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ABSTRACT KEYWORDS

This article presents a mathematical modeling activity for stu- Memorization; mathematical
dents related to the process of memorization in which students modeling; mathematics
collect their own data to drive their model development, param- education; data collection;

eterization, and validation. Engaging in the data collection gives ~ Project-based learning

them insight to critique and evaluate various models. This taskis a
low-floor high ceiling problem that offers both a relatable context
and a window to quantitative approaches in cognitive science.
Experimental results of students participation in this activity are
discussed. This article also includes pedagogical recommenda-
tions with a focus on fostering equitable teaching practices and
a detailed analysis of the situation comprised of several math-
ematical approaches to model the memorization process that
highlight the richness of the problem. Instructors can adapt and
implement this modeling exploration for use in various under-
graduate courses, from introductory to advanced, depending on
the emphasis of the lesson.

1. INTRODUCTION

Mathematical modeling in the undergraduate curriculum has been shown to
increase student interest through authentic problem-solving by promoting critical
thinking, communication skills, and creativity. However, resources for instructors
remain sparse. Mathematical modeling tasks included in typical undergraduate
courses are often met with superficial treatment. Even courses titled “Mathemat-
ical Modeling” are often about mathematical models rather than the process of
mathematical modeling.

The lesson presented in this article is part of the mathematical modeling course
designed for the NSF-funded Mathematics of Doing, Understanding, Learning
and Educating for Secondary Schools (MODULE(S2)) [4]. MODULE(S2) aims
to improve future teachers’ mathematical modeling knowledge and pedagogical
knowledge by creating course materials that address the process of modeling along
with the mathematical knowledge, skills, and competencies necessary to build and
analyze mathematical models of real-world phenomena. Our general pedagogical
approach is to present students with a series of modeling activities and address

CONTACT BrynjaR. Kohler @ brynja.kohler@usu.edu, @ Department of Mathematics and Statistics, Utah State
University, Logan, UT 84322, USA

© 2022 Taylor & Francis Group, LLC



2 W.TIDWELL ET AL.

mathematical content required for modeling as it arises from the students’ work on
the activity. Although the project was designed with preservice teachers in mind,
the topic is of broad interest to students in many disciplines.

Mathematical modeling has long been a component of post-secondary mathe-
matics curricula [24]. It helps students learn complex problem-solving skills used in
daily life and industry. Research suggests that a way to develop mathematical model-
ing competencies is through the practice of doing modeling activities [2, 18]. Recent
studies of mathematical curriculum have found that secondary and post-secondary
mathematics curriculum may not be appropriately addressing mathematical mod-
eling [17], and that current activities are likely to provide students with a “cynical
view” of mathematical applications [29, p. 368]. For example, typical textbook real-
world problems fail to offer genuine mathematical modeling experiences. As such,
it is up to educators to find modeling problems that are relevant to students and
offer opportunities to engage in multiple facets of mathematical modeling. Thus,
the intent of this paper is to describe a novel approach to a task about memoriza-
tion from Blanchard, Devaney, and Hall [7] that provide a context relevant to many
STEM programs and to teacher education. This task can be implemented in various
courses, including but not limited to college algebra, differential equations, mathe-
matical modeling, and a capstone course for mathematics majors with an emphasis
of education. The lesson implementations described in this article were conducted
with undergraduate and graduate students with a teaching emphasis.

This experience focuses on leading students to reflect on the process of learn-
ing and build a predictive model to describe the memorization of information. In
everyday life, memorization arises from learning basic facts, definitions, and small
pieces of information like telephone numbers or identification numbers (e.g., stu-
dent identification codes). If placed in the context of teacher education, psychology,
neuroscience, or computer science, the process of memorization provides a start-
ing point for understanding how learning takes place and how to describe this
process mathematically. As noted by Blanchard et al. who offer this context as a
lab experience in their differential equations textbook [7, pp. 142-143], learning
and cognition are complex processes that are not fully understood and continue to
be subjects of active investigation by researchers in multiple disciplines, including
mathematics. Some examples exist of mathematical models of learning as a whole,
but these tend to be theoretical and do not typically involve analyzing data due to the
difficulty of gaining and measuring the necessary data (see [30]). Conversely, mem-
orization (which is directly connected to learning [5]) lends itself to data collection
and analysis.

Although memorization is not as central in schools today as it was at the turn
of the 20th century, it still has an important role. Effective teachers in Mainland
China, Hong Kong, Australia, and the United States believe that memorization is
an important part of the learning process [10]. Memorization can be seen in the
practice of teaching both cognitively and pedagogically. A basic tenet of behavior-
ism [27] which informs practice in education is that subjects remember actions
and consequences. For teachers who aim to design lessons and assess students’



PRIMUS (&) 3

understanding, Cangelosi [11] categorizes recall and memorization as the simple
knowledge learning level of mathematical cognition.

For these reasons, the task described here focuses on the process of memoriza-
tion. Our primary goals for students are the following.

(1) Reflect on the process of memorizing information and use mathematical
modeling to gain understanding;

(2) Interpret and explain different mathematical formalisms (e.g., ordinary dif-
ferential equations (ODEs) or random variables) in the context of developing
memory;

(3) Apply parameter fitting procedures;

(4) Understand and describe the limitations of various models.

The process of memorization has been modeled with various functions [25], dif-
ferential equations [14, 20], and Markov chains [6, 21] that are accessible to students
at a variety of levels. These various entry-points allow for memorization to be a
low floor, high ceiling problem situation to be modeled, and the project described
here is designed with equitable teaching practices in mind that engage students
deeply in mathematical content, leverage students’ mathematical knowledge and
competencies in parallel to affirming and valuing their contributions and identities
[1]. In what follows, we present the lesson plan with our commentary regarding
the implementation of equitable teaching practices, mathematical approaches with
student-generated data, and assessment strategies with an analysis of student work.

2. THE LESSON AND PEDAGOGICAL APPROACH

This section includes a lesson progression and addresses our pedagogical approach
and recommendations, highlighting our use of equitable teaching practices that
specifically focus on distributed student participation and collaborative mathemati-
cal thinking. Aguirre, Mayfield-Ingram, and Martin’s [1] equity-based mathematics
teaching practices encompass multiple, interconnected dimensions that are founda-
tional to learners’ achievement and agency. The five equity-based practices are listed
below with abbreviations.

Going deep with mathematics (GDM)

Leveraging multiple mathematical competencies (LMC)
Affirming mathematics learners’ identities (ALI)
Challenging spaces of marginality (CSM)

Drawing on multiple resources of knowledge (DMR).

We posit that these equity-based practices integrate organically into the process
of mathematical modeling and position the learner as an active participant and con-
tributor to the team solution. We designed the lesson to be delivered in two 75-min
class sessions with the following agenda for those class meetings.
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2.1. Introduce the Task

On day 1, the lesson begins with a class discussion on learning. Some questions to
guide this discussion may include: What does learning mean? How do we know
when learning has occurred? How is memory associated with learning?

Beginning the lesson with a discussion on learning provides an opportunity for
students to bring prior knowledge about learning and memorization to the class
(DMR). Our recommendation is for the instructor to focus on qualitative rather
than quantitative aspects of learning and memorization. Recording students’ ideas
on a board can serve as a reference for when they are formulating their models.
The recording of this information will provide greater access to others’ experiences
and backgrounds in learning and memorization and actively challenges spaces
of marginality by acknowledging and assigning status to all students’ experiences
(DMR, CSM).

2.2. Pose the Problem

Blumenfeld et al. [8] state that driving questions motivate student participation
in a project-based experience. After the initial discussion, we raise these driving
questions to introduce our exploration: How can we better understand memoriza-
tion using mathematics? What model can we create that explains the process of
memorization? How can we create a predictive model for memorization? What
experiment can we conduct to validate our model?

Modeling the memorization process is of high cognitive demand, placing math-
ematics central to the lesson yet multiple solution approaches and strategies help
students stay engaged for longer periods to deeply explore the mathematics (GDM).
By supporting student thinking through collaborative work in low-risk environ-
ments, students become empowered to continue and sustain their mathematical
thinking.

A brief literature search on memorization reveals three main memory pro-
cesses: acquisition, consolidation, and storage which arise as a learner acquires
the information, encodes it, and stores it for later retrieval [5]. Figure 1 displays
a simplified schematic of the process. Information enters the brain (acquisition)
through sensory processes where a memory trace is formed (consolidation). This
sensory memory lasts between 0.5 and 35, only long enough to transmit sensa-
tions to short-term memory. As a memory trace persists it is transferred from
short-term to long-term memory (storage). Short-term memory refers to a span
of 15-30 s whereas long-term memory could last for hours, days, or decades [16].
It is important to note that at any stage, information can be lost or forgotten.

Suppose that a person was to learn a list of numbers. Studying the list can be
considered a “rehearsal” in which the memory is strengthened. A memory may be
retrieved if it was moved to storage, depending on the robustness of the represen-
tation. The retrieval of stored information can be considered a “performance” (e.g.,
recording as many numbers as one can remember).
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Figure 1. The memorization process. External information is acquired through the senses and briefly
exists as sensory memory. Some information enters the working memory, a component of short-
term memory, where further consolidation and encoding can result in transfer to long-term memory.
Dashed arrows represent information lost or forgotten. Figure adapted from Murre et al. [21] and
Shrestha [26].

Students can learn more about the topic by reading [32], exploring an interactive
web cartoon [12], or referencing any of the mathematical model articles cited in this
report.

2.3. Data Collection

At this point, it is useful to have a discussion about the experimental design, and
how the experiment might influence the model development. Even with what seems
like a clearly outlined procedure, subtleties in the experiment can make a difference.
Next, the students begin implementing their data collection procedure. We recom-
mend doing one trial in class and additional trials outside of class for homework
because this part of the process can be time-consuming. The materials needed for
data collection include a timer, pencil, paper, and a list of 20 “words” or items to be
memorized. We use 3-digit numbers as “words.” A sample data collection procedure
handout with multiple lists of 3-digit numbers is included as Appendix 1. (Students
can also generate more lists of their own or perhaps try to memorize digits of r,
Euler’s number e, or the golden ratio ¢.)

When discussing data collection and experimental design, interesting details
and assumptions about the environment naturally arise. Some examples include
distractions that may cause difficulty in memorization, the amount of time after
rehearsal before testing (recording immediately following the studying or inserting
time before testing), the amount of time after testing and going back to studying
the list or even checking results after each test before the next rehearsal which may
affirm beliefs about certain items on the list. Other issues that may come up in dis-
cussion could be the number of times needed to perform this exercise (e.g., Is one
trial good enough? If not, how many is good enough?) and the order in which the
list is memorized (e.g., Will the list be necessarily repeated verbatim or does the
order of recalled items not matter?). These are some common ideas brought up
in the implementations of the lesson. Another interesting thought is that the basis
of this experiment was a psychological test [23] that was performed with trigrams
(3-letter combinations) instead of 3-digit numbers and interference was provided
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in between studying and performance (participants had to count backwards). Does
this make a difference? Acknowledging the process collectively provides students
with ownership of the problem and their solutions.

This lesson and final report can be done in groups or individually. The data is easy
to collect individually so it makes the construction of the model feasible to do indi-
vidually. However, there are many benefits of allowing and encouraging small group
discussions before individual work time. Furthermore, doing this as a group assign-
ment encourages more student-to-student interaction (CSM) with a collaborative
goal, and thus promotes persistence in problem-solving (ALI).

2.4. Model Development, Student Presentations, and Discussion

Once students have collected their data, on day 2 of the lesson, we recommend
employing the five teaching practices described by Smith and Stein [28] for con-
ducting rich mathematical tasks: anticipating, monitoring, selecting, sequencing,
and connecting. The models of the memorization process described in the next
section provide a basis for anticipating students’ approaches. As the students engage
in the modeling experience, the instructor monitors their work and helps them
think through their ideas. Equity-based instruction calls for instructors to value
students’” approaches and entry points to this problem (LMC), so we recommend
building the mathematics from student models. Leveraging multiple mathematical
competencies is a strength in the cognitive space created by the mathematical mod-
eling process. Different approaches taken by students can be selected to highlight
for the whole class as this allows for students to see the variation in the solution.

The sequencing of presenting student work can take different forms, but we
recommend grouping the models by underlying mathematical structures so that
discussion flows in a hierarchical fashion. Selected students present their prelimi-
nary models, and the instructor connects these approaches by offering an opportu-
nity for students to compare and contrast models and offer comments about their
peers’ work. When done in a productive environment, this allows students to sus-
tain a deep mathematical level (GDM). It is important for students to reflect on
the assumptions of their models and discuss possible methods of eliminating lim-
itations. The students then revise and improve their models, and in doing so, they
actively participate in collaborative mathematical modeling and see themselves as
valued contributors (ALI). A written modeling report of their final models and their
modeling process is assigned for homework. Report guidelines are provided under
Section 3.1.

3. STUDENT WORK AND ANALYSIS OF REPORTS

An important component of the task is the data collection by the students. After sev-
eral implementations of this lesson, we have found that while students have similar
experiences, collected data show significant variation from one individual to the
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Figure 2. Data collected by students showing the number of correctly recalled items as a function of
time spent learning the list. Each student memorized multiple lists. The graph on the left shows the
average results for each student. The graph on the right shows the variation of one student across
multiple lists.

next. Figure 2 shows a sample collected by five students. Each trial consists of study-
ing a list of numbers one minute at a time for up to 10 min and reporting the number
of correctly memorized items after each minute of studying. The students repeated
the experiment over several trials using different lists. The panel on the right of the
figure shows the results of four trials by one of the student participants. The left
panel of Figure 2 shows the trial-average data for five participants.

We provide report writing guidelines below and a rubric for assessing student
mathematical modeling reports in Appendix 2. We conclude this section with our
analysis of some sample student reports in light of the lesson goals.

3.1. Assessment of Student Learning

Students are expected to write a mathematical modeling report describing their pro-
cess, solutions, and interpretations. We suggest using a report outline similar to that
of Bruder and Kohler [9].

e Background Information on the Problem (State the necessary information about

the problem)

Experimental Setup (Describe the experiment in your own words)

Data (Include a table or a plot of the data collected)

Model(s) (Include assumptions)

Results (Answer the driving questions and provide insights from the model as a

solution)

e Discussion (Discuss strengths and limitations of the model and potential future
revisions)

For assessing the work of students, we took a holistic approach focusing on
the mathematical modeling process. We identified evidence of competencies that
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students were developing within the elements of mathematical modeling. We con-
sidered Niss, Blum, and Galbraith’s view of modeling competency as the ability to
identify and translate relevant questions, variables, and assumptions about a situa-
tion into mathematics and interpret and validate the solution, which offers a holistic
perspective on assessment rather than exclusively assessing the model itself [22].
We recognized Maaf$’s framework for defining individual competencies within the
modeling elements as “skills and abilities to perform modelling processes appro-
priately and are goal oriented as well as the willingness to put these into action”
(19, p. 117].

We created a rubric for assessing student work on the modeling process by
considering elements of the modeling process and competency development (see
Appendix 2). The rubric outlines seven elements of modeling, which include: (1)
Understanding of the problem situation, including the goals of the solution and fac-
tors that affect the solution, for example; (2) Consideration of a simplified version
of the situation, including making use of appropriate assumptions and choices; (3)
Creation of the model, which includes decontextualizing, that is, translating infor-
mation into mathematical notation; (4) Computation using the model and checking
for precision; (5) Interpretation of the solution and drawing conclusions, which
includes contextualizing the mathematical solution back into the problem situa-
tion; (6) Validation of the conclusions, which includes determining if the solution
makes sense and if it is within a valid range of values; and (7) Reporting out the
solution, which entails communicating the model and solution with justifications
for the assumptions and choices made.

Research underscores that prospective teachers, in addition to placing value on
the model as a product, placed value on the modeling process [3]. Placing value on
the process allows for assessment of students’ creativity, decision-making, initiative,
and communication, thus giving a broader perspective of students’ competences
in multiple areas of mathematics within modeling tasks. This finding aligns with
the recommendations from the Guidelines for Assessment and Instruction in Math-
ematical Modeling Education, “Assessment should be in service of helping students
improve their ability to model, which will, in time, translate to a better product”
(15, p. 21].

In our work, we used the rubric to provide formative feedback while students
were engaged in the modeling process and to assess the final report that students
created on the memorization modeling task. Although this paper does not focus
on the assessment of mathematical modeling, we include this section to provide
a tool for formative assessment and a framework for assessing students” work in
mathematical modeling as a final product.

3.2. Student Created Models

We have implemented this lesson multiple times in different institutions in the
Southwest and Southeast of the United States over the past two years. In this section,
we highlight the work of the five students (labeled A-E, whose data is displayed in
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Table 1. Five students’ modeling approaches to the
memorization task in a mathematical modeling
course for prospective teachers.

Student Model
A d —a(1-1)
= (%)’
B & = a(1 — L) with the initial condition L(0) = 0
C S(t) =at® + bt +¢,

St) =at® +bt> 4 ct+d

a
SO = T pea

a
S(t) = — *
® b_t-i—c

S(t) = ab) +¢

a
D S(t) = ———
® 1 —ebt *e
a
S(t)y=——— *
O=-p7t¢
ds . L o
prie a$ + b with the initial condition 5(0)=0

E S(t) = ae? + Mwhere b <0
S(t) = atbet *

Note: Variables are t representing time, L, the fraction of the
list memorized, S, the number of items memorized, and M,
the number of items on the list. Parameters are g, b, ¢, and d.
An asterisk * indicates which model was deemed best by the
student.

Figure 2) in light of the four goals of the lesson. The students wrote about a vari-
ety of mathematical models in their reports - differential equations, polynomials,
exponential, rational, and power functions — which are listed in Table 1. The fol-
lowing section describes evidence of progress on lesson goals found in the students’
reports.

Mathematical Modeling to Gain Contextual Understanding

Goal 1: Reflect on the process of memorizing information and use mathematical
modeling to gain understanding about memorization

Students C and E researched the memorization process and wrote about what
they learned in their reports. Student C cited literature to inform their stance that
through practice and technique, the rate at which one memorizes can increase. Stu-
dent E decided to discuss the notion of forgetting in their model exposition. This
student also referred to researched information suggesting that a curve shaped like
a Gamma distribution would be an appropriate model of memorization.

Student D discussed that everyone will have a different saturation limit and
looked at the average of data from several participants to mitigate the “memor([ies]
and emotional connection[s] to specific numbers” that were contained with cer-
tain lists that made those easier to remember. They also discussed that mental state
would affect the rate of memorization.
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Student B observed that the rate of memorization would not necessarily improve
or decrease with practice. They, like Student D, conjectured that the rate of memo-
rization is highly dependent on the values in the list. However, they point out that
the numbers may have relationships with others on the list. For example, “there
were 4 numbers at the end which were all in the 200’s. This allowed me to know
they all started the same and then just learn the two-digit number at the end. The
more easily seen connections that exist, the easier it is to learn.”

In all these excerpts, students made sense of memorization. This occurred prior
to developing their models by researching information or reflecting on their expe-
rience from the data-gathering portion of this project, and they gained more insight
due to their attempts to go back and forth between the mathematical model and the
real situation.

Interpreting Mathematical Formalisms

Goal 2: Interpret and explain different mathematical formalisms in a real-world
context

In the majority of student samples, differential equations were used to represent
and explain the rate at which individuals memorize information. Throughout their
exposition, Student E was concerned with making sure that their models were con-
sistent with their understanding of memorization. They justified and then made
adjustments to models to make sure the resulting function had features they were
expecting. For example, the exponential function “appeared to fit the data and had
the property of a horizontal asymptote.” This property of a horizontal asymptote
was important to Student E because it is impossible to learn more than the number
of items on the list.

Similarly, student D claimed that memorization will have a saturation limit or a
carrying capacity saying, “[I]n this activity memorizing 20 random numbers was
a stretch ... [h]Jowever, I suspect that ...it is possible that I would not be able to
memorize past a certain number of words.” They evaluated the quality of models
by looking at what saturation limit was more realistic after parameter fitting.

The students used various families of functions like quadratic, cubic, rational,
exponential, and logistic. Student C dismissed the quadratic and cubic functions
because “once [the curves representing the amount memorized] reach their maxi-
mum or relative maximum they start to decrease.” They also chose to pick a model
that went through the origin, the only known data point for this model.

The students seemed to write about models similar to those discussed in the var-
ious mathematical approaches section (Section 4). They attempted to connect their
models with their conception and assumptions about memorization.

Applying Parameter Fitting Techniques

Goal 3: Apply parameter fitting procedures

Most of the reports we analyzed used a blackbox fitting tool like Desmos to find
the parameters that best fit the data. The advantage is that this is easy to use and
the students can focus energy on interpreting the output. Student B, on the other
hand, wrote their own MATLAB code to fit their model to data using three methods
and then compared the best fit parameter value that resulted from each method. The
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fitting techniques included (1) transforming the data to be linear (with alogarithm)
and using linear regression, (2) minimizing the sum of squared errors with the data,
and (3) using the maximum likelihood estimator. Method 2 and 3 produced nearly
identical results for the parameter, but Method 1 produced a different result. In later
revisions of their work, Student B used method 2 as it was an easier technique to
apply and provided satisfactory results when compared to the other methods. This
is an example of a student developing a deep understanding of the details of these
fitting methods because of the added challenge of coding them from scratch.

Understanding Limitations of the Models

Goal 4: Describe limitations of models

Most of these students’ reports described limitations of their models. Student B
felt that their model was limited because the memorization rate (which was modeled
as a constant) depended on the length of the list. In each attempt to understand how
long it takes to memorize a list of a new length, they needed to re-scale the data and
re-fit their parameter to the new data. They didn’t understand that the parameter
could simply scale by the list length.

Student A discussed that their model fails to account for memorizing the entire
list (in finite time). They needed to develop a strategy for dealing with their collected
data when L = 1. They wrote about options and decided to use a model variation
depending on the goal. To understand the overall trend of the data and to investigate
if the rate of acquisition improves after practice, student A used the model described
by the function:

L(t) = 1— e ktte,

When investigating the amount of time it would take for memorizing a list of some
arbitrary length, student A encountered the same limitation as student B. They
decided to go with a different model to overcome this obstacle :

-

Student A discussed extending the model where the rate of acquisition would be a
function of the number of complete trials.

Student D felt that there was a limitation in the experimental design that hindered
the validation of the model and fitting of the model. They felt that the first trial of
memorization was an outlier and was lowering the average. They concluded that
if they exclude it, they could treat it as a primer for the data collection. However,
once this data is excluded, student D believed the averages were skewed and seemed
unrealistic. They suggested that the lists be longer and that during a trial more data
points be recorded.

These students analyzed their models and found limitations. In some cases, they
were able to devise and execute methods for overcoming these limitations.
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4. POSSIBLE MATHEMATICAL APPROACHES, MODELS, AND ANALYSES

In this section, we provide a description of various mathematical models so that
instructors might be aware of possible approaches. In our experience, undergrad-
uates are often unprepared to use the mathematics they know in their models.
Understanding various approaches allow instructors to see the richness of this
modeling challenge, it helps them guide students through their own modeling
approach without steering them to a predetermined model, it provides a basis for
anticipating student questions, and also increases the instructors’ overall prepara-
tion for the lesson. Analysis of a variety of models may help instructors promote
connections between approaches taken by different groups of students, and mathe-
matical and statistical content that is often studied separately, ultimately to improve
undergraduate teaching.

4.1. Empirical Modeling Approach

When looking at data on a graph, students often look for functions that seem to fit
the data. Typical functions considered are linear, rational, exponential, logarithmic,
and power functions. This provides an opportunity to discuss the mathematics of
what it means to fit a model to these data and the features required of the function.
In introductory courses, the software Desmos is a good choice due to its relative ease
and accessibility. The data can be uploaded from Microsoft Excel, Google Sheets,
or can be entered manually. The students can type in the function and parame-
ters. Another useful option is the curve fitting app in MATLAB shown in Figure 3.
Engaging in the empirical modeling approach allows the instructor to challenge
students to propose functions that have certain properties (asymptotes, local maxi-
mum, etc.), which is the reverse of the more common problem of listing properties
of a given function. The former approach also provides opportunities to discuss
least-squares optimization techniques.

4.2. Differential Equations Modeling Approach

Deterministic models based on differential equations can be derived from consider-
ing the rate at which one memorizes items (e.g., words) in a list. We start by defining
M to be the total number of items on the list and S(¢) to be the number of items we
have memorized after spending time ¢ acquiring and consolidating or actively mem-
orizing. Then, the model is developed by making an assumption on how the rate of
memorization, dS/dt, relates to M and S(#). For instance, we may assume that the
rate of memorization is constant, leading to the model

ds
— =c
dt

In order to compare results from experiments that may have been conducted with
lists of different lengths, it is useful to express the model in terms of L(t) = S(¢)/M,
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Figure 3. Screenshot of the Curve Fitting App in MATLAB. Students can enter their data, choose a
model type from a list or create their own custom model and try different fit options.

which is the fraction of M that has been memorized. This gives

w =c¢/M, with L(0) =0.
dt

The constant ¢/M is the memorization rate which is unique for each person. The
initial condition is based on the assertion that no information has been memorized
before looking at the list. The solution is L(¢) = (¢/M)t and is only valid until L(¥) =
1 which occurs at t = M/c. At that time the list is fully memorized, making this
simple model applicable for sufficiently short lists.

A model that is valid for longer lists of words requires different assumptions. One
possibility is to assume that the memorization rate is proportional to the number of
items on the list that remain to be memorized. This gives

dL .
5= k(l - L(t)) with L(0) = 0.

The parameter, k, can be interpreted as an individual's memorization rate. The
solution

Lit) =1— ¢kt

can be used in several ways. First, the students can use it to fit the model to the
data, as is done in the empirical modeling approach. Second, the properties of the
function can be analyzed in the context of the task. The asymptote at L = 1 indicates
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that, according to this model, the list is never 100% memorized, and hence it may
be more applicable for long lists. A Taylor series at t = 0 gives L(t) = kt + O(t?),
which indicates that the memorization rate is approximately constant in early times.
Finally, the function L(¢) is increasing, indicating that the rate of forgetting is either
unaccounted for or always smaller than the rate of memorization.

A more comprehensive model can be derived from the following set of
assumptions:

(1) M is the total number of items on the list and S(¢) is the number of items we
have memorized after spending time ¢.

(2) Each person has a maximum number of words that can be memorized during
this experiment, denoted by W.

(3) The memorization rate is proportional to the number of items on the list that
have not been memorized, k(W — S(¢)). This process is active only when the
person is memorizing words (acquiring information).

(4) The forgetting rate is proportional to the number of items on the list that have
been memorized, rS(t). This process is always active, regardless of whether the
person is memorizing words or not.

(5) The first few words on the list are memorized very quickly compared to
the long-term memorization rate. We assume that a small number of words,
denoted by B, is memorized instantly at ¢ = 0.

The model is S(0) = S and

ds()
dt
with k # 0 only while memorizing words, and k = 0 otherwise. Since the data

is presented as proportions of M, we will scale the equation by defining L(¢) =
S/ M,w= W/M,b= B/M, to get

= k(W — S(t)) — rS(t)

% = k(w— L(t)) — rL(t), L(0)=1b
=kw — (k+ r)L(t)
_KB-L() K=k+r, B=_"
k+r
The solution is
Lt)=B+ (b —-Be X (1)

with K = r and B = 0 when the person is not memorizing words. The parameter
B corresponds to the horizontal asymptote. When the value of w is greater than
one more word can be memorized than what is included on the list. When w is
less than 1 not all items can possibly be memorized. The value of b indicates how
much of the list is memorized instantaneously. And K is an individual’s net rate
of memorization. Solutions of equation (1) with different parameters are depicted
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Sample Solutions of the ODE Model

1.2+
1t
0.8
S06
0.4
--0.4 . :
-8-0.3 1 0
0.2 78— --02 12 0
Y = Student data
O 1 |
0 5 10 15
Time (min)

Figure 4. Three solutions to the ordinary differential equation (ODE) model. The graphs of L(t)
(see Equation (1)) with various parameter values are shown along with some data from students
(indicated with squares).

in Figure 4. The values of the parameter K were selected so that the value of L(1)
was near 0.25, which is consistent with the student data. The parameter B is the
asymptotic value of L(¢) so its values were chosen near B = 1. Finally, the parameter
b is chosen to be zero for the solution to go through the origin but a small value
captures the quick memorization of a few words at the beginning of the process.

This can be viewed as the alternation between two states, actively memorizing
and pausing the memorization process. Specifically, let £y = 0 and assume the per-
son memorizes words until ¢;. No new information is acquired until #, when the
person continues to memorize words until £3. Following this pattern, we look for a
solution L(t) that is continuous and of the form L(t) = B+ (b — B)e X! for t,, <
t < try+1 and of the form L(t) = be™ ™ for 41 < t < tp+2. This gives L(tp) = b
and forn =0,1,2,...

B+ (L(tyy) — B) e KU~ 1, <t < try4g

L(t) =
L(tapy1)e "m0, tant1 <t < topy2

(2)

A sample solution is shown in Figure 5.

4.3. A Probabilistic Modeling Approach

This approach considers a probability associated with each word being remembered
at any moment in time in the context of this task.

Each word on the list has a probability p of being remembered after a 60 s time
period, but the probability changes in time. Time may be divided into three different
intervals: (1) before looking at the word, when the probability p is zero; (2) during a
period of time when actively trying to remember the word, the probability of being
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Fraction of Words Memorized

0.8} \ //f‘/
vad

0.6

L(t)

04 B ~ B

0 1
0 5 10 15
Time (min)

Figure 5. Graph of L(t) or the fraction of items memorized, M, (Equation (2)) of the model where
memorization periods are followed by breaks where only forgetting takes place. The parameters
(k,r,w,b) = (0.44,0.092, 1.2, 0) were chosen to illustrate the process. Solid parts of the curve corre-
spond to memorization periods, while the dashed parts correspond to breaks in the memorization
process where only forgetting takes place.

remembered increases; and (3) after one moves on to memorize other words, the
probability starts to decrease because forgetting continues.

The probability of remembering a word after 60 s might look like the curves
shown in Figure 6. After 60 s each word (indexed with i) has a probability p;(60)
of being remembered (the dots in the figure).

The functions that represent the probabilities in the different time intervals can
be chosen in different ways. Here we borrow the functions from the previous model
withi=1,...,W

1— (1= pi(ty)) e7M0=0), 1y <t <1

(3)
pi(ty)e =), t <t <60

pi(t) =

where k; and r; are parameters associated with word 7, which depend on the person
doing the memorizing. The values of f and #; are part of the data collection. Typi-
cally, pi(t) = 0for 0 < t < ¢ if the word has not been seen before, but p;(ty) > 0if
the word has been visited before. In this model, each word can have its own parame-
ters (k;, r;) because some words are easy for individuals to memorize (like ones that
match our area code, birthdate, etc.) while other words are difficult to memorize.
At the end of the 60 s each word will have a probability p;(60) of being remem-
bered. We translate this probability into a binary variable by choosing a random
number between 0 and 1 from a uniform distribution and declaring that word i is
remembered if the random number is less than the probability p;(60). This model
also allows for the remembering and forgetting rates to change after the first 60 s
depending on the words that have been memorized. For example, Figure 7 shows a
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0.8

O 1 i 1 | é | § 1
0 10 20 30 40 50 60
Time (sec)

Figure 6. Sample solution of the probabilistic model (see Equation (3)) where the dashed curve is
the probability of remembering a word that is actively being memorized in the interval 18 <t < 33.
The solid curve shows the probability of remembering a different word that is actively being mem-
orized during 3 <t < 18 and again during 33 <t < 49. The dots at t = 60 are the probabilities of
remembering these words after 60s.

k=0.1, r=0.01 k =0.075, r=0.01 k =0.045, r=0.01
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Figure 7. Simulations using the probabilistic model. Five simulations for each value of the learning
rate k, are shown, with k high in the left panel and low in the right panel. The student data (squares)
are also shown in each plot.

simulation using this model when all learning rates k; are equal to k (see figure cap-
tion) and all forgetting rates r; are equal to = 0.01. The time intervals for studying
a word before moving on to the next word have been set to 3 s.

4.4, Markov Chain Approach

“[A]ccording to cognitive informatics, the logical architecture of memories in the
brain can be classified into ... (a) the sensory buffer memory, (b) short-term mem-
ory, (c) thelong term memory, and (d) the action buffer memory” [31, p. 82]. We can
use this structure of discrete states to model the memorization process. The short-
term, long-term and action buffer memory will be considered states of memory.
The sensory buffer memory “refers to the short-lived memory for sensory details
of events” [13, p. 23] which include things like how some event looked, sounded,
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moC  m
P1o P21 U P32

Pll

Figure 8. Visualization of the transition probabilities for a Markov model with four states. The acqui-
sition state A includes items not memorized, and $1-53 are storage states. The transition probabilities
are indicated. For example, the words in 52 move to S1 with probability p;; and from 52 to S3 with
probability pys3.

smelled or tasted. Information in this state is not considered as a memory state in
our situation.

In the model, A" represents the fraction of words left to be memorized at the
nth minute of the experiment. The variables S} through S% represent the fraction of
words in the three memory categories (sensory, short term, long term). From one
minute to the next, words in one category have a probability of moving to another
category, as shown in Figure 8. Since everything in S2 either stays or moves to other
locations, the condition py; + p22 + p23 = 1 must be satisfied. More generally, the
probabilities of arrows pointing out of any location must add up to 1.

At time interval », each location contains some words, which get re-distributed at
the next time interval according to the transition matrix from state n to state n + 1

A (n+1) PO() 1o 0 0 A (n)
S1 _|por pu pa O S1
\Y) 1o pu o2 opunllS:
S3 0 0 p23 p3z/) \Ss

However, the columns have to add up to 1, so the number of parameters is reduced.
Moreover, according to our assumptions, the contents of S1, S2, and S3 are words
memorized, so we are interested in the quantity Q = S1 4 S2 + S3. Adding the last
three equations give

Q" = Q"+ (1 — poo)A” — p10S1

which shows that p;1, p21, p23 and pay are irrelevant since we do not distinguish
between words in S; or S; or S3. Therefore, the process reduces to the simpler model

7 e
S 1—poo 1—=pio) \S1

where the value of S; represents the words memorized. The starting point is (A%, S9)
(Figure 9).

Finding a solution: Since the columns of the matrix add to 1, every iteration
redistributes the amounts in A” and S into A"*! and S'f“ so that the total remains
the same, A" + 87 = A% + §). This can be verified by adding the two equations.
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Sample Solutions of the Markov Model

1.27
1+
0.8
[ =l =
w 0.6
04+ E —-—0.26374 0.67032 ;
: —e—0.25918 0.74082 0
——-0.21752 0.81873 0
0.2 = Student data
O 1 ! |
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n

Figure 9. Simulations of the Markov chain model (see Equation (4)). The parameters have been
defined in terms of the parameters of the ODE model as S = b, g = e, and p = B(1 — e~ ¥) for
comparison.

We can use this in two ways. First, a transition matrix always has 1 as an eigen-
value and the corresponding eigenvector is a fixed point of the iteration. Therefore,
it is related to an asymptote. In this case, the eigenvector is (p19, 1 — poo). The
iterations converge to a multiple of this vector. Specifically, the final state is

A+ S)

(A%, 89) = —— 1
! P10+ 1 — poo

(P10, 1 — poo).

Second, the conservation implies that A” = A® + §Y — S7 and we can re-write the
second of the matrix equations as

s’f“ = (1 — poo) (A% 4+ S + (poo — p10)S}

This suggests that by defining p = (1 — P00) (A + S(l)) and g = (poo — p1o) the
model reduces further to three parameters:

St=p+qSt, S given
Using this expression recursively, we find that
P 0 P
Sl=—4+4"(S— — 4
= (s ) @
Comparing this solution with the ODE model (associating n with ¢)

L(t)y=B+ (b—Be X

we can deduce that both models give the same solution when S = b, g = X, and
p=B(1- e K.
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We have demonstrated that many mathematical topics relevant to building and
analyzing mathematical models come up naturally in this task. Instructors of a vari-
ety of courses can select this task to fit the various content and level of sophistication
in the course. We suggest that multiple model approaches be highlighted, especially
those that come from students.

5. CONCLUSION

This article details a data-driven mathematical modeling experience based on the
context of memorization. The application of memorization as a mathematical mod-
eling challenge provides a valuable opportunity for students in teacher education,
neuroscience, computer science, mathematics, and various interdisciplinary fields.
We included a sample agenda, data collection procedures, a rubric for assessment of
students’ modeling reports, and we share various pedagogical supports for instruc-
tors that promote an equitable and productive learning environment. We discussed
the student progress on the learning goals based on our analysis of several mod-
eling reports. Lastly, we include an assortment of mathematical approaches and
models that could serve as a resource for readers to consider. Our summary of the
lesson progression infused with equitable teaching practices, discussion on student-
created models, and presentation of resources are intended to entice instructors
to consider implementing this data collection and mathematical modeling activity
with their students.

This lesson is one example of the variety of mathematical modeling activities cre-
ated for secondary teacher teacher preparation through the MODULE(S2) project.
We posit that while these mathematical modeling activities are intended for future
teachers that they have value in contexts outside of teacher education and can
broadly enhance mathematics education at the collegiate level.
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APPENDICES

APPENDIX 1. DATA COLLECTION WORKSHEET

A.1. Materials

Timer, pencil, strips of paper

A.2. Instructions

Read all of the instructions before beginning.

(1) Decide on one of the lists, do not switch lists until completion.

PRIMUS 21

(2) Set a timer for 1 minute, and begin to memorize the list of 3 digit numbers. When the 1

minute is up, put the list away.

(3) On a separate sheet, record what you remember without looking.
(4) Repeat the previous 2 steps until one of two things is accomplished:

(a) You memorize and successfully record the entire list.

(b) You record data 10 times.

A.3. Additional Instructions

For the class to clarify after a trial run.

A.4. Lists

Random 3-digit numbers are tabulated here.

List 1 List 2 List 3 List 4
1 527 091 725 790
2 986 887 161 254
3 115 230 763 594
4 292 948 790 425
5 928 121 444 366
6 213 581 553 093
7 346 815 678 798
8 558 536 583 320
9 729 204 893 716
10 537 21 565 461
1 500 904 432 977
12 197 449 182 638
13 045 393 212 701
14 713 37 934 945
15 153 042 914 866
16 626 991 149 158
17 476 205 542 082
18 920 083 762 914
19 581 610 543 457
20 409 467 820 060
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APPENDIX 2: MATHEMATICAL MODELING RUBRIC

Rubric for Assessment of Mathematical Modeling

10
Modeling 4 3 2 Little/no
Element Proficient Evidence Emergent Evidence Limited Evidence N
evidence
. . _— . . . _— Limited in identifying the context
Fully identifies the context, objective of the | Partially identifies the context, objective of obicetive of the sélul%on and fac t;\rs that
Understand the | solution, and factors that affect the the solution, or factors that affect the a ﬁﬂec  the solution ’ Demonstrates
problem solution. solution. Does ot l:lSe avaiiable background little to no
situation Uses background knowledge of the context | Uses partial background knowledge of . & - | evidence.
. N knowledge and does little to no research of
or researches the context. context or partially researches the context.
° the context.
. . . Partially determines useful given
Fully determines useful information given. . A g
Pose a Makes useful, appropriate assumptions and information
simplified choices » 3pprop! P Partially makes useful, appropriate Limited in determining given information, Demonstrates
P assumptions and choices making necessary assumptions, and little to no
version of the | Uses background knowledge and . . . . N
I N L Partially uses background knowledge and making appropriate choices, evidence.
situation experience or research as additional . L
. y experience or research as additional
information. .
information
5 . Lo o . . Lo Does not
Translates the information into . S Limited in translating the information into
N L N " " Partially translates the information into . . . translate
Develop a notation (; ). L . o mathematical notation (decontextualize). . .
y . ical notation (decc 3 . ; information
model The model uses all relevant assumptions N The model uses assumptions different .
The model uses some assumptions made. : PR into
made. from those made (modified or implicit). T
Compute a Performs calculations correctly in the Performs calculations correctly in the Limited with calculations in the model Demonstrates
solution of the | model (possibly one minor error). model (with few errors). (with multiple errors) and is not aware of little to no
model Checks for precision. Is aware of checking for precision. needing to check for precision. evidence.
. - Partially interprets the mathematical . . . .
Interprets the mathematical solution in ay ] rp - P Limited with interpreting the mathematical
Interpret the . I solution in terms of the original situation o - S
N terms of the original situation . solution in terms of the original situation Demonstrates
solution and - (contextualizing). . N . .
(contextualizing). . : . (contextualizing) and with drawing little to no
draw h L Is aware of drawing conclusions that the . P N
. Draws conclusions that the solution implies R L conclusions that the solution implies about | evidence.
conclusions . P— solution implies about the original L P
about the original situation. . the original situation.
situation.
Determines if the mathematical answer - .
. . Partially determines if the mathematical
makes sense in terms of the original . P R .
Lo X R answer makes sense in terms of the Limited in determining if the mathematical
situation and verifies the answer is within a s Lo .
7als, . 0|’|gl"a] situation, answer makes sense in terms Of the Demonstrates
Validate the valid range of values. . . o 5
. . . . Demonstrates awareness that the answer is original situation. little to no
conclusions Determines if conclusions are satisfactory S N N . . . N
. . . - within a valid range of values. Shows little awareness that verification of | evidence.
in all respects; if not, shows evidence of . . e . N
. . . Partially determines if conclusions are the solution should be made.
iteration of the process to improve the .
satisfactory.
model.
. . . . . Limited in communicating the model,
Communicates the model with full Communicates the model with partial . P . Demonstrates
Report the . P . . A . explanations, and justifications .
. explanations and justifications of explanations and justifications of " S " e little to no
solution . N . ating little ling of the N
assumptions and choices made. assumptions and choices made. . evidence.
problem and solution.
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