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Abstract Second order, Newton-like algorithms exhibit convergence properties
superior to gradient-based or derivative-free optimization algorithms. However,
deriving and computing second order derivatives—-needed for the Hessian-vector
product in a Krylov iteration for the Newton step—often is not trivial. Second order
adjoints provide a systematic and efficient tool to derive second derivative infor-
mation. In this paper, we consider equality constrained optimization problems in an
infinite-dimensional setting. We phrase the optimization problem in a general Banach
space framework and derive second order sensitivities and second order adjoints in a
rigorous and general way. We apply the developed framework to a partial differential
equation-constrained optimization problem.

Keywords Adjoint-based methods - Second order adjoints + Optimization in
infinite dimensions * Newton method + PDE-constrained optimization

1 Introduction

We consider second order methods for equality constrained optimization problems
in an infinite-dimensional setting. These methods are locally very fast, but on the
downside require substantial computational effort for each iteration. To alleviate this
disadvantage, variants of Newton’s methods have been developed, e.g., Newton-
Shamanskii, where the Jacobian is fixed throughout iterations, or inexact Newton
methods, where the Newton step is computed inexactly. In this paper we devote
ourselves to an adjoint-based framework that extends from the usual gradient com-
putation all the way to an efficient way to compute Hessian-vector products. This
opens up a venue to use iterative solvers for the computation of the Newton step.
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Unlike in the case of approximating the Hessian-vector product by a finite-difference
quotient, which carries issues about its accuracy, the use of second order adjoints do
not exhibit this problem and can be computed to required accuracy, if needed.

Related work. The concept of second order adjoints can be found in different fields
in the literature, also under different names, for example incremental adjoints and
adjoint sensitivities. The earliest work using second order adjoints goes back to
papers in the sixties [29, 32]. Second order adjoints have been widely applied espe-
cially to inverse problems governed by differential equations. Here we give a sample
of the literature on applications to various optimization problems constrained by
differential equations: seismology [41], structural optimization [20, 21, 27], uncon-
strained discrete-time and continuous-time optimal control problems with Bolza
objective functions [13], ordinary differential equations (ODEs) and partial differen-
tial equations (PDEs)-constrained optimization problems in the context of air traf-
fic flow [38], optimization problems governed by PDEs with inequality constraints
[16, 17] or parabolic PDEs [6], optimal semiconductor design based on the standard
drift diffusioxn model [26], open loop optimal control problems governed by the
two-dimensional stationary Navier-Stokes equations [25], calculation of directional
derivatives of stiff ODE embedded functionals [35], data assimilation for numerical
weather prediction and ocean models [2, 3, 11, 12, 31, 40, 42], inversion of the
initial concentration of the airborne contaminant in a convection-diffusion transport
model [1], full wave form or global seismic inversion [7, 8, 14, 15, 33], inverse ice
sheet modeling [28, 34, 37, 43], in the context of optimal experimental design [4],
and optimal control of systems governed by PDEs with random parameter fields
[5, 10], and inexact Hessian-vector products computed using approximate second
order adjoints [24]. It is also worth mentioning the following very useful technical
reports targeting model (academic) problems [19, 22, 36].

Contributions. The derivation of second order adjoints in infinite-dimensions are
often motivated using ad-hoc analytic arguments, hence there is a need for a rigorous
in-depth investigation of such derivation and adjoint expressions. The main goal of
this paper is therefore to present a general and rigorous theory for second order
adjoints which then can be applied to various applications. In addition, when second
order optimization algorithms (e.g., Newton’s method or variants) are applied to solve
large-scale optimization problems often iterative solvers are used for the solution of
the systems of linearized equations. Therefore, motivated by the need to avoid the
computation of explicit Hessian information, we show in the general framework
how the adjoint calculus can be applied to compute Hessian-vector products. We
note that since we have two well studied pathways to compute first-order derivative
information, e.g., via a sensitivity approach or via an adjoint approach, there are four
pathways to obtain the second order derivatives. In this paper, we present all these
four pathways and show that in fact three of them are the same. Finally, we apply our
framework to an inverse problem that seeks to reconstruct a coefficient field in an
elliptic PDE from observational data. This problem is formulated as a nonlinear least
squares optimization problem governed by the Poisson problem. In this paper, we use
the proposed second order adjoint derivation and Hessian-vector product expression
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to derive derivative information that can be used by fast optimization methods to
solve complex optimization problems. We note that in [1, 5-8, 10, 14, 15, 28, 34,
36, 37, 43] second order adjoints are also considered in an infinite-dimensional
setting, however, using the Lagrangian approach. Here, we recast the problem as an
unconstrained optimization problem and derive the Lagrange multipliers, i.e., adjoint
variables, directly.

Problem formulation. To set the stage, we choose a general framework: Let Y, U, Z
be Banach spaces, e.g., Y is the space variable or dependent variable, U the space of
control or design variables and Z the range space of the equality constraint. The dis-
tinction of the variable into y and u is essential for our approach, but can be found in
many applications, see e.g., PDE-constrained optimization. The optimization prob-
lem is formulated as follows:

Problem 1
min  ¢(y,u), (y,u) €Y xU,
st. g(y,u) =0, (1)
where p: Y xU —> IR, ¢g:Y xU — Z.

If we assume that for each control variable # we have a unique solution y =
s(u) of the equality constraint g(s(u), u) = 0, then we can rewrite the constrained
optimization problem as an unconstrained optimization problem:

min @) = o(s(m),u), uelU, @:U— R.
In Newton’s method, the correction step is defined as the solution of
D" (v =-d' (), vel, 2)

where @'(u) € U* and @"(u) € L(U, U*), the space of linear operators mapping
U into U*. In many applications where the second derivative @” (1) is prohibitively
expensive to compute in an explicit manner, the Eq.(2) is solved by an iterative
technique, see for example Krylov methods [23]. In order to implement these methods
efficiently, one needs a fast evaluation of the Hessian-vector product, in our notation
@"(u)v for some v € U. One way to achieve this is in the inexact Newton framework,
where one uses the approximation

" (w)v ~ (&' (u + hv) — &' (u))/ h. 3)

The use of this approximation introduces an error at each iteration of the Krylov
method which has to be handled with care, see e.g., [30].

However, if the optimization problem is of the type like shown in (1) there is
another way of computing the Hessian-vector product. The reason for this lies in the
fact that the variables are grouped into two groups y and u and the introduction of
another adjoint variable, which we call the second order adjoint. This means that we
have to solve two adjoint equations, i.e., equations of the type
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* *
gypP =T1, g,m =12

for the first and second order adjoint variables p and 7 with different right hand sides
r1, 2. The advantage of such an approach lies in the fact that we do not introduce
an additional error by computing the Hessian-vector product exactly. Furthermore,
the computational cost for the second order adjoint is not higher than an additional
evaluation of the derivative @'(u + hv) as in (3).

It is well known that the derivative of the function ¢(y, u) can be expressed in
two ways, namely

— the sensitivity equations or
— the adjoint equations.

The first approach is considered reasonable for a small number of variables, whereas
the second one requires a bit more analysis in the derivation, but shows to be highly
efficient for large-scale problems [9].

If we turn to the second derivative applied to a vector as this required for iterative
solvers like CG or GMRES, we are free to choose for this purpose again either the
adjoint or sensitivity approach. Hence we have four different routes available which
we could follow, namely

— first the sensitivity, then the adjoint approach or

— first the sensitivity, then the sensitivity approach or
— first the adjoint, then the sensitivity approach or

— first the adjoint, then the adjoint approach.

Content. In this paper we carefully analyze these four approaches and prove rigor-
ously the results following these venues. It turns out that not four, but two different
ways exist to compute the Hessian-vector products for this optimization problem.
One approach is based on the sensitivity framework which is amenable for a small
number of variables. The second one relies on the adjoint approach which leads to
the concept of a second order adjoint that has to be computed for a Hessian-vector
product. This approach is usually much more efficient, especially for problems with
a large number of variables. The effort per iteration is comparable to if not lower
than that of an inexact Newton’s method where the matrix-vector multiplication is
approximated by a finite difference quotient, yet it gives the precise result rather than
an approximation.

The remaining sections of this paper are organized as follows. We begin by pro-
viding two venues to obtain representations of the first-order derivatives in Sect. 2.
Next, in Sect.3 we set the stage for the second order derivatives followed by the
fourth section containing the results including proofs of the four approaches men-
tioned above. Section 5 is devoted to an application in PDE-constrained optimization,
where we illustrate some of the theoretical results.
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2 Representation of First-Order Fréchet-Derivative

For notational purposes we recall that a map ¢g : X — Z from a Banach space X to
another Banach space Z is called Fréchet-differentiable at x € X, if there exists a
linear operator denoted by ¢'(x) : X — Z such that

lg(x +h) — g(x) — g Rz < adlhl)lhlx,

with a function a/(r) satisfying a(r) — 0 for r — 0. The partial Fréchet-derivatives
of e.g., g(y, u) is denoted by g,(y, u) or g,(y, u) with a subscript indicating the
variable with respect to which the derivative is taken. The adjoint operator of ¢'(x)
is denoted by ¢'(x)* : Y* — X™*. We note that Fréchet-derivatives of second order
like gy, (y, u) are linear operators in the spaces L(U, L(Y, Z)) = L(U x Y, Z).

In what follows, we impose the following smoothness assumptions on the func-
tions in the problem formulation.

Assumption 1 Let the function ¢ and the mapping g be continuously Fréchet-
differentiable on Y x U.

Furthermore we assume the following constraint qualification to hold at a later to be
specified point (y,u) € Y x U.

Assumption 2 For (y,u) € Y x U let the partial Fréchet-derivative g,(y,u) :
Y — Z be surjective and invertible.

With these assumptions we can apply the implicit function theorem [39].

Theorem 1 Ler Assumptions 1 and 2 hold at (y,,u,) € Y x U. Then there exist
neighborhoods By C Y at y, and By C U at u, and a Fréchet-differentiable map
s . By — By such that

g(s(u),u) =0 and gy(s(u), u)s'(u) = —gu(s(u), u). “4)

This theorem can be used to reformulate the constrained optimization problem
from above as an unconstrained optimization problem in a neighborhood around a
local minimizer.

Corollary 1 Let (y, uy) € Y x U be a local minimizer of optimization problem 1
and let Assumptions 1 and 2 hold at (y,, uy). Then u, is also a local minimizer of
the unconstrained optimization problem

52}3 D), @)= P(s(u),u), ®)

where @ : By — IR, with By € U a neighborhood of u,, and s(u) given by the
implicit function theorem.
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In some applications the computation of s (u) is theoretically possible, but numer-
ically only feasible within a certain error tolerance. This happens, for example, for a
constraint described by partial differential equations where s(u) is the solution of a
PDE. This would introduce an additional error into s () and s'(«) as well. The pur-
pose of this paper is to derive in a rigorous way the expression for second derivatives
without this additional complexity. This aspect, however, opens interesting venues
for future research.

The necessary optimality conditions of first-order require various derivatives
which are well defined under the statements above. Therefore the first derivative
of the objective function of the unconstrained problem can be computed as follows.
We note that this approach is usually denoted as the approach using the sensitivity
equations.

Theorem 2 Let Assumptions 1 and 2 hold at (y,u) € Y x U. Then the Fréchet-
derivative of ® (u) applied to Au € U is given by

D' (u)Au = ¢y (s(u), w)& + u(s(u), u) Au, (6)

where £ = s'(u) Au € Y is the unique solution of the sensitivity equation

gy (s (), w)§ = —gu(s(u), u) Au. (7

Proof The proof follows from the implicit function theorem, an application of the
chain rule and

D' (u)Au = ¢, (s(u), u)s'(u) Au + ¢, (s(u), u) Au )
= ¢y (s(u), u)§ + ¢u(s(u), u)Au.

If U is not a Banach but a Hilbert space, one would expect for the Fréchet-derivative
@’ (u) Au a gradient representation. In order to achieve this one would need an explicit
representation of the derivative in a @ (u)' Au = (V® (u), Au) in the proper duality
pairing. Such a representation clearly cannot be derived from Eq. (6) since £ as shown
in (7) depends in an implicit way on Au. The only possibility to obtain this consists in
computing the whole sensitivity operator s’(#) € L(U, Y) which in finite dimensions
results in the computation of the sensitivity matrix. This requires repeated solves of
the sensitivity Eq.(7), which for high dimensions is not a feasible approach. For
completeness we formulate this in the following theorem.

Theorem 3 Let Assumptions I and 2 hold at (y, u) € Y x U. The linear map s'(u) :
U — Y is well defined by the equation

gy(s(), u)s'(u) = —g,(s(u), u).
Then we obtain

D (u) = 5" () ¢y (s(u), u) + u(s(u), u) € U™ (€))
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We can avoid this difficulty by using the adjoint operator s’ (u)* of s’ (1) € L(U, Y)
and a so-called adjoint equation. The adjoint approach is outlined in the following
theorem.

Theorem 4 Let Assumptions 1 and 2 hold at (y,u) € Y x U. Then we obtain
') = gu(s(u), w)*p + du(su), u) € U”, (10)
where p € Z* is defined as the solution of the adjoint equation
gy(s), u)*p = —¢y(s(u),u) € Y*. 11
Alternatively, the action of the adjoint variable p € Z* is given by
P() = =y (sw), gy (s), u)"'z Vz € Z. 12)
Proof We know from (4)
s'() = —gy (s (), )" gu(s (), u) € L(U.Y)
and hence for s'(u)* : Y* — U*
s' ()" = —gu (s ), 10)* (g (s ), w)) ™"
Then the first term in (9) of the derivative of @ can be rewritten as
s' ) by (s (), ) = —gu (s ), u)*(gy (s ), w)) ™ Py (s (w), u) = gu(s(u), u)*p,

where p € Z* solves the adjoint equation (11).
Furthermore, we have for an arbitrary z € Z with Av := g,(s(u), u)~'zusing (11)

— ¢y (s (), w)gy (s (), ) ™'z = = (s (u), u) Av = [g, (s (w), u)* p] Av
= p(gy(s(u), u)Av) = p(z),

which shows (12). Here we used the definition of the adjoint, namely
< gy(su), u)*p, Av >y« y=< p, gy(su), u) Av >z- 7= p(gy(s(u), u) Av).
To synchronize the representation with the sensitivity approach we give also a

version where the Fréchet-derivative is applied to a vector Av also for the adjoint
version.

Corollary 2 Let Assumptions [ and 2 hold at (y,u) € Y x U. Then

Q' (u) Au = p(gu(s(u), u) Au) + ¢y (s(u), u) Au
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with the adjoint functional p from Theorem 4 defined in (12).

The main advantage of this approach is that we do not need to solve for the
sensitivity operator or matrix but rather need to solve only one Eq.(11) in order to
compute the adjoint variable p.

3 Representation of Second Order Fréchet-Derivative

In this section we devote our efforts to a rigorous derivation of the second derivative
of the function @. Since in many algorithmic applications, e.g., the use of itera-
tive solvers for the Newton step, the complete Hessian information @”(u) is not
needed, we concentrate on the computation of the Hessian-vector product @” (1) Au.
Obviously we have to strengthen Assumption 1 as follows.

Assumption 3 Let the functional ¢ and the map g be twice continuously Fréchet-
differentiable on Y x U.

As noted before, the notation using second derivatives can be somewhat complex,
since the e.g., the second partial derivative g,,(y, u) can be interpreted as a map in
LU,L(Y,Z)orL(U xY,Z),etc.

In order to compute the second derivative we proceed in the following way: For
fixed Av € U consider @'(u)Av as a function of u. Then we differentiate this new
functional with respect to u which gives us the second derivative. Since @ (1) =
¢(s(u), u) contains variables y = s(u) that are implicitly defined, this will also be
the case for @’ (u) Av. However, there are even more implicitly defined variables like
¢ in the sensitivity approach or p in the adjoint approach. Both £ and p also depend
on u in an implicit way. All this has to be kept in mind for a careful computation of
the second derivatives.

In some applications, the derivative @’ (u) is no longer differentiable in a classical
sense, but only in a generalized sense where generalized derivatives come into play.
Those problems can sometimes be solved efficiently using semi-smooth Newton
methods. In that case at each iteration, one has to select an element from the possibly
set-valued generalized second derivative of @. The theory of this section can be
extended in such a case, if this representor exhibits a certain structure close to the
problem in this paper. A similar question arises when one wants to use a Gauss-
Newton method, where several terms in the second derivative operator are omitted.
These issues of generalization will be addressed in a forthcoming paper.

Let us outline the approach we take here for the next sections. In the previous
section we found two routes to obtain a representation of the first derivative, i.e., via
the sensitivity equation or the adjoint equation. If we calculate the second derivative
as outlined above, we need to decide to use either the adjoint or sensitivity approach
in the computation of the derivative of @’(-) Av, i.e., the second derivative of @ (u).
Therefore, we have four different routes available which we could follow, as outlined
at the end of Sect. 1.
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In the following, we proceed along these routes in rigorous mathematical terms.
Recall that in (6) the first derivative is given by @' (u) Av = ¢y (y, u)€ + ¢, (y, u) Av.
These terms contain two variables y and £ which depend on « and which are defined
by the original equality constraint (1) and the sensitivity Eq. 7. Hence we expand the
y-variables to ¥ := (v, &) € Y x Y and define in analogy to ¢(y, u) the function

(3, u) = @' () Av = ¢, (v, WE + ¢ (y, u) Av. (13)

The vector y := (y,&) € Y x Y is the solution of the state and sensitivity equation
which we combine into

fe 9(y, u) _
90, u) = (gy(y, )€+ gu(y, u)Av> =0. (14

If we want to proceed similar to the case of the first-order derivatives, i.e., eliminate
the equality constraint due to an application of the implicit function theorem, then
we need to check the invertibility of g;.

Lemma 1 Wedeﬁneq?):Y><Y><U—>H€by(]3)and§:YxYxU—>ZxZ
by (14). Then its Fréchet-derivatives are given by

o ow N gy(y, u) 0
G50y, ) = <gyy(y, W€ + Guy(y, u)Av g, (y, u)) €LUxY.Zx2). (15

which is invertible if Assumption 2 holds. Furthermore,

o 5 — gu(y1 u)
G0 u) = (gym, WE + Guu (, u)Av) €LU.zx2) (16)

and for the objective function qz we obtain

Tz _ ¢yy()’»u)§+¢uy()’au)ﬂv * *
and _
¢u()7’ u) = ¢yu(yv M)f + ¢uu(y’ u)Av € U~ (18)

The statements of the lemma can be easily obtained from the definitions (13) and
(14).

Since g5(¥, ) from (15) is invertible under Assumption 2 we can apply the
implicit function theorem, Theorem 1, to derive in the same way as in Theorem 1
the following:

Theorem S Let the Assumptions 2 and 3 hold at (y.,u.) €Y x Y x U with
GV, uty) = 0. Then there exist neighborhoods By C U of uy, and Byyy CY XY
of y* and a map
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5(): By — Byyy such that g(s(u),u) =0 on By
with its derivative defined by
G5B, w)s' () = —gu(5(u), u).

In the case of the adjoint approach we proceed in a similar fashion by augmenting
the variable y to y = (y, p) € Y x Z*. Hence Eq. (10) becomes

O, u) 1= &' () Av = [gu (. )" p + pu(y. w)]Av. 19)

The equality constraints then are defined as follows using (11)

An _ g(y, u) _
gy, u) :=g(y, p,u) = <gy(y’ WP+ by (3, M)> =0. (20)

The derivatives for these mappings are computed as follows:

Lemma 2 Wedeﬁnqu:YxZ*xU—>H?Aby(]9)and§:YxZ*xU—>Zx
Y* by (20). Then the Fréchet-derivatives for ¢ are given by

Gu(Fs ) = (Guu (v, W) AVY* P + P (y, u) Av € U* 1)
2o _ (gu (yv M)AU)*p + ¢u (ys u)Av *
o5, u) = ( Y gu(yM)Avy ) eY*xZ (22)

and for g we have

a0 — Qu(y, Lt) *

160 = (0 i) € HOZ %) @3
A~ (v — .‘]y(ya“) 0 % *
B = ((gyy(y, )P+ by (. 10) g5, u)*> L2 20,

(24)

Note, that also in this case Assumption 2 implies that g; is invertible. Therefore
we can apply the implicit function theorem also to this setting.

Theorem 6 For fixed Av let the Assumptions 2 and 3 hold at (Ys, uy) €Y XAZ* x U
with §(J«, uy) = 0. Then there exist neighborhoods By € U of u, and Byyz+ C
Y x Z* of y and a map

§: By — Byxsp with g8(m), u) =0on By

with its derivative defined by

95 ), WS () = —Gu (), u).
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With these technicalities resolved we turn to the computation of the second derivative
using the four strategies outlined before.

4 Second Order Sensitivities and Second Order Adjoints

4.1 Sensitivity-Sensitivity Approach

If we apply the sensitivity equation approach to both the first and the second deriva-
tive, then we obtain the following theorem.

Theorem 7 Let Assumptions 2 and 3 hold at (y,u) with g(y,u) = 0. Then for
Av, Aw e U

Q" (u)(Av, Aw) = ¢y (y, u)(Av, Aw) + ¢y (v, u)(Av, )
+¢yu(ya u)(§, Aw) + ¢yy(yv u)(§, n) + ¢y(ya u)p,

where £, n € Y solve the following first-order sensitivity equations

gy (v, w)é = —gu(y, u)Av
gy(y, wn = —g,(y, u)Aw,

and p € Y solves the second order sensitivity equation

gy, wp = =gy, (y, )&, M) — guy(y, u)(Av, 1)
_gyu(y’ u)(€7 Aw) - guu(ya u)(Av, AU))

Proof Theorem 2 applied to the problem formulation in (13) and (14) yields
B () Aw = ¢5 (), )E + G (G w), u) Aw,
where §~ = (1, p)7 is the unique solution of the sensitivity equation
3G, w)E = —GuGu), w) Aw.
Using (17)—(18) implies

' () Aw = ¢;Gu), u)é + b, (G(u), u) Aw
= Py (V, )€, M) + Guy(y, u)(Av, n)
+o, (v, u)p + Oy (v, u) (€, Aw) + Gy (y, u)(Av, Aw),

where £ = (1), p)7 solve
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GG, W€ = G, ), u)Aw.

With (15)~(16) this implies

< gy(y, u)n )
Gyy (¥, w)(§, M) + guy (¥, w)(Av, n) + g, (v, u)p

__ ( gu(y, u)Aw )
Gyu(y, w) (€, Aw) + guu (y, w)(Av, Aw) }~
Rearranging the terms leads to the formulation in the theorem.

This theorem shows that in order to perform a full Hessian evaluation one needs
three solves (25) of the linearized equality constraint equation, i.e. sensitivity equa-
tion. This is an interesting observation by itself, especially since only the right hand
side of the sensitivity equation is changed. However, note that this is true only for an
evaluation of the second order term in a Taylor expansion of the objective function,
i.e. the Hessian applied to two arguments, here Av and Aw. The computation of a
Hessian vector product resulting into a vector, as it is required for a Newton step, is
still problematic. Here we would have to scan the whole space U, i.e. let Aw run
through all basis vectors, which is quite expensive.

In a similar way, one can derive a representation of the Hessian operator itself,
without any application to arguments Av, Aw. This can be obtained easily with
mappings s'(u) € L(U,Y) and o (u) € L(U, Y) and

E=s'w)Av, n=sWw)Aw, p=ocu)Av.

Theorem 8 Let Assumptions 2 and 3 hold at (y, u) with g(y, u) = 0. Then @” (u) :
U — U* can be represented as

D" () = Puu(s(u), u) + ¢uy(s(u), u)s'(u)
+5" (W) * Gyu (s W), u) + 5" (U)* Py (s (), w)s'(u) + o () ¢y (su), u),

where s(u) € Y solves the system equation g(s(u),u) = 0. The operators s'(u) €
LU,Y) and o(u) € L(U,Y) are the solutions to the following first and second
order sensitivity equations

gy(s(u), u)s'(u) = —gu (s(u), u)
gy(su), wyo () = —s"(u)* gy, (y, u)s' ) — gy (v, u)s'(u)
_S/(u)*guy(ys u) — Guu (y’ bt)

Also for this theorem, one would need knowledge of the full operator s’ («) which
is computationally not available. We can compute an evaluation of s'(#) Av by the
solve of one sensitivity equation, but to get information of the full operator s’ (¢) one
would need to solve it for all basis vectors Av.
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4.2 Sensitivity-Adjoint Approach

We start with the first-order derivative in sensitivity form as written up in Lemma 1
and used in the previous subsection. However, here we apply the adjoint approach
for the calculation of the second derivative as outlined in Theorem 4.

In this theorem one sees that two adjoint equation equations need to be solved,
both with the system matrix or operator g, (y, #)*. The first solution p comes from
the adjoint equation (25) which we know from the computation of the gradient or
first derivative, therefore we call it the first-order adjoint. The other solution 7 needs
to be computed as a solution of (26) in order to obtain the information about the
second derivative, therefore we call it the second order adjoint.

Theorem 9 Let Assumptions 2 and 3 hold at (y, u) with g(y, u) = 0. Then @" (u) Av
€ U* can be represented as

" () Av = gu (3, 0)*T + (Guy (¥, WE)* P + (Guu (y, u) Av)*p
+ Guy (v, WE + Guu (v, ) Av.

Here £ € Y solves the first-order sensitivity equation

gy(y, )& = —gu(y, u)Av € Z,

p € Z* is a solution of the first-order adjoint equation

Gy, u) p=—dy(y,u) e Y", (25)

and ™ € Z* solves the second order adjoint equation

gy (¥, u)'m = —(gyy (¥, W) p — (Gyu(y, u)Av)*p — (z)yy(% u)§ — ¢yu(y’ u)Av € Y. (26)

Proof Due to the definition of g in (14) the corresponding multiplier is of the form
p = (m, p) € Z* x Z*. Then inserting (16) and (18) into (10) gives

' () = GuGw), w)*p + Gu(Gw), u)

= (gyu(y, u)ggufry’gf:(y, u)Av) (;) T Pyl 08+ Gu(y, u) Av

= gu(y, w)*m + (Gyu(y, WE*p + (guu(y, u) Av)*p + Gyu (¥, W€+ Gun (y, u)Av.

The adjoint equation for the second derivative is obtained by inserting (15) and (17)
into Eq. (11) which reads as

G5GW), w*p = —d5G ), u)

or
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( gy (v, u) 0 > <7r> __ <<z>yy(y, € + Gy, u)Av>
Gyy (¥, )€ + gyu (v, u) Av gy (y, u) p Gy (y, u)

and finally

9y (¥, W) T 4+ (gyy (v, wWE* P + (gyu (v, W) AV)* p = =y, (v, W)€ — Guy (y, u) Av

and
Gy, uw)'p=—¢y(y,u),

which yields the statements of the theorem.

This result shows that it is possible to compute the Hessian-vector product by simply
solving the (first-order) sensitivity equation for ¢ and the second order adjoint equa-
tion (26) for 7. The operator or matrix for the second order adjoint solve is the same
as for the first-order adjoint. In contrast to the sensitivity approach in the previous
section we obtain the full information of the vector that represents the Hessian-vector
product. This is an highly efficient way to compute the information needed in each
step of a Krylov method to solve for the Newton step.

4.3 Adjoint-Sensitivity Approach

In this subsection we start with the first derivative represented by the adjoint equation.
For the computation of the second derivative we apply the sensitivity approach.
In what follows, we use the notation y = (p, u) as outlined in (19) and (20). By
Theorem 2 we have from Eq. (20) that

gi(y’ u)é = _gzl()A’a u)Aw

or with £ = (&, ) using (23) and (24)
(gy(y,u) 0 )(5)
(Gyy Y, WP+ Dy (v u) gy(y, w)* ) \

_ Gu(y, u)
N ((gyu , w()*p + dyuly, u)) Aw,

which leads to the first-order sensitivity equation for &

gy, W = —gu(y, u)Aw

and the second order adjoint equation for 7
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(Gyy (¥, WE P + dyy (v, WE + gy (v, w)*'T = —(gyu (v, W) Aw)* p — dyu(y, u) Aw.

Furthermore, the Hessian-vector product can be obtained from (6)

63 (5, W+ Gu (P, w) Aw = ((guy(y, M)Ag:()yf?;)rﬂy(y’ M)Av> <7é;>

H(Guu (¥, W) AV)* p + Dy (y, u) Av]Aw
= [(gyu (¥, WE) P + byu (v, ))& + (guu (y, u) Aw)*p
+Ouu(y, ) Aw + g, (y, u)*m]Av,

which is the same expression as in Theorem 9.
In summary, we obtain the following remark.

Remark 1 For fixed Av let the Assumptions 2 and 3 hold at (J,, u). Then

D" (u)(Av, Aw) = [(gyu(y, WE)* P + dyu(y, )€ + (Guu(y, u) Aw)*p 7
+Guu (¥, u) Aw + g, (y, u)*m]Av,

where (y, u) solve g(y, u) = 0, p solves the adjoint equation and & solves the first-
order sensitivity equation

9y (y, W€ = —gu(y, u)Aw,
and 7 solves the second order adjoint equation
gy(y,)m = —(gyy (¥, &P = yy (v, W& = (Gyu (v, W) Aw)* p = dyu(y, u) Aw.
Since in (27) the vector Av is separated outside of the parentheses, we have an

expression for the Hessian-vector product. This result is identical with the findings
in Theorem 9.

4.4 Adjoint-Adjoint Approach

Finally we apply the adjoint approach to compute the second derivative when the
first derivative is also calculated by the adjoint approach.
The adjoint equation for the extended system reads as in (11)

G5O, u) p=—ds(G.u) peztxy

and g;(y,u)* € L(Z* x Y, Y* x Z). Inserting the terms from (22) and (24) we
obtain for p = (m,£) € Z* x Y
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(9)’()’7“) 0 >* (7r>
(gyy(yv u)())*P + ¢5yy(y, u) gy(y, u)* 5

_ (guy(yv U)AU)*P + (buy(y, u)Av c Y* % Z
a 9u(y, u)Av ’

which results in

Gy, ) T 4 (gyy (7, WE* P + D3y (v, WE = —(Guy (¥, W) AV)* p — ¢y (y, u) Av

and
gy (v, u)*§ = —gu(y, u) Av.

The Hessian-vector product can be computed from Eq. (10) as
Gu (B )P+ Gu(3. )

and inserting (21) and (23)

9u(y, 1) e .
((gyu (y, u)(.))*p _"_ ¢yu(yy M)) (é‘) + (guu (y’ M)Av) p + ¢Mll(y7 M)Av

and
9u(y, u)*m + (gyu(ys M)f)*]) + ¢yu(yv )& + (Guu (y, M)AU)*p + Guu(y, u) Av.

Therefore, we have the following remark.

Remark 2 The second derivative reads

D" (u)Av = g, (y, u)* T + (Gyu (¥, WE* P + Gyu (v, WE + (Guu (v, w) Av)*p
+ Guu(y, u) Av,

where y, u satisfy g(y,#) = 0 and p solves the adjoint equation. Furthermore &
solves the sensitivity equation of first-order

gy()’a M)f = —0u (yv M)AU,

and 7 the second order adjoint equation

Gy (¥, )™ = —(gyy (¥, WE)* P — Dyy (v, )€ — (Guy (¥, u) AV)* p — uy (v, u) Av.

From the results of the theorems above we realize that the four different approaches
outlined in the beginning of Sect. 3 lead to two different results: one where a second
order adjoint equation comes into play and another one where a second sensitivity
equation has to be solved. We can also see that this can be derived in a fairly gen-
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eral setting for infinite-dimensional spaces and hence can be applied to all kinds of
optimization problems. In this paper we will concentrate on two applications in the
context of Newton’s method.

5 PDE-Constrained Optimization

We consider as an application an optimization problem with a partial differential
equation and control in the coefficient. In particular, we consider an inverse problem
where the partial differential equation is given by

— V. ((exp(u) +¢)Vy) = f in£2, y=0 ondf2 28)

on a bounded and closed domain £2 C IR? for a given right-hand side f € L?(£2)
and some small € > 0. The inverse problem consists of finding a proper u € L*°(£2)
such that the corresponding solution y € HO1 (£2) is close to a given observed output
w° € Hy($2)), with 2, € 2.

To formulate this PDE-constrained optimization problem in the form problem 1
was posed, we set

Y = HN(R), U=L®2), W=L*2), Z=L*R).
Next we define the constraint as
g(y,u) ==V - ((expw) +e)Vy) — f, g: ¥V xU — Z,
and the objective function including a regularization term with a > 0,
b0 = 3 / (By(x) = w™ (x))dx + 5 / u(x)%dx,
2, 2

where B : L?>(£2) — L*(£2)) is a linear observation operator that extracts measure-
ments from y. One can show that the Fréchet-derivatives up to second order exist
and have the following form for the objective function

6, (v, 10)j = / B (By(x) — w™ ()15 (x)dx,

2

du(y, W = ozfu(x)ﬁ(X)dx,

2

61y (s 1)(5, 2) = / BB (x)Z(x)dx,
2
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Gyu (¥, W) (¥, ) = duy(y, u)(it, y) =0,
¢uu(y’ M)(I/_t, V) = Oéfb_t(x)l_z(x)dx

2

Similarly we obtain for the Fréchet-derivatives of the constraint

gy(y,u)y = =V - ((exp(u) + €)Vy),
Gu(y, wu = =V - (exp(w)uVy),
9y, u)(y,z) =0,
Gyu(y, u)(y, u) = =V - (exp(w)uVy),
Guu (¥, w) (1, ) = =V - (exp(w)uvVy).

Since the two adjoints are computed by an application of the operator g7, it is straight-
forward to derive a representation for the solution p € Z* of the equation gyp = r
with given right hand side r € Z along the following lines.

Lemma 3 The solution p € Z* of gyp = r for givenr € Y* = H~'(R) is repre-
sented by p(¢) = (p,()z,( € Z = L*(R2), where p € Y = H, (2) is a weak solu-
tion of
—V .- (exp(u) +e)Vp =r.
Proof Equivalently, gy p = r can be written as
(gyp)() = p(gym) = (r,m)z ¥nev.
Let us make an ansatz for the solution p € Z* = L*(£2)*, i.e., assume the linear

functional p is represented by a function p € H, (£2) such that p(¢) = (p, () for
all ¢ € Z. Then

(gyp)() = p(gym) = —(p, V - (exp(u) + ©)Vn)z = (Vp, (exp(u) + €)V))z
= ((exp(u) +€)Vp,Vn))z Vnel,

and
(gyp)() = (r,m)z <= ((expu) + VP, V)z = (r,n)z VneY.
This is the definition in weak form of a solution of the PDE
—V . (exp(u) +e)Vp =r.
Therefore, the first-order adjoint p € HO1 (£2) according to (11) is given as the

solution of
— V- (exp(u) + €)Vp) = —B*(By — w™). (29)
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The second order adjoint m € HO1 (£2) according to (26) is the solution of
— V- ((exp(u) + e)VT) = V - (exp(w)itV p) — B*BE. (30)

The solution £ € Hj (£2) of the first-order sensitivity equation can be obtained fol-
lowing (7) by solving

— V- ((exp(u) +€)VE) =V - (exp(u)uVy). 31D

Given all the derivatives above, we can apply Theorem9 to see which partial
differential equations need to be solved for an evaluation of a Hessian of @ applied
to a vector.

Theorem 10 For @ (u) = ¢(s(u), u) the application of the Hessian of ¢ to a vector
i, @"(u)it, can be obtained with y = s(u) from

@" Wyt = —exp)[(Vm)' Vy + (V) VE + [— exp)(Vp)' Vy + alid,

where y € HO1 (£2) is the solution of the state Eq.28, p € Ho1 (£2) is the solution of
the first-order adjoint Eq.29, £ € HO1 (§2) the solution of the first-order sensitivity
Eq. 31, and m € HOl (£2) is the solution of the second order adjoint Eq. 30.

6 Summary and Conclusions

In this paper we derived rigorously second order adjoints for equality constrained
optimization problems in a general, infinite-dimensional setting which are used for
the Hessian-vector products in Newton’s method. We showed that while there are
four routes to arrive to the second order adjoints (e.g., via combinations of sensitivity
or adjoint equations), except the sensitivity-sensitivity approach, all the other three of
these coincide, i.e., they give the same Hessian-apply expression. This finding sug-
gests that one can choose whichever route is more convenient without compromising
the underlying computational effort. However, as discussed the sensitivity-sensitivity
approach is feasible only in the case of small number parameters.

‘We have applied this general framework to a PDE-constrained optimization prob-
lem formulated as a nonlinear least squares problem governed by an elliptic PDE.
This application revealed the ability to derive the second order adjoints (and Hessian-
vector apply) in a straightforward manner when following the general framework
established in this paper.

In this paper we chose to derive the expressions for the second order adjoints
at the infinite-dimensional level for a number of reasons. First, the derivation and
final results do not depend on any particular discretization of the underlying PDEs.
Second, the derivation is clean and reveal similar structure. Third, the form of the
boundary conditions for the adjoints falls out cleanly from the infinite-dimensional
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expressions. However, in certain cases working in finite-dimensions is beneficial, for
instance in the case when the optimize-then-discretize (OTD) and discretize-then-
optimize (DTO) approaches do not commute [18]. In the case of Hilbert spaces, the
role of the adjoint solves could be simplified when the domain and range space are
identical and the operator g, turns out to be self-adjoint. Furthermore, the standard
formulation of a Gauss-Newton method for a nonlinear least squares problem can
be used in a Hilbert space setting and it can be shown that the adjoint solve is in fact
a second order adjoint as defined in this context. The derivation of these equations
in finite-dimension and the framework for Gauss-Newton methods is the subject of
future work.
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grant CAREER-1654311. E. S. acknowledges partial support from the University of California,
Merced, and Lawrence Livermore National Laboratory.

References

1. Akgelik, V., Biros, G., Draganescu, A., Ghattas, O., Hill, J., van Bloeman Waanders, B.:
Dynamic data-driven inversion for terascale simulations: Real-time identification of airborne
contaminants. In: Proceedings of SC2005. Seattle (2005)

2. Alekseev, A.K., Navon, .LM.: The analysis of an ill-posed problem using multi-scale reso-
lution and second-order adjoint techniques. Computer Methods in Applied Mechanics and
Engineering 190, 1937-1953 (2001)

3. Alekseev, A.K., Navon, [.M., Steward, J.: Comparison of advanced large-scale minimization
algorithms for the solution of inverse ill-posed problems. Optimization Methods & Software
24(1), 63-87 (2009)

4. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: A fast and scalable method for A-optimal
design of experiments for infinite-dimensional Bayesian nonlinear inverse problems. SIAM
Journal on Scientific Computing 38(1), A243-A272 (2016)

5. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: Mean-variance risk-averse optimal control
of systems governed by PDEs with random parameter fields using quadratic approximations.
SIAM/ASA Journal on Uncertainty Quantification 5(1), 1166—1192 (2017)

6. Becker, R., Meidner, D., Vexler, B.: Efficient numerical solution of parabolic optimization
problems by finite element methods. Optimization Methods Software 22, 813-833 (2007)

7. Bui-Thanh, T., Burstedde, C., Ghattas, O., Martin, J., Stadler, G., Wilcox, L.C.: Extreme-
scale UQ for Bayesian inverse problems governed by PDEs. In: SC12: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis
(2012). Gordon Bell Prize finalist

8. Bui-Thanh, T., Ghattas, O., Martin, J., Stadler, G.: A computational framework for infinite-
dimensional Bayesian inverse problems: Part I. The linearized case, with application to global
seismic inversion. SIAM Journal on Scientific Computing 35(6), A2494-A2523 (2013)

9. Cao, Y., Li, S., Petzold, L., Serban, R.: Adjoint sensitivity analysis for differential-algebraic
equations: the adjoint DAE system and its numerical solution. SIAM Journal on Scientific
Computing 24(3), 1076-1089 (electronic) (2002)

10. Chen, P., Villa, U., Ghattas, O.: Taylor approximation and variance reduction for PDE-
constrained optimal control under uncertainty. Journal of Computational Physics 385, 163—-186
(2019)

11. Cioaca, A., Alexe, M., Sandu, A.: Second-order adjoints for solving PDE-constrained opti-
mization problems. Optimization Methods and Software 27(4-5), 625-653 (2012)



Second Order Adjoints in Optimization 229

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.
31.
32.

33.

34.

Daescu, D.N., Navon, I.M.: An analysis of a hybrid optimization method for variational data
assimilation. International Journal of Computational Fluid Dynamics 17(4), 299-306 (2003).
Dunn, J.C., Bertsekas, D.P.: Efficient dynamic programming implementations of Newton’s
method for unconstrained optimal control problems. Journal of Optimization Theory and Appli-
cations 63(1), 23-38 (1989)

Epanomeritakis, 1., Akgelik, V., Ghattas, O., Bielak, J.: A Newton-CG method for large-scale
three-dimensional elastic full-waveform seismic inversion. Inverse Problems 24(3), 034015
(26pp) (2008)

Fichtner, A., Trampert, J.: Hessian kernels of seismic data functionals based upon adjoint
techniques. Geophysical Journal International 185(2), 775-798 (2011)

Griesse, R.: Parametric sensitivity analysis in optimal control of a reaction-diffusion system—
part II: practical methods and examples. Optimization Methods and Software 19(2), 217-242
(2004)

Griesse, R., Vexler, B.: Numerical sensitivity analysis for the quantity of interest in PDE-
constrained optimization. SIAM Journal on Scientific Computing 29(1), 22-48 (2007)
Gunzburger, M.D.: Perspectives in Flow Control and Optimization. SIAM, Philadelphia (2003)
Haber, E., Hanson, L.: Model problems in PDE-constrained optimization. Tech. Rep. TR-2007-
009, Emory University (2007)

Haftka, R.T., Mr6z, Z.: First- and second-order sensitivity analysis of linear and nonlinear
structures. AIAA journal 24(7), 1187-1192 (1986)

Haug, E.J.: Second-order design sensitivity analysis of structural systems. AIAA Journal 19(8),
1087-1088 (1981)

Heinkenschloss, M.: Numerical solution of implicitly constrained optimization problems.
Tech. Rep. TR08-05, Department of Computational and Applied Mathematics, Rice University
(2008)

Herzog, R., Sachs, E.: Preconditioned conjugate gradient method for optimal control problems
with control and state constraints. SIAM Journal on Matrix Analysis and Applications 31(5),
2291-2317 (2010)

Hicken, J.E.: Inexact Hessian-vector products in reduced-space differential-equation con-
strained optimization. Optimization and Engineering 15(3), 575-608 (2014)

Hinze, M., Kunisch, K.: Second order methods for optimal control of time—dependent fluid
flow. SIAM Journal on Control and Optimization 40, 925-946 (2001)

Hinze, M., Pinnau, R.: Second-order approach to optimal semiconductor design. Journal of
Optimization Theory and Applications 133(2), 179-199 (2007)

Hou, G.J.W., Sheen, J.: Numerical methods for second-order shape sensitivity analysis with
applications to heat conduction problems. International Journal for Numerical Methods in
Engineering 36(3), 417-435 (1993)

Isaac, T., Petra, N., Stadler, G., Ghattas, O.: Scalable and efficient algorithms for the propa-
gation of uncertainty from data through inference to prediction for large-scale problems, with
application to flow of the Antarctic ice sheet. Journal of Computational Physics 296, 348-368
(2015)

Jacobson, D.H.: Second-order and second-variation methods for determining optimal control:
A comparative study using differential dynamic programming. International Journal of Control
7(2), 175-196 (1968)

Kelley, C.T.: Iterative Methods for Optimization. STAM, Philadelphia (1999)

Le Dimet, EX., Navon, .M., Daescu, D.N.: Second-order information in data assimilation.
Monthly Weather Review 130(3), 629-648 (2002)

Mayne, D.: A second-order gradient method for determining optimal trajectories of non-linear
discrete-time systems. International Journal of Control 3(1), 85-95 (1966)

Métivier, L., Brossier, R., Operto, S., Virieux, J.: Second-order adjoint state methods for full
waveform inversion. In: EAGE 2012-74th European Association of Geoscientists and Engi-
neers Conference and Exhibition (2012)

Nicholson, R., Petra, N., Kaipio, J.P.: Estimation of the Robin coefficient field in a Poisson
problem with uncertain conductivity field. Inverse Problems 34(11), 115005 (2018)



230 N. Petra and E. W. Sachs

35. Ozyurt, D.B., Barton, P.I.: Cheap second order directional derivatives of stiff ODE embedded
functionals. SIAM Journal on Scientific Computing 26(5), 1725-1743 (2005)

36. Petra, N., Stadler, G.: Model variational inverse problems governed by partial differential
equations. Tech. Rep. 11-05, The Institute for Computational Engineering and Sciences, The
University of Texas at Austin (2011)

37. Petra, N., Zhu, H., Stadler, G., Hughes, T.J.R., Ghattas, O.: An inexact Gauss-Newton method
for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model.
Journal of Glaciology 58(211), 889-903 (2012)

38. Raffard, R.L., Tomlin, C.J.: Second order adjoint-based optimization of ordinary and partial
differential equations with application to air traffic flow. In: American Control Conference, pp.
798-803. IEEE (2005)

39. Rudin, W.: Principles of mathematical analysis, third edn. McGraw-Hill , Inc., New York (1976)

40. Sandu, A., Zhang, L.: Discrete second order adjoints in atmospheric chemical transport mod-
eling. Journal of Computational Physics 227(12), 5949-5983 (2008)

41. Santosa, F.,, Symes, W.W.: An analysis of least squares velocity inversion. Society of Explo-
ration Geophysicists (1989)

42. Wang, Z., Navon, .M., Le Dimet, F.X., Zou, X.: The second order adjoint analysis: theory and
applications. Meteorology and Atmospheric Physics 50(1-3), 3-20 (1992)

43. Zhu, H., Petra, N., Stadler, G., Isaac, T., Hughes, T.J.R., Ghattas, O.: Inversion of geothermal
heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model. The Cryosphere
10, 1477-1494 (2016)



	 Second Order Adjoints in Optimization
	1 Introduction
	2 Representation of First-Order Fréchet-Derivative
	3 Representation of Second Order Fréchet-Derivative
	4 Second Order Sensitivities and Second Order Adjoints
	4.1 Sensitivity-Sensitivity Approach
	4.2 Sensitivity-Adjoint Approach
	4.3 Adjoint-Sensitivity Approach
	4.4 Adjoint-Adjoint Approach

	5 PDE-Constrained Optimization
	6 Summary and Conclusions
	References


