type was a superior competitor during growth on 
glucose while the other type was better at surviving and scavenging byproducts, and 
perhaps nutrients from dead cells, after most or all of the glucose had been ex-
hausted (Rozen et al. 2009). These different behaviors led to a situation in which 
each type had an advantage over the other when it became rare, thus, stabilizing 
their long-term co-existence. Populations of E. coli in another evolution experiment, 
in an environment that includes a higher concentration of glucose mixed with ace-
tate (which transiently accumulates as a byproduct of glucose metabolism in the 
LTEE), nearly always diversify into two specialist types: one that grows fastest on 
glucose and one that switches more rapidly to utilizing acetate in a second growth 
phase (Spencer et al. 2008, Herron and Doebeli 2013). Thus, unpredictability in this 
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case in the LTEE likely stems from conditions (low nutrient concentrations) that are 
on the cusp of a domain in which a more complex ecology is a likely evolutionary 
outcome. The upshot is that stable coexistence of diverged E. coli types with differ-
ent growth strategies requires a rare sequence of mutations and/or interactions 
within a population to develop in the LTEE. 
 In a second population, an even bigger deviation from the typical evolutionary 
dynamics occurred. This population evolved to utilize citrate, a second potential 
nutrient that has been present in every flask on every day of the LTEE at a much 
higher concentration than glucose. E. coli cannot normally metabolize citrate under 
these oxygen-rich conditions, and the citrate innovation was rare—it appeared only 
after ~30,000 generations of evolution (~15 years) and has remained unique to this 
one population so far of the twelve (Blount et al. 2008, Blount et al. 2012). Citrate 
utilization enabled these newly evolved bacteria to colonize a vacant nutrient niche, 
essentially giving them a private and highly abundant resource. So, it was "big 
league" beneficial. The citrate innovation is rare in the LTEE because, in part, it is 
contingent upon a certain set of earlier mutations that alter E. coli metabolism in 
this particular population in a way that pre-adapts them, such that a subsequent mu-
tation that turns on a pump that can exchange citrate into these cells is beneficial, 
rather than neutral or even deleterious (Quandt et al. 2014, Quandt et al. 2015, Leon 
et al. 2018). 
 After efficient citrate utilization arose in this population, a complex ecology 
also evolved, one related to how the citrate users export other carbon compounds 
into their environment in exchange for this nutrient. These efflux byproducts accu-
mulate and can be utilized in turn by other genotypes that evolved to specialize on 
them (Turner et al. 2015). The citrate-eating subpopulation also evolved a high mu-
tation rate shortly after it arose (Blount et al. 2012). The dynamics of adaptation had 
effectively been reset, such that it was back at the beginning of an increasing fitness 
trajectory for optimizing growth on citrate instead of deep into the diminishing tail 
of adaptation to glucose. 

Predicting the Genetic Basis of Adaptation is Difficult 

Now, let's consider where our predictions start to fail. We can also look not just at 
how many mutations there are in an E. coli genome, but at what genes they affect. 
In general, there is a lot of parallelism (i.e., convergent molecular evolution) in what 
genes acquire beneficial mutations among the twelve populations of the LTEE (Bar-
rick et al. 2009, Tenaillon et al. 2016, Good et al. 2017). Though the exact changes 
to the DNA sequences of those genes are rarely the same, it is likely that the muta-
tions in the same gene from different populations have the same, or at least very 
similar, effects on molecular and cellular phenotypes. There are even predictable 
dependencies within some of these genes, such that an earlier mutation in a certain 
gene can change the probabilities of further mutations accumulating in other genes 
(Woods et al. 2011, Good et al. 2017). So, we might be able to build up a model of 
the expected probabilities of different mutational paths impacting certain genes and 
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cellular pathways in this system, but currently we can only do this on a post hoc 
basis by looking at enough replicate and replay experiments. 
 What about predicting what mutations in which genes will evolve beforehand? 
For this aim, we would need a mechanistic model that connects mutations to fitness 
through our previously neglected level of cellular phenotypes. Advanced models of 
metabolic and gene regulatory networks exist for bacterial cells (Karr et al. 2012, 
Monk et al. 2013). In certain cases, one can indeed identify “traffic jams” in meta-
bolic “highways” that are alleviated by “road-widening” mutations in specific en-
zymes during the course of adaptive laboratory evolution experiments (Ibarra et al. 
2002, McCloskey et al. 2018). One can also construct cells with specific changes in 
gene functions (knockouts, especially) that are predicted by these whole-cell models 
and show that they are often beneficial to fitness. However, even the complexity of 
"just" an E. coli cell makes it rare that we can predict a priori which genes will 
harbor the best beneficial mutations that will drive adaptation during an evolution 
experiment. 
 Why? Often, it is mutations in global regulatory processes instead of single 
enzymes that are the most impactful (Maharjan et al. 2006, Phillipe et al. 2007, 
Conrad et al. 2011). The effects of these mutations are difficult to predict because 
they change many of the links in a cellular network at once. Even though our sys-
tems biology knowledge of the E. coli strain used in the LTEE continues to improve 
(Houser et al. 2015, Brown et al. 2017, Cagler et al. 2017), we don't have anywhere 
near a complete accounting of these subtle effects. Examples of global regulators 
include RNA polymerase, nucleoid-like DNA-binding proteins, and enzymes that 
wind and unwind DNA. A change in any one of these proteins may up- or down-
regulate the expression of hundreds or thousands of other genes. Some of the 
changes in the levels of these affected proteins may be beneficial, neutral, or even 
deleterious on their own. Since the net effect is the sum of many of these weak 
interactions, regulatory genes may be particularly likely targets for adaptive muta-
tions. It is currently difficult to predict when a specific global regulator will be an 
effective target for selection. One remaining question is: will mutations in global 
regulators remain just as common or diminish in importance as LTEE populations 
reach higher fitness? On the one hand, one might expect evolution to give way to 
mutations that more precisely adjust the activities of individual genes. On the other 
hand, mutations in global regulators may still be just as beneficial to fitness overall 
as those one-gene mutations because they can fine-tune many targets simultane-
ously.   
 There are further complications in predicting what mutations will occur in an 
evolution experiment. There are different mutational target sizes for different types 
of changes in gene function, and mutations leading to different types of genome 
variation may arise at vastly different rates (Ryall et al. 2012). For example, many 
single-base edits to a gene will inactivate it or reduce its activity, whereas very few 
may result in greater activity or novel functions. Thus, mutations that inactivate 
genes will appear more often than other types of mutations, and they may have a 
short-term advantage for this reason in the evolutionary race, even though they may 
not be optimal in the long run. There are also certain genomic regions and DNA 
sequences that are especially prone to mutations compared to others. Since they 
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mutate more rapidly, they may reliably contribute to evolution above their "weight 
class" (i.e., even when they are not highly beneficial). For example, deletions of the 
ribose-utilization operon due to a mutational hotspot occur at a high rate in the 
LTEE and rapidly fix in successful genomes, even though this mutation is only 
slightly beneficial (Cooper et al. 2001). Though some types of mutational hotspots 
can be identified computationally (Jack et al. 2015), we are far from being able to 
comprehensively predict these types of sites accurately enough to take them into 
account and predict which mutations are likely to contribute to evolution within a 
gene or genome. 

Predicting, Preparing for, and Preventing Evolution 

In the end, what can we say about Lenski's flasks as Bohr's hydrogen atom for evo-
lution? First, it truly is possible to predict (or forecast) certain aspects of the evolu-
tionary trajectory fairly well at a non-mechanistic, non-molecular level. Changes in 
fitness and in the numbers of mutations that accumulate over time follow reliable 
trajectories. If we have data for a short initial period and fit a few parameters to get 
the shape of the curve, these predictions hold well into the future. This approach 
works even though our models of the underlying evolutionary dynamics are rela-
tively coarse grained (e.g., we have one generic term for the diminishing fitness 
returns of each new mutation and don't need to know any details of genetic diversity 
in the population). 
 These types of predictions for the LTEE fail, however, when evolution finds a 
way to break the rules of the game. In these instances, some of our first-order as-
sumptions are violated, e.g., by the appearance of hypermutators, ecological inter-
actions, or metabolic innovations. The outcome is outside of the realm in which 
evolution is gradually optimizing fitness on glucose as a limiting nutrient with the 
ancestral mutation rate. Unfortunately, it is just these types of unanticipated events 
that we are most concerned about when predicting evolution in the real world. It's 
not that we are worried that evolution will proceed a bit faster or slower than we 
planned, it's that an out-of-scope danger will arise: a species will mutate to become 
invasive in a new environment or an especially virulent pathogen will emerge. It's 
the risk of these rare events and chance encounters that we struggle to define and 
mitigate; they are the "hopeful monsters" that keep us up at night. 
 In closing, let's consider these rare and potentially destructive evolutionary 
events more directly. In terms of prediction, they are more akin to earthquakes than 
to electrons, and a shift in analogy at this point is helpful for changing our perspec-
tive. It may be near impossible to forecast the exact moment at which an earthquake 
will occur, but this limitation does not mean that we are helpless against them. Not 
all of the danger from an earthquake is immediate. In particular, earthquakes may 
trigger tsunamis that travel thousands of miles across the ocean before wreaking 
havoc on distant communities. While the propagation of these massive tidal waves 
also cannot be precisely predicted, providing early warning to at-risk locations by 
triggering an alarm immediately after an earthquake will save lives. 
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 So, what if we are asking the wrong (or at least a harder than necessary) ques-
tion of biology in trying to predict outcomes in a complex system of evolving cells? 
In many cases, such as the evolution of drug resistance, it may be almost as useful 
as prediction if we could just receive an early warning about what resistance muta-
tions have appeared in a population while they are still very rare. Then we could 
prepare for these contingencies, by switching the drugs we use before the trouble-
some variants ever begin to matter. The tsunami warning that we may be after could 
be deeply sequencing an evolving bacterial or tumor population to profile its rare 
genetic diversity (Maley et al. 2006). Early warning may be enough in these cases. 
 Another strategy for mitigating the destruction of earthquakes is disaster pre-
paredness. Although we cannot predict exactly when and where an earthquake will 
happen, we know that certain areas of the world are far more prone to seismic ac-
tivity than others. We have mapped out the fault systems of the world based on a 
long history of recording earthquakes and found they delineate the Ring of Fire. As 
more and more genomic information becomes available from sequencing tumors 
and microbial populations involved in chronic infections, such as those in cystic 
fibrosis (Lieberman et al. 2011, Marvig et al. 2015), we are building up similar ge-
netic maps of how problem cells are likely to evolve over time. The resolution of 
these maps could potentially be improved by augmenting the outcomes of “natural 
experiments” or unplanned infections with laboratory experiments like the LTEE, 
for example with the flu or bacterial pathogens. By repeating and recording many 
outcomes of evolution in the lab, we would theoretically know what problems to 
expect and could tailor treatments to undercut those evolutionary paths. This strat-
egy is not unlike enforcing robust building codes in earthquake-prone areas in order 
to mitigate dangerous forces that are unpredictable and sporadic on a daily basis but 
essentially certain to occur in the long run. 
 Finally, what if we invert the prediction problem and seek to purposefully re-
engineer an organism's genome to make its evolution more predictable? One could 
perhaps unravel the tangled network of weak links in cellular networks that has been 
the product of mindless evolution in a much more complex environment and replace 
it with a simpler gene expression scheme (Temme et al. 2012). Given that entire 
microbial genomes are now being constructed or mutated on a large-scale (Esvelt 
and Wang 2013), this level of re-design is becoming a possibility. Just as mutation 
rates can evolve to be higher than normal, it is also possible to engineer and evolve 
"antimutator" organisms that have lower than natural mutation rates (Renda et al. 
2014, Deatherage et al. 2018). The limits of this approach have not yet been fully 
explored, and it might also be possible to block some cellular process that lead to 
stress-induced mutagenesis with drugs to lower cellular mutation rates (Al Mamun 
et al. 2012). With these final interventions, evolution of any kind would be expected 
to be less of a danger, simply because harmful genetic variants would be less likely 
to ever appear in the first place. 
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