Session: CS1 Teaching Techniques

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

Increase Performance in CS 2 via a Spiral Redesign of CS 1

Albert Lionelle

Colorado State University
Albert.Lionelle@colostate.edu

Benjamin Say
Metropolitan Community College
bcsay@mcecneb.edu

ABSTRACT

Computer Science (CS 1) offerings in most universities tend to be
notoriously difficult. Over the past 60 years about a third of the
students either fail or drop out of the course. Past research has
focused on improving teaching methods through small changes
without changing the overall course structure.

The premise of our research is that restructuring the CS 1 course
using a Spiral pedagogy based on principles for improving memory
and recall can help students learn the information and retain it
for future courses. Using the principles of Spacing, Interleaving,
Elaboration, Practiced Retrieval, and Reflection, we fundamentally
redesigned CS 1 with a complete reordering of topics. We evaluated
the newly designed CS 1 by comparing the students with those com-
ing from a traditional offering in terms of (1) CS 1 performance, (2)
retention of students between CS 1 and 2, and (3) CS 2 performance.

We demonstrate that the Spiral method helped students outper-
form those who learn via the traditional method by 9% on final
exam scores in CS 1. Retention is increased between CS 1 and CS 2
with a 19.2% increase for women, and 9.2% overall. Furthermore,
students continue to do better in CS 2 with increased grades across
all assessments and show a 15% increase in passing grades.

We provide a framework for the Spiral methodology so that
others may replicate the design. Our results lead us to consider
evaluating and improving the underlying methodology with which
we teach Computer Science.

CCS CONCEPTS

+ Social and professional topics — Computational thinking; Com-
puter science education.

KEYWORDS
Computing education, CS1, CS2, course design, pedagogy

ACM Reference Format:

Albert Lionelle, Sudipto Ghosh, Benjamin Say, and J. Ross Beveridge. 2022.
Increase Performance in CS 2 via a Spiral Redesign of CS 1. In Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education V. 1

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 2022, March 3-5, 2022, Providence, RI, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9070-5/22/03...$15.00
https://doi.org/10.1145/3478431.3499339

502

Sudipto Ghosh

Colorado State University
sudipto.ghosh@colostate.edu

J. Ross Beveridge
Colorado State University
ross@cs.colostate.edu

(SIGCSE 2022), March 3-5, 2022, Providence, RI, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3478431.3499339

1 INTRODUCTION

Computer Science is often considered hard, with the data support-
ing that nearly one-third of all students who take Computer Science
1 (CS 1) either fail or drop out within the first year [3, 44]. Most CS 1
courses are teaching students not only how to read and write a new
language, but also a much greater skill, Computational Thinking.
Focusing on four broad cognitive skills: Abstraction, Decomposi-
tion, Pattern Recognition, and Algorithmic Design; Computational
Thinking is a different way to look at problems, especially in data
driven societies where our problems are very large with daunting
amounts of data and issues surrounding each problem [4, 10].

In spite of this difficulty, there are many students who are able
to rise to the challenge of their CS 1 course. Various reports sug-
gest that student self-efficacy is a major contributing factor to
success in both college [33, 34] and Computer Science [23]. There
have been multiple studies of improving student self-efficacy in
Computer Science by peer instruction, paired programming, and
more [2, 32, 43, 48]. These successful students are able to handle the
cognitive load of Computer Science; remembering concepts with
cumulative expectations and having fundamental skills for study-
ing those concepts. Students with high self-efficacy tend to have
a mastery or growth mindset[13]. Unfortunately, these skills are
not often considered part of the standard CS 1 curriculum, and ar-
guably are not often directly taught in most college settings. Simply,
students manage to succeed in spite of their introductory course in
Computer Science.

It is our premise that we can do better at teaching if we design
CS 1in a manner that naturally promotes these skills and the ability
to actively recall information in a subject that is always cumulative.
Based on a similar premise, Lionelle et al. redesigned CS 0, around
proven skills for recall and memory as a means to improve recall
while introducing more topics in the standard CS 0 sequence to meet
university standards. They termed this design the Spiral Design due
to the intentional quick introduction to topics, and the return of
topics with more in-depth chunks at each iteration. They were
able to show increased student retention between courses, and
increased performance in the following CS course [22]. This result
was somewhat unexpected, and an earlier study by Wilcox and
Lionelle showed that students often "catch up" by their second
semester in programming [46], meaning students with previous
programming experience start out performing better compared
to other students, but then most students perform equally by the
end of their second semester. These results led to the question,

https://doi.org/10.1145/3478431.3499339
https://doi.org/10.1145/3478431.3499339

Session: CS1 Teaching Techniques

could the same Spiral design be adapted to a CS 1 course without
adding additional topics? Furthermore, would such a design enable
students to continue to show improved performance in CS 2?
Following the same idea, we redesigned CS 1 using the Spiral
Design principles as the foundation. The redesign caused a complete
reordering of topics, new assignments, new approaches to labs, and
most importantly a change in the underlining pedagogy in how
to teach the material, but did not include any additional topics.
We termed this redesign Gold. At the same time, we ran a section
using the traditional CS 1 course design, termed Green, with a
heavy emphasis on peer instruction, collaboration, many small
programs, and other well researched topics. The goal was to take a
traditional course designed around all the current well-documented
best-practices, and see if the students who learn via the Spiral
design outperform the traditional course. Furthermore, we then
had all the students take the same CS 2: Data Structures together
to gauge performance not only at the end of the first CS 1 course,
but to see how they continued to perform in the following course.
We seek to answer three research questions:

e Q1: Do CS 1 students taught using the Spiral methodology
outperform students taught in the traditional manner?

e Q2: Given CS 2 is often the great equalizer in student per-
formance no matter their programming background, do stu-
dents taught using the Spiral methodology in CS 1, continue
to outperform other students in CS 2?

e Q3: As changes should not hurt inclusion and retention of
students between courses, do students taught using the Spiral
method continue onto CS 2 showing at least the same, if not
better retention than the traditional?

In this paper we review the fundamental principles of the Spiral
design and their current foundation in Computer Science research.
We show the results of our analyses between Spiral design (Gold)
and the Traditional best-practices design (Green). The results en-
courage us to reevaluate the common ordering of topics if we are
really going to improve how students learn Computer Science.

2 RELATED WORK

Wilcox and Lionelle study the relationship between students with
prior programming experience and students without prior program-
ming experience in CS 1, who then continue onto CS 2. They find
that while students with prior-programming experience do better
than those without in CS 1, and have noticeably higher retention,
students without prior-programming experience catch up by the
end of CS 2 performing equally with students who had previous
experience before CS 1 [46]. Their study provides a baseline of what
to expect of students going from CS 1 to CS 2, and the question of
if a different pedagogy can change this outcome.

Lionelle et al. restructured CS 0 using a Spiral methodology in
an effort to increase recall while reducing the amount of time on
each topic. It was later found the design was based on principles
of memory and recall, both student performance and retention
increased. Furthermore, students in the Spiral class continued to
outperform students who were taught via the traditional manner in
the following CS 1 course [22]. The principles of recall are detailed
in the following, with a focus on applications in Computer Science.

503

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

There is a long history with memory research dating back to
the Seminal 1885 work of Ebbinghaus [11, 36, 39]. Recent studies
in memory research have focused on developing practices that can
be applied to real-world educational problems. Most notably, if
a student is in a situation that promotes memory and recall, the
more efficiently they learn and retain new material. This learning
and maintaining should not be confused with simple memoriza-
tion, but instead the overall aspect in which they process infor-
mation. Schwartz et al. present four broad principles of memory
improvement: process material actively, practiced retrieval, dis-
tributed practice, and use meta-memory [39], while Roediger et
al. presents five themes: Spacing, Interleaving, Elaboration, Prac-
ticed Recall/Retrieval, and Reflection [36]. Although Schwartz et
al. and Roediger et al. utilize different themes for improving mem-
ory efficiency, which in their studies directly lead towards student
self-efficacy, there is noticeable overlap with only slight differences
in the naming schemes: active learning maps to elaboration, prac-
ticed retrieval maps directly, distributed practice is a combination
of spacing and interleaving, and meta-memory has reflection and
metacognition at its center. Within Computer Science, Elaboration
and Reflection have been extensively studied, but Spacing, Inter-
leaving, and Practiced Retrieval have been largely ignored.

Elaboration is asking questions about the topics, and seeking
answers to those questions. Peer instruction [9, 29, 30, 40, 41, 48]
and paired programming [5, 14, 26, 47] are both methods of active
learning. Kirkpatrick et al. used RSQC? and group work integrated
into an operating systems course, and found improved student
outcomes and readiness to participate. These initial results indicate
improved self-efficacy [16].

Prather et al. review a number of instructional practices, and the
dominant theme is reflection [31]. Reflection or self-explanation is
known to elicit improved recall and understanding [7]. The benefits
of reflection after exams and assignments has been extensively
studied in Computer Science Education, with noticeable benefits
to student performance [8, 12, 24, 25, 27, 28, 31]. Kann et al. con-
firmed that going beyond reflections with discussions about those
reflections, improves both their reflections and their future coding
activities [15]. Overall, there are many benefits to reflection, and
while not the silver-bullet [42], teaching and having students reflect
is a very strong tool used to promote meta-memory, metacognition,
and self-regulation for students.

Practiced retrieval, better known as testing or practiced recall,
is often misunderstood as a means of evaluation of progress and
knowledge in an area. Roediger provides an overview of ten differ-
ent benefits of testing [35] in which only one is about providing
feedback to instructors. Furthermore, it is shown that more frequent
low-stakes tests are better than the occasional midterm, encour-
aging long term memory retrieval [18, 19, 36]. In CS Education
Research, there is very little on testing as a means to improve stu-
dent performance, even though tests are extensively used within
the field. Watson et al. analyzed 25 predictors for programming
performance, and found the only predictor was self-efficacy. This
leads Watson to encourage less testing [45]. However, this does not
take into account the other nine benefits of testing, and the value
of short frequent tests as compared to midterm style tests.

There is an extensive body of research on the benefits of the
spacing effect, and Cepeda et al. provide an updated overview of

Session: CS1 Teaching Techniques

using spacing to enhance recall [6]. The spacing effect describes
the benefit in memory retrieval of topics when those topics are
studied with a gap between sessions. It has been found that spacing
of material is one of the most powerful methods people can use to
increase long term memory without increasing the total amount of
time dedicated to studying [17].

In conjunction with spacing, students are encouraged to inter-
leave topics by including a variation of topics in a study session. For
example, a student who is learning math by mixing multiplication
and division is interleaving the topics compared to a student who
first learns multiplication and then division. It has been shown that
interleaving of these topics improves recall in multiple STEM do-
mains, including mathematics [37, 38]. It is also believed a strength
of interleaving is that students are better at discerning and figuring
out the problem, causing fewer discrimination errors [36].

There is very little on spacing or interleaving within Computer
Science Education. Leppdnen et al. studied pauses and spaces when
students were working on programming projects. They found the
longer the breaks students took, the worse they did. Their study
only looked at spacing of work done on week long programming
assignments [20]. This leaves an area open for debate on the bene-
fits or disadvantages of spacing or interleaving within Computer
Science.

3 CS1-DESIGN

This section highlights the two methodologies for teaching CS 1
with a focus on the order they present the topics. The "Green" design
is based on the traditional layout suggested in most textbooks, and
the "Gold" design is based on the Spiral teaching method.

3.1 Traditional Design: Green

Table 1 details the weekly schedule for the Green section, roughly
in the order of the Liang book [21], albeit with ample use of an
interactive textbook, Zybooks. New slides were generated for the
course through a joint effort to bring in best practices of more active
learning and peer instruction opportunities into the course, along
with adding interesting topic discussions encouraging reflection.
The Green design adopted the many small programs approach [1]
for labs and homework which encouraged multiple small program-
ming assignments every week. Students were given the opportunity
to take practice exams, making use of course question banks to im-
prove their recall and knowledge. Thus, the Green design includes
elaboration, some reflection, and some practiced retrieval.

3.2 Spiral Design: Gold

The Spiral Design is a redesign of CS 1 grounded on the five prin-
ciples to improve memory recall presented by Roediger [36]. The
belief is that while one cannot memorize how to code, recalling top-
ics one has seen helps reconstruct the solution, while reducing the
intimidation factor of not knowing where to start on the problem.

The process of redesigning the course and defining the best
layout requires determining what to teach and when. Our decisions
were based on teaching a computational mindset and keeping ease
of grading in mind, which is why we started with methods early. We
focused heavily on breaking every topic into smaller components.
In the first pass, we would determine the smallest component we

504

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

Table 1: Schedule of topics for Fall 2020 Course Syllabus.

Week Topic
Week 1 Computers; Program; Java
Week 2 | Java Variables; Data Types; and Expressions
Week 3 | Selections/Booleans/Conditionals/Switch Statements
Week 4 | Mathematical Functions/Characters/Strings
Week 5 | Control Loops
Week 6 | Methods and Parameters
Week 7 | Single-Dimensional Arrays
Week 8 | Review Week
Week 9 | Multi-Dimensional Arrays
Week 10 | Inheritance
Week 11 | Abstract Classes and Interfaces
Week 12 | Review Week
Week 13 | Exceptions and File Input/Output
Week 14 | Recursion
Week 15 | Sorting and Complexity
Week 16 | Final Exam

could teach about the topic and after 2-4 weeks we added another
component of that topic. This allowed us to have students quickly
using the concept, then with each pass they would find themselves
exploring concepts at a deeper level.

The five principles and how they were implemented:

Spacing: The spiral design purposely defines “what not to teach,
yet”, so students can return to the topic, typically after 2-4 weeks.

Interleaving: While a traditional design teaches one major topic
a week, the Spiral design purposely teaches multiple topics a week.

Practiced Recall: The Spiral design makes use of short weekly
quizzes focused on reading code and concepts. Students were en-
couraged, but not required to retake these quizzes to study.

Elaboration: The Spiral design involves elaboration in two ar-
eas, (1) active learning approach of peer instruction and discussion,
and (2) practical projects. The projects encourage students to view
what they are learning in the larger context of industrial style ap-
plications. The projects are themed, which encourages students to
think about the direction they would want to take in CS.

Reflection: Students reflect on what they are learning by sub-
mitting a paragraph reflection at the end of each of the five practical
projects describing how they have progressed over the semester.

Unlike CS 0 presented by Lionelle et al. [22], no new topics were
added. The hope is that by reordering the topics, we encourage
recall and improved performance. The structure of the topics can
be found in Table 2. It is notable that each week covers multiple
differentiated topics to promote interleaving. Then every 2-4 weeks
students intentionally return to a topic, but go more in depth.

The most noticeable difference between Tables 1 and 2 is that the
Gold section was able to visit topics sooner because it did not go in
depth at first. However, in the long term, the Gold section took a bit
longer to get to Interfaces and Abstract Classes. All assignments had
to be unique between Green and Gold because the order of topics
drastically changed what previous knowledge could be assumed in
the assignment. Course staff who are used to the traditional model
had to be cognizant of the Spiral model while teaching a topic to
make sure that they did not assume prior knowledge.

Session: CS1 Teaching Techniques

Table 2: Topic Schedule for CS1 Gold Section (Spiral Design)

Week Topics
Week 1 | Fundamentals (computers, variables, simple types)
Week 2 | Objects, Methods, Strings, Conditionals
Week 3 | Loops, Code Tracing
Week 4 | Review and Exam 1
Week 5 | Data Types, Classes, Common Classes (e.g. Math.java)
Week 6 | Logical Operators, More Loops, More Methods
Week 7 | Arrays, File Input
Week 8 | Review and Exam 2
Week 9 | File Output, Exceptions, More Classes
Week 10 | More Branching, 2D Arrays, Introduction to Recursion
Week 11 | Inheritance, ArrayList, UML
Week 12 | Review and Exam 3
Week 13 | Abstract Classes, Interfaces, Polymorphism
Week 14 | Recursion, Sorting and Complexity, Collections
Week 15 | Review Week
Week 16 | Final Exam

The primary purpose of reordering topics and going more in
depth later was to promote spacing and interleaving of the ma-
terial. Instead of relying on students to study in an interleaved
manner, assignments were given that covered the topic again. Thus
forcing a spacing plus interleaving approach to their studies.

Students had one or two labs a week for three weeks. The fourth
week of a unit was a review and catch-up week. The labs had to
be designed from scratch due to the previous background knowl-
edge assumption shown in the labs used for the Green section. For
example, the branching lab had assumed they covered all three
branching topics which were spread out across multiple weeks
in the Spiral design. We focused on using a reordered version of
the Green CS 1 Zybooks and added our own labs to accomplish
this change. We were unable to use a physical book as no book
currently matches this design. Due to the lack of support from the
literature and textbooks, significant time was spent in reordering
the topics in Zybooks and redesigning existing labs that assumed
prior knowledge on topics.

Five times throughout a semester, the lab introduced a practi-
cal project. This project focused on having students write code
within a much larger context. The goal was to provide more real
world examples for students. They included both code examples
for students to trace and harder problems for students to work on.
Students were asked to write a reflection after each project.

The primary goal of the practical projects was to promote elab-
oration and reflection. Elaboration as students were able to see
programming in the context of social good and larger applications.
Reflection was a required assignment as part of the practicals. The
Green section does not have a comparable assignment to the practi-
cals, other than certain labs being intentionally harder than others.

Exams were given every four weeks in both the Green and Gold
sections and were always cumulative, though exams 1-3 were re-
done since the topic ordering was different. When possible, exam
questions were duplicated, even if asked at different points in the
semester. Exam 4 was exactly the same between Green and Gold.

Overall, the two designs shared the following in common: the
same instructor taught both sections for students without prior

505

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

programming experience, the same TAs and lab rooms were used
but at different times, same topics but different order, same focus
on peer instruction and interesting topics, similar scaling of exams,
interactive textbooks, active learning methods, peer instruction,
ability to go back and resubmit assignments, and in the end - they
both took the exact same final exam as we wanted to gauge them
by the same expected cumulative outcomes.

Spiral Design CS 1 lecture sides, labs and practical write ups, and
course syllabus are available at http://www.cs.colostate.edu/~cs164.

4 RESULTS

The experiment evaluates two different designs for CS 1. Students
were grouped into their experimental groups based on which sec-
tion they registered to take. Everyone who signed up for CS 1
With No-Prior Programming Experience Section 2 of the course,
was signing up for the traditional method, which we term Green.
Everyone who signed up for CS 1 With No-Prior Programming
Experience Section 1 were taught using the Spiral methodology
termed Gold. Students with Prior Programming experience had
their own section, and were taught using the Spiral methodology
and termed CS164-Gold. Required labs alternated throughout the
day between Green and Gold.

The same instructor taught both Green and Gold sections. They
had more familiarity with the Green section, being the designer of
the Green section. They were willing to learn the Gold design to
teach it simultaneously with the Green section.

For CS 2, all students were joined back together in a single
course that was not redesigned. Only minor changes occurred that
typically happen from semester to semester in course development.
This allowed us to track students within the same course to see if
Gold section students continued to perform better.

4.1 CS 1Results

The different ordering of topics makes it difficult to evaluate student
performance in CS 1 throughout the semester. Thus, we focus on
the cumulative final exam and the number of students who chose
to continue to CS 2. Success is achieved when (1) students taught
with Spiral methodology (Gold) outperform students taught with
the Traditional methodology (Green), and (2) Gold obtains at least
the same, if not improved, retention compared to Green.

Table 3 shows the median final exam scores for each group.
While the scores were low, arguably due to an overly difficult exam,
everyone took the same exam, which was proctored online. Students
were allowed to pick their own exam time slot throughout the
week. The exam pulled from question banks randomly based on
a question group, and each question group was matched up to
a very similar question in difficulty, often only changing inputs
or variables slightly. The Gold groups scored 9% higher than the
Green group showing that those who learned via the Spiral method
retained more for the final cumulative exam.

Using a t-test, we found a significant difference between Green
and both Gold and CS164-Gold. Between Green and Gold, the p-
value is .00025, and the result is significant at p < .05. Between
Green and CS164-Gold, the p-value is .031565, and the result is
significant at p < .05. However, between Gold and CS164-Gold,
p-value is .257433, and the result is not significant at p < .10.

http://www.cs.colostate.edu/~cs164

Session: CS1 Teaching Techniques

Table 3: CS 1 Final Exam Grades Between Sections. All Gold
groups did about 9% better than their Green counterparts.

Teachin; Median
Methodolfgy Exam Grade Total N | Men | Women
Green (Traditional) | 56.4% 91 58 33
Gold (Spiral) 65.5% 86 66 20
CS164-Gold 65.7% 106 82 24

Gold and CS164-Gold only differing by .2% is a noticeable change
from the 2018 paper by Wilcox and Lionelle, which showed by the
end of CS 1 students with prior programming experience (CS 164)
outperformed students without prior programming experience by
6% [46]. Our results show that with the Spiral method of teaching,
students with no-prior programming experience managed to catch
up to those with prior programming within the same semester.

The final grade distribution of the courses proved uninteresting
because of the course curve applied in both sections by the instruc-
tor. While mostly unintentional, all three sections ended up with
exactly the same number of passing grades as compared to failing
grades, though slightly distributed differently between A, B, and
C grades for the passing grades. It is interesting to note that the
dropout rate was relatively the same at about 10%.

Focusing on retention, we looked at the students who could go
onto CS 2, and chose to go onto CS 2. This gives an idea of which
course setup is more motivating to students.

Table 4: Percentage of students who took CS 1 that chose to
go into CS 2, split by reported gender. Tech students are ones
with declared majors requiring CS 2 as part of their degree.

Female(All) | Male(All) | Female(Tech) | Male(Tech)
Green 43.3% 65.3% 72.7% 79.2%
Gold 62.5% 66.1% 83.3% 91.7%
CS164-Gold | 95.7% 79.7% 100.0% 92.9%

Table 4 shows the percentage of students who took CS 1 and
chose to continue on to CS 2. There is not a notable difference
for males between Gold and Green, but the very slight increase
shows that the Spiral design did not hurt retention. However, for
females, the Gold section proved to have a much higher retention
rate than the Green, by nearly 19.2%. Overall, Gold had less women
than Green starting out, but in the end had more go on. The high
retention rate of women in CS 164 demonstrates a replication of the
Wilcox and Lionelle paper, which also reported near 100% retention
of women if they come in with prior-programming experience. If
we only look at men and women who were enrolled in a technology
major that requires CS 2 for their degree, Gold students have a
higher rate of retention than Green students. For women, the Green
had 72.7%, and Gold had 83.3% continue. For men, there is a notable
difference. Green had 79.2% compared to Gold’s 91.7%. Students
who start out interested in technology and programming, remain
interested when using the Spiral method of teaching, as compared
to the traditional.

506

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

Figure 1: Module Exam Grades, Final exam for CS 2, broken
up by CS 1 teaching methodology.

4.2 CS 2 Results

Since the overarching goal was information retention for a student
completing a course, it is important to analyze the next course in
the sequence. Which is CS 2: Data-structures. CS 2 had only one
section where both Green and Gold students were grouped together.
Students self-selected lab time slots when signing up. We tracked
both Gold and Green section students throughout this course. While
the primary comparison is between Gold and Green students, we
continue to separate out CS164-Gold.

CS 2 students were given a review exam at the end of week
2. The exam was the CS 1 final exam, though due to the random
question banks, the questions could be slightly different. Adding
in the winter break, students had a 5-6 week break between ex-
ams. Furthermore, the first two weeks of CS 2 were meant to be
a review of CS 1 with an emphasis on object oriented design. The
Green group scored 63% as their median grade, and the Gold 73.2%,
showing a 10% difference. Between the non-prior programming
and prior programming Gold categories, CS164-Gold scored 76.1%
for their median grade, which is 2.9% higher than Gold but the
results are not significant with a p-value of .24 at p < .05. Both Gold
and CS164-Gold had significantly higher results than Green with
p-values of .03 and < .001 respectively at p < .05.

Figure 1 shows topic exams for the students grouped by their
CS 1 teaching methodology. After the review exam, students took
an exam on every topic introduced in the course. Green and Gold
did not have a significant difference with Recursion or Testing. A
significant difference at p < .1 started to appear between groups
as seen in Table 5. By the end of the course, the Green group had
a median score of 70.75% and the Gold a score of 80%, showing a
9.25% difference. The p-value is .04, and the result is significant at
p < .05.

Table 5: Difference in exams between groups. Gold score rel-
ative to Green.

Review | Recursion | Testing | Stacks
Green vs. +10% +0.6% -5.0% +3.8%
Gold (.03) (.38) (.47) (.07)
Green vs. +12.9% +4.4% +0.0% +2.0%
CS164-Gold | (<.001) (.06) (41) (01)
Trees B+ Trees Final
Green vs. +4.5% +7.5% +9.25%
Gold (.06) (.07) (.04)
Green vs. +8.5% +7.0% +8.25%
CS164-Gold (.01) (<.001) (.01)

Session: CS1 Teaching Techniques

Median Grade By Assignment Category

o o
&

\ﬂg," Se"o &
& &

oo

0.00

m (5164-GOLD GOLD mGREEN

Figure 2: CS 2 grades broken down by average percent in
each assignment category, compared across CS 1 groupings

Figure 2 shows the grades based on the assignment grouping
for the course, in which the Gold students outperformed Green
via assignment types. Furthermore, when looking at significance,
a t-test showed a significant difference across Programming, Labs,
Module Exams, Final Exam, and Final Score. Programming and
labs being significantly higher would be an indicator that students
improve both their programming ability in addition to test skills.

Overall, the Gold students are outperforming the Green students,
and Green students are not "catching up” by the end of the course.
Table 6 details the final grades for the CS 2 students. There is
a noticeable difference between the groups, as Gold had 80% of
students pass with a C or above, while Green had 65% pass with a
C or above.

Table 6: CS 165 final grade distribution based on CS 1 Sec-
tions.

CS164-GOLD GOLD GREEN
A 22 | 31% 8 17% | 21 | 23%
B 26 | 37% 20 | 43% | 23 | 25%
C 16 | 23% 9 20% | 16 | 17%
DFW | 7 9% 9 20% | 32 | 35%

5 THREATS TO VALIDITY

There were several variables that could not be controlled, such as
time slots and instructors. For such variables, we attempted to bias
the results towards the traditional methodology (Green section).
For example, when selecting which section time students needed
to sign up for, we set the more popular time slot, often with higher
grades, as the Green group. When alternating labs, we started with
Gold labs, so the dreaded 8 AM lab was a Gold section lab. When
having one instructor teach both Green and Gold styles, we selected
the instructor who designed the Green style, so they would be more
comfortable teaching the Green style.

When processing the data, we opted to remove a group of stu-
dents who received a directed intervention in CS 2 teaching the
same study techniques. Students who scored poorly on the CS 2
review exam were encouraged to take a course covering the five
techniques that are the foundation of the Spiral design as a means

507

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

to study for CS 2. As the course was teaching the same techniques
as the Spiral Design causing Green students to be learning Gold
skill sets, we removed these 12 students from the CS 2 analysis for
this paper, 64% of the students flagged for intervention were Green
students. The hope is that with the Spiral design in CS 1, we may
be able to reduce the need of the booster course. This is something
to be addressed in a future study.

6 CONCLUSION

By redesigning CS 1 from the ground up using five methods based
on psychology and memory recall research, we were able to show
an improvement in student performance and retention in CS 1, and
when they take the following course, CS 2. As part of the evaluation,
we presented three major questions.

Q1: Do CS 1 students taught using the Spiral methodology out-
perform students taught in the traditional manner? Students taught
by the Spiral (Gold) methodology showed a 9% increase over the
Traditional methodology of one topic at a time.

Q2: Do students taught using the Spiral methodology in CS 1,
continue to outperform other students in CS 2? Gold students showed
a 10% increase on the same topics over the Green group. They
continued to outperform throughout the whole class, showing 80%
passing with a C or above as compared to 65% of Green students.

Q3: Do students taught using the Spiral method continue onto CS 2
showing at least the same, if not better retention than the traditional?
Students in the Gold sections had noticeably increased retention;
especially for women, which had a 19.2% increase in retention.

Our department found the time and effort spent in building the
Spiral design of CS 1 to be worthwhile. We are now considering
the implementation of the Spiral design in other courses. To start,
implementing short weekly quizzes that can be repeated without
penalty is a "cheap and easy" change, without having to build their
own book. The key then becomes teaching students how to study
using those quizzes. We find building the course around those study
habits was overall an easier approach. For a later course, such as
CS 2, one approach may be to have students first use each data
structure to develop applications. After understanding the benefits,
they can learn to code the data structures. The key point is to
purposely create some time between topics.

Overall, the results show incredible promise of benefiting from a
Spiral design for CS 1, and potentially other courses. The downside
is such courses often require redesigns from the ground up, neces-
sitating careful planning. We plan to develop a textbook specific to
the Spiral design of CS 1 to save others the trouble of creating labs
and assignments tailored to the Spiral model.

ACKNOWLEDGMENTS

Colorado State University and CSU Online supplied funds for course

development. Thanks to the TAs, graduate students, and faculty, for

making it possible to do a full course design in the short window.
IRB Approval PROTOCOL NUMBER: 20-10279H

REFERENCES

[1] Joe Michael Allen, Frank Vahid, Alex Edgcomb, Kelly Downey, and Kris Miller.
An Analysis of Using Many Small Programs in CS1. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education, SIGCSE ’19, pages
585-591, New York, NY, USA, 2019. ACM.

Session: CS1 Teaching Techniques SIGCSE ’22, March 3-5, 2022, Providence RI, USA

[2] Ashish Amresh, AdamR. Carberry, and John Femiani. Evaluating the effectiveness
of flipped classrooms for teaching CS1. In Proceedings - Frontiers in Education
Conference, FIE, pages 733-735, 2013. [28
[3] Jens Bennedsen and Michael E Caspersen. Failure Rates in Introductory Pro-
gramming. SIGCSE Bull., 39(2):32-36, jun 2007.

the 10th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education, ITiCSE "05, pages 148-152, New York, NY, USA, 2005. ACM.

Jennifer Parham, Leo Gugerty, and D E Stevenson. Empirical Evidence for the
Existence and Uses of Metacognition in Computer Science Problem Solving. In
Proceedings of the 41st ACM Technical Symposium on Computer Science Education,
[4] Fatih Kursat Cansu and Sibel Kilicarslan Cansu. An Overview of Computational SIGCSE 10, pages 416-420, New York, NY, USA, 2010. ACM.

Thinking. International Journal of Computer Science Education in Schools, 3(1):17— [29] Leo Porter, Cynthia Bailey Lee, and Beth Simon. Halving Fail Rates Using Peer
30, 2019. Instruction: A Study of Four Computer Science Courses. In Proceeding of the 44th

ACM Technical Symposium on Computer Science Education, SIGCSE ’13, pages
177-182, New York, NY, USA, 2013. ACM.

Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia Lee, Robert
McCartney, Daniel Zingaro, and Beth Simon. A Multi-Institutional Study of Peer
Instruction in Introductory Computing. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, SIGCSE ’16, pages 358-363, New
York, NY, USA, 2016. ACM.

[5] Jeffrey C Carver, Lisa Henderson, Lulu He, Julia Hodges, and Donna Reese.

Increased retention of early computer science and software engineering students

using pair programming. In 20th Conference on Software Engineering Education (30

\& Training (CSEET 07), pages 115-122. IEEE, 2007.

Nicholas J Cepeda, Harold Pashler, Edward Vul, John T Wixted, and Doug Rohrer.

Distributed practice in verbal recall tasks: A review and quantitative synthesis.

Psychological bulletin, 132(3):354, 2006.

[7] Michelene T H Chi, Nicholas De Leeuw, Mei-Hung Chiu, and Christian LaVancher. [31] James Prather, Brett A Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and
Eliciting self-explanations improves understanding. Cognitive science, 18(3):439— Lauren Margulieux. What Do We Think We Think We Are Doing? Metacognition
477, 1994. and Self-Regulation in Programming. In Proceedings of the 2020 ACM Conference

on International Computing Education Research, ICER ’20, pages 2-13, New York,

NY, USA, 2020. ACM.

Vennila Ramalingam and Susan Wiedenbeck. Development and Validation of

Scores on a Computer Programming Self-Efficacy Scale and Group Analyses of

Novice Programmer Self-Efficacy. Journal of Educational Computing Research,

19(4):367-381, dec 1998.

Michelle Richardson, Charles Abraham, and Rod Bond. Psychological correlates

of university students’ academic performance: A systematic review and meta-

analysis. Psychological Bulletin, 138(2):353-387, 2012.

Steven B. Robbins, Huy Le, Daniel Davis, Kristy Lauver, Ronelle Langley, and

Aaron Carlstrom. Do Psychosocial and Study Skill Factors Predict College Out-

comes? A Meta-Analysis. Psychological Bulletin, 130(2):261-288, 2004.

Henry L Roediger III, Adam L Putnam, and Megan A Smith. Ten benefits of

testing and their applications to educational practice. In Psychology of learning

and motivation, volume 55, pages 1-36. Elsevier, 2011.

Henry L Roediger IIl and Mary A Pyc. Inexpensive techniques to improve educa-

tion: Applying cognitive psychology to enhance educational practice. Journal of

Applied Research in Memory and Cognition, 1(4):242-248, 2012.

Doug Rohrer, Robert F Dedrick, Marissa K Hartwig, and Chi-Ngai Cheung. A

randomized controlled trial of interleaved mathematics practice. Journal of

Educational Psychology, 112(1):40, 2020.

Doug Rohrer and Kelli Taylor. The shuffling of mathematics problems improves

learning. Instructional Science, 35(6):481-498, 2007.

Bennett L Schwartz, Lisa K Son, Nate Kornell, and Bridgid Finn. Four principles

of memory improvement: A guide to improving learning efficiency. IJCPS-

International Journal of Creativity and Problem Solving, 21(1):7, 2011.

Beth Simon, Michael Kohanfars, Jeff Lee, Karen Tamayo, and Quintin Cutts.

Experience Report: Peer Instruction in Introductory Computing. In Proceedings

of the 41st ACM Technical Symposium on Computer Science Education, SIGCSE

’10, pages 341-345, New York, NY, USA, 2010. ACM.

Beth Simon, Julian Parris, and Jaime Spacco. How We Teach Impacts Student

Learning: Peer Instruction vs. Lecture in CS0. In Proceeding of the 44th ACM

Technical Symposium on Computer Science Education, SIGCSE °13, pages 41-46,

New York, NY, USA, 2013. ACM.

Ben Stephenson, Michelle Craig, Daniel Zingaro, Diane Horton, Danny Heap,

=

[8] Michelle Craig, Diane Horton, Daniel Zingaro, and Danny Heap. Introducing
and Evaluating Exam Wrappers in CS2. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, SIGCSE ’16, pages 285-290, New [32
York, NY, USA, 2016. ACM.
[9] Catherine H Crouch and Eric Mazur. Peer Instruction: Ten years of experience
and results. American Journal of Physics, 69(9):970-977, 2001.
[10] Kevin Cummins. Five reasons why computational thinking is an essential tool (33
for teachers and students. , 2020.
[11] Hermann Ebbinghaus. Memory: A contribution to experimental psychology.
Annals of neurosciences, 20(4):155, 2013. [34
Katrina Falkner, Rebecca Vivian, and Nickolas J G Falkner. Identifying Computer
Science Self-Regulated Learning Strategies. In Proceedings of the 2014 Conference
on Innovation and Technology in Computer Science Education, ITiCSE ’14, pages [35
291-296, New York, NY, USA, 2014. ACM.
[13] Gerry Geitz, Desirée Joosten Ten Brinke, and Paul A. Kirschner. Changing
learning behaviour: Self-efficacy and goal orientation in PBL groups in higher [36
education. International Journal of Educational Research, 75:146-158, jan 2016.
[14] Brian Hanks. Student performance in CS1 with distributed pair programming.
ACM SIGCSE Bulletin, 37(3):316-320, 2005. [37
[15] Viggo Kann and Anna-Karin Karin Hogfeldt. Effects of a program integrating
course for students of computer science and engineering. In SIGCSE 2016 -
Proceedings of the 47th ACM Technical Symposium on Computing Science Education, (38
pages 510-515, New York, NY, USA, 2016. ACM.
Michael S Kirkpatrick and Samantha Prins. Using the readiness assurance process (39
and metacognition in an operating systems course. In Annual Conference on
Innovation and Technology in Computer Science Education, ITiCSE, volume 2015-
June, pages 183-188, New York, NY, USA, 2015. ACM. [40
[17] Nate Kornell. Optimising learning using flashcards: Spacing is more effective
than cramming. Applied Cognitive Psychology, 23(9):1297-1317, 2009.
[18] Douglas P Larsen, Andrew C Butler, and Henry L Roediger III. Repeated testing
improves long-term retention relative to repeated study: a randomised controlled [41
trial. Medical education, 43(12):1174-1181, 2009.
[19] Frank C Leeming. The exam-a-day procedure improves performance in psychol-
ogy classes. Teaching of Psychology, 29(3):210-212, 2002.
[20] Leo Leppénen, Juho Leinonen, and Arto Hellas. Pauses and spacing in learning to [42

[12

=
&

program. In ACM International Conference Proceeding Series, pages 41-50, 2016.
Y. Daniel Liang. Introduction to JAVA Programming, volume 8. Pearson Education,
2011.

Albert Lionelle, Josette Grinslad, and J Ross Beveridge. CS 0: Culture and Coding.
Proceedings of the 51st ACM Technical Symposium on Computer Science Education,
2020.

Alex Lishinski, Aman Yadav, Jon Good, and Richard Enbody. Learning to program:
Gender differences and interactive effects of students’ motivation, goals, and
self-efficacy on performance. In Proceedings of the 2016 ACM Conference on
International Computing Education Research, pages 211-220, New York, NY, USA,
aug 2016. ACM, Inc.

Murali Mani and Quamrul Mazumder. Incorporating metacognition into learning.
In Proceeding of the 44th ACM technical symposium on Computer science education,
pages 53-58, 2013.

[25] Joshua Martin, Stephen H Edwards, and Clfford A Shaffer. The effects of pro-

crastination interventions on programming project success. In Proceedings of the
eleventh annual International Conference on International Computing Education
Research, pages 3-11, 2015.

Charlie McDowell, Linda Werner, Heather E Bullock, and Julian Fernald. The
impact of pair programming on student performance, perception and persistence.
In 25th International Conference on Software Engineering, 2003. Proceedings., pages
602-607. IEEE, 2003.

Laurie Murphy and Josh Tenenberg. Do Computer Science Students Know What
They Know? A Calibration Study of Data Structure Knowledge. In Proceedings of

and Elaine Huynh. Exam wrappers: Not a silver bullet. In Proceedings of the
Conference on Integrating Technology into Computer Science Education, ITiCSE,
pages 573-578, New York, NY, USA, 2017. ACM.

Laura Toma and Jan Vahrenhold. Self-efficacy, cognitive load, and emotional
reactions in collaborative algorithms labs - A case study. In ICER 2018 - Proceed-
ings of the 2018 ACM Conference on International Computing Education Research,
volume 10, pages 1-10, New York, NY, USA, 2018. ACM.

Christopher Watson and Frederick W B Li. Failure Rates in Introductory Pro-
gramming Revisited. In Proceedings of the 2014 Conference on Innovation and
Technology in Computer Science Education, ITiCSE *14, pages 39-44, New York,
NY, USA, 2014. ACM.

Christopher Watson, Frederick W.B. B Li, and Jamie L. Godwin. No tests required:
Comparing traditional and dynamic predictors of programming success. In
SIGCSE 2014 - Proceedings of the 45th ACM Technical Symposium on Computer
Science Education, pages 469-474, New York, New York, USA, 2014. ACM.

Chris Wilcox and Albert Lionelle. Quantifying the benefits of prior programming
experience in an introductory computer science course. SIGCSE 2018 - Proceedings
of the 49th ACM Technical Symposium on Computer Science Education, 2018-
Janua:80-85, 2018.

Krissi Wood, Dale Parsons, Joy Gasson, and Patricia Haden. It’s never too early:
pair programming in CS1. In Proceedings of the Fifteenth Australasian Computing
Education Conference-Volume 136, pages 13-21, 2013.

Daniel Zingaro. Peer Instruction Contributes to Self-Efficacy in CS1. In Proceed-
ings of the 45th ACM technical symposium on Computer science education, pages
373-378, New York, New York, USA, 2014. ACM.

	Abstract
	1 Introduction
	2 Related Work
	3 CS 1 - Design
	3.1 Traditional Design: Green
	3.2 Spiral Design: Gold

	4 Results
	4.1 CS 1 Results
	4.2 CS 2 Results

	5 Threats to Validity
	6 Conclusion
	Acknowledgments
	References

