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Abstract. We present a GPU algorithm for performing convolution with decom-

posed tensor products. We experimentally find up to 4.85x faster execution times

than Nvidia’s cuDNN for some tensors. This is achieved by extending recent

advances in compression of CNNs through use of tensor decomposition meth-

ods on weight tensors. Progress had previously been limited by a lack of fast

operations to compute the decomposed variants of critical functions such as 2D

convolution. We interpret this and other operations as a network of compound

convolution and tensor contraction on the decomposed factors (i.e., generalized

tensor operations). The prior approach sees such networks evaluated in a pairwise

manner until the resulting output has been recovered, by composing functions in

existing libraries such as cuDNN. The computational cost of such evaluations de-

pends upon the order in which the index sums are evaluated, and varies between

networks. The sequence of pairwise generalized tensor operations that minimizes

the number of computations often produces large intermediate products, incurring

performance bottlenecks when communicated with the scarce global memory of

modern GPUs. Our solution is a GPU parallel algorithm which performs 2D con-

volution using filter tensors obtained through CP-decomposition with minimal

memory overhead. We benchmark the run-time performance of our algorithm for

common filter sizes in neural networks at multiple decomposition ranks. We com-

pare ourselves against cuDNN traditional convolutions and find that our imple-

mentation is superior for lower ranks. We also propose a method for determining

optimal sequences of pairwise tensor operations, achieving a minimal number of

operations with memory constraints.

Keywords: tensor methods, neural network inference, parallel algorithms

1 Introduction

Tensor decomposition methods have emerged as a means of training highly accurate
convolutional neural networks while greatly reducing the number of model parame-
ters [31, 3, 9, 21, 17]. So-called Tensorial Neural Network methods involving the CAN-
DECOMP/PARAFAC (CP) decomposition [16, 31] in particular demonstrate signifi-
cant promise; some models achieve accuracy scores 99% those of larger models with
1% of the parameters. These Tensorial Neural Networks express individual layers in
deep neural networks as a graph of operations between input data and the factor tensors
obtained from decomposing that layer’s parameter tensor. This graph is referred to as a
tensorial neural network, and these operations are generalized tensor operations [31].
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Although these methods demonstrate significant promise, they are hampered by slow
training speeds even on state-of-the-art hardware.

In this work we present our analysis of the causes of these slowdowns, along with
part of our solution: a new GPU kernel to compute the forward pass of the critical 2D
convolution using filter tensors derived from the CP decomposition. Written in CUDA,
we refer to this as a Fusion method since it fuses the component operations of partici-
pating tensors, performing them in a single pass. This algorithm takes advantage of the
many-thread concurrency of the GPU to execute the fused operation in parallel while
minimizing communication with global memory. This algorithm does not achieve a
minimal number of floating point operations; it redundantly recomputes intermediate
values in parallel to avoid excessive global memory access. We benchmark our algo-
rithm for runtime performance against the highly-optimized convolution algorithms in
Nvidia’s cuDNN library. As Figure 6 shows our fusion algorithm is largely superior for
a variety of common convolutional layer sizes found in neural networks [19].

We also propose an alternative approach, a graph search algorithm which determines
the optimal sequence of pairwise operations needed to evaluate the tensorial neural

network. This approach is a modification of a similar method in the field of quantum
many-body physics: the netcon [28] solver for optimal sequences of tensor network

contractions [5, 7] where no convolution operations are involved. We extend this as
gnetcon to support all generalized tensor operations, rigorously defined later in this
paper.

The remainder of this work is organized as follows: the rest of Section 1 describes
important background information on tensor networks, tensorial neural networks and
the CP decomposition. Section 2 analyzes the 2D convolution operation in both the
full-sized and CP decomposed domains. Section 3 describes our GPU algorithm for per-
forming the convolution forward pass with decomposed filter factors. Section 4 presents
our work on identifying optimal pairwise sequences for evaluating tensorial neural net-
works. In Section 5 we outline our testing and benchmarking methodology, and in Sec-
tion 6 we present the results. We discuss related works in Section 7, and our conclusions
in Section 8.

1.1 Generalized Tensor Operations

Following the convention in quantum physics [25, 11], Figure 1 introduces tensor dia-

grams, graphical representations for multi-dimensional mathematical objects. Here an
array (scalar/vector/matrix/tensor) is represented as a node in the graph, and its order is
denoted by the number of edges extending from the node, where each edge corresponds
to one mode (whose dimension is denoted by the number associated to the edge).

An algebra of primitive tensor operations has been presented which when com-
pounded generalize existing neural network architectures [31]. This extends the tensor

network concept originally from the field of quantum and condensed matter physics [6]
with operations that equate to higher-order multilinear evaluations of individual layers
in a neural network, along with derivative and backpropagation rules.

Three primitive operations are defined, the compound of which are generalized ten-

sor operations. Figure 2 presents the primitives for generalized tensor operations on
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Fig. 1: Tensor Diagrams of a scalar a∈R, a vector v∈RI , a matrix M ∈ R
I×J , and a 3-order

tensor T ∈ R
I×J×K .

high-order tensors, extending the matrix/vector operations1 using tensor diagrams. In
tensor diagrams, an operation is represented by linking edges from the input tensors,
where the type of operation is denoted by the shape of line that connects the nodes:
solid line stands for tensor contraction/multiplication, curved line is for tensor partial

outer product, and dashed line represents tensor convolution. The tensor contraction

generalizes matrix multiplication, while the tensor partial outer product generalizes the
outer product for fibers of the operands. Finally, the tensor convolution can be defined
by any convolution operation ∗ defined for 2 tensors.
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(a) Mode-(R,R) tensor contraction.
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(c) Mode-(I0,J1) tensor convolution .

Fig. 2: Primitives of generalized tensor operations. X ∈ RI0×I1×I2 and Y ∈
RJ0×J1×J2 are input tensors, and T 1 ∈ RI1×I2×J0×J2 , T 2 ∈ RI0×I1×I2×J0×J2 and
T 3 ∈ RI′

0×I1×I2×J0×J2 are output tensors of corresponding operations. Existing tensor
operations are only defined on lower-order X and Y such as matrices and vectors.

A generalized tensor operation can be arbitrarily complicated, which can take more
than two tensors as inputs, and multiple edges are linked simultaneously among the
tensors (an example is Figure 4b). In such a compound operation, different orders of
evaluating the primitive operations yield the same result, though at the cost of different

1 In Figure 2, we illustrate these operations with simple examples of third-order tensors X and

Y , but they also apply for higher-order tensors as rigorously defined in [31].
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computational complexities. In general, it is NP-hard to obtain the best order to evaluate
a compound operation with multiple tensor operands [20]. Using various tensor decom-
position methods, Su et al. [31] convert the layers of existing network architectures into
higher-order tensor network mappings, then use generalized operations to evaluate and
retrain the nets. In doing so they demonstrate a significant reduction in model size while
maintaining or in some cases improving upon the accuracy of the original network.

1.2 CANDECOMP/PARAFAC Decomposition

H

W

S T

H

W

S T

R

Fig. 3: Tensor dia-

gram of CP decom-
position of K.

The CP decomposition [16] is a factorization of an order M
tensor as a sum of R outer products between M vectors, where
R is the tensor rank of the decomposition and each component
vector’s length is equal to the length of the corresponding mode
in the original tensor. For example consider a 4-order tensor
K ∈ RT×S×H×W , with component vectors t(r) ∈ RT , s(r) ∈
RS ,h(r) ∈ RH ,w(r) ∈ RW , the rank R decomposition of K
is the sum (1).

K =
R
∑

r

t(r) ⊗ s(r) ⊗ h(r) ⊗w(r) (1)

where ⊗ denotes the vector outer product. It is common to concatenate the matching
component vectors into M matrices of R columns. In our example this would produce
four matrices T ∈ RT×R,S ∈ RS×R,H ∈ RH×R,W ∈ RW×R. We can now express
the CP decomposition of K element-wise as 2.

Ktshw =
∑

t,s,h,w,r

Ttr · Ssr · Hhr · Wwr (2)

Using our tensor diagram notation described earlier, the CP decomposition of K would
factorize the 4th-order tensor into four matrices, each sharing the R mode in a 4-way
contraction, as demonstrated in Figure 3 and in Equation (3).

K = 1×R
R (S ⊗R

R H⊗R
R W ⊗R

R T ) (3)

where 1 is an all-ones vector of length R.

1.3 Problem Description

The method of [31] has a drawback — the computational and memory cost of the exist-
ing implementation of the generalized tensor operations is high. This problem is mainly
due to the following challenges:
1. Existing neural network frameworks like Tensorflow [10] and Pytorch [27] use tuned

GPU library functions [4] to perform the critical operations of convolution and dense
matrix multiplication. No such operations exist for tensor operations on decomposed
kernels.
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2. Consequently, researchers evaluate decomposed operations as a sequence of pair-
wise tensor operations composed of existing functions like tf.nn.conv2d. This
introduces memory-access overhead due to materializing the intermediate products.
In some cases the storage requirements for these intermediate products exceeds the
available GPU memory.

3. Moreover, there is often no pre-existing implementation of the optimal pairwise se-
quence which minimizes the number of floating point operations when memory is
constrained. Discovering such sequences is in general NP-hard.
Our goal is then to provide implementation schemes that are computation- and

space- efficient. We propose two alternative solutions:
1. Fusing all the component operations in a generalized tensor operation into a memory

minimal fused operation, avoiding computation and memory overhead/bottlenecks of
the intermediate products.

2. Finding sequences for performing pairwise operations for any generalized tensor op-

erations to achieve minimal number of floating point operations under some memory
constraint.

1.4 Contributions

We introduce a Fusion method, a new GPU kernel to compute the forward pass of the
critical 2-D convolution using filter tensors derived from the CP decomposition. We also
propose an alternative approach, gnetcon a graph search algorithm which determines
the optimal sequence of pairwise generalized tensor operations needed to evaluate the
forward pass. Our fused approach implements a space/time trade-off. We store some
small intermediate products to reduce onerous redundant computation, while redun-
dantly computing other intermediates to maintain data locality and eliminate excessive
global memory access. We confirm the speed of this approach empirically in Figure 6
and Table 2. Similarly, we find that our fusion method significantly reduces total global
memory usage as presented in Figure 8 and Table 3. Further details provided in Sec-
tions 5 & 6.

2 Convolution in Tensorial Neural Networks

The goal of our research is to take neural network layers which have been decomposed
using the tensor decomposition methods (a.k.a., Tensorial Neural Networks (TNNs))
in [31] and execute them efficiently on a GPU in parallel. We consider a layer in a TNN
as a generalized neural network, that is a graph of Generalized Tensor Operations on
the multiple component tensors within a layer. The component tensors consist of the
input tensor and the weight tensors which have been decomposed from a higher-order
convolutional layer.

2.1 Convolution-layer in CNN

A traditional 2D-convolutional layer is parameterized by a 4-order kernelK ∈ RH×W×S×T ,
where H,W are height/width of the filters, and S, T are the numbers of input/output
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Fig. 4: Tensor diagram of (a) Convolutional-layer in CNNs and (b) CP-decomposed
Convolutional-layer in TNNs. Both layers map a 4-order input tensor U ∈
RN×S×X×Y to another 4-order output tensor V ∈ RN×T×X′×Y ′

, where X,Y and
X ′, Y ′ are heights/widths of the input and output feature maps.

channels. Our implementation and experiments were conducted using the “channels
first” data format for both the input tensor U and the output tensor V . As illustrated
in Figure 4a, the operation is compound as in Equation (4), where multiple primitive
operations along different modes are executed. Specifically, two tensor convolutions at
mode-(Y,H), mode-(X,W ) and one tensor contraction at mode-(S, S) are performed
simultaneously:

V = U
(

∗YH ◦ ∗XW ◦ ×S
S

)

K (4)

Commonly convolution in neural networks is implemented as a cross-correlation [4],
as we do here. The element-wise direct convolution of input tensor U with the filter ten-
sor K is expressed in Equation (5), although optimized variants such as Fast Fourier
transform and Winograd convolution are often preferred for performance.

Vnty′x′ =
∑

s,h,w

Ktshw · Uns(y′+h)(x′+w) (5)

2.2 CP-decomposed Convolution-layer in TNN

A CP-decomposed Convolution-layer in tensorial neural network is parameterized by 4
decomposed kernels S ∈ RS×R, H ∈ RH×R, W ∈ RW×R and T ∈ RT×R, as shown
in Figure 4b. The weight kernel K in Figure 4a is CP-decomposed as

K = 1×R
R (S ⊗R

R H⊗R
R W ⊗R

R T ) (6)

where 1 is an all-ones vector of length R, and H,W are height/width of the filters, and
S, T are the numbers of input/output channels. Both tensor contraction ×R

R and tensor
partial outer product ⊗R

R are primitives of generalized tensor operations as defined in
Figure 2.
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TNN allows interactions between adjacent kernels through shared edges, crucial for
modeling general multi-dimensional transformations without loss of expressive power.
As illustrated in Figure 4b, each mode of the input tensor U interacts with the one
of the decomposed kernels. The forward pass is as follows: U0 = U ×S

S S, U1 =
U0(∗YH ◦ ⊗R

R)H, U2 = U1(∗XW ◦ ⊗R
R)W and V = U2 ×T

T T , where U0, U1 and U2 are
intermediate objects. We combine the above equations into a sequence of generalized
tensor operation

V = U ×S
S S(∗YH ◦ ⊗R

R)H(∗XW ◦ ⊗R
R)W ×T

T T . (7)

Consider the naive single-element calculation for convolution between an order-4
input tensor U , and four decomposed kernels S, H, W and T

Vnty′x′ =
∑

s,h,w,r

Ttr · Ssr · Hhr · Wwr · Uns(y′+h)(x′+w) (8)

A single element in Equation (8) minimally requires (5SHWR) floating point oper-
ations to compute. However computing Vn(t+1)y′x′ shares many common operations
with Vnty′x′ a fact generally true for Vnt(y′+1)x′ ,Vnty′(x′+1) and other elements cov-
ered by the same filter. Computing the fiber of all T output channels using Equation (8)
takes (5TSHWR) floating point operations. To compute Vn:y′x′ while minimizing
redundant computation for an entire fiber of T output channels, we must share interme-
diate products.

Applying the distributive property of scalar arithmetic, and storing the intermediate
accumulation in a vector of length R, we can express 8 as 9:

ar =
∑

s,h,w

Ssr · Hhr · Wwr · Uns(y′+h)(x′+w)

Vnty′x′ =
∑

r

Ttr · ar

(9)

Computing 9 would require (4RSHW + 2TR) floating point operations for a fiber of
T elements. This is more efficient when T < 1/2SHW , a fact commonly true in neural
network layers. With the added trade off of storing the intermediate accumulation vector.
Similar intermediate storage options are available for the other modes of the tensor.

3 GPU Fused CP Convolution Operation

All results presented in this paper report performance obtained on the Nvidia RTX
2080-Ti (Turing) GPU. This device has a theoretical maximum single precision (32-
bit) floating point performance of 14.1 TFLOPS, which it achieves with 4352 CUDA
cores spread across 68 streaming multiprocessors on chip [8]. This parallelism is ex-
posed to the programmer in an organizational hierarchy of computation with threads,
warps, blocks and grids.

Threads are the smallest unit of compute and are organized into warps of at most
32 sequential threads executing simultaneously, and further grouped into blocks of ex-
ecution that may communicate via shared memory. A grid of blocks is executes in an
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arbitrary sequence to perform the desired calculation on data resident in the devices
global memory. The 2080-Ti has theoretical peak bandwidth for global memory access
of 616 GB/s. While impressive this is insufficient to promptly deliver data to the all ac-
tive threads on chip. Thus many compute kernels are performance limited by memory
load/store operations, not FLOP count. Such kernels are known as bandwidth-bound

kernels. The 2080-Ti alleviates this bottleneck somewhat with a small L1/L2 cache,
which can improve the performance of bandwidth-bound kernels that exploit data local-
ity. The GPU also exposes a set shared memory that may be accessed collaboratively
by threads in a block, a core method of thread communication. The other is the use of
warp-level primitives, where threads in a warp communicate directly.

3.1 Naive Implementation

Algorithm 1 Naive CP Convolution single element

Input: n, t, x′, y′

1: for r < R do

2: for s < S do

3: for h < H do

4: for w < W do

5: Vn,t,y′,x′ +=TtrSsrHhrWwrUn,s(y′+h)(x′+w)

6: end for

7: end for

8: end for

9: end for

A naive implementation of equation (8) can be seen in algorithm 1. The deeply
nested loops redundantly recompute many subproduct terms, and share neither inter-
mediate products, nor common input elements. This latter part causes it to suffer from
substantial bandwidth constraints as adjacent threads load repeated data elements from
global memory.

3.2 Proposed Implementation

For our algorithm to utilize the parallelism provided by the GPU we must split the input
tensor into small independent tiles of data. The output elements obtained from these
tiles are computed at the block level, independently of other blocks in the grid. Thus we
introduce a redundant computation trade off: intermediate results obtained from data
elements fully in the block are shared, while those in the in boundary regions must be
recomputed in each tile.

The fused kernel accepts input data from tensor U in the “channels first” data format,
the format most favorable to cuDNN. Thus a 4-order tensor U has modes batch size
(N), input channels (S), feature height (Y ), and feature width (X) ordered from least
to most frequently varying.
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In our algorithm 2, a block of threads is allocated for each tile of input. At ker-
nel launch, the threads are assigned coordinates denoting which y′, x′ input they will
convolve, and which subset of s channels they will contract. As input channels often

Algorithm 2 GPU Fused CP Convolution

Input: n, t, x′, y′ ,U , T ,S ,H ,W
{Allocate Length R vectors for local intermediates}

1: q ← 0
2: p← 0
3: for s <S ; stride == S TILE do

4: p← 0
5: for h < H do

6: for w < W do

7: p← p+ Un,s(y′+h)(x′+w) ◦Hh: ◦Ww:

8: end for

9: end for

10: q ← q+ p ◦ Ss:

11: end for

12: for t < T do

13: a← 〈q,Tt:〉
14: a←WarpReduce(a, S TILE INDEX)
15: SyncWarp

16: if S TILE INDEX== 0 then

17: Vnty′x′ ← a

18: end if

19: end for

outnumber threads available for contraction, threads loop over channels, striding by the
channel tile size “S TILE”. Each thread maintains a local vector of length R into which
intermediate values accumulate. Assuming small R this vector can be maintained en-
tirely in a thread’s local registers. Threads read input data from a few contiguous regions
of global memory, to maximally utilize global memory bandwidth.

Algorithm 2 assumes the tensor dimensions and the memory constraints are known
at runtime, which is satisfied in TNNs. It further assumes that minimizing FLOPs count
within the provided memory constraint is sufficient for finding an optimal sequence. If
gnetcon fails to satisfy the memory constraint, another approach (such as fusion) with
a smaller memory footprint must be used.

Most global data loads occur in the inner-most loop at line 7. Warps load contiguous
chunks of U and perform an element-wise Hadamard product on the length R row
vectors of the filter factors H and W . Here we exploit the data locality of the L1 and L2
cache. The participating elements from U will be shared by adjacent warps. Sequential
warps which depend upon that region of memory are very likely to find it in the cache
when executing, avoiding global memory loads. Warps also share the same row of the
filter tensors H & W , which is also cached.
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The vector p is local to the thread and never shared. It is element-wise scaled with
a slice of the input channel tensor S for each thread at line 10. Input channel sizes are
commonly large in neural network layers. Accessing that chunk of global memory is
likely to eject the previously cached loads and cause a reduction in performance, so we
perform it independently of the operation at line 7.

After striding over the input channels of the tensor, each thread now contains a
lengthR vector q, which is a partial sum. Looping over output channels t ∈ T , at line 13
each thread performs an inner product calculation with its local q and the output channel
tensor for t, accumulating the product in the scalar a. These threads are adjacent, thus
executing in the same warp, thus at line 14 we use the warp level primitives to share
intermediates, performing a reduction on the values in a spread across each thread. This
performs the reduction in at most log2 (32) = 5 operations, and accumulates the final
sum in the a variable of the warp with index 0. Line 15 is a barrier for the warp of
threads ensuring they have all completed, thus the accumulated sum is correct. This
synchronization barrier does not extend to the rest of the block, and so does not hinder
performance. Finally the thread which has accumulated the result writes it out to global
memory in the output tensor V .

4 Optimal Operation Sequences

Minimizing the number of floating point operations in the evaluation of an input tensor
is a standard approach we consider and measure against the fusion approach. To de-
velop an algorithm which could determine the minimal number of operations needed to
evaluate an input in a tensorial representation of a neural network, we extend the tech-
niques used in networks consisting solely of contractions, which are very well-studied.
Consider the following sequence of tensors,

∑

i,j,k,l

XijkYiklZmln +
∑

p,q

WprVqs, (10)

where the sums are over same-dimensional modes between tensors, i.e., contractions. A
classical question arises when attempting to evaluate such a network: should memory
consumption or the number of intermediary operations be minimized? In this section,
we concern ourselves with the latter. For a simpler example, consider a matrix mul-
tiplication such as A = B × C × D which consists of a sequence of contractions
Aij =

∑

k BikCklDlj . One may ask if (BC)D or B(CD) costs less floating-point
operations. Efficient contraction of tensor networks has a vast literature, and appears
in many quantum computational chemistry problems. The problem rapidly becomes
intractable if the network contains many tensors with a total collection of many modes.

Finding the optimal contraction sequence which minimizes the number of floating
point operations is known to be NP-hard, but fast algorithms do exist. One such well-
known breadth-first algorithm is netcon() due to Pfeifer et al. [28]. We refer to the
summary of the breadth-first approach as described in [28]:

1. Let L1 = {T1, . . . , Tn} be the set of tensors in the network.

2. Let i be an index counter from 2 to n. For each i:
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(a) Let Lc be the set of all possible subnetworks created by contracting i tensors from
L1.

(b) For each pair of sets Ld, Lc−d, 1 ≤ d ≤
⌊

c
2

⌋

, and for each Ta ∈ Ld, Tb ∈ Lc−d

such that each element of L1 appears at most once in the subnetwork (TaTb):

i. Compute the cost c of contracting Ta with Tb.
ii. If Ta and/or Tb are not in L1, then add the cost of constructing of Ta and/or Tb

to c.
iii. Let the contraction sequence S for constructing this subnetwork be written S =

(TaTb). If Ta and/or Tb are not in L1, then optimal contraction sequences for Ta
and Tb will have been recorded already. In S, replace the occurrences of Ta
and/or Tb with these sequences.

iv. Locate the subnetwork in Lc which corresponds to (TaTb). If c is the cheapest
cost for constructing this subnetwork, record c and the associated contraction
sequence S against this subnetwork.

3. The optimal cost cbest and associated sequence Sbest are recorded against the only
element of Ln.

netcon() contains a cost-capping feature: subnetworks may be rejected for operation
if the intermediate product exceeds a predefined memory constraint and other cheaper
paths to the final product are available. While netcon() may be used to evaluate a
network such as Figure 5a, it cannot be used to evaluate the generalized tensor opera-
tions which involve, for instance, convolutions and partial outer products. For instance,
one layer of the network A ∗37 B ×6

6 C ⊗4
4 D in Figure 5b.

A

C

D
I J K

L M

N

(a)

A B

C

D
22

4

44

11

7

7

9

3

3

6

(b)

Fig. 5: Example networks. (a) An example of tensor network. (b) An example of 1
layer of a deep tensorial neural network involving generalized operations.

One of the core contributions of this paper is a generalization of netcon() which
we refer to as gnetcon() capable of finding the optimal operation sequence for a
given tensorial neural network. gnetcon() modifies netcon() by introducing an
updated cost model to handle any generalized operation. For U ∈ RI0×I1×...×Im−1 , V ∈
RJ0×J1×...×Jn−1 , we introduce the following floating point operation complexities 2 to

2 Note that for convolution cost (12), we assume no Fast-Fourier Transform is used.
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obtain optimal pairwise sequence for the generalized tensor operations:

cost[U ×k
l V ] = O((

∏m−1
u=0 Iu)(

∏n−1
v=0,v $=l Jv)) (11)

cost[U ∗kl V ] = O((
∏m−1

u=0 Iu)(
∏n−1

v=0 Jv)) (12)

cost[U ⊗k
l V ] = O((

∏m−1
u=0 Iu)(

∏n−1
v=0,v $=l Jv)). (13)

Furthermore, gnetcon() maintains the cost-capping feature of necton() and thus
can handle predefined memory constraints. As an example, running gnetcon(A ∗37
B ×6

6 C ⊗4
4 D) for the generalized tensor operation in Figure 5b, we obtain the optimal

pairwise operation sequence ((A×6
6 C) ∗

3
7 B))⊗

4
4 D). The above costs 38,016 floating

point operations, whereas a naive implementation in a order such as, (((A ∗37 B) ×6
6

C)⊗4
4 D), costs 45,360 floating point operations.

Using gnetcon(), we can execute a forward pass in a tensorial neural network
according to an operation-minimizing strategy.

Forward Passes in CP-decomposed Convolution-layer in TNN As Generalized Tensor

Operation Sequences In a CP-convolutional layer as shown in Figure 4b, the forward
pass is a general tensor operation sequence V = U ×S

S S(∗YH ◦⊗R
R)H(∗XW ◦⊗R

R)W ×T
T

T . Once the dimensions of U , S,T ,H and W are set, Equation (7) is passed into
gnetcon() to determine the optimal order of operations. Similarly, ourgnetcon()
determines the minimal number of floating operations needed to carry out a forward
pass in one layer of a convolutional neural network (CNN). We measure the time needed
to execute a forward pass in the order recommended by gnetcon() and use these
times as a baseline comparison against the fusion approach.

5 Performance Benchmarking

To test the correctness and performance of our CP Convolution kernel we relied heavily
on facilities provided by the CUDA library. All tests were conducted on a private work-
station running 64-bit Ubuntu 16.04, with a 12 core Intel Xeon CPU E5–1650 v4 CPU
and 64GB RAM. The GPU is an Nvidia RTX 2080-Ti with driver Version: 418.87.00.
Our implementation was compiled using CUDA Version: 10.1.243, while cuDNN ver-
sion 7.4.2.24 was used as both a benchmark and an oracle for operator correctness.

5.1 Correctness Testing

All output values from the fused CP convolution kernel were verified as correct to a float-
ing point tolerance of ε = 10−5. The testing procedure was as follows. In advance, we
determined a list of input and filter tensor shapes. For all shapes in the list we allocated
in GPU global memory a 4th-order input tensor U with uniformly random elements
between 0 and 1. These elements were generated by cuRAND using a constant seed of
“1234”. We also generated four filter matrices with S, T, Y , and X rows respectively,
and R columns, where R is the rank of the CP decomposition. We vary R for the tests
and benchmarks, allowing it to take on the values [1, 2, 4, 8, 16].
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The 4-order, rank R filter tensor K was composed from the CP factor matrices by
applying equation 1. The traditional convolution V = U ∗ K was computed using the
function cudnnConvolutionForward, and a cuDNN convolution algorithm gotten with
the CUDNN CONVOLUTION FWD PREFER FASTEST selection. The CP convolution
was calculated using our algorithm to produce V . Implicit padding values were chosen
to replicate a “SAME” padding often used in deep neural networks.

Correctness was determined by comparing each element of tensors V , and V ′ for
approximate equality to within a floating point tolerance of ε = 10−5. This was done
using both a CPU library function and a custom GPU comparison function. The CPU
library was the C++ DocTest unit test framework. The custom GPU comparison im-
plemented “close enough” comparison from [14] §4.2.2, Eq. 37. Both were used for
verifying the final kernel.
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Fig. 6: Fused CP Convolution Execution Time of different operators on common convolution

layers of neural networks Nvidia cuDNN with full-sized filter tensors vs. our Fused CP Convolu-

tion operation at various decomposed tensor ranks.

5.2 Fused CP Convolution Performance Benchmarking

Input tensors for timing benchmarks were generated using the same method used for
correctness testing. The sizes and shapes of these tensors are described in more de-
tail in table 1. All are stored on device in GPU global memory before benchmark-
ing began. The cuDNN library provides many algorithm options for forward convo-
lution in the channels first data format. We executed the one selected by cuDNN using
the CUDNN CONVOLUTION FWD PREFER FASTEST algorithm preference. Many of
these algorithms require some amount of “workspace memory” to be allocated in global
memory, which was fully provided for our tests.
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Timing values were captured by decorating the kernel launch code with profiling
calls using the cudaEventRecord features exposed by the CUDA API. Calls for
start and stop to cudaEventRecord were placed immediately before the kernel
launch, and after the cudaSynchronizeDevice call to ensure full recording of
only the kernel launch and complete execution. Each operation was repeated 47 times
and the duration of each run was captured. Results presented are the arithmetic mean of
all run durations expressed in microseconds (µs).

5.3 Pairwise Sequential Convolution Performance Benchmarking

We also benchmark the performance of our optimal pairwise sequence of generalized

tensor operations using the TensorFlow deep neural network framework [10]. We ex-
press the graph of tensors in tensor diagram and generate the order to evaluate shared
edges. Results are obtained using the built-in tf.test.Benchmark class and Ten-
sorflow version 1.14.

Table 1: Convolution Operation Data Sizes. Tensor sizes taken from common con-
volution layers in neural networks. All batch sizes are 1. (S): # of input channels. (Y ):
feature tensor height. (X): feature tensor width. (T ): # of output channels. (H): filter
height. (W ): filter width. (Rank) ∈ {1, 2, 4, 8, 16}.

Convolution Layer (S Y X) (T H W ) # Features. # Filter params. # CP Filter params.

1 (3, 224, 224) (96, 11, 11) 150,528 34,828 121·Rank

2 (48, 55, 55) (256, 5, 5) 145,200 307,200 314·Rank

3 (256, 27, 27) (384, 3, 3) 186,624 884,736 646·Rank

4 (192, 13, 13) (384, 3, 3) 32,448 663,552 582·Rank

5 (192, 13, 13) (256, 3, 3) 32,448 442,368 454·Rank

6 Benchmarking Results

Our benchmark results are summarized in figure 6 and table 2. As Figure 6 shows
our fusion algorithm is superior to cuDNN in most low-rank instances for common
convolutional layers. Fused CP convolution is the faster in most cases below rank 16.

The fastest relative performance occurred at the rank 1 decomposition of layer 2.
Our code performed 4.85x faster than cuDNN with 75% of the memory usage. The
superior performance of our Fused CP convolution kernel extends even to higher ranks.
The rank 4 run of deep layer 4 ran 1.61x faster, while using 26.1x less memory.

A deeper look suggests that our algorithm scales linearly with rank, note the rank
step size increments in sequential powers of 2. Another observation is that all ranks of
fused CP convolution scale very well with channel depth, but somewhat poorly with
input feature height and width. This is a limitation shared by cuDNN for traditional
convolution.
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Table 2: Execution Time in µs. cuDNN convolution benchmarked against our Fused
CP-convolution operator, and our Pairwise optimal sequencer implemented in Tensor-
Flow. Data sizes defined in table 1.

cuDNN Fused CP Convolution (µs) Pairwise Sequential CP Convolution (µs)
Layer: (µs) Rank 1 2 4 8 16 Rank 1 2 4 8 16

1 499.4 116.3 117.9 141.7 267.6 521.5 3069.5 3178.9 3308.4 3519.5 3720.0

2 270.7 55.8 56.9 80.1 143.2 267.9 2079.7 1911.0 1838.0 1961.8 2073.7

3 177.4 76.6 82.5 99.8 182.5 368.8 2033.9 2047.5 2066.2 1985.0 1936.4

4 71.3 35.4 37.3 44.2 84.7 122.8 1810.0 1812.5 1907.5 1860.3 1759.7

5 52.1 26.9 27.9 32.8 62.6 95.5 1741.4 1790.6 1779.8 2399.3 1761.5

The pairwise sequential operation implemented in TensorFlow does not share the
same superior performance characteristics as our fused convolution kernel. This is
starkly visible in figure 7 which plots the execution time of the pairwise sequential for-
ward convolution for various ranks of the different convolutional layers. We contribute
much of this to the overhead introduced by tensorflow, which will automatically man-
age migration of intermediate tensors in and out of device memory during execution.
Nevertheless this comparison is warranted as TensorFlow, along with the other popular
neural network frameworks, remains the only widely available means of evaluating a
tensorial neural network layer.

Our pairwise sequencer, implemented in TensorFlow, is the current state-of-the-art
for TNN implementations, which are not currently addressed by other libraries like
cuDNN. It is entirely possible that we registered slower execution times exclusively due
to TensorFlow overhead. The cuDNN “baseline” we compare our pairwise sequencer
against is an “equivalent” convolution after merging the sequence of operations being
processed by our pairwise sequencer into one convolution; therefore not a fair compar-
ison. A fair comparison would be to implement the sequence directly in cudnn library
calls, a non-trivial task that we defer to a future work.

Turning to the memory usage in Figure 8 and Table 3, we see that the fused operator
uses the least memory in all cases. We use a log-scale along the vertical axis for better
visualization due to the scale difference between layers. All operations materialize the
input and output feature tensors, which account for the bulk of the memory footprint
in the shallower layers. The increased cuDNN memory usage in later layers is largely
a consequence of the extra “workspace memory” these particular cuDNN algorithms
require. The values for the pairwise sequential convolution memory usage express the
cumulative total of all participating tensors, including intermediate products. The full
impact of the large footprint is alleviated somewhat by TensorFlow, which will act to
stream intermediate data out of GPU memory and into host memory to reduce global
memory pressure. Thus the true allocation size maximally resident in the GPU at during
pairwise sequencing is often lower than the cumulative values.

Our two approaches are state-of-the-art for TNNs. There are directions to improve
our approaches such as FFT, Winograd, GEMM lowering, or Tensor Core approaches.
Such implementations represent possible future work.
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Fig. 7: Pairwise Sequential Forward Convolution Execution Time of different operators on

common convolution layers of neural networks Nvidia cuDNN with full-sized filter tensors

vs. our pairwise sequential CP Convolution operation at various decomposed tensor ranks.
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Table 3: Global Memory Usage (KiB) of different operators on common convolutional
layers of neural networks, including traditional cuDNN convolution, Fused CP convo-
lution, and pairwise sequential CP convolution at various decomposed tensor ranks.

cuDNN Fused CP Convolution (KiB) Pairwise Sequential CP Conv. (KiB)

Layer: (KiB) Rank 1 2 4 8 16 Rank 1 2 4 8 16

1 19834 19405 19405 19406 19408 19412 19992 20972 24108 35085 75854

2 4810 3593 3595 3597 3602 3612 3628 3687 3877 4539 6999

3 14880 1825 1828 1833 1843 1863 1832 1847 1895 2059 2659

4 10174 383 385 389 398 417 383 387 399 439 583

5 6825 298 299 301 310 324 299 303 315 355 498

7 Related Works

In the field of unsupervised learning, advancement has come through applying tensor
decomposition methods to the problem of learning latent variable models [1]. Much re-
search on tensor decompositions is directed at approximations of the CP decomposition
described in Section 1.2; leading to research applying tensors and tensor decomposi-
tions to neural networks. In [18], the authors replace fully connected layers and the
flattening step necessary to transition to them from convolutional layers with a novel
pair of tensor-based layers, retaining structural information. Another instance of ten-
sorizing existing neural network layers appears in [21] where the authors reduce the
processing time incurred on convolution kernels through sequential application of CP
decomposed factor tensors. This early work demonstrated the potential for considerable
speedups in CPU implementations of convolution using tensor decomposition.

Ideas for fully tensorizing neural networks are also popular. The authors in [24]
transform the dense matrix weights of fully connected layers into decomposed tensors
represented with the Tensor-train decomposition from [26]. This can be applied to all
fully connected layers in a network, resulting in a totally tensorized neural network.
Tensor decomposition methods were used to prove theoretical guarantees on the gener-
alization error of two-layer neural networks in [12], and deep CP decomposed CNNs
by [22], with state of the art generalization guarantees proven by statistical bounds on
generalization error.

Other fields have focused on efficient tensor contraction due to the primacy of con-
traction in molecular chemistry models. The Tensor Contraction Engine automatically
compiles contraction code for high performance computing environments [2]. This was
extended to GPU code in [23].

An alternative approach described by [15] consists in first using transposition to
matricize each tensor in the calculation, then applying a fast GEMM kernel, and trans-
posing again for the final result. This approach takes advantage of existing kernels but
the transposition operations are total overhead. [30] attempt to avoid the transposition
cost by performing the transpositions as data is loaded into shared memory. This in con-
junction with specialized kernels avoids the overhead of transposition. Separately [29]
avoid transposition by developing stridedBatchedGemm for single-mode contrac-
tions. In effect looping over GEMM operations without reshaping the tensor; which
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can experience poor memory access patterns if the tensor modes are highly rectangular.
Recently [13] exploit domain specific properties of data reuse in tensor contractions,
applying their insights to devise an explicit code generator and demonstrate superior
performance on most test cases of the TCCG benchmark.

None of these tensor contraction works support generalized tensor operations, and
in particular do not generalize to operations between more than two tensors, nor support
convolution along any tensor mode. Therefore, our work is unique and novel.

8 Conclusion

The fused CP convolution has considerable potential as a viable and high performing
operation in future deep learning tasks, particularly for tensorial neural networks. The
runtime performance is superior to the current baseline for exactly the types of low-rank
approximations we expect to be of most interest to neural network researchers. The
reduction in global memory usage is considerable when compared to both a traditional
convolutional layer, and an optimal pairwise sequential evaluation. We speculate that
the alleviation of global memory limits will enable researchers to find other novel ways
to use the available memory, for example, on larger training batches.

The fusion approach is not without downsides however. Foremost is the required
engineering and development time. Next, the lack of flexibility for use in other network
architectures based on alternative tensor decompositions. The fused CP convolution is
not applicable to either a Tucker or Tensor Train decomposition. All alternative ten-

sorial neural network layers that employ generalized tensor operations would need
custom fused operators.

These drawbacks are not shared with the optimal pairwise sequencer approach. By
taking advantage of existing library functions and their gradient operations, current
TNN training schemes can proceed with existing implementations, while potentially
benefiting from a reordering of pairwise evaluations. Unfortunately even when opti-
mally sequenced, pairwise evaluation must store intermediate values, limiting use of
scarce GPU global memory.

Source code for this work including implementations and benchmark tests is avail-
able at https://github.com/Areustle/ParallelTNNLayers.

https://github.com/Areustle/ParallelTNNLayers
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