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Abstract
Regression test selection (RTS) approaches reduce the cost of regression testing of evolving software systems. Existing RTS
approaches based on UMLmodels use behavioral diagrams or a combination of structural and behavioral diagrams. However,
in practice, behavioral diagrams are incomplete or not used. In previous work, we proposed a fuzzy logic based RTS approach
called FLiRTS that uses UML sequence and activity diagrams. In this work, we introduce FLiRTS2, which drops the need
for behavioral diagrams and relies on system models that only use UML class diagrams, which are the most widely used
UML diagrams in practice. FLiRTS2 addresses the unavailability of behavioral diagrams by classifying test cases using fuzzy
logic after analyzing the information commonly provided in class diagrams. We evaluated FLiRTS2 on UML class diagrams
extracted from 3331 revisions of 13 open-source software systems, and compared the results with those of code-based dynamic
(Ekstazi) and static (STARTS) RTS approaches. The average test suite reduction using FLiRTS2 was 82.06%. The average
safety violations of FLiRTS2 with respect to Ekstazi and STARTS were 18.88% and 16.53%, respectively. FLiRTS2 selected
on average about 82% of the test cases that were selected by Ekstazi and STARTS. The average precision violations of
FLiRTS2 with respect to Ekstazi and STARTS were 13.27% and 9.01%, respectively. The average mutation score of the full
test suites was 18.90%; the standard deviation of the reduced test suites from the average deviation of the mutation score for
each subject was 1.78% for FLiRTS2, 1.11% for Ekstazi, and 1.43% for STARTS. Our experiment demonstrated that the
performance of FLiRTS2 is close to the state-of-art tools for code-based RTS but requires less information and performs the
selection in less time.
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1 Introduction

Regression testing is an expensive activity that ensures that
changes made to evolving software systems do not break
previously tested functionality [32,61]. Regression test selec-
tion (RTS) approaches improve regression testing efficiency
by executing a subset of the original test suite instead of
the full test suite [11,32]. RTS is performed by analyzing the
changesmade to software at the code [32] ormodel level [11].
Leung and White [47] show that a selective-retest technique
becomes beneficial when the cost of test selection is less
than the cost of running the non-selected tests. This makes
it evident that reducing the cost of the selection process is
important.

Model-based RTS offers several advantages over code-
based RTS [11,76], such as higher scalability [76] and also
reusability because it exploits widely used modeling nota-
tions (e.g., UML) that are independent of the programming

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00899-6&domain=pdf
http://orcid.org/0000-0002-4652-8113
http://orcid.org/0000-0001-6000-9646


208 W. Cazzola et al.

languageused to implement the system [11].Briand et al. [11]
state that early estimation of regression testing effort is pos-
sible after modifying the design of the system and before
propagating the changes to the code [11].

The existing UML model-based approaches use behav-
ioral diagrams [15,40,75] or a combination of structural and
behavioral diagrams [3,4,11,25,79]. Behavioral diagrams
(e.g., activity, state, and sequence diagrams) represent calls
between system operations, control dependencies, and object
interactions. This information is needed to perform impact
analysis on the changed model elements and to build trace-
ability links between model elements and test cases.

Table 1 summarizes the results of evaluation of open-
source projects [54] and developer surveys [21,22,26,30,37,
55,72] to assess the use of UML diagrams in real-world soft-
ware development. The percentages were calculated as the
ratio of the number of respondents (or projects) that use a
specific diagram type to the total number of the respon-
dents (or projects). The values in a column do not add up
to 100% because a respondent (or a project) may use multi-
ple diagram types. Behavioral diagrams are clearly used less
often than class diagrams, which limits the applicability of
existing model-based RTS approaches. The difference in the
usage frequency between the class diagram and the three dia-
gram types used in model-based RTS approaches (activity,
sequence, and state diagrams) is more than 20% in 5 studies.
In the other 3 studies, the difference ranges between 4 and
52% depending on the diagram type.

Evenwhen both types of diagrams are used, the behavioral
diagrams may be inconsistent with the structural diagrams or
incomplete. Lange et al. [42]’s analysis of 14 industrial UML
models of different sizes from various organizations found
that between 40 and 78% of the operations represented in
the class diagrams were not called in the sequence diagrams.
Between 35 and 61% of the classes represented in the class
diagrams did not occur as objects in the sequence diagrams.

For the above reasons, it is desirable to develop an RTS
approach that only uses class diagrams. In [2], we proposed
a model-based RTS approach called FLiRTS. It uses fuzzy
logic to fill the abstraction gap of high-level (and therefore,
incomplete) sequence and activity diagrams during test selec-
tion. In this paper, we propose FLiRTS2, which extends
FLiRTS for wider applicability by dropping the need for
behavioral diagrams and focusing solely on UML class dia-
grams.

FLiRTS2 requires as inputs (1) a class diagram modeling
the software system and its test classes, and (2) the names
of classes that changed between the two versions. Langer
et al. [43] showed that class diagrams used in practice con-
tain classes and interfaces, operation signatures and return
types, generalization and realization relationships, and asso-
ciations.

FLiRTS2 is meant to be used in the contexts of model-
based evolution and runtime adaptation of software systems,
right after a class diagram is evolved but before the changes
are propagated to the code. Several approaches exploit class
diagrams to perform automatic refactorings during the main-
tenance phase. Moghadam et al. [52] automatically refactor
the source code after design-level changes. The changes in
the class diagram are used to identify the structural differ-
ences in the application design that are mapped to code-level
refactorings and applied to the source code. REMODEL [38]
uses genetic programming to automatically generate refac-
toring patterns and to apply them to the class diagram
of the application under maintenance. The FiGA frame-
work [13,14] adopts a similar approach for the adaptation
of structures. Dzidek et al. [23] showed that using and updat-
ing UML designs during the maintenance and evolution of
a software system increased the functional correctness and
design quality of the evolved system. The systematic liter-
ature review of da Silva et al. [64] showed that the UML
profile-based mechanism is often used to customize a class
diagram to properly support the design of context-awareness
and self-adaptiveness properties of self-adaptive systems [1,
7,10,36,39,56,62,65,66]. Vathsavayi et al. [34] use genetic
algorithms to dynamically insert and remove design solutions
from the application class diagram in response to the chang-
ing environment, and propagate the design-level changes to
the code level using the Javaleon platform [29].

We compared the safety and precision violation, test selec-
tion reduction, and fault-detection ability of FLiRTS2 with
those of a dynamic RTS approach (Ekstazi [27]) and a static
RTS approach (STARTS [45]).We usedUMLclass diagrams
extracted from 3331 revisions of 13 open-source software
systems.

This paper is organized as follows. Sect. 2 provides back-
ground on fuzzy logic and presents the FLiRTS2 approach
and its tuning process. Sect. 3 describes the evaluation.
Related work is summarized in Sect. 4. Conclusions and
plans for future work are outlined in Sect. 5.

2 FLiRTS 2 approach

This section provides background on fuzzy logic (Sect. 2.1),
an overview of FLiRTS2 (Sect. 2.2), a description of its main
steps (Sect. 2.3), and the process used to tune the fuzzy logic
system and FLiRTS2 parameters (Sect. 2.4).

2.1 Fuzzy logic

Fuzzy logic provides reasoning mechanisms to deal with
uncertainty. It is amany-valued logic inwhich the truth values
are not limited to true and false but may range between com-
pletely true and completely false [78]. A fuzzy logic system is
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Table 1 Percentage of UML
diagram type usage

UML diagram [21,22] (%) [30] (%) [72] (%) [37] (%) [26] (%) [55] (%) [54] (%)

Class 73 93 99 85 61 63 100

Activity 32 60 47 56 33 54 20

Sequence 50 89 94 35 41 54 20

State machine 29 63 91 22 8 27 0

a control system that is based on fuzzy logic and is realized by
three steps: fuzzification, inference, and defuzzification [8].
The inputs to a fuzzy logic system are called input crisp vari-
ables, which take discrete values called input crisp values.
The fuzzification step maps the input crisp values to input
fuzzy values by using input fuzzy sets. A fuzzy set is one that
allows its members to have different values of membership
in the interval [0,1] based on a defined membership function.
The inference step evaluates predefined inference rules using
the input fuzzy values. The rules are formulated in the form“if
antecedent then consequent”, where the antecedent can be
any number of logical statements. An output variable and its
fuzzy sets are also defined, and they are represented in the con-
sequents of the inference rules. After evaluating the inference
rules, their consequents are combined to form an aggregated
fuzzy set from the output fuzzy sets. The defuzzification step
produces an output crisp value from the aggregated fuzzy set.
The output crisp value is mapped through the membership
functions of the output fuzzy sets to a value between 0 and 1.
If the value exceeds a predefined threshold, then the output
set that produced the value becomes the final decision of the
fuzzy logic system.

2.2 FLiRTS 2 overview

FLiRTS2 classifies test cases as retestable or reusable based
on the changes made to the UML class diagram representing
the system under test. Retestable test cases exercise the mod-
ified parts of the system and must be re-executed. Reusable
test cases only exercise the unmodified parts of the system
and can be discarded [76]. Consistent with the current trend
in code-based RTS research [27,45,81], FLiRTS2 considers
a test class to be a test case. It supports both unit and system
test cases.

FLiRTS2 depends on the knowledge of which classes
under test are directly invoked by each test class. These
invocations are modeled in the class diagram as call usage
dependency relationships [9]. The class diagram must con-
tain the test classes, their call usage dependencies, and the
classes under test. No other usage dependency relationships
in the class diagram, such as the create and send dependen-
cies, or usage dependencies with customized stereotypes are
required. However, if provided, they are treated as call usage
dependencies.

FLiRTS2 can be used with class diagrams that are cus-
tomized using the UML-profile mechanism for a particular
domain. A profile is defined using stereotypes, their tagged
values, and constraints, which are applied to specific model
elements, such as classes and operations. FLiRTS2 sup-
ports stereotypes, tagged values, and constraints, but they
are optional.

FLiRTS2 does not need any behavioral diagram nor
static/dynamic call dependency information except for the
one from the test classes. From the UML class diagram,
FLiRTS2 constructs a graph, called class relationships
graph (CRG), connecting the nodes representing the classes
through edges representing the various relationships between
them (e.g., associations and generalizations). From thisCRG,
it identifies all the paths from the test classes to the adapted
classes. These paths are used as a substitute for the trace-
ability information used in the canonical RTS approaches
to classify test classes. The class diagram cannot provide
complete information about the real usage of the diagram
elements and whether or not the identified paths are actu-
ally exercised during the testing. The class diagram provides
a static view of the application and the paths are identified
with varying degrees of confidence that the relationships are
actually exercised during the testing. This leads to an abstrac-
tion gap between the static model and the actual execution.
FLiRTS2 addresses this gap by adopting a probabilistic
approach based on fuzzy logic.

The input crisp variables are based on the types of the
relationships between the classes. The variablesmodel (1) the
probability that the execution of a test class traverses some
adapted classes, and (2) the minimum distance from a test
class to an adapted class. The input crisp values are calculated
for each test class and used by the fuzzy logic system to
compute the probabilities of a test class belonging to the
reusable and retestable output fuzzy sets. If the probability
of a test class for being retestable is above a given threshold,
then the test class is classified as retestable. Otherwise, the
test class is classified as reusable.

The results of a fuzzy logic system depend on sev-
eral factors that need to be carefully configured to get
acceptable results. However, there are no general rules or
guidelines for configuring these factors that are appropri-
ate for every domain [17,19]. We fine-tuned the fuzzy logic
system through a controlled experiment that selected the
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best configuration by comparing the test classification results
obtained by systematically varying the factors through sev-
eral possible values.

2.3 FLiRTS 2 process

The process consists of five steps that are all automated:

1. Building the CRG from the class diagram (Sect. 2.3.1).
2. Marking adapted classes in the CRG (Sect. 2.3.2).
3. Calculating the paths to the adapted classes (Sect. 2.3.3).
4. Calculating the input crisp values (Sect. 2.3.4).
5. Classifying the test cases (Sect. 2.3.5).

We demonstrate these steps on a small example taken from
Kapitsaki and Venieris [39] for a context-aware lecture reser-
vation service provided in a university campus. The service is
available to every faculty and visiting professor who wants
to book a lecture room. The context-aware service shows
room availability only for those campus buildings close to
the user’s current location. The list of available rooms is
based on weather conditions because the campus provides
a number of open air facilities for lectures.

In the original design, the weather—implemented by the
class Weather—could only assume the states sunny, rain,
or snow without any relationship to the temperature. In
the adapted design [39] shown in Fig. 1, the temperature
concept is added for use with the good weather condi-
tion. The added elements were the classes Temperature
and DigitalThermometer, an aggregation relation-
ship from Weather to Temperature, a usage depen-
dency relationship from Temperature to Digital-
Thermometer, and the necessary stereotypes and tag
values.

The class diagram did not include test classes. We added
two test classes LectureReservationAppTest and
LocationProviderAppTest, and these are shown in
Fig. 1.

2.3.1 Building the CRG from the class diagram

The CRG is a weighted directed graph extracted from the
adapted class diagram. We need to capture the directions of
the element types because a directed edge from node A to
node B indicates a likelihood that the element represented by
A calls operations in the element represented by B.

Each class/interface is represented as a node in the CRG.
Weighted directed edges are added between the nodes in the
CRG when the corresponding classes/interfaces in the class
diagram are connected by one of the UML element types:
association, generalization, realization, formal parameter and
return types of operations, stereotype tagged values, and
usage dependency relationships. Figure2 shows how these

Fig. 1 Partial class diagram after adaptation [39]

Fig. 2 Mapping rules from UML element types to CRG

element types are mapped into directed edges in the CRG.
OCL expressionsmay be used in the class diagram.However,
no extra information is obtained regarding the relationships
because the navigation between classes in the OCL expres-
sions uses the associations and operation parameters that we
already use to add edges to the CRG.

Each element type implicitly has a different likelihood to
be exercised by a test execution and therefore to drive the exe-
cution of some adapted class. Such a likelihood depends on
several factors that are unpredictable. Each edge in the CRG
has a weight that represents the likelihood. Each weight is
2 to a power from 0 to 6. For the associations shown in the
first three rows of Fig. 2, we use the same weight but the
association type determines the number and direction of the
edges that are added to the CRG. We also do not assign dif-
ferent weights to associations, aggregation, and composition
relationships. Similarly, all types of usage dependency rela-
tionships are assigned an equal weight. The actual weight
assigned to each element type is determined by the tuning
process described in Sect. 2.4.

Only one directed edge e can be added from a node A to
a node B in the CRG. The weight of the edge is:

ωe =
N∑

i=1

ωi
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where N is the number of theUMLelement types introducing
a relationship from class A to class B, and ωi is the weight
assigned to the UML element type. For example, suppose
that there are 3 associations and 1 generalization from class
A to class B and that the weights 8 and 16 are assigned to
the associations and generalizations, respectively. Then, the
weights of the edges from A to B and B to A are 40 (=8*3 +
16*1) and 16 (=16*1), respectively.

2.3.2 Marking adapted classes in the CRG

This step requires the names of the adapted classes for label-
ing the correspondingCRGnodes as adapted. For example, in
Fig. 3, the nodes DigitalThermometer, Weather, and
Temperature have a red border because they are changed
and marked as adapted.

The names of the adapted classes can be obtained in mul-
tiple ways. For example, model comparison techniques [12,
51,73] can identify the adapted model elements and the
classes/interfaces containing these elements by comparing
the original with the adapted class diagram. Or they can be
recorded during the adaptation of the original diagram by the
used tool; this is the approach followed by the FiGA frame-
work [13,14]. Briand et al. [11] suggest another approach
where developers use stereotypes to indicate all the classes
that they expect to be adapted.

2.3.3 Calculating paths to the adapted classes

The input crisp values in FLiRTS2 are computed wrt. each
test class t . We consider the acyclic subgraph Gt = {Vt , Et }
of the CRGwhere Vt contains t and all the nodes of the CRG
reachable from t and Et contains all the edges composing the
simple paths (i.e., paths that do not contain cycles) connect-
ing the nodes of Vt in CRG.We also considerG ′

t = {
V ′
t , E

′
t

}

defined as the restriction of Gt over the adapted nodes reach-
able from t . Therefore, E ′

t contains all the edges of the simple
paths from t that reach an adapted node and V ′

t contains the
nodes composing the edges in E ′

t . Note that both V ′
t ⊆ Vt

and E ′
t ⊆ Et by construction.

2.3.4 Calculating input crisp values

Two input crisp variables p and d are used. The probabil-
ity that the execution of a test class traverses some adapted
classes is represented by p, which considers the weights
assigned to the UML element types in the construction of the
CRG. The shortest distance from a test class to an adapted
class is represented by d, where the shortest distance is the
minimumnumber of edges in theCRG thatmust be exercised
by a test class to reach an adapted class.

Given a test class t , and the graphs Gt = {Vt , Et } and
G ′

t = {
V ′
t , E

′
t

}
defined in Sect. 2.3.3, the value of p wrt. t is

Fig. 3 Extracted CRG. Red nodes are the adapted classes. Red and blue
edges are used to exemplify the calculation of the input crisp values

zero when Vt does not contain adapted nodes. Otherwise,

p =

∑

ε∈E ′
t

ωε

∑
η∈Et

ωη

The higher the value of p for t , the higher the probability
that the execution of t traverses some adapted classes. In the
CRG of Fig. 3, only five edges (red colored) are traversed
to reach an adapted node from the test class Lecture-
ReservationAppTest; on the other hand, all the nodes
are reachable from such test case and all but three edges
(blue colored) can be traversed—the only excluded ones are
those part of a cycle. The value of p for LectureReser-
vationAppTest is 0.47 (i.e., (4+ 8+ 32+ 32+ 4)/(4+
8+ 32+ 32+ 4+ 32+ 4+ 16+ 4+ 4+ 8+ 2+ 2+ 16)).

The value of d wrt. t is infinity when no adapted
node belongs to Vt . Otherwise, it is the number of edges
in the shortest path connecting t to an adapted node
in G ′

t . From Fig. 3, the values of d are 3 and infinity
for LectureReservationAppTest and Location-
ProviderAppTest, respectively. A smaller value of d
indicates that the test class must traverse fewer class rela-
tionships to reach some adapted class, and thus, the test class
has a higher likelihood of being retestable.

2.3.5 Classifying the test cases

The classification process involves the fuzzification, infer-
ence, and defuzzification [8] phases of fuzzy-logic systems
using the input crisp variables and values from Sect. 2.3.4.
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Fig. 4 Input fuzzy sets

Input fuzzy sets. For variable p, the sets are Low, Me-
dium, and High, as shown in Fig. 4a. For variable d, the sets
are Close, Medium, and Far, as shown in Fig. 4b. The mem-
bership functions of the input fuzzy sets of p and d were
chosen according to the tuning process described in Sect. 2.4.
The values assigned to p and d fit in these sets with a specific
membership value between zero and one.

Output fuzzy sets. An output crisp variable, tc, is used
for test classification. Its output fuzzy sets are Retestable and
Reusable as shown in Fig. 5. These sets were defined to be of
equal size and their membership functions are trapezoidal.
The functions map the output crisp value to probabilities for
the test class being retestable and reusable. The boundaries
for the Reusable set are (0, 1), (25, 1) and (50, 0); those for
the Retestable set are (25, 0), (60, 1), and (75, 1).

Fuzzification phase. This phase calculates the member-
ship values in the input fuzzy sets for input crisp values
assigned to p and d. The membership values are called
fuzzy inputs, and they range between 0 and 1. The input
crisp value of p for LectureReservationAppTest
is 0.47. Using the fuzzy sets of p in Fig. 4a, the member-
ship of 0.47 is zero in the Low set, 0.47 in the Medium
set, and 0.53 in the High set. The input crisp value of d for
LectureReservationAppTest is 3. Using the fuzzy
sets of d in Fig. 4b, the membership of 3 is 1 in the Close set,
zero in the Medium set, and zero in the Far set. Step (1) of

Fig. 5 shows the fuzzification step for the input crisp values
0.47 and 3.

Inference phase. FLiRTS2 uses nine inference rules to
consider all the combinations for the fuzzy sets of p and d.
The antecedents of the rules are the input fuzzy sets of p
and d, and the consequents are the output fuzzy sets of tc.
The output value produced by each rule is called the fuzzy
output. Table 2 summarizes the inference rules. The rules are
in conjunctive canonical form where the conditions for the
input crisp variables are connected by the AND (∧) operator.
Figure5 shows the application of 2 of the 9 rules.

The inference rules are evaluated using the Mamdani
inference method [50], which is the most common inference
method in practice and in the literature [60]. For each rule,
the fuzzy output is calculated as the minimum of the fuzzy
inputs of the input crisp values used in the rule. For exam-
ple, in Fig. 5, the input crisp values used in rule 1 are 3 and
0.47, and their fuzzy inputs are 1 (µClose(3) = 1) and 0.47
(µMedium(0.47) = 0.47), respectively. Rule 1 is evaluated by
applying the minimum operation between 1 and 0.47 and the
result of rule 1 is 0.47 as shown in step 2 of Fig. 5. Table 3
shows the results of applying each of the 9 rules.

The process of obtaining the overall consequent from the
individual consequents of multiple rules is known as aggre-
gation of rules (Step (3) of Fig. 5). We aggregate the outputs
of all the rules using the maximum operation. From Table 3,
the maximum output of all the rules that produce Retestable
and Reusable is 0.53 and 0, respectively. The maximum out-
puts propagate through the Retestable and Reusable sets by
truncating their respective membership functions. The trun-
cated function of the Retestable set is shown as the shaded
area in Fig. 5. The two truncated functions produce the aggre-
gated membership function for the variable tc, shown as the
output of Step (3) in Fig. 5.

Defuzzification phase. The final output crisp value is
found using the center of gravity of the aggregated member-
ship function for tc. This is the centroid method [16,60] and
is the most common defuzzification method [60]. It finds the
output crisp point x where a vertical line from x would slice
the aggregated function into two equal masses. In our exam-
ple, the defuzzification process returns 53.12 as the output
crisp value as shown in Step (4) of Fig. 5. Finally, the out-
put fuzzy sets, Retestable and Reusable, are used to map the
output crisp value 53.12 to probabilities for Retestable and
Reusable. The membership value of 53.12 in the Retestable
set is 1 (as it can be spotted in Step (4) of Fig. 5 by cross-
ing the prolonging of the slope of the Retestable set and
the line perpendicular to the x-axis in 53.12), which means
that the probability of LectureReservationAppTest
being retestable is 100%.

The final classification of the test class is based on the
probability of being retestable and a user-defined threshold.
If the probability is above the threshold, the test class is classi-
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Fig. 5 Fuzzification, inference, and defuzzification phases

Table 2 Inference rules

Table 3 Applying inference rules

fied as retestable; otherwise, it is reusable. For example, if the
thresholdwas70%, thenLectureReservationAppTest
would be classified as retestable.

2.4 Tuning FLiRTS 2

As should be evident from Sect. 2.3, a reliable test case clas-
sification result relies on the use of a proper configuration of
the fuzzy system. A configuration is a triplet of (1) a func-
tion that assigns a weight to each UML relationship type, (2)
the input fuzzy sets for the variables p and d, and (3) the
selection threshold to classify a test class as retestable.

The result provided by FLiRTS2 can be considered reli-
able when the resulting test classification shows the lowest
safety and precision violations and the highest test selec-
tion reduction [44,63] wrt. those achievable with other
model-based or code-based RTS approaches on the same
applications. In this respect, our term of comparison is

Ekstazi [27]. Ekstazi is a code-based RTS approach known
to be safe in terms of selecting all themodification-traversing
test classes, widely evaluated on a large number of revisions,
and being adopted by several popular open source projects;
as such it can be considered the state-of-the-art for RTS tools.

The tuning process consists of finding the configuration
c ∈ C—the set of all possible configurations, or con-
figuration space—that minimizes the safety and precision
violations wrt. Ekstazi and maximizes the test selection
reduction for a particular set of subjects S that we use as
a sample set. Given s ∈ S, let Rs be the set of all considered
revisions for s. Given r ∈ Rs, letEsr and Fsr

c be the set of test
cases of the revision r selected by Ekstazi and FLiRTS2with
a configuration c ∈ C, respectively. Safety (SVsr

c ) and pre-
cision (PVsr

c ) violations and test selection reduction (TRsr
c )

for FLiRTS2 with the configuration c ∈ C wrt. Ekstazi on
the subject s ∈ S and revision r ∈ Rs are calculated as:

SVsr
c = |Esr

� Fsr
c |

|Esr ∪ Fsr
c | PVsr

c = |Fsr
c � Esr|

|Esr ∪ Fsr
c | TRsr

c = |Tsr| − |Fsr
c |

|Tsr|

where Tsr is the test suite for the revision r of the subject
s before RTS is performed. The values of SVsr

c , PV
sr
c , and

TRsr
c aremultiplied by 100 tomake them percentages. Lower

percentages for SVsr
c and PVsr

c , and higher percentages for
TRsr

c are better. SVsr
c , PV

sr
c and TRsr

c can be used to define,
for each configuration c, the set of their average values over
the revisions in r ∈ RS for each s ∈ S as

Vc = {A-SVs
c,A-PV

s
c,A-TR

s
c|∀s ∈ S}

where

A-SVs
c = average

r∈RS

SVsr
c
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A-PVs
c = average

r∈RS

PVsr
c

A-TRs
c = average

r∈RS

TRsr
c .

They are also used to define for each subject s ∈ S, their
optimum value over all the configurations in C as

opt = {< min
c∈C A-SVs

c,minc∈C A-PVs
c,maxc∈C A-TRs

c > |∀s ∈ S}.

The best configuration c is the one that shows the minimal
distance from the optimum values for safety and precision
violations and test selection reduction.

∃c ∈ C s.t.min
c∈C Distance(opt,Vc)

where we used theManhattan distance [20].
Section2.4.1 presents the subject applications used in the

tuning process. Sect. 2.4.2 describes the process of calcu-
lating the configuration space. We discuss issues about the
tuning process and threats to validity in Sect. 2.4.3.

2.4.1 Subject applications for tuning FLiRTS 2

Even though FLiRTS2 is a model-based approach, we are
forced to tune it using code-based subjects because of the lack
of large open-source model-based subjects and other model-
based RTS tools. We used the 8 subjects listed in Table 5.
These are selected from the 21 open-source Java projects
summarized in Table 4, which are known to be compatible
with Ekstazi since they were used in its evaluation [27,44].

We downloaded the revisions of every subject using the
methodology in Legunsen et al. [44]. From the earliest revi-
sion to the latest SHA listed in Table 5, we chose all those
revisions that (1) correctly compiled, and (2) for which the
tests and Ekstazi compiled and ran successfully.

From source code to models. The UML class dia-
grams for the selected subjects were automatically extracted
from each revision by using the Java to UML transforma-
tion plugin for the Rational Software Architect (RSA) [46].
The extracted models contain classes, interfaces, operations
with input parameters and return types, associations, gen-
eralizations, and realizations. They do not contain usage
dependency relationships because these are not supported
by the RSA transformation plugin. Thus, the diagrams do
not contain the information regarding the direct invocations
from the test classes to the classes under test. We obtained
this information from the corresponding code-level revi-
sion using Apache Commons BCEL [28], which supports
static analysis of binary Java class files, and stored it in a text
file. The text files were provided along with the correspond-
ing class diagrams as inputs to FLiRTS2. FLiRTS2 supports
reading the information regarding the direct invocations from

Table 4 Subjects for the tuning (plain) and the evaluation (shaded)

the class diagram as well as from a separate text file when
the information is not represented in the class diagram.

Marking adapted classes. As explained in Sect. 2.3,
FLiRTS2 needs the names of the adapted classes. How-
ever, EMF compare [12] and any other model comparison
approaches do not work with the extracted models because
each extracted model uses a different set of element ids and
every comparison concludes that every model element has
changed even if this is not the case. Thus, we were forced to
use thegit diff command on the source code. The names
of the modified classes/interfaces produced by git diff
were used as input to FLiRTS2 to mark the adapted classes
in the class diagram that was generated from the same source
code.

Selecting revisions. Only revisions that differed from
that previously selected by more than 3% of its Java classes
were selected. The aim is to increase the chances of having
multiple code changes between the selected revisions and
to reduce the cases where the changes do not involve code
modifications (e.g., only changes to comments).

We selected eight subjects (those with an empty back-
ground in Table 4): four with the smallest and four with the
largest average number of changed classes. This choice per-
mits us to tune FLiRTS2 to work with both highly variable
subjects (e.g., systems that introduce new functionality) and
mostly stable subjects (e.g., systems whose changes are due
to bug fixing). Table 5 shows for each subject, the latest revi-
sion used (SHA), the number of used revisions (Revs), and
among all the used revisions, the average number of classes
(Acl), and the average number of adapted classes (Aad).

2.4.2 Selecting the best configuration

The configuration space is the set of the combinations of
values that can be assumed by the three elements in the triplet

< weight assignment, input fuzzy sets, selection threshold > .
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Table 5 Selected projects for the tuning process

ID SHA Acl Aad Revs

p1 4e5a699 222 66 223

p2 0dad342 510 58 41

p3 c873192 375 58 85

p4 a3b01f4 471 43 163

p13 792da67 158 10 407

p15 db51a1c 85 7 318

p16 c66efa9 53 6 118

p20 14d7643 38 4 122

Fig. 6 Initial and generated input fuzzy sets

We now describe how these combinations were calculated.
Weight Assignment. This function assigns a weight

among 1, 2, 4, 8, 16, and 32 to the considered UML element
types: association, generalization, realization, formal param-
eters of operations, return types of operations, and usage
dependency relationships. We did not consider tagged val-
ues because the class diagrams generated from the code-level
revisions do not use UML profiles and do not contain tagged
values. Because there are 6weights for 6 element types, there
are 720 (=6!) weight assignment functions.

Input fuzzy sets. The input fuzzy sets for the two input
crisp variables p and d were generated by applying shift
and expand operations to the initial sets. We only generated
fuzzy sets with triangular or trapezoidal shapes because these
layouts are proven to produce good results for most of the
domains [17,19]. Fig. 6a, b shows the initial sets for p and
d, and the points for the fuzzy sets from n1 through n6. We
apply the shift and expand operations to these points.

The input values range between 0 and 1 for p, and 0 and 25
for d. The range for d was determined by considering all the
values it could get from the test classes in the sample space
S and the largest value was 25, whereas p is a probability
and its values naturally range between 0 and 1. We applied
shift and expand by a given amount ε, where ε was chosen

to be one-fifth of the range of p (0–1) and d (0–25). Thus,
the value of ε was 0.2 for p and 5 for d.

The generation process starts from the initial values and
repeatedly applies the shift operation using the amount ε to
the right on all sets. To shift by ε means to add ε units to each
point from n1 to n6 in each set. We stop shifting when the
Medium set reaches the right boundary. This happens when
the points on the right, n3 and n6, are clipped at the right
boundary. Figure6c shows how the initial fuzzy sets of p
were shifted. Each application of the shift operation generates
a possible group of fuzzy sets. Each group is further refined
by repeatedly applying an expand operation to the Medium
set. Specifically, the point n4 of the Medium set is moved to
the left by ε, and the point n6 of the Medium set is moved
to the right by ε. The other sets are modified similarly. We
repeatedly apply the expand operation until the left points n1
and n4 reach the left boundary and the right points n3 and
n6 reach the right boundary. Figure6b shows the result of
an application of the expand operation to the Medium set of
Fig. 6c. The expand operation (Fig. 6b)moved the four points
n1, n4, n3, and n6.

We generated 21 fuzzy set groups each for p and d. The
fuzzy logic system uses one fuzzy set group for p and one
for d together in a function block, which is a primitive object
that contains the input and output variables and their fuzzy
sets, and the inference rules [16]. Therefore, the total number
of generated combinations was 21*21=441.

Selection threshold. We considered 5 possible values
for the selection threshold: 50%, 60%, 70%, 80%, and 90%.

Configuration space. The total number of the configu-
rations used to tune FLiRTS2 was 720*441*5=1,587,600.

Best configuration. We ran Ekstazi on the selected
subjects and FLiRTS2 on the corresponding model inputs
with each configuration from the calculated configuration
space. The total number of FLiRTS2 runswas 2,344,885,200
(=1,587,600 configurations * 1,477 revisions of the sample
subjects). For every configuration, subject, and revision of
a subject, we calculated the safety and precision violations,
and test selection reduction wrt. Ekstazi and calculated the
best configuration according to the formulas and process
described in Sect. 2.4.

The best configuration uses the weights 2 for associations,
1 for realizations, 32 for generalizations, 4 for return types,
16 for input parameters, and 8 for usage dependencies. The
input fuzzy sets for this configuration are shown in Fig. 4, and
the selection threshold is 50%. This configuration is the one
that shows the minimal distance wrt. the Ekstazi results for
safety and precision violation and test selection reduction.

2.4.3 Threads to validity for the tuning process

FLiRTS2 must be tuned only once for a new context and
objective for which it is used. For example, we gave a higher
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priority to safety than to test selection reduction. Practitioners
who have different objectives, such as higher test selection
reductionwhen regression testing time is limited as in contin-
uous integration environments with frequent commits, will
need to re-tune FLiRTS2 to achieve higher test selection
reduction. Re-tuning is also required if the approach is used
for models where UML profiles and tagged values are used.
In our tuning approach, we did not use models that have
tagged values, and thus, we did not use weights for them.

Below we present threats to validity that can affect the
outcome of the tuning process.

External validity. Weused a small number (8) of sample
subjects to tune FLiRTS2, and used one criterion to select
the subjects based on the largest/smallest number of changed
classes. These sample projects may not be representative, so
we cannot generalize the tuning result. Moreover, selecting
the subjects based on other criteria such as the number and
type of test cases could impact the tuning outcome. However,
the selected subjects vary in size, application domain, number
of revisions, and number of test classes, which reduces this
threat.

Internal validity. We reverse engineered the class dia-
grams from code-level revisions. The generated associations
were all directed, i.e., the class diagrams did not include the
other types of associations shown in Fig. 2. Moreover, the
generated diagrams did not include some design information
such as tagged values of stereotypes and OCL expres-
sions. Although providing this information is optional for
FLiRTS2, having it could impact the outcome.

We used the git diff command between the code-
level revisions to identify the adapted classes. Applying
model comparison between the class diagrams could iden-
tify fewer adapted classes because some code-level changes
may not be detectable at the model level. We extracted the
direct invocations from test classes to classes under test from
the code-level revisions. These deviations from FLiRTS2,
which should only use model-level information, could intro-
duce errors and change the results.

The best configuration we found is a local optimum with
respect to the configuration settings used in the tuning pro-
cess. Using different weights, membership functions for the
fuzzy sets, selection thresholds, and distance measures could
impact the outcome.

Other factors that can affect the outcome are errors in
the FLiRTS2 implementation. To reduce this threat, we built
our implementation on mature tools (i.e., JGraphT [53] and
jFuzzyLogic [16]) and tested it thoroughly.

Construct validity. We chose Ekstazi as the ground
truth against which to tune FLiRTS2. However, Ekstazi
may not represent the ground truth for all RTS, and tuning
FLiRTS2with respect to other RTS approaches could impact
the tuning outcome. However, Ekstazi is safe, and is similar
to FLiRTS2 in terms of supporting class-level RTS.

There are other techniques that can be used to tune fuzzy
logic systems, such as genetic algorithms, which we did not
consider in this work. We plan to investigate such techniques
in the future.

3 Evaluation

The evaluation goals were to compare FLiRTS2 with other
RTS tools in terms of (1) safety violation, (2) precision vio-
lation, (3) test suite reduction, (4) selection performance and
saved time for regression testing, and (5) fault-detection abil-
ity of the obtained reduced test suites. The terms safety
violation, precision violation, and test suite reduction are
defined in Sect. 2.4. The fault-detection abilitywas compared
by using mutation analysis on the subjects using the full test
suites and the reduced test suites obtained by the RTS tools.

To the best of our knowledge, there is no freely avail-
able repository that contains subjects with test cases and
design models for several of their revisions. This forced us to
extract the needed models from the source code of the con-
sidered subjects. It was not possible to compare FLiRTS2
with other model-based RTS approaches because neither
their tool implementations (e.g., [11,25]), nor the models
used in the reported studies are available or because they
(e.g., MaRTS [4]) use behavioral diagrams (e.g., sequence
and activity diagrams) that are notoriously difficult to auto-
matically extract from the source code. Therefore,we use two
code-based RTS tools, Ekstazi [27] and STARTS [45]. They
are both state-of-the-art and have been widely evaluated on a
large number of revisions of real world projects [44]. Ekstazi,
STARTS, and FLiRTS2 use class-level RTS, i.e., they all
identify changes at the class level and select every test class
that traverses or depends on any changed class. Ekstazi uses
dynamic analysis and STARTS uses static analysis of com-
piled Java code.

3.1 Experimental setup

We evaluated FLiRTS2 on 13 subjects—those listed in
Table 4 with a gray background—out of the 21 used to evalu-
ate Ekstazi [27,44].We explicitly excluded those subjects we
used in the tuning process of FLiRTS2 to avoid any possible
bias in the experiment results. The revisions were selected
using the samemethod described in Sect. 2.4.1 with the addi-
tional criterion that the subject should also run with STARTS
on the chosen revisions. Moreover, we relaxed the constraint
on the number of changes between a revision and its suc-
cessor from greater than 3% of the classes to at least one
class. The total number of selected revisions is 3331 for the
13 subjects. Table 6 reports the number of the selected revi-
sions for each subject. We automatically generated the UML
class diagrams from the 3331 revisions and identified the
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adapted classes using the method described in Sect. 2.4.1.
We ran Ekstazi and STARTS on the 3331 code-level revi-
sions, and FLiRTS2 on the corresponding models using the
best configuration obtained during the tuning process.

The zip archives that contain the current implementation
of FLiRTS2, UML class diagrams generated from the code
revisions, scripts to download the code revisions and run the
experiment, and the experimental results are available at:

https://cazzola.di.unimi.it/flirts2.html

3.2 Results

Table 6 reports the RTS results in terms of safety violation,
precision violation, and test suite reduction. Table 7 reports
and compares the time spent in the RTS process by the 3
tools. Finally, Table 8 reports on the fault-detection ability
experiment.

Safety violation. The median safety violation is zero (or
close to zero) for all the subjects. Figure7a shows that the
average safety violation is below or close to 20% for all
the subjects wrt. STARTS and for 12 out 13 subjects wrt.
Ekstazi. Among all the 3331 revisions, the average safety
violation of FLiRTS2 was 18.88% wrt. Ekstazi and 16.53%
wrt. STARTS. This indicates that FLiRTS2 missed approxi-
mately the 18% of the test classes that were selected by the
other tools on average. This is because FLiRTS2 is designed
to work with UML class diagrams and this diagram type can-
not provide certain types of information used by the other
tools such as (1) dynamic dependencies of test classes with
the classes under test, (2) Java reflection, (3) exceptions, (4)
dependencies from test classes to third party libraries and
input configuration files, and (5) the code contained inside
themethod body (e.g., local variables referencing classes and
method invocations on classes).

Precision violation. The median precision violation is
zero for 10 out 13 subjects wrt. Ekstazi and 11 out 13 sub-
jects wrt. STARTS, and never goes above 31% in the few
remaining cases both wrt. Ekstazi and STARTS. Figure7b
shows that the average precision violation of FLiRTS2 was
below or close to 30% for mostly all the subjects wrt. both
Ekstazi and STARTS.Among all the 3331 revisions, the aver-
age precision violation of FLiRTS2was 13.27%wrt. Ekstazi
and 9.01 % wrt. STARTS. This is because FLiRTS2 is based
on a probabilistic model, while Ekstazi is based on collecting
the dynamic dependencies of the test classes, which canmore
precisely exclude test classes that do not traverse adapted
classes. STARTS is a static approach and therefore less pre-
cise than Ekstazi. Thus, FLiRTS2 achieved a lower average
precision violation wrt. STARTS than wrt. Ekstazi.

Test suite reduction. Figure7c plots the average per-
centage of selected test cases (100 minus the average
reduction percentage fromTable 6) by the 3 tools. It is evident

that (i) FLiRTS2achieved a reduction for all the subjects even
though it is less precise and (ii) its reduction is comparable to
the reduction achieved by the other tools. The average reduc-
tion percentage achieved by FLiRTS2 over all the subjects
was 82.06%. FLiRTS2 achieved a higher or close (i.e., with
a difference of less than 0.5%) average reduction percentage
than STARTS on 10 out of 13 subjects. Even though Ekstazi
is a dynamic approach, Ekstazi and FLiRTS2 achieved a
close (a difference of more or less 2%) average reduction
percentage on 7 out of 13 subjects.

Time savings. During the running of the experiment, we
also collected the time needed to select the test cases and
for their execution. Table 7 reports such measurements. The
data show that FLiRTS2 tends to be faster than both Ekstazi
and STARTS during the test case selection phase; over the
3331 considered revisions, on average FLiRTS2 takes 11.83
s whereas Ekstazi takes 13.96 s and STARTS takes in aver-
age 102.58 s. On the other hand, considering also the time
needed to execute the selected test cases the benefit is not that
remarkable; over the 3331 considered revisions, on average
FLiRTS2 takes 253.80s whereas Ekstazi takes 238.53 s and
STARTS takes 351.47 s. This is due to the fact that FLiRTS2
is less precise than the other tools but despite this it is still
faster than Ekstazi on 11 out of 13 of the considered subjects
(the 12th column in Table 7) and it overperforms STARTS on
all the subjects (the 13th column inTable 7). The 16th column
in Table 7 makes explicit that FLiRTS2 always saves a sig-
nificant amount of time wrt. the execution of the whole test
suite. The only exception is subject p21 where the limited test
case reduction makes the time spent in selecting higher than
the saved time; anyway FLiRTS2 still behaves better than
the other two tools because of its minimal selecting time.

Fault-detection ability. In the absence of real faults,
mutation operators are often used to seed faults in testing
experiments [5]. We use a mutation-based approach with
the PIT [18] tool to apply first-order method-level mutation
operators to the revisions of 12 subjects out of the 13 consid-
ered in the previous experiment (p5 was removed because its
JUnit tests are incompatible with PIT). We applied all the 13
PIT mutation operators [18] and configured PIT to mutate
only the adapted classes of each revision. The adapted classes
are detected by STARTS and used for the whole experiment.
Moreover, the same mutations are used for all the three tools
to avoid any bias introduced by different mutations.

For each revision, we ran PITwith the full test suites and
those selected by FLiRTS2, Ekstazi, and STARTS. Table 8
shows the experimental results. Note that PIT assigns 0 to
the mutation score of a revision when the corresponding tool
did not select any test case. This is because no test case can
be used to kill the introduced mutants. We did not modify
this behavior in the experiment.

The third column of Table 8 reports the average mutation
score per subject achieved by running the full test suite, i.e.,
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the average percentage of killed mutants wrt. the introduced
mutants. The average mutation score for each subject is low
because the available test suites for the considered subjects
do not completely cover the subject code base. In particular
the test suites lack the ability to cover the adapted portion of
the code base where we introduced the mutations. It should
be evident that no subset of the full test suite can kill more
mutants than the whole test suite. Therefore, we consider the
mutation score for the whole test suites as the term of com-
parison for the mutation scores achieved with the considered
tools. The fourth, fifth, and sixth columns report the average
deviation of the mutation score for FLiRTS2, Ekstazi and
STARTS, respectively. The deviation from the average for
the subject s is calculated as

devst = (A-MSs − A-MSts)2

whereA-MSs is the averagemutation score achieved by exer-
cising the full test suite on all the revisions of the subject s and
A-MSst with t instantiated as FLiRTS2, Ekstazi or STARTS
is the average mutation score achieved by exercising the test
suite selected by the tool t on the revisions of the subject s.
Table 8 shows that all the selections have a low average devi-
ation for every subject. Inmost cases—11, 10, and 6 out of 12
subjects for Ekstazi, STARTS, and FLiRTS2, respectively—
they deviate by approximately 1 percentage point and only
in a few cases—1, 2, and 1 out of 12 for Ekstazi, STARTS,
and FLiRTS2, respectively—they deviate by more than 10
percentage points. The standard deviation of the averages for
each tool t

σt =
√∑

s∈S devst
|S|

shows that all the tools deviate by less than 2 percentage
points. In particular, the standard deviation for FLiRTS2
is 1.78%, for Ekstazi is 1.11%, and for STARTS is 1.43%.
Ekstazi has a higher chance to detect a fault than STARTS
and FLiRTS2 because it is a dynamic approach; FLiRTS2
instead loses a few tenths of a percentage point because
it selects fewer test cases than the other tools (as seen in
the previous experiment) and the missed test cases include
modification-traversing test classes that killed mutants in the
adapted classes. In all three cases, the difference is negligible
and should not compromise the fault detection ability of the
tools.

The last three columns of Table 8 show how many cases
(in percentage) FLiRTS2 performs equal to or better than
Ekstazi and STARTS in detecting a fault. For each subject,
it shows the percentage of revisions in which the test classes
selected by FLiRTS2 killed at least as many as mutants than
the test classes selected by Ekstazi and STARTS, respec-
tively. The percentages in the 7th column show where the

test cases selected by FLiRTS2 kill as many mutants as the
whole test suite. On average, FLiRTS2 always ranks above
94% in comparison with any test suite selection—94.88%
wrt. the full test suite, 95.63% wrt. Ekstazi selection and
95.33%wrt. STARTS selection. For FLiRTS2, the losses are
mainly attributable to its safety violations wrt. Ekstazi and
STARTS; it missed some modification-traversing test cases
that could have detected the faults.

3.3 Threats to validity

The external and internal threats to validity to the tuning
process also apply here. We mitigated them in the same
way as before. Moreover, we used 3331 revisions from 13
open-source projects varying in size, application domain, and
number of test classes.

Construct validity. In general, we could have used other
metrics (e.g., test coverage) to evaluate the effectiveness of
FLiRTS2. However, we used the most common metrics in
the research literature: safety violation, precision violation,
reduction in test suite size, and fault-detection ability.

As per the time saving experiment, a clear problem is that
the repeated execution of the same piece of code can provide
different execution times due to several factors external to our
control, including but not limited to memory paging, device
and internet latencies, and CPU loading. As far as possible,
we mitigated this issue by considering the computer load
and by considering the average execution times rather than
absolute values.

As per the fault detection ability experiment, one possible
issue can be related to the fact that the randomly generated
faults could be applied to code portions that are not adapted.
We mitigated this issue by limiting the application of the
mutation operators to those classes that STARTS detects
as changed. The threat to construct validity is that we use
mutation scores as a measure of fault detection ability. In
the experiment, mutations may have been applied to code
that was not modified in the revision. However, all the tools
are equally affected because they all depend on identifying
changes at the class level and they select any test case that
traverses through the classes.

4 Related work

RTS has been studied for over three decades [24,24,76].
Below we summarize the existing code-based, model-based,
and fuzzy logic-based approaches.

Code-based RTS. Kung et al. [41], Hsia et al. [35], and
White andAbdullah [71] proposedfirewall-based approaches.
The firewall contains the changed classes and their depen-
dent classes. Test cases that traverse classes in the firewall
are selected. Skoglund and Runeson’s [67] change-based
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Table 8 Fault detection ability results

ID Revs A-MS (%) devf(%) deve(%) devs(%) f ≥ full (%) f ≥ e (%) f ≥ s (%)

p6 429 3.02 10.6276 1.1881 10.6276 99.77 98.37 95.57

p7 531 24.42 0.9801 0.09 0.0001 96.61 96.61 96.42

p8 597 23.41 3.8025 0.2704 0.4096 92.63 93.13 93.13

p9 216 18.05 8.8804 0 0 94.44 94.44 94.44

p10 329 18.93 0.0676 0 0.01 90.27 90.27 90.58

p11 336 34.65 3.2041 0.01 0.0001 96.73 97.02 97.32

p12 233 22.70 4.3681 1.1664 1.21 90.56 93.13 93.99

p14 240 9.49 0.0729 0.0036 0.1444 95.42 96.67 97.08

p17 44 19.34 4.7524 0.0004 0.0004 97.73 97.73 97.73

p18 38 40.47 0.0004 0.0004 0.0009 86.84 94.74 92.11

p19 293 9.60 1.1236 12.1801 12.1801 92.49 91.13 91.13

p21 3 57.33 0 0 0 100.00 100.00 100.00

18.90 σf = 1.78 σe = 1.11 σs = 1.43 94.88 95.63 95.35

ID refers to Table 4, Revs is the number of revisions considered in the experiment
A-MS is the average mutation scores achieved by the full test classes, devf, deve, and devs are the deviations from A-MS of the mutation score of
FLiRTS, Ekstazi, and STARTS, respectively
Columns f ≥ full, f ≥ e, and f ≥ s show the percentage of revisions in which the test classes selected by FLiRTS achieved a higher or equal mutation
scores than all test classes and the test classes selected by Ekstazi and STARTS, respectively
Last row reports the average standard deviation for FLiRTS (σf), Ekstazi (σe) and STARTS (σs) and the averages w.r.t. the total number of revisions
for the last three columns

approach only selects those test cases that exercise the
changed classes. ChEOPSJ [68,69] is a static change-based
approach that uses the FAMIX model to represent soft-
ware entities including test cases and building dependencies
between them. These approaches use fine-grained infor-
mation such as constructor calls and method invocation
statements to build dependencies between software entities.
FLiRTS2 does not have, nor require, this information.

Rothermel andHarrold [61] analyze the program’s control
flow graph to identify changes at the statement level. Harrold
et al. [33] extended the approach using the Java Inter-class
Graph (JIG) to support Java. This is unlike FLiRTS2, which
identifies dependencies and changes at the class level.

Yu et al. [77] evaluated method-level and class-level static
RTS in continuous integration environments. Class-level
RTS was determined to be more practical and time-saving
than method-level RTS. Gyori et al. [31] compared vari-
ants of dynamic and static class-level RTS with project-level
RTS in the Maven Central open-source ecosystem. Class-
level RTS was found to be an order of magnitude less costly
than project-level RTS in terms of test selection reduction.
Several other RTS approaches [27,45,81] were recently pro-
posed to make RTS more cost-effective for modern software
systems. FLiRTS2 follows this recent trend [27,31,44,45,77]
and focuses on class-level RTS.

Ekstazi [27] is a change-based approach that tracks
dynamic dependencies of test cases at the class level, and
is formally proven to be safe. STARTS [44,45] is a static
approach that builds a dependency graph of program types

based on compile-time information, and selects test cases that
can reach changed types in the transitive closure of the depen-
dency graph. HyRTS [81] is a dynamic and hybrid approach
that supports analyzing the adapted classes at multiple levels
of granularity (method and file) to improve the precision and
selection time. Running HyRTS using the class-level mode
produces the same RTS results as Ekstazi [81]. Thus, HyRTS
was not consider in our evaluation.

Other recent RTS approaches [6,59] are tunable to allow
for trade-offs between safety and test selection reduction
for situations where the regression testing budget is limited.
SPIRITuS [59] uses information retrieval to select test cases,
and can be easily adapted to different programming lan-
guages.ReTEST [6] is a language independentRTSapproach
that uses information retrieval to select test cases based on test
failure history, test case diversity, and code change history at
the line level. ReTEST eliminates the need for dynamic and
static analysis. Unlike FLiRTS2, SPIRITuS andReTEST use
fine-grained information from method bodies, test coverage,
and failure history information. However, they are similar in
that they are programming language independent and tunable
with respect to different objectives.

Model-based RTS. Briand et al. [11] classify test cases
based on changes performed toUMLuse case diagrams, class
diagrams, and sequence diagrams. Farooq et al. [25] classify
test cases based on changes made to UML class and state
machine diagrams. Zech et al. [79,80] presented a generic
model-based RTS platform controlled by OCL queries that
can identify the changed elements of the models, which are
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Fig. 7 Averages of safety and precision violations, and test suite selec-
tion of FLiRTS2

then used to select the test case models. Korel et al. [40],
Ural et al. [70], and Lity et al. [48] proposed model-based
RTS approaches based on state machine diagrams. Ye et
al. [75] select test cases based on changes performed to UML
activity diagrams. MaRTS [3] classifies test cases based on
changes performed toUML class and executable activity dia-
grams. Unlike FLiRTS2, the above model-based approaches
use some type of behavioral model that must contain suffi-
cient details to obtain the traceability links between the test

cases and the model elements, which is not common in prac-
tice [11].

Fuzzy logic-based RTS. Xu et al. [74] and Malz et
al. [49] select test cases using code-based fuzzy logic
approaches that require test coverage information.

Rapos et al. [57] proposed a model-based approach that
uses fuzzy logic to prioritize test cases based on the sym-
bolic execution tree for UML-RT state machine diagrams.
Rhmann et al. [58] used fuzzy logic to prioritize test paths
generated from a state machine diagram that represents the
system under test. FLiRTS [2] refines the UML activity dia-
grams that represent behaviors of a software system at a high
level of abstraction, and applies fuzzy logic to classify the
test cases according to the probabilistic correctness values
associated with the used refinements. Unlike FLiRTS2, the
model-based approaches use behavioral diagrams and obtain
the test coverage at the model level.

5 Conclusions and future work

In this work, we investigated the use of fuzzy logic in regres-
sion test selection to bridge the abstraction gap between the
source code and the UML class diagrams that model struc-
tural aspects of the system. Our approach, called FLiRTS2,
uses information about the classes that are adapted in a class
diagram, and generates a class relationships graph where the
nodes represent the classes and interfaces, and the weighted
directed edges represent the likelihood that a class is calling
an operation defined in another class. Paths from test cases
to adapted classes are associated with varying degrees of
certainty that they are actually exercised by some test case.
FLiRTS2 uses a probabilistic approach based on fuzzy logic
to deal with the uncertainty and classify the test cases as
retestable or reusable.

The key advantage of using FLiRTS2 is that it relies only
on class diagrams containing information that is commonly
provided by software developers. It needs far less information
than other model-based RTS approaches. Neither behavioral
models, traceability links from the test cases to model ele-
ments, nor coverage data are needed. In spite of the limited
information available to FLiRTS2, it can still achieve test
suite reduction without losing much fault detection effec-
tiveness (a standard deviation from the whole test suite of
1.78 percentage points).

Using 13 subjects, we compared the safety violation,
precision violation, test suite reduction, and fault detection
ability of FLiRTS2 with those of Ekstazi and STARTS. The
average safety violations of FLiRTS2with respect to Ekstazi
and STARTS were 18.88% and 16.53%, respectively. The
average precision violationswere 13.27%and9.01%, respec-
tively. The average test suite reduction using FLiRTS2 was
82.06%.
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We plan to explore search-based techniques to tune the
fuzzy logic system. We also plan to explore the use of fuzzy
logic (1) to select regression test cases based on changes
in requirements models, and (2) to prioritize test cases based
on objectives such as test case diversity. As machine learning
techniques gain traction in software engineering research, it
is worthwhile to investigate their use in RTS approaches.
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