Detecting Temporal Dependencies in Data
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Abstract

Organizations collect data from various sources, and these datasets may have characteristics that are unknown. Selecting
the appropriate statistical and machine learning algorithm for data analytical purposes benefits from understanding these
characteristics, such as if it contains temporal attributes or not. This paper presents a theoretical basis for automatically
determining the presence of temporal data in a dataset given no prior knowledge about its attributes. We use a method to
classify an attribute as temporal, non-temporal, or hidden temporal. A hidden (grouping) temporal attribute can only be
treated as temporal if its values are categorized in groups. Our method uses a Ljung-Box test for autocorrelation as well as
a set of metrics we proposed based on the classification statistics. Our approach detects all temporal and hidden temporal

attributes in 15 datasets from various domains.
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1. Introduction

Datasets can be temporal or non-temporal. A dataset
is temporal if one or more attributes is a time sequence
[1]. An example of a temporal dataset is a stock market
dataset, in which each value of an attribute corresponds
to the daily stock price. Time series normally present
a time-dependency, meaning that a value is dependent
on its past values. Time-series analysis has applications
ranging from stock market prediction to digital signal
processing and has been studied in statistics [1], econo-
metrics [2], and in communications [3].

Data analysis techniques depend on the type of data.
Techniques for non-temporal data, such as Support Vec-
tor Machine (SVM) [4] and Isolation Forest (IF) [5] only
discover associations among attributes of individual data
records and cannot be used for analyzing time-series data
because associations may exist among multiple records in
a time series [6]. Other approaches, such as Autoregres-
sive Moving Average (ARIMA) [7] and Long Short-Term
Memory (LSTM) [8], are more suitable for either pre-
diction or optimization for temporal data analysis [9]
techniques.

It is critical to understand the existence of temporal
dependencies in a dataset in advance in order to choose
the best analysis approach. Existing analysis approaches
rely on domain experts to identify the type of data and to
choose appropriate techniques to model the data. How-
ever, in big datasets, there can be a large number of at-
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tributes to be analyzed by the experts. Moreover, even
domain experts may not be aware of temporal dependen-
cies among a subset of attributes in a big dataset. An ex-
ample is a health data warehouse to which temporal and
non-temporal data is automatically loaded from multiple
source hospitals through an automated Extract, Trans-
form, Load (ETL) process [10]. Every patient can have
a set of temporally dependent records, such as records
related to their lab tests. Explicit temporal information,
such as a timestamp that identifies when data is captured
as well as attribute names that indicate temporal char-
acteristics may change through the ETL transformation.
For example, the name of the Patient_Height attribute
may change into a random name through the transfor-
mation process. This data modification can make the
temporal nature of the target attribute unknown to the
researchers who are using the data for making critical
decisions on disease, treatments, and medications.

To the best of our knowledge, there is no prior attempt
on the detection of temporal dependencies in datasets.
Such dependencies are presumed to be known before-
hand, which works only for well-understood datasets.
However, where domain experts lack adequate knowl-
edge about the data characteristics, there is a need to
automatically detect whether or not a dataset is temporal
in order to choose the right technique and have a fully
automated process. Our work fills this gap.

We developed a method to determine whether or not
a dataset contains temporal attributes. Moreover, our
approach automatically identifies grouping attributes.
A grouping attribute is such by which we can group
the dataset records and obtain intergroup temporal at-
tributes but not intragroup. A dataset may have one or
more grouping attributes. The proposed algorithm is
based on a portmanteau test [1] for autocorrelation to
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determine the presence of temporal data. To find group-
ing attributes that yield temporal sequences we use a
brute force approach by testing each unique value as
a possible grouping attribute. Finally, we propose met-
rics that help determine whether the result of the port-
manteau test should be accepted or rejected based on
an integrated perspective of the dataset. We evaluated
the proposed method on fifteen datasets, where each
attribute was given a priori classification by domain ex-
perts. We demonstrated that our approach was able to
discover all the temporal attributes.

The paper is organized as follows. Section 2 presents
the theoretical background that forms the basis of our
work. Section 3 discusses our proposed approach to de-
tect temporal dependencies in datasets. Sections 4 and 5
describe our experiments and results using 15 different
datasets. Section 7 concludes the paper.

2. Background

In this section we provide some background on time se-
ries analysis and autocorrelation theory, which is needed
to understand the proposed method.

2.1. Time Series

A time series is a sequence of observations equally spaced
and ordered by time [11]. Normally, these observations
are not independent from each other because their rela-
tive order is important. This non-independence means
that there is a temporal dependence implying that future
values are influenced by past values. The classical ap-
proach for analyzing temporal series is to consider them
as a combination of four components. This combination
can be additive or multiplicative:

1
@

X; = Trend + Seasonal + Cyclical + Irregular

X; = Trend - Seasonal - Cyclical - Irregular

where X; is a temporal series.

A secular trend (Trend in Egs. 1 and 2) describes the
consistent tendency of the data over a long period. A
seasonal variation (Seasonal in Egs. 1 and 2) describes the
periodic fluctuation within cycles. The cyclical compo-
nent (referred to as Cyclical in Eqgs. 1 and 2) describes to
longer periodic fluctuations. The irregular component
(Irregular in Eqs. 1 and 2) describes small changes that
are unpredictable.

A time series is said to be stationary if its statistical
properties do not change over time, that is, if it has con-
stant mean and variance, and covariance is independent
of time.

Finally, autocorrelation is a measure of the similarity
of the observations at certain lag, that is, the correlation

of the series with a delayed copy of itself. It gives critical
information on whether a value in the series can be used
to infer information about another value. A common way
to analyze temporal data is to create a model that fits the
data, and the most widespread technique is regression
analysis, which uses autocorrelation [12]. Therefore, au-
tocorrelation is going to be the most important metric
to determine if a dataset has or does not have temporal
dependence.

2.2. Testing Autocorrelation

Most of the literature on autocorrelation of time-series is
about evaluating the fitness of an autoregressive model,
which is done by analyzing the autocorrelation of the
model’s residuals. However, because we do not have
prior knowledge about the data we are unable to ap-
ply these methods which require certain assumptions
[13]. The most popular methods are Ljung-Box [14], Box-
Pierce [15] and others like Breusch-Godfrey [16], Daniel-
Pefia [17] and Monte-Carlo [18] which overcomes some
of the limitations of the first two [14, 15] but are more fo-
cused on time-series model’s residuals. Both Ljung-Box
and Box-Pierce methods are portmanteau tests which
allows testing the autocorrelation of a time series at mul-
tiple lags at the same time. The null hypothesis of the
test is that the data is independently distributed while
the alternative hypothesis is that the data exhibits serial
correlation up to any lag. The distribution of the tests
approximates asymptotically to a y? and the rejection
of the null hypothesis will indicate to us that there is
autocorrelation in our data.

The method that we used is Ljung-Box, which is a
modification of Box-Pierce and it approximates better to
a x? [14]. The formula is:
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where n is the number of samples, m is the maximum lag
to test for autocorrelation, and r is the autocorrelation.
The degree of freedom of the )(2, when there is no
other information about the data, should be equal to
the number of lags up to where the autocorrelation
is being tested. The choice of lag is difficult when
no information about the data is known. The higher
the lag the lower the performance of the test. Also,
the lag should be a fraction of the sequence length.
For example, the Stata implementation [19] uses the
rule of m=min(n/2,40), while Box et al. [20] suggest
m=20, and Tsay [21] suggests m=In(n) warning that
when seasonal behavior is expected, this behavior
needs to be taken into consideration and lag values
at multiples of the seasonality are more important.
Escanciano and Lobato [22] present a portmanteau test



date county cases deaths

date county cases deaths
2021-01-29 Lanmer 17914 1920

2020-01-21  Snohomish 1 0.0
2021-01-30 Larimer 17914 1920

2020-01-22  Snohomish 1 0.0
2021-01-31 Larimer 17914 1920

202001-23  Snohomish 1 0.0
2021-02-01 Lanmer 18115 196.0

2020-01-24 Cook 1 0.0
2021-02-02 Larimer 18160 198.0

2020-01-24  Snohomish 1 0.0
date county cases deaths

2021-02-02 Sweetwater 3510 33.0
2021-01-29 Boulder 17225 2320

2021-02-02 Teton 3151 7.0
20210130 Boulder 17279 2320

2021-02-02 Uinta 1975 12,0
2021-01-31 Boulder 17329 2320

2021-02-02  Washakie a67 26.0
2021-02-01 Boulder 17376 2320

2021-02-02 Weston 611 5.0

2021-02-02 Boulder 17433 2320

Figure 1: Example of groups created by filtering by the at-
tribute county’s values. Left shows the entire dataset. Right
shows the groups. This dataset has no obvious temporal de-
pendent data until we do the grouping by ‘county’. Only then,
‘deaths’ and ‘cases’ have temporal dependency.

that automatically chooses the lag.

3. Our Approach

Based on possible temporal characteristics, we catego-
rized datasets into three types.

« No temporal dependence: Given a dataset with
no temporal information, no autocorrelation is
expected.

« A continuous evenly-sampled time-ordered
dataset: Given a dataset that corresponds to a
single time window, we can detect the temporal
dependence by computing the autocorrelation of
each attribute over the entire dataset.

« Temporal dependence within a grouping at-
tribute: There is no observable temporal depen-
dence when the dataset is considered as a whole,
but the temporal dependence becomes appar-
ent when grouped by some attribute. In such
a case, we can detect the temporal dependence by
computing the autocorrelation of each attribute
within each group. Finding the proper grouping
attribute is the main challenge in this case.

Figure 1 exemplifies the third case, where a dataset
may have hidden temporal dependencies that are uncov-
ered once the proper attribute is used to form groups. On
the left, the entire dataset does not exhibit any autocorre-
lation for any of the attributes. On the other hand, on the
right, after grouping by attribute ‘county’ the attributes
‘deaths’ and ‘cases’ correspond to temporal series.

Our Algorithm

We proposed an algorithm that aims to detect the data
with temporal dependency. In order to do this, we split
the algorithm in two stages, A and B, as shown in Figure
2.

A: DB analysis B: metric analysis
o Metrics
oB [ ™, Results
— Brute force
l_j_' |tera+1t|on —| Decisiontree |—
o classification
N ,/’ N S

Figure 2: High-level overview of the proposed method.

In stage A, we do nested iterations over all the numeric
attributes and all their unique values. We group the
dataset by those values and classify all other attributes
as time-dependent or not. As an example, using dataset
from Figure 1, while we are at the iteration of the attribute
‘county’, we group by ‘county’, and for each group, we
classify the other attributes (‘date’, ‘cases’, and ‘deaths’)
as temporal or not. The following pseudo code describes
the process, which computes a set of metrics we analyze
in stage B using a decision tree to determine the temporal
attributes.

for each attribute A do
for each unique value x of A do
smallDB = SELECT * WHERE A = x;
classification(smallDB);
end
end

The classification part of stage A is diagrammed in
Figure 3. It consists of analyzing a single attribute and
determining if it has autocorrelation. We do a Ljung-Box
test to detect statistically significant autocorrelation. In
parallel, we apply a threshold (0.5 in our examples) to
determine if the autocorrelation is also quantitatively
significant for the specific posterior use of the dataset. If
both tests pass, we consider the sequence to have tempo-
ral dependency.

The metrics outputted on stage A consists of a table
showing statistics of all the classification when grouping
the dataset by each attribute. The rows are the attributes
of the dataset and the columns are the metrics described
in Table 1. To address the first and second types of dataset
described at the beginning of this section, we add a row
consisting of no-grouping-by-any-attribute, where we
show the classification of the attributes if no grouping is
done. As an example of how the metrics are computed,
let us consider the dataset from Figure 1. First, we group
by ‘date’ and classify each attribute as temporal or not.
In this case, in none of the groups the attributes were
classified as temporal. Next, we group by ‘county’ and
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Figure 3: Diagram of proposed classification algorithm.

classify ‘cases’ and ‘deaths’ as temporal (‘date’ is not
considered as it is not a numerical attribute). As some
particular counties might have only ‘cases’ being clas-
sified as temporal, the average of attributes detected as
temporal when grouping by ‘county’ is less than 2. Figure
4 shows the average is 1.93 in the resulting table.

Table 1
Metrics
Name Description
Percentage of records from groups with at least
% data one attribute classified as temporal over the entire
dataset.
Count of groups with at least one attribute classified
groups
as temporal.

Average of the count of attributes classified as tem-

t tt
avg_temp_a poral over the groups.

std Standard deviation of avg_temp_att.
Average of maximums autocorrelations over all
avg_corr groups. Maximum values are calculated within a
group, over all attributes classified as temporal.
Maximum autocorrelation over all attributes and
max_corr

groups.

In average it detected 1.94 attributes with autocorrelation when
grouping by 'county'. That means that for some counties
autocorrelation was not found in both numerical attributes.

% data groups. avg temp att std  avg cormr  max corr

date o 0 NaN NaN  0.000000 0.000000
county %5 182 1939158 0239041 15814377 18.813475
cases o 196 1.000000 0.000000 0.616551 1.703790
deaths 1 a4 1000000 0000000 0833849 3475165
no-grouping | 100 1 000000 0.000000 0.000000  0.000000

The 95% indicates that for some™When grouping by 'county'
counties {(corresponding to 5% of there were 1923 different groups.
the data) no autocorrelation was When the database is not grouped,
found in any attribute. only one group is found.

Figure 4: Example of the analysis of the metrics using exam-
ple from Figure 1.

Stage B consists of analyzing the metrics from the
resulting table to determine if grouping by attributes gen-
erates temporal sequences. We designed a decision tree,
shown in Figure 5 to guide the analysis of the table. The
tree first discards attributes with small percentage of data

used, as they are considered not representative. Similarly,
the attributes that produced only one group (or none) are
discarded as they do not produce multiple groups with
temporal dependence. Based on the definition of the met-
rics, only groups with some autocorrelation are being
counted. For example, in Figure 6, when grouping by
the ‘date’ attribute, none of the resulting groups presents
autocorrelation. As a result, the group count metric for
‘date’ is equal to 0. Next, the average count of attributes
with detected autocorrelation is used to discard attributes,
where the larger is preferred (as far as the standard de-
viation is small). This condition is the primary metric
to analyze the attributes, as it values more the groups
that in average have more attributes with autocorrelation.
Additionally, the average of the autocorrelation of each
group is evaluated and those with the highest values are

considered.
- (=]
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%data is small
avg_temp_att

is much smaller than
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Figure 5: Decision tree to analyze results.

Y

Zvg_con
and max_corr are
much smaller than
others

The final result consists of the attributes with temporal
dependence along with the percentage of times it was
detected as temporal over all groups.If the percentage is
lower than 50% we don’t consider that attribute as tem-
poral for further analysis. Figure 6 shows an example of
this result when grouping by the ‘county’ attribute. In
this example, both ‘cases’ and ‘death’ attributes have au-
tocorrelation and were detected as temporal in more than
50% of times over all groups. As a result, both attributes
are considered as temporal if we group the dataset by
‘county’.

4. Experiments

We conduct different experiments to show how the met-
rics we defined can help determine if there is temporal
dependence in the dataset. We run the algorithm against



Ocurrences [%]

cases 100.000000

deaths 93.915757
Figure 6: An example of attributes with temporal depen-
dence.

15 datasets, five for each of the three categories men-
tioned in Section 3. For each of these categories, we
explain one dataset in detail as an example. In the follow-
ing, we describe the research questions that we answer
through our experiments.

Q1: Can the proposed approach correctly identify at-
tributes with temporal dependence in the datasets?

We answer this question using the domain knowledge.
Domain experts label an attribute as positive or negative
depending on whether or not the attribute has temporal
dependency. We construct a contingency matrix and
calculate the accuracy (eq. 5) and the Fl-score (eq. 4)
for each dataset. We include the accuracy because the
F1-score is not applicable for the cases where there are
no temporal attributes.

TP

F1=
TP + 1/2(FP + FN)

©

TP+TN )
TP+TN + FP+FN

Q2: Can the approach correctly identify grouping at-
tributes to form multiple temporally dependent sequences?

Using same evaluation metrics, we analyzed if the ap-
proach can correctly identify attributes by which we
can group the dataset records into multiple temporally-
dependent sequences. For each dataset, we first identify
if it has such an attribute. Typically, there are multiple
possible grouping attributes. For example, in a dataset
containing information about suicides all over the world,
a grouping attribute can be each country, but at the same
time, there could be trends related to other attributes,
such as gender. Therefore, we do not do a specific anal-
ysis on each of the possible grouping attributes, but we
limit the analysis to the existence or not of any. The
F1-score is calculated for all the datasets.

All the datasets used in this study are publicly avail-
able and were picked to exemplify various categories
(Appendix B).

ACC =

5. Results

In this section, we first present the summary of the results
for each dataset. Then, we explore with more details
some examples for each specific case.

Figure 7 shows the scores for each dataset. Each row
corresponds to a dataset, where the first five (election, in-
comes, countries, biomechanical, and crime) do not have
temporal dependence. The next ten have temporal de-
pendence, but only the last five have grouping attributes
that produce temporal sequences (covid2, wage, market,
avocado, and suicides), while the five in the middle do
not (codivl, energyl, yahoo, traffic, india). Each of these
cases is indicated by column ‘case’ and the numbers 0,1,2
correspond to the same order of categories explained in
Section 3. The columns ‘FP’, ‘TP’, ‘FN’, and ‘TN’ count the
number of attributes that have been classified as temporal
or not and are false positive, true positive, false negative,
and true negative respectively. The columns ‘ACC’ and
‘F1’ are the accuracy and the F1-score of the classification
respectively. Following, ‘# temp att detected’ is the ratio
the attributes that were correctly detected over the total
number of temporal attributes. The next three columns
refers to the detection of the grouping attributes, where
‘grouping’ indicates if the dataset has one or more group-
ing attributes, ‘grouping detected’ if the algorithm found
any, and ‘contingency’ specifies the type of error or suc-
cess. Finally, the bottom part of the table summarizes
the ‘contingency’ column and shows the F1-score for the
detection of grouping attributes.

For case 0, in two of the five datasets, there were at-
tributes that were detected as temporal. As there is no
temporal attribute, the F1-score is not applicable for this
case, so only the accuracy should be taken into account.
In the entire table, these are the only two cases with ac-
curacy and F1-score (when applicable) lower than 1. In
none of the datasets, an attribute was falsely considered
as a grouping attribute. Moreover, in all datasets with
grouping attributes, those attributes were successfully
found, yielding a F1-score of 1.

5.1. No Temporal Dependencies Datasets

To exemplify this case, we have the ‘elections’ dataset,
which consists of reported votes by county in the gov-
ernor race in the US elections 2020 (Figure 8). It has
1025 entries, 2 non-numeric attributes, and 3 numerical
attributes, none of which has temporal dependence.

Figure 9 shows that no autocorrelation was found, as
expected.

One of the limitations of using autocorrelation, as we
will discuss in Section 6.1, is that other types of relation-
ships can also produce correlation. To illustrate this, we
used the ‘biomechanical’ dataset (Figure 10), for which
there are two false positives based on the result table
of Figure 7. The dataset consist of six biomechanical at-
tributes derived from the shape and orientation of the
pelvis and lumbar spine of 310 patients. Despite the lack
of temporal dependence in the data, the results, as shown
in Figure 11, indicates the presence of autocorrelation



# temp att grouping
case FP TP FN TN ACC Fl1 detected grouping detected Contingency
elections [ ] o o0 3 1 NA 0/o False False ™
incomes 0| 0 o o 3 1 NA o/o False False TN
countries o 2 0 0 16 088 0 2/0 False False ™
biomechanical 0 2 o] 0 4 066 O 210 False False TN
crime 0| o0 0 0 13 1 NA olo False False ™
covidl 1|0 2 0 0 1 1 202 False False ™
energyl 1 o] 4 0 O 1 1 a4 False False TN
yahoo 1 0 101 0 O 1 1 | 101101 False False ™™
india 1, 0 2 0 0 1 1 212 False False TN
exchange 1 o] g8 0 0O 1 1 8/8 False False ™
covid2 2|0 2 0 1 i i 202 True True TP
wage 2 0 1z 0 0 1 1 12/12 True True TP
market 2|0 5 0 0 i i 5/5 True True TP
avocado 2|0 1m 0 O 1 1 11/11 True True TP
suicides 2|0 6 0 0 i i 6/6 True True TP

F1L FN FP TN TP

grouping 10 0.0 0.0 100 5.0

Figure 7: Results summary for all datasets. Case 0, 1, and 2 corresponds to no-temporal information, no-grouping temporal

information, and grouping temporal information.

state county current votes total votes percent
Delaware Kent County 85415 87025 100
Delaware New Castle County 280039 287633 100
Delaware Sussex County 127181 129352 100
Indiana Adams County 14154 14209 100
Indiana Allen County 168312 169082 100

Figure 8: US elections dataset

% data groups avg temp att std avg corr max corr

state o o MaM NaN 0.0 o

county v] v] NaM NaN 0.0 v]
current_votes v] v] NaM NaMN 0.0 v]
total_votes o o MaM NaN 0.0 o
percent v] v] NaM NaMN 0.0 v]
no-grouping 100 1 0.0 00 0.0 v]

Figure 9: US elections dataset grouping attribute results

in 2 out of the 5 numerical attributes, namely, ‘lumbar
lordosis angle’ and ‘degree spondylolisthesis’.

5.2. No-grouping Temporal Datasets

The ‘covidl’ dataset, shown in Figure 12 has daily infor-
mation about positive cases and deaths caused by COVID-
19 in the United States.

The results in Figure 13 shows that no-grouping is the
best option, which is correct as none of the attributes
allows to form groups. The detected temporal attributes,

as expected are both the number of cases and deaths, as
shown in Figure 14.

5.3. Temporal Dependencies within
Grouping Attributes

To illustrate this case, we used the ‘covid2’ dataset from
Figure 15, which consists of daily deaths and positive
cases of COVID-19 by county in the United States. There
are two differences between ‘covid1’ and ‘covid2’ datasets.
First, there are two non-numeric attributes corresponding
to counties and states, which can be used to establish a
geographical relation between the records. Second, there
is a numerical attribute ‘FIPS’, which is a code to identify
counties and states. Therefore, we expect this attribute
not to have autocorrelation, but to be a potential grouping
attribute.

The results in Figure 16 show that if we do not split the
dataset in groups, none of the attributes can be consid-
ered to have temporal dependence. Instead, if we group
by ‘county’ or ‘fips’ there are 2 attributes in average with
autocorrelation. Despite that grouping by the attributes
‘date’, ‘state’, ‘cases’, ‘fips’ have non-zero values in the re-
sulting table, the percentage of used data is low. Thus, we
ignore grouping by these attributes. Figure 17 shows, that
when grouping by ‘county’ the attributes ‘cases’, ‘deaths’,
and ‘fips’ could be considered as temporal sequences.
Nevertheless, we discard ‘fips’ as it has an occurrence of
approx. 22%, which is lower than our defined threshold
of 50%.
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Figure 10: Biomechanical dataset

22 552586
10.060881
22 218482
24 652878

9.652075

% data groups avg_temp_att std

pelvic_incidence
pelvic_tilt
lumbar_lordosis_angle
sacral slope
pelvic_radius

degree spondylolisthesis
class

no-grouping
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o MaN NaN
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MaN  NaN
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o MaN  NaN
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lumbar_ degree_
pelvic tilt lordosis angle sacral slope pelvic radius spondylolisthesis  class
39.609117 40.475232 98.672917 -0.254400 Hemia
25.016378 28.995860  114.405425 4.564258 Hemia
50.082184 46613539  105.985135 -3530317 Hemia
44311238 44644130 101.868495 11711523 Hemia
28.317406 40.060784  108.168725 7.918501 Hemia
avg_corr max_corr date county state fips cases deaths
0.000000  0.000000 ] 3
2020-01-21 Snohomish Washington 53061.0 1 0.0
0.000000  0.000000
2020-01-22 Snohomish Washingtom 53061.0 1 0.0
0.000000  0.000000
0.000000  0.000000 2020-01-23 Snohomish Washington 53061.0 1 0.0
0.000000  0.000000 2020-01-24 Cook llinois  17031.0 1 0.0
0.000000  0.000000 2020-01-24 Snohomish Washington 53061.0 1 0.0
0.000000  0.000000
0.506095 0.506132

20 00

Figure 11: Biomechanical dataset temporal attribute results

date cases deaths

2020-01-21 1
2020-01-22 1
2020-01-23 1
2020-01-24 2
2020-01-25 3

o o o o o

2021-01-25 25871349 436780
2021-01-30 26105263 439421
2021-01-31 26218775 441285
2021-02-01 26358607 443235
2021-02-02 26472841 446643

Figure 12: Covid-19 in the US dataset

% data groups avg temp att std avg_corr max_corr

date o 0 MaM MaM  0.000000 0.000000

cases o 8] MaM MaMW  0.000000  0.000000
deaths 10 al 10 00 0791398 1582797
no-grouping 100 1 20 0.0 17774385 17.830101

Figure 13: Covid-19 in the US dataset grouping attribute

results

cases

deaths

Ocurrences [%4]
100.0
100.0

Figure 14: Covid-19 in the US dataset temporal attribute

results

2021-02-02  Sweetwater Wyoming 56037.0 3510 330
2021-02-02 Teton Wyoming 56039.0 3151 7.0
2021-02-02 Uinta Wyoming 56041.0 1975 120
2021-02-02 Washakie Wyoming 56043.0 &e7 260
2021-02-02 Weston Wyoming 56045.0 611 50

Figure 15: Covid-19 in the US by county and state dataset

% data groups avg temp aft std avg corr  max_corr

date v] 18 1.000000 0000000 0820708  1.681197

county 99 1927 2159315 0506363 16.542085 19.672386
state 9 19 1.842105 0364642 4278340 18517124

fips 99 3216 1852736 0212202 17.516142 1B.813475

cases o 361 1.022161 0147206 0.634591  1.703750
deaths 1 345 1.066667 0249444 0.817670 3.475165
no-grouping 100 1 0.000000 0.000000 0.000000  0.00000O0

Figure 16: Covid-19 in the US by county and state grouping
attribute results

Ocurrences [%]

CASEs 99.792423
deaths 93.720810
fips 22.418267

Figure 17: Covid-19 in the US by county and state temporal
attribute results

6. Discussion and Future Research

We proposed an approach to classify datasets based on
whether or not they contain temporally dependent data.
The core of our algorithm is based on the autocorrelation
as the method to determine if there is a temporal depen-
dence in a section of the data. Our algorithm relies on a



set of proposed metrics to integrally classify the dataset.
Among these metrics, the percentage of data used in
the analysis, the number of groups, and the average of
autocorrelated sequences found were the three metrics
that provided the most relevant information for making
a decision. The other metrics were not used in any of
the examples but we believe that they could come handy
in larger datasets. For example, the standard deviation
should not be too large as it would mean that there is a
particular grouping attribute value with more temporal
sequences than the rest, which is probably as a result
of an outlier, and should be handled carefully to avoid a
false positive. Both the average autocorrelation and the
maximum autocorrelation are used as tiebreakers when
the other metrics have same values.

Our approach could identify temporal sequences,
when the sequence corresponds to the entire dataset,
and also when grouping by attributes was needed. Typi-
cal datasets fall in both cases, meaning that an attribute
can present autocorrelation as a whole sequence and as
multiple grouped subsequences. The latter case is impor-
tant because it allows to improve the data analysis. For
example, if we have an outlier detection algorithm for
temporal data, we may apply that to a single sequence
as well as to different subsequences constructed from
the same data, to increase the chance of detecting more
outliers. Another use case is when the algorithm has
high time complexity. In such a case, it may be better
to only explore the outliers in the smaller subsequences
than in the entire sequence.

6.1. Limitations

We identify the following scenarios where our approach
might failed to detect temporal dependency on the at-
tributes.

« Small sample size: when the number of samples
is small, no statistical test will have enough sig-
nificance.

+ Unevenly-sampled data: when there is no con-
stant time-spacing between samples. If the un-
even sampling is due to missing data points and
the sample size is large enough, the approach
should converge to the same values as if all data
points were present. However, if there is no
pattern in the sampling rate, different methods
should be used to calculate the autocorrelation
indirectly, such as estimating the autocorrelation
using the statistical approaches [23].

« Missing values: when there are null values in the
data. there are many methods [24] to overcome
missing values in time-series data and specifically
for the Ljung-Box test[25]. However, under the
assumption that we do not have prior information
on the data, none of these methods can be used.

« Cross-sectional data: when there are dependence
other than temporal between attribute values.
Even though autocorrelation is a necessary condi-
tion to exploit temporal data information, it is not
a sufficient condition to determine if the data is
temporal. For example, our method will fail when
a dataset has correlations that are not temporal
but spatial [26].

« Non-stationarity: when time-series statistical
properties vary over time. In such cases, the auto-
correlation cannot be calculated using the mean
and the variance but needs to be estimated. Simi-
lar methods could be used as when dealing with
missing values [27].

The decision tree to analyze the metrics is currently
not automated as we require a higher volume of use cases
to generalize the rules. Similarly, for tuning the hyperpa-
rameters, such as the autocorrelation threshold we used
to determine if an autocorrelation was significant, we
need more extensive analysis and cases.

6.2. Future work

Statistical exploration and optimization We will
investigate whether different types of correlations, such
as Pearson, Kendall, Spearman, and estimation from the
power spectral density can be used within the Ljung-
Box or Box-Pierce test [28]. We will conduct a deep
analysis on which autocorrelation function to use when
no prior information on the data is known. Currently,
the algorithm goes over all numeric attributes searching
for autocorrelation. This is time consuming and should
be, if possible, improved.

Working with categorical attributes Datasets may
consist of categorical attributes, such as boolean labels,
names, IDs, and dates. These attributes may be temporal
as well. For example, a positive value for a patient with a
non-curable disease is unlikely to become negative in the
future. Thus, finding a way to process such attributes is
important. We will use one-hot encoding to pre-process
the categorical attributes.

7. Conclusions

In this paper, we have presented a technique that uses
autocorrelation to determine the presence of temporal
data within its attributes without any prior knowledge
about the database. The algorithm was tested for different
databases, including those with and without temporal
dependence data, and specifically focused on databases
containing hidden temporal groups. For these cases, we
proposed metrics to find the grouping attributes that



unveil such hidden groups. The results show that we
were able to successfully classified attributes as temporal
or not, and also to find grouping attributes that form
temporal groups. Finally, we discussed the limitations of
the approach and potential improvement paths.
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https://www.kaggle.com/muralimunnal8/
india-population

A. Code Population of india by year.
» exchange
https://www kaggle.com/rohithbollareddy/

foreign-exchange-in-india-yearlysource-rbi

The code used for this paper is available in GitHub:
https://github.com/JCuomo/TemporalDependenceDB

B. Datasets

« elections
https://www kaggle.com/unanimad/
us-election-2020
“governors county” file.

General information about reporting votes to
governor race by county.

« incomes
https://www.kaggle.com/jonavery/
incomes-by-career-and-gender
American citizens incomes from 2015 broken
into male and female statistics.

« countries
https://www kaggle.com/fernandol/
countries-of-the-world
Information on population, region, area size,
infant mortality and more.

+ biomechanical
https://www kaggle.com/uciml/
biomechanical-features-of-orthopedic-patients
Patient data of six biomechanical attributes
derived from the shape and orientation of the
pelvis and lumbar spine.

« crime
https://www.kaggle.com/mascotinme/
population-against-crime
FBI crime statistics for 2012 on population less
than 250,000.

« covid1l
https://raw.githubusercontent.com/nytimes/
covid-19-data/master/us.csv
Covid cases and death statistics for USA.

+ energy
This dataset is proprietary and cannot be dis-
tributed.

Daily energy delivery by Fort Collins power fa-
cility.

» yahoo
https://webscope.sandbox.yahoo.com/
"A3Benchmark all” file
Real and synthetic time-series. The synthetic
dataset consists of time-series with varying trend,
noise and seasonality. The real dataset consists
of time-series representing the metrics of various
Yahoo services.

Exchange currencies by year.

covid2
https://raw.githubusercontent.com/nytimes/
covid-19-data/master/us-counties.csv

Covid cases and death by County in the USA.
wage

https://kaggle.com/lislejoem/
us-minimum-wage-by-state-from-1968-to-2017
USA minimum wage by State from 1968 to 2020.
market
https://raw.githubusercontent.com/selvag6/
datasets/master/MarketArrivals.csv

Indian markets quantity and price per year.
avocado
https://www.kaggle.com/neuromusic/
avocado-prices

Avocado weekly 2018 retail scan data for National
retail volume (units) and price.

suicides
https://www.kaggle.com/russellyates88/
suicide-rates-overview-1985-to-2016
Worldwide suicide statistics per year.
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Table 2

Description of Datasets

DB Link Description

elections https://www.kaggle.com/unanimad/us-election- General information about reporting votes to gover-
2020 "governors county” file. nor race by county.

incomes https://www.kaggle.com/jonavery/incomes-by- American citizens incomes from 2015 broken into
career-and-gender male and female statistics.

countries https://www.kaggle.com/fernandol/countries-of- Information on population, region, area size, infant

the-world

mortality and more.

biomechanical

https://www.kaggle.com/uciml/biomechanical-
features-of-orthopedic-patients

Patient data of six biomechanical attributes derived
from the shape and orientation of the pelvis and
lumbar spine.

crime https://www.kaggle.com/mascotinme/population-  FBI crime statistics for 2012 on population less than
against-crime 250,000.
covid1 https://raw.githubusercontent.com/nytimes/covid-  Covid cases and death statistics for USA.
19-data/master/us.csv
energy This dataset is proprietary and cannot be dis- Daily energy delivery by Fort Collins power facility.
tributed.
yahoo https://webscope.sandbox.yahoo.com/ "A3Bench- Real and synthetic time-series. The synthetic
mark all” file dataset consists of time-series with varying trend,
noise and seasonality. The real dataset consists of
time-series representing the metrics of various Ya-
hoo services.
india https://www.kaggle.com/muralimunna18/india- Population of india by year.
population
exchange https://www.kaggle.com/rohithbollareddy/foreign-  Exchange currencies by year.
exchange-in-india-yearlysource-rbi
covid2 https://raw.githubusercontent.com/nytimes/covid-  Covid cases and death by County in the USA.
19-data/master/us-counties.csv
wage https://kaggle.com/lislejoem/us-minimum-wage- USA minimum wage by State from 1968 to 2020.
by-state-from-1968-to-2017
market https://raw.githubusercontent.com/selva86/ Indian markets quantity and price per year.
datasets/master/MarketArrivals.csv
avocado https://www.kaggle.com/neuromusic/avocado- Avocado weekly 2018 retail scan data for National
prices retail volume (units) and price.
suicides https://www.kaggle.com/russellyates88/suicide- Worldwide suicide statistics per year.

rates-overview-1985-to-2016
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