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ABSTRACT

Scrubbing sensitive data before releasing memory is a widely ac-
cepted but often ignored programming practice for developing
secure software. Consequently, confidential data such as crypto-
graphic keys, passwords, and personal data, can remain in memory
indefinitely, thereby increasing the risk of exposure to hackers who
can retrieve the data using memory dumps or exploit vulnerabili-
ties such as Heartbleed and Etherleak. We propose an approach for
detecting a specific memory safety bug called Improper Clearing of
Heap Memory Before Release, also known as Common Weakness
Enumeration 244, in C programs. The CWE-244 bug in a program al-
lows the leakage of confidential information when a variable is not
wiped before heap memory is freed. Our approach combines taint
analysis and model checking to detect this weakness. We have three
main phases: (1) perform a coarse flow-insensitive inter-procedural
static analysis on the program to construct a set of pointer variables
that could point to sensitive data; (2) instrument the program with
required dynamic variable tracking, and assertion logic for memory
wiping before deallocation; and (3) invoke a model checker, the
C-Bounded Model Checker (CBMC) in our case, to detect assertion
violation in the instrumented program. We develop a tool, SecMD-
Checker, implementing our instrumentation based algorithm, and
we provide experimental validation on the Juliet Test Suite — the
tool is able to detect all the CWE-244 instances present in the test
suite. To the best of our knowledge, this is the first work which
presents a solution to the problem of detecting unscrubbed secure
memory deallocation violations in programs.
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1 INTRODUCTION

We consider the problem of sensitive heap memory data not being
wiped before deallocation in C programs. Minimizing sensitive data
lifetime in software memory is a widely recommended practice for
security relevant software in order to reduce the chance of leak-
age of sensitive data, such as cryptographic keys, to the outside
world [46, 47]. Software bugs that leak the contents of memory
are common [17]. A recommended practice that addresses part of
this vulnerability is to zero or wipe out heap memory before it is
deallocated. In the absence of data being wiped before deallocation,
we have to rely on the natural life-cycle of data, which ends when
new data overwrites the old data during subsequent allocations of
the same memory location. However, waiting for the data to be
overwritten produces a data lifetime of 10 to 100 times the mini-
mum lifetime (defined as from the first write to the last read). The
lifetime of sensitive data could be reduced to within 1.35 times
the minimum possible data lifetime by zeroing the data at deallo-
cation [14]. Consequently, not following this guideline is viewed
as a software weakness. For instance, the Software Engineering
Institute (SEI) CERT secure coding standards for C list “MEM03-C:
Clear sensitive information stored in reusable resources” as a soft-
ware recommendation [1]; this recommendation includes wiping
dynamically allocated memory before being freed. The MITRE cor-
poration similarly classifies code which does not follow this practice
as suffering from the CommonWeakness Enumeration-244 – CWE-
244: Improper Clearing of Heap Memory Before Freeing (’Heap
Inspection’) [30]. Unfortunately this practice of wiping sensitive
data before freeing is frequently not followed in many applications,
including in embedded and Cyber-Physical Systems (CPS) in which
C is the dominant language due to its efficiency and it being closer
to hardware. Unfortunately these features that make C optimal
for CPS domains also come at a cost – C is a memory unsafe lan-
guage and thus C programs are prone to memory related bugs [44].
Consequently, sensitive data can be often be found leaked from C
programs throughout the user and kernel memory and leaked data
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stays there for an indefinite period [13]. For example, all versions of
Dell RSA BSAFE Crypto-C Micro Edition before 4.1.4 were affected
by CWE-244, leaving them vulnerable to attacks where a malicious
remote user could extract the sensitive information [35].

Leaks could also happen by exploiting other vulnerabilities. For
example, Heartbleed is a serious vulnerability present in certain
OpenSSL cryptographic software libraries. This library is used on a
wide scale on for providing secure communication. The SSL proto-
col includes a heartbeat option, which allows one computer to know
that the computer at the other end is still online by sending a short
message and getting a response back. It was found that a cleverly
formed heartbeat message could be sent to the computer, allowing
the attacker to exploit the system by buffer overread vulnerability,
where more data is read than should be allowed. Therefore, this
attack can reveal the sensitive information buildups from the RAM
in affected systems [49]. A similar buffer overread problem has been
encountered in curl [43]. Etherleak [6] was a vulnerability expos-
ing portions of kernel memory that occurred in ethernet Network
Interface Card (NIC) device drivers. It occurred due to incorrect
implementations of RFC 1042 requirements and poor programming
practices. An attack could be executed by sending an ICMP echo
message to the vulnerable machine, which would return portions
of kernel memory in the padding of the response messages.

IoT systems consist of diverse entities communicating over the
network, this creates a large attack surface through which sensitive
data can flow [12, 27]. Non-secure memory deallocation in software
that reads encryption keys on Read-Only Memory (ROM) on CPS
has an especially severe impact. The purpose of using read-only
flash memory, ROM, EPROM, or EEPROM is to make sure that
data stored in them is immutable. Such immutable elements are
often used when system design requires root-of-trust which can be
utilized during the software authentication procedures. Storing root-
of-trust data in ROM ensures that the malicious entities cannot alter
these keys. However, for authentication, we need to bring that key
to the RAM, and if we carelessly free the memory without zeroing
out, keys can be exposed when that memory is reallocated. Such
cases would necessitate physical replacement of the chip holding
the keys and/or reprogramming in the field through a particular
upgrading procedure [32]. Both are highly expensive and highly
undesirable options. This makes CWE-244 a serious concern for
embedded and Cyber-Physical Systems.

Modern SCADA (Supervisory Control and Data Acquisition)
systems are on the network; and use core programswritten in C, e.g.,
for the underlying system platform and for running control routines.
They use standard network and operating systems libraries, and
hence inherit corresponding memory related weaknesses. In the
course of standard operation, these systems periodically send out
data depending on the requests they receive. As this data is usually
retrieved from RAM, this opens up the possibility of an attacker
gaining access to highly sensitive data, such as root-of-trust keys,
from an out-of-bounds read attack on CWE-244 vulnerable SCADA
subsystems. Network library vulnerabilities such as Heartbleed
and Etherleak can similarly be exploited on CWE-244 vulnerable
systems to gain access to sensitive data. Typically, security has
taken a back seat to control engineering concerns for such industrial
control systems; and given the potential catastrophic infrastructure
consequences involving entities such as the power grid or nuclear

power plants, leakage of secure data is one of the urgent security
concerns in this area [42, 54].

Detection of CWE-244 in programs is challenging as it entails
first ascertaining which memory locations contain sensitive data.
In a typical use scenario, it is reasonable for developers to specify
which variables initially get sensitive data. However, this sensitive
data gets copied to other variables and memory locations, possibly
through multiple function calls, both via shallow copies (copy by
reference), and via deep copies (copy by value); with data being
copied partially or wholly. The technical challenge is then to infer
in a precise enough manner (1) how sensitive data gets copied and
spread over the heap during the course of program execution, and
(2) detect if any of these heap memory locations get freed without
being wiped. We observe that simpler problems, such as that of
alias detection, are already undecidable [37], hence any developed
solutions must be approximate. At the same time, in order for a
solution to be useful to developers, it needs to target a low false
positive, and a low false negative rate.

Our Contributions. In this work, we propose a taint analysis [40],
approach combining static analysis and model checking for de-
tecting secure memory deallocation violations in C programs; and
develop a prototype tool – SecMD-Checker (Secure Memory Deal-
location Checker) – implementing the proposed algorithm. Our
tool takes two inputs: (1) a compilable C program, and (2) the name
of a pointer to a location holding sensitive data. The tool then
conservatively checks if this original memory location, and other
memory locations that have been copied from it, are always wiped
out before they are freed. To the best of our knowledge, ours is the
first work which presents a solution to the problem of detecting
unscrubbed secure memory deallocation violations in programs.

Our algorithm has three main phases: (1) first, it performs a
coarse flow-insensitive inter-procedural static analysis on the pro-
gram to construct a set of pointer variables that could point to mem-
ory locations containing sensitive data; (2) then, it instruments the
program by inserting both required dynamic variable tracking, and
assertion logic for memory wiping before deallocation, utilizing
the set of variables inferred in the previous phase. (3) finally, the
tool invokes the C Bounded Model Checker (CBMC) to check for
assertion violations in the instrumented program – an assertion
violation, in this case, is a probable instance of secure memory deal-
location violation. Our tool implementation can handle the original
tracked variable’s shallow copies and also deep copies. We track
both sorts of copies by keeping track of memory addresses, not
names. Tracking this information in the program itself enables us
to reduce potential false positives due to program flow and function
calls. Note that we insert wiping checks before free statements.
This leaves the possibility of memory leaks where sensitive data
is left in memory that is not freed before the program terminates.
Memory leaks, however, can be directly detected by analyzers such
as CBMC.

Conceptually, our approach can be seen as implementing a form
of taint analysis where taint propagation is only for tainted data
copies, not for control or information flow. In addition, a data loca-
tion being tainted at some point does not mean it is tainted when it
is freed. We solve this taint sanitization problem by using CMBC in
our final stage to check whether memory when being freed actually
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contains sensitive data. While we use CBMC in our work in the last
stage, our algorithm is also applicable to other model checkers and
static analyzers, with appropriate minor changes to the tool-specific
assertion logic code.
Experimental Validation of our Tool. For experimental vali-
dation of our technique, we utilized the Juliet Test Suite [33], a
collection of test cases in C/C++ classified under different CWEs
maintained by NSA. We ran SecMD-Checker on two groups of
tests from the Juliet Test Suite. The first group contained all the
tests that were designed for CWE-244 (there were 72 such tests in
the suite). The second group consisted of 95 randomly chosen tests
out of the 64099 tests in the test suite that were designed for other
CWEs, and which had heap memory allocation. Our tool correctly
pointed out the functions which had non-secure memory deallo-
cation instances in all the cases. Moreover, SecMD-Checker did
not raise any false alarms in functions that did not have non-secure
memory deallocations. Both of these combined provide evidence of
the analysis of our tool being reasonably precise.
Related Work. IoT operating systems are tested for CWE vulner-
abilities using three static analysis tools in [3]. The work in [19]
presents the lifetime issue for sensitive data. The work in [14]
shows that zeroing the memory before deallocation or within a
specific time period can reduce the data lifetime within 1.35 times
the minimum possible data lifetime; and it proposes a way of ensur-
ing this by making changes in the compiler, libraries, and kernel,
however changing the system environment to ensure this is not
always feasible. Aliasing occurs when the memory location can be
accessed by more than one name. Many techniques are present for
alias analysis, such as inter-procedural pointer alias analysis [21],
type-based alias analysis [16], and context-sensitive pointer analy-
sis [52]. Detection of related memory related vulnerabilities such
as buffer overflows is also a widely investigated area [2, 10, 25, 38].
Approaches based on taint analysis have been used for various prob-
lems related to information flow security [7, 18, 31, 40, 53]. In the
context of industrial control systems, static and dynamic analysis
have been used to detect security vulnerabilities in works [9, 50].
Works such as [4, 12, 27, 34, 39] address IoT security concerns using
taint analysis.

2 PRELIMINARIES

2.1 CommonWeakness Enumerations (CWEs)

Exploitable vulnerabilities in software systems are known as Com-
mon Vulnerabilities and Exposures (CVE). The CVE program has
been developed at MITRE to identify, define, and catalog publicly
disclosed cybersecurity vulnerabilities [29]. Each vulnerability in
the CVE catalog is assigned a CVE Record. The causes of the vul-
nerabilities are categorized as Common Weakness Enumerations
(CWEs). These causes are software and hardware weaknesses –
faults, bugs, flaws, or other errors in software or hardware im-
plementation, which if left unaddressed, could result in systems,
networks, or hardware being vulnerable to attacks. The CWE list,
which is a community list, is based in part on the CVEs, and is
categorized into those by software development, by hardware de-
sign, and by research concepts. CWEs work as a common language,
measuring matrix and baseline for weakness identification, mitiga-
tion, and prevention efforts. The CWE list has over 600 categories,

including classes for race conditions, buffer overflows, non-secure
random numbers, and hardcoded passwords. Several tools and ser-
vices have been developed to find security weaknesses based on the
CWE list [28, 51]. A detailed CWE list is available at theMITREweb-
site [30]. The CWEs are organized in a hierarchical fashion, with
parent/child relationships based on various concepts. Examples
of CWEs are CWE-121 (Stack Based Buffer Overflow), CWE-122
(Heap Based Buffer Overflow), CWE-126 (Buffer Overread), CWE-
401 (Memory Leak), CWE-415 (Double Free), and CWE-416 (Use
After Free). Buffer overflow occurs when we write data more than
the allocated memory size on a heap or stack. Buffer overread is
a weakness where we read the data more than the size of the al-
located memory buffer. CWE-401 occurs when the program does
not deallocate memory. CWE-415 occurs if a user deallocates the
memory twice. CWE-416 occurs if a user accesses the memory after
deallocation.

2.2 CWE-244: Improper Clearing of Heap

Memory Before Release

Security practices like zeroing out memory before freeing, also
known as scrubbing or secure memory deallocation, are often ne-
glected by the programmer when it comes to protecting sensitive
data such as passwords and cryptographic keys. Operating systems
do not usually clear the previously written information, and as a
result sensitive data is leaked when memory is reallocated. This
software weakness is part of CWE-244. This CWE is part of the
related weakness CWE-226: sensitive information in resource not
removed before reuse. CWE-226 includes other types of weaknesses
(such as CWE-1239: Improper Zeroization of Hardware Register).
In this work, we focus on detecting failures to remove sensitive
information from heap memory before the memory being freed.

The Software Engineering Institute (SEI) has defined a secure
coding standard for C programming language referred to as SEI
CERT C coding standard [1]. The standard provide guidelines tar-
geting insecure coding practices. These guidelines are defined in
terms of rules and recommendations. One of the recommendations
on Memory Management is to clear sensitive information stored in
reusable resources (Mem03) before freeing, which is directly related
to CWE-244.

2.3 Sensitive Data Replicates on the Heap

In C a shallow copy stores the reference of the object to the original
memory address. Shallow copies only clone the reference, not the
actual object; thus, any changes done on the shallow copy reflect
in the original object. A shallow copy is efficient as it only copies
a reference of the object, but sensitive data itself is not replicated.
The allocated memory can be free using any reference object; after
freeing the memory, none of the reference pointers can be used to
access the original data. In contrast, a deep copy truly clones the
data from the original memory address. A deep copy of an object
does not share the same reference; thus, any changes done to either
object do not affect the other.
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2.4 Objective: Detect Improper Removal of

Sensitive Heap Data Replicates

Our objective in this work is two-fold. First, we track (conserva-
tively) all possible data replicates, arising from both shallow and
deep copies, of a given initial variable pointing to sensitive data on
the heap; and second, we check if all of these data replicates are
properly wiped before the corresponding memory is released to
the operating system.

2.5 CBMC – C Bounded Model Checker

Model Checking [8, 20] computes the run-time states of an input
program without actually running the program; these states are
further utilized to check whether a specific property/specification
holds for the system. One of the model checkers that have found
widespread use is CBMC – C Bounded Model Checker created
by Daniel Kroening at Carnegie Mellon University [24]. It can
verify user defined assertions under a given loop unwinding bound,
such as those relating to array bounds (buffer overflows), pointer
safety, arithmetic exceptions and can provide a counterexample if
an assertion is violated. Currently, it supports C89, C99, most of
C11, and most compiler extensions provided by GCC and Visual
Studio. Capabilities of CBMC have been showcased on Common
Weakness Enumerations (CWE), and on major systems such as
Amazon Web Services [11, 15]. While CBMC has built-in options
for various memory safety related issues, it does not come with any
options for our problem in Subsection 2.4.

3 OVERVIEW AND SCOPE OF OUR APPROACH

In this section, we present the overview of our approach imple-
mented in our tool, SecMD-Checker (Secure Memory Deallocation
Checker), for tracking sensitive data replicates on the heap, and
detecting occurrences of deallocations without proper wiping of
the data.

3.1 Problem Scope

We assume we are given a single file C-program, and a single vari-
able, X, of this program. Our objective is to (1) track all shallow
and deep copy replicates on the heap of X, and (2) check that these
replicates are wiped whenever the corresponding heap memory is
deallocated. The problem setting is best illustrated with an example.
Consider the program in Listing 1. In the program, variable X is the
source of the sensitive data, and we wish to track all heap replicates
copied from X.

Listing 1: Program A

1 #include <wchar.h>

2 #include <windows.h>

3

4 void copy_process(char *Y)

5 {

6

7 char * Y_deepcp = (char *) malloc (100*

sizeof(char));

8 memcpy(Y_deepcp , Y, 100* sizeof(char));

9 char * other = (char *) malloc (99* sizeof(

char));

10 strcpy(other , ``non -sensitive data'');

11 free(Y_deepcp);

12 free(other);

13 }

14

15 void CWE244_dummy ()

16 {

17 char * X = (char *) malloc (100* sizeof(char

));

18 char * X_shallowcp;

19 X_shallowcp = X;

20 if (fgets(X, 100, stdin) == NULL){

21 printLine("fgets() failed");

22 /* Restore NULL terminator if fgets

fails */

23 X[0] = '\0';

24 }

25 copy_process(X_shallowcp);

26 zero_out_memory(X);

27 free(X);

28 }

Let CWE244_dummy() be the starting point for the program ex-
ecution. In this function, first a shallow copy is made to X_shal-
lowcp, which is then passed to the function copy_process(). This
function then makes a deep copy to Y_deepcp, does some further
processing, and then finally frees Y_deepcp without wiping it first.
The control then returns back to CWE244_Dummy(), which wipes
X and frees it. The problem here is that a deep copy of X, namely
Y_deepcp was not wiped before being freed. Our objective is to
detect such secure memory deallocation violations. In our work,
we treat a partial deep copy of a sensitive variable Y the same as a
full deep copy of the variable.

3.1.1 Limitations. Our tool SecMD-Checker is a proof of con-
cept prototype focused on detecting secure memory deallocation
violation. It does not support the following C features: higher or-
der functions and pointers to functions, double pointers, arrays of
pointers, structures, classes, and polymorphism.

3.2 Overview of Our Approach

We implemented our tool SecMD-Checker in Python 3.7. It takes
two arguments as an input 1) a compilable C program, and 2) the
name of the variable holding sensitive data1. After we pass the
inputs to the program, SecMD-Checker does a flow insensitive
inter-procedural analysis on the C program for inferring informa-
tion about sensitive variables, possible copy chains via both deep
and shallow copies, function arguments, and possible function calls.
Next, utilizing this information, SecMD-Checker instruments the
program for detection of non-secure memory deallocation as fol-
lows. The instrumentation includes 1) declaring variables that track
and monitor program variables containing sensitive data without
changing the control flow logic of the original C program, 2) insert-
ing logic for tracking copies of sensitive data into the program, and
3) embedding assertion logic (that we define) before every "free()"
statement that deallocates memory containing potentially sensitive

1For multiple variables, we rerun the tool for each variable
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data, The instrumented file has sufficient information to knowwhen
and how to validate potentially non-secure memory deallocation.
CBMC is then invoked to analyze the instrumented C program file.
If secure memory deallocation violations are present, an alert is
raised due to assertion violations, and a failure trace obtained for
CWE-244. Otherwise, CBMC indicates successful validation of the
CWE-244 test.

Figure 1 shows the high level architecture of SecMD-Checker.

4 SECMD-CHECKER: DETECTING SECURE

MEMORY DEALLOCATION VIOLATIONS

In this Section, we first present the various phases of the tool in
detail. Subsection 4.1 presents the procedures implementing the
program analysis phase. Subsection 4.2 presents the procedures
which instrument the input program, based on information from
the analysis phase. The instrumented program is then fed to CBMC,
and described in Subsection 4.3.

Subsection 4.4 discusses issues related to the realloc function.
Subsection 4.5 presents compiler optimization concerns. Finally,
Subsection 4.6 discusses the soundness and completeness of our
approach.

4.1 Program Analysis

The first phase of SecMD-Checker performs a flow insensitive
static analysis of the program and creates a graph capturing the
copy dependencies between variables. The nodes of this graph are
the variables of the program. As the same variable names may occur
in different functions, we add an appropriate suffix to indicate which
function the variable scope belongs to. For example, if variable y
belongs to function foo, then to y we add the suffix “__foo”. If the
variable y is a global variable, then we add the suffix “__Global”.
Once the nodes have been created, we add directed edgesy −→ z in
the following instances: (a) if y is shallow or deep copied to z; (b) if
z is an argument in a function definition type, and that function is
called at some point with the value y for z. For example, consider
the program in listing 1. Our first phase will generate the copy
dependency graph in Figure 2.

Once the copy dependency graph has been created, we compute
all the nodes that are reachable from the variable X , the originating
variable pointing to sensitive data. This set of nodes is called All-
CopiesSet. If there is any chain of shallow or deep copies, including
across function calls, that could lead from X to Y , the variable Y
(with the appropriate suffix) will be in AllCopiesSet. The pseudo-
algorithm of this phase can be found in Procedure FindCopies,
Procedure AddVerticesEdges, and Procedure AddProperSuffix.

4.1.1 Procedure Details. We now explain the details of the pro-
cedures that need clarification.
Procedure FindCopies. This procedure calls ProcedureAddVerticesEdges
to create the graph with the variable dependencies, and invokes
a reachability function ComputeReach to construct AllCopiesSet.
In line 6, it calls a routine to extract and create a list of all the func-
tion definition prototype, function definition body pairs from the
given input C program. This is needed in order to tag variables with
the names of the function scope they belong to in other procedures.

Procedure FindCopies(c_file, variable_name)
input :c_file, var_name
output :AllCopiesSet

1 G ← ∅; /* Directed graph G for computing

AllCopiesSet */

// Extract all global variable names

2 Global_Vars← GetGlobalVarDefs(program_file);
3 for global_var ∈ Global_Vars do

4 AddVertex(G, concat(global_var, “__Global”));
5 end

/* Extract all functions */

6 Program_Functions← ExtractFunctions(program_file);
// Add Vertices and Edges by analyzing function

definitions

7 AddVerticesAndEdges(G, Program_Functions);
/* All reachable nodes from vertex ‘‘var_name’’ in

the directed graph G */

8 AllCopiesSet← ComputeReach(G, var_name);
9 return AllCopiesSet;

Procedure AddVerticesEdges. In this procedure, first we create the
variables in the graph, based on the pointer variables in the func-
tion prototype (lines 4-6), and the pointer variable declarations
(lines 8-11). We add the suffix “__func_name” as described earlier.
If further on in the procedure, there is a pointer variable in a state-
ment for which a corresponding node has not been created in the
function, that variable is interpreted as a global variable; nodes for
global variables are created in Procedure FindCopies. The function
AddProperSuffix does this analysis in order to tag variables with
appropriate suffixes (“__func_name” or “__Global”) in lines 13-30.

Edges from shallow and deep copy assignments are created in
lines 13-18. Edges corresponding to argument instantiations in
function calls are created in lines 19-29 (with appropriate suffixes
added to the variable names). For example, in Program 1, on line 26,
there is a function call copy_process(X_shallowcp). The func-
tion definition prototype is on line 4 of the listing. As the vari-
able X_shallowcp is an argument in the function call invocation
copy_process(X_shallowcp), we add an edge X_shallowcp__-
CWE244_dummy −→ Y__copy_process. If a statement is an assign-
ment from a function returning a pointer, for example, Z = foo(var),
then the line is treated both for the function call, as well as for the
assignment to Z, and edges are added for both (with one edge being
from the return variable of foo() to Z).

The technical details of lines 20-23 are as follows. On line 20,
we assign to called_func the called function from the list of pro-
gram functions. This called_func assignment includes both the
function definition prototype, as well as the function body. On line
21 we extract the arguments of the particular function call (which
are in general different from the argument names in the function
definition prototype). On line 22, we extract the name of the called
function in order to add the appropriate suffixes. On line 23, we
extract the argument names from function definition prototype
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Figure 1: SecMD-Checker Architecture

Figure 2: Generated graph edges

of called_func, in order to add edges to them from the appropri-
ate variables in the function call in the current line of the input C
program that is being analyzed.
Procedure AddProperSuffix. This function adds appropriate suffixes
to the variable names (“__func_name” or “ __Global”) when gen-
erating the graph edges.

At the end of the analysis phase, the procedures described above
will generate the copy dependency graph in Figure 2 for the program
in listing 1. On line 8 of the program, this dependecy graph is utilized
to find all the set of all reachable nodes, AllCopiesSet, from the
input variable X__CWE244_dummy using a reachability algorithm:

AllCopiesSet =

{
X__CWE244_dummy, X_shallowcp__CWE244_dummy,
Y__copy_process, Y_deepcp__copy_process

}
.

4.2 Program Instrumentation

In this subsection we describe the instrumentation phase of SecMD-
Checker. This phase incorporates two key ideas. First, we track
actual memory addresses that could point to sensitive data during
actual executions of the program (not variable names). Before every
free of a heap pointer variable that has such a tracked address, we
instrument the program, embedding an assertion, checking that
the data pointed to by the variable has been wiped. Second, our
tracking has a dynamic aspect. The previous phase computes a
conservative set AllCopiesSet containing all the variable names
which could point to sensitive data. However, it can happen that for
the same variableY in AllCopiesSet, one free occurrence ofY frees
non-sensitive data, and another free occurrence statement over Y
frees sensitive data. This happens, for example, due to different
function call chains. In order to obtain call chains which indicate
true positives for the assertion violation, we build a dynamic set
of memory addresses (by instrumenting the input program) that

could point to sensitive data, as opposed to AllCopiesSet which
is a static set of variable names. However, the variables that point
to this memory address set always belong to AllCopiesSet. We
illustrate this issue in Section 5.

4.2.1 Procedure Details. First we describe two sub-procedures
that are used by the main procedure. Subprocedure __AddAddress
maintains a dynamic container __address_holder which can be
viewed as a set; this container holds the current set of heap memory
addresses that could contain sensitive data.

Subprocedure __MemoryWipingCheck when invoked over a
pointer variable __variable, first checks if the address pointed to
by __variable currently belongs to __address_holder, and if so
checks if the data has been wiped. This sub-procedure is embedded
before appropriate free statements by the main procedure of this
phase. The sub-procedure contains two CBMC defined functions:
__CPROVER_OBJECT_SIZE is a CBMC defined function which can
be used to retrieve the size of the object a pointer points to; and
__CPROVER_assert is the assertion function of CBMC [22].

The main procedure is Procedure CWE-244 Instrumentation Pro-
cedure. The procedure maintains a container __address_holder
which contains memory addresses of potentially sensitive data. The
container is updated dynamically in the instrumented program.
We note that if a address indicated by a pointer variable is added
to __address_holder, then it necessarily means that the variable
belong to AllCopiesSet (with the appropriate suffixes); the other
direction may not hold true. Thus __address_holder is more se-
lective than AllCopiesSet. The procedure also embeds, in lines
19-22, a memory wiping check assertion just before frees of rele-
vant variables. A variable is deemed relevant if its memory address
at that point belongs to __address_holder (this also means the
variable must belong to AllCopiesSet, a less restrictive condition).

Other parts which need clarifications follow. In lines 9-12, we
check if an assignment statement to any variable in AllCopiesSet
is such that the variable could get a new memory address, and if
so we add it to to the container __address_holder by inserting a
__AddAddresscall after the assignment line in the program. Note
that since AllCopiesSet has variable names concatenated with ap-
propriate suffixes as described in Subsection 4.1, we have to do the
same concatenation to a variableY whenever we want to check ifY ,
with its proper scope, is in AllCopiesSet. Lines 13-18 handle func-
tion calls involving variables from AllCopiesSet as arguments. As
a function call foo(&Y) could change the location to which Y could
point to, we add the potentially new memory address contained in
the pointer variable Y after every function call involving Y as a func-
tion argumentwhen Y belongs to AllCopiesSet (accounting for the
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Procedure AddVerticesEdges( G, Program_Functions)
input :G, Program_Functions
// Iterate the functions to extract pointer
variable names and create link between pointer
variables in a graph

1 for (function in Program_Functions do

2 func_name←GetFuncName(function);
3 Arguments← GetFuncArgs(function);
4 func_body← GetFuncBody(function);
5 foreach argument in Arguments do

6 AddVertex(G, concat(argument, “__”, func_name));
7 end

8 foreach line in func_body do

9 if IsVariableDeclaration(line) then
10 var_name← GetVariableName(line);
11 var_name= concat(var_name, “__”, func_name);
12 AddVertex(G, var_name);
13 end

14 if IsAssignmentStatement(line) then
15 var_from, var_to← GetCopyVars(line);
16 var_from= AddProperSuffix(var_from,

func_name);
17 var_to= AddProperSuffix(var_to, func_name);
18 AddEdge(G, ⟨var_from, var_to⟩);
19 end

20 if IsFunctionCall(line) then
21 called_func← GetFunction(line,

Program_Functions);
22 CArgs← GetFuncArgs(line);
23 name_cfunc←GetFuncName(called_func);
24 Fetched_Args← GetFuncArgs(called_func);
25 for matching (carg, fetched_arg) in (CArgs,

Fetched_Args) do
26 carg←AddProperSuffix(carg, func_name);
27 fetched_arg←

AddProperSuffix(fetched_arg,
name_cfunc);

28 AddEdge(G, ⟨carg, fetched_arg⟩);
29 end

30 end

31 end

32 end

proper suffixes). Line 16 takes care of the case when such a function
call is part of a predicate of an if statement condition. This strategy
of updating __address_holder after function calls also accounts
for calls to third party library function calls with missing bodies
or definitions. Note: we do not treat strcpy, memcpy, memcpy_s,
strncpy, strcpy_s, strncpy_s as function calls for this purpose,
as they do not result in new memory locations being generated,
they just change the data.

Procedure AddProperSuffix(var_name, func_name)
input :var_name, func_name
output :var_name

1 if (IsGlobalVariable(var_name)) then
2 var_name= concat(var_name, “__Global”);
3 else

4 var_name= concat(var_name, “__”, func_name);
5 end

6 return var_name;

Procedure \_\_AddAddress(__variable)
input :__variable
/* Functionality: if __variable is not present in

container __address_holder, then add __variable
to it */

1 if __count == 0 then
2 __address_holder[__count++] = __variable;
3 return;
4 end

5 present← false;
6 for x ∈ __address_holder do

7 if (__variable == x ) then
8 present = true
9 end

10 end

11 if present == false then
12 __address_holder[__count++] = __variable;
13 end

Procedure \_\_MemoryWipingCheck(__variable)
input :__variable

1 if __CPROVER_OBJECT_SIZE( __variable ) == 0 then
2 return;
3 end

4 for y ∈ __address_holder do

5 if (y == __variable) then
6 foreach bit z of __variable do

7 __CPROVER_assert(z == 0, "Error Message");
8 end

9 __DelAddress(y) ;
/* Delete y from __address_holder data

structure as it has now been freed */

10 end

11 end

Consider again the program in listing 1. The AllCopiesSet for
this program was computed at the end of Subsection 4.1. The proce-
dures in the current subsection result in the instrumented program
in listing 2. The added function calls are shown indented.

Listing 2: Instrumented Program A
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Procedure CWE-244 Instrumentation Procedure(input_c_-
file, variable_name)
input :input_c_file, var_name
output :program_file

1 program_file← CodeFormat(input_c_file);
// Convert to certain brace syntax

2 AllCopiesSet← FindCopies(program_file, var_name) ;
// All deep and shallow copies of input var_name

3 program_file← Add declaration and initialization
__address_holder, __count, __AddAddress() and
__Memory_Wiping_Check();

// Extract all functions; prototypes and bodies

4 Program_Functions← ExtractFunctions(program_file);
5 for (function in Program_Functions do

6 func_name←GetFuncName(function);
7 func_body← GetFuncBody(function);
8 for line in func_body do

/* Variables from ‘‘AllCopiesSet’’, are
being assigned something or initialized. For
instance var_name= f (), var_name=malloc() */

9 if IsAssignmentStatement(line) then
10 var_to, var_from← GetCopyVars(line);
11 if AddProperSuffix(var_to, func_name) ∈

AllCopiesSet then

12 program_file← Insert
__AddAddress(var_to) after line;

/* Variables from ‘‘AllCopiesSet’’, are
passed as arguments to a function call. For
instance f (.., var_name, ..) */

13 if IsFunctionCall(AllCopiesSet, line) then
14 Var_Names←var_name

������ var_name is a function argument on“line”,
& AddProperSuffix(var_name,func_name)
∈ AllCopiesSet

;
15 if IsIfStatement(line) then
16 for var_name ∈ Var_Names do

program_file← Insert
__AddAddress(var_name) in beginning of if
and else block;

17 else

18 for var_name ∈ Var_Names do

program_file← Insert
__AddAddress(var_name) after line;

19 if IsFreeStatement(line) then
20 freedvar← GetFreedVar(line);

// The variable being freed

21 if AddProperSuffix(freedvar, func_name) ∈
AllCopiesSet then

22 program_file← add
__Memory_Wiping_Check(freedvar)
function call before line;

1 #include <wchar.h>

2 #include <windows.h>

3

4 #define __holder_size 1000

5 void *__address_holder[__holder_size ];

6 int __count =0;

7

8 void copy_process(char *Y)

9 {

10 char * Y_deepcp = (char *) malloc (100*

sizeof(char));

11 __AddAddress(Y_deepcp);

12 char * other = (char *) malloc (99* sizeof(

char));

13 strcpy(other , "non -sensitive data");

14 memcpy(Y_deepcp , Y, 100* sizeof(char));

15 __MemoryWipingCheck(Y_deepcp);

16 free(Y_deepcp);

17 free(other);

18 }

19

20 void CWE244_dummy ()

21 {

22 char * X = (char *) malloc (100* sizeof(char

));

23 __AddAddress(X);

24 char * X_shallowcp;

25 X_shallowcp = X;

26 __AddAddress(X_shallowcp);

27 if (fgets(X, 100, stdin) == NULL){

28 __AddAddress(X);

29 printLine("fgets() failed");

30 /* Restore NULL terminator if fgets

fails */

31 X[0] = '\0';

32 __AddAddress(X);

33 }

34 copy_process(X_shallowcp);

35 __AddAddress(X_shallowcp);

36 zero_out_memory(X);

37 __AddAddress(X);

38 __MemoryWipingCheck(X);

39 free(X);

40 }

4.3 CBMC Assertion Checking

Once we have the instrumented C program, SecMD-Checker feeds
it to CBMC for assertion violation detection. CBMC analyses the
instrumented program to see if any __CPROVER_assert assertion
violations are possible for corresponding free statements (under
a set iteration bound for the program). If any such violations are
detected, then these free operations need to be checked as the
pointer variables that are being freed could point to sensitive data.
Note: We can utilize an option --trace in CBMC for analyzing
the code. It will generate a failure trace for all failed assertions;
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in our case, failure traces of possible secure memory deallocation
violations.

4.4 Realloc Handling

The realloc() function is utilized to extend or shrink the allocated
memory block size. It may allocate the memory to a new address
as space after the end of the old memory block may be in use, or
due to internals of library implementing the function, for instance
this can happen even if the memory is being shrunk [26]. This
results in copying data from the old memory block to the new one
– making the old memory block with the data intact inaccessible to
the program. Therefore, using realloc() makes code susceptible
to heap inspection.

We can handle the realloc() function in two ways. First, by not
allowing a user to reallocate the memory at all. Second, by making
sure that reallocation is performed only after original memory has
been wiped. We did not pursue the first option as it would restrict
the user from using realloc() altogether, even if they are clearing
the memory before calling the function. Therefore, we followed
the second option. In order to enable SecMD-Checker to handle
the realloc() functions, we treat each realloc() call as a free
followed by an assignment statement. Consequently, we embed
a __Memory_Wiping_Check function call before every realloc()
call because the call may deallocate an old memory block (free
statement). Moreover, we also embed a __AddAddress function call
after every realloc() statement because a a realloc() call may
allocate a new memory block (assignment statement). Therefore,
if memory is not cleared and the user tries to reallocate it, the
assertion will fail, indicating a possible secure memory deallocation
violation.
Note: Implementation details of realloc() handling are omitted
from the CWE-244 instrumentation algorithm in Subsection 4.2 for
the sake of clarity.

4.5 Compiler Optimization Issues

Compilers change code automatically in order to optimize the run-
ning performance. Such changes sometimes change the logic writ-
ten by the programmer. Memory wiping code is one candidate for
compilers to remove during their optimization. We illustrate the
problem in Listing 3. Therefore, we should make sure that the object
file consists of all the critical parts of the code.

Listing 3: Sample Program

1 Function decrypt_memory ()

2 {

3 char[] key = get_key ();

4 decrypt_data(key);

5 wipe_key(key); // Compiler removes this

6 free(key);

7 }

8

9 Function wipe_key(char[] key)

10 {

11 for(int i=0;i<key.length;i++)

12 key[i] = '';

13 }

Program 3 wipes sensitive memory before freeing it. However, a
compiler might remove line 5 from the code due to the compiler
optimizer inferring that writes due to the call on line 5 do not have
any use as the following line frees the memory (line 6).

One option when dealing with sensitive information is to cross
verify the object code when operations are being performed that
have the potential to be removed by compilers. Another option is
to selectively disable compiler optimizations; for instance, we can
modify our code from Listing 3 as in Listing 4.

Listing 4: Disabling Compiler Optimizations for Code Block

1 #pragma GCC push_options

2 #pragma GCC optimize ("O0")

3

4 //Code that should not be optimized goes here

5

6 #pragma GCC pop_options

4.6 Soundness and Completeness Analysis

Our instrumentation approach is complete – if the original program
could free a variable pointing to an unwiped sensitive memory
area, then the instrumented program will insert an appropriate
assertion before the free statement. This can be seen as follows. The
computation of AllCopiesSet from Subsection 4.1 ensures that if
there is any sequence of shallow or deep copies from the originating
sensitive variable X to any pointer variable Y, then Y gets included
in AllCopiesSet. The instrumentation phase from Subsection 4.2
ensures that when new addresses are generated for variables in
AllCopiesSet, they are tracked; and when any of these tracked
addresses are freed, inserted assertions check if the corresponding
memory has been wiped. Note that since the final stage involves
invoking CBMC, the full chain of our tool is not complete, as CBMC
may fail to detect assertion violations that would occur due to
an insufficient iteration bound (assertion violation detection is
in general an undecidable problem [41]). However, if we define
our problem as that of checking for secure memory deallocation
violations within a given bound on the number of program steps,
then our full approach is complete.

If a memory wiping check assertion fails, this does not neces-
sarily mean that the program is freeing unwiped memory with
sensitive data (hence SecMD-Checker may be unsound when it
indicates a secure memory deallocation violation). This is because
our computation of AllCopiesSet is flow and context insensitive,
and hence could be overly conservative. We do not consider this to
be a significant negative – as such assertion violations indicate that
had the program flow been different involving the same variables,
then a true positive of deallocation of sensitive data would have oc-
curred. Since a program update could change the program flow, this
conservative analysis provides useful feedback to the developers.

5 EXAMPLE – DYNAMIC TRACKING

Our algorithm enables CBMC to dynamically track the memory ad-
dresses that are allocated to the identified variables in AllCopiesSet
for better precision in avoiding false positives. An absence of such
dynamic tracking would lead to CBMC possibly generating spu-
rious assertion violations. We illustrate this case by an example.
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Consider Listing 5 (the listing shows the instrumented program).
Suppose our approach was not to dynamically track addresses
as described in Subsection 4.2; instead suppose we were insert-
ing the __MemoryWipingCheck() call before every free of a vari-
able that belonged to AllCopiesSet that was computed statically
in Subsection 4.1; and this call was blindly checking if the __-
MemoryWipingCheck() function argument __variable was being
wiped (thus only lines 6–8 in Procedure __MemoryWipingCheck).
It can be checked that for Listing 5, arg__dummy_func belongs to
AllCopiesSet, hence in this modified approach we would get an
assertion violation from CBMC before the free in dummy_func; with
the function call chain trace main() −→ dummy_func(temporary).
But this trace is spurious as temporary does not point to sensitive
data. A developer could then view this assertion violation as a false
positive of the tool.

However, with our dynamic tracking approach, the call dummy_-
func(temporary)would not lead to an assertion violation as temporary
does not belong to the dynamically tracked address list, and hence
__MemoryWipingCheck() does not reach the assertion statement.
In contrast, the next function call dummy_func(X) does cause _-
_MemoryWipingCheck() to reach the assertion statement as the
memory address pointed to by X will be in the set of dynamically
tracked addresses. In this case, CBMC returns the function call
chain trace main() −→ dummy_func(X)which demonstrates a true
positive.

Listing 5: Example: Dynamic Tracking

1 void dummy_func(char * arg)

2 {

3 __MemoryWipingCheck(arg);

4 free(arg);

5 }

6

7 void main()

8 {

9 char * X = (char *) malloc (100* sizeof(

char));

10 __AddAddress(X);

11 char * temporary = (char *) malloc (100*

sizeof(char));

12

13 dummy_func(temporary);

14 dummy_func(X);

15 __AddAddress(X);

16 }

6 EXPERIMENTS

The Juliet Test Suite. For our experiments, we utilized the Juliet
Test Suite for evaluating SecMD-Checker. The test suite is a Com-
mon Weakness Enumerations (CWEs) test suite which contains
64099 C/C++ test cases organized under different CWEs. It is a part
of a software assurance reference dataset (SARD) and was created
by NSA’s Center for Assured Software (CAS). The purpose of the
Juliet Test Suite is to have a codebase of categorized security flaws
enabling users to evaluate tools to test their methods. It includes
files, scripts, and headers needed to compile the test cases, either

as one program per test case or all CWE test cases together. These
test cases contain programs for both Linux and Microsoft Windows
environments. This test suite has been used for experimental vali-
dation by various researchers [5, 36, 45, 48]. Thus, while we did not
run our tool on industrial code, we believe examining on the Juliet
Test Suite provides initial evidence for the validity of our approach
on other code. The code in the test suite includes functions, as well
as loops. Our experiments were run on a machine with an i7 six
core 2.60GHz processor and 8GB of memory.
CBMC: Direct Detection of memory related CWEs. CBMC al-
lows direct checking of a few predefined properties through its
various options [23]; some of these properties directly map to mem-
ory related CWEs, such as buffer overflow and memory leaks. There
are however no options to directly check secure memory dealloca-
tion violations, for this our instrumentation is required. We first
evaluated CBMC’s effectiveness on the Juliet Test Suite. for the
CWEs that were directly testable by the CBMC options. We set 200
as the CBMC loop unrolling bound (from manual inspection, there
are loops in the tests that go to 100). This also indirectly served as a
measure of the examination capability of the test suite for detection
of CWEs. Table 1 presents the results.

Table 1: CBMC: Direct Detection of memory related CWEs

CWE CWE Name Detected Not Total
Detected

CWE-127 Buffer Underread 1170 726 1896
CWE-401 Memory Leak 988 240 1228
CWE-121 Stack Based Buffer Overflow 3140 2766 5906
CWE-124 Buffer Underwrite 1209 687 1896
CWE-476 NULL Pointer Dereference 239 133 372
CWE-122 Heap Based Buffer Overflow 2807 849 3656

SecMD-Checker Results.We evaluated our tool on the CWE-
244 test cases over two classes in the Juliet Test Suite. The first
group consisted of test cases designed for CWE-244; there were
72 such test cases. The second group consisted of 95 other ran-
domly chosen programs designed for other CWEs (we restricted
these tests to involve heap memory allocation). Test cases in the
first class consist of functions with suffixes __good and __bad. A
__good suffix indicates a correct implementation of code where
the respective CWE is absent, and a __bad suffix indicates a bad
implementation of code where the respective CWE is present. Thus
in the first group there were 72 function instances of CWE-244
at deallocation, and 72 instances where CWE-244 was supposed
to be absent at deallocation. Upon closer analysis 18 of the good
functions had realloac() calls without scrubbing, and hence these
also had CWE-244. In the second group of randomly chosen tests,
51 out of the 95 tests did not have CWE-244, and 44 had CWE-244;
we inferred these from manual inspection of the code.

Our test results for the experiments for the experiments are
shown in Tables 2, 3, and 4. Each test program had “good” and
“bad” marked functions (for the CWE the test corresponded to). The
CBMC analysis times are further split for good and bad marked
function subgroups. We kept the CBMC loop bound the same at 200
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for all experiments except for 5 test cases in group two for which
the SAT solver in CBMC ran out of memory – for these 5 test cases,
we reduced the loop bound to 50. Our instrumentation approach
had a 100% true positive rate, and a 100% true negatives rate on all
the tests in our experiments. .

We point out that, although, technically we were not able to
guarantee lack of false positives in Subsection 4.6 (due to theoretical
unsoundness), the zero false positives and zero false negatives on
the Juliet Test Suite demonstrate experimentally the precision of
our algorithm in practice. On larger sized programs, we expect we
will have to reduce the loop bound in order to avoid out of memory
issues for CBMC which could possibly result in false negatives.

Table 2: SecMD-Checker Results: Detection of CWE-244

(All Groups)

Positives Negatives

True 100% (True Positives) 100% (True Negatives)
False 0% (False Positives) 0% (False Negatives)

Table 3: SecMD-Checker Running time (First Group)

Average Time Maximum Time

Instrumentation 0.23s 0.95s

CBMC Analysis 14.69s 62.93s
(good marked functions)
CBMC Analysis 3.86s 4.61s
(bad marked functions)

Table 4: SecMD-Checker Running time (Second Group)

Average Time Maximum Time

Instrumentation 4.31ss 47.01s

CBMC Analysis 70.91s 578.68s
(good marked functions)
CBMC Analysis 71.30s 632.10s
(bad marked functions)

7 CONCLUSION

Deallocating secure memory before wiping poses a security risk by
exposing confidential data to attackers. In this work we developed a
prototype SecMD-Checker implementing our approach for detect-
ing secure memory deallocation violation (CWE-244) instances in
C programs. We demonstrated our approach to be an effective and
practical way of detecting CWE-244 instances by evaluating our
tool on the Juliet Test Suite — we had a 100% true positive rate, and
a 0% false negative rate. Future directions for our research are 1) en-
gineering the tool further to remove the current limitations, e.g.,

our tool cannot currently handle structs, or arrays of pointers – this
entails refining our AllCopiesSetdata structure to be more than a
simple set (alternatively, we can conservatively track these addi-
tional constructs using overtainting); and 2) improvement of the
tool algorithm by leveraging flow and context-sensitive approaches
and alias analysis for better accuracy.
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