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Abstract

Transferring knowledge among various environments is im-
portant for efficiently learning multiple tasks online. Most
existing methods directly use the previously learned mod-
els or previously learned optimal policies to learn new tasks.
However, these methods may be inefficient when the un-
derlying models or optimal policies are substantially differ-
ent across tasks. In this paper, we propose Template Learn-
ing (TempLe), a PAC-MDP method for multi-task reinforce-
ment learning that could be applied to tasks with varying
state/action space without prior knowledge of inter-task map-
pings. TempLe gains sample efficiency by extracting simi-
larities of the transition dynamics across tasks even when
their underlying models or optimal policies have limited com-
monalities. We present two algorithms for an “online” and
a “finite-model” setting respectively. We prove that our pro-
posed TempLe algorithms achieve much lower sample com-
plexity than single-task learners or state-of-the-art multi-task
methods. We show via systematically designed experiments
that our TempLe method universally outperforms the state-
of-the-art multi-task methods (PAC-MDP or not) in various
settings and regimes.

1 Introduction
Multi-task reinforcement learning (MTRL) (Wilson et al.
2007; Brunskill and Li 2013; Modi et al. 2018) requires
the agent to efficiently tackle a series of tasks. A key goal
of MTRL is to improve per-task learning efficiency com-
pared against single-task learners, by using the knowledge
obtained from previous tasks to learn new tasks. Despite
the recent rapid progress in MTRL, some issues remain un-
settled. (1) Guaranteed sample efficiency. Only a few ex-
isting methods have guarantees on sample efficiency, the
most common bottleneck of RL algorithms. (2) Correctness
v.s. efficiency. An overly aggressive application of previous
knowledge may transfer incorrect knowledge and deterio-
rate the performance on new tasks, resulting in a “negative
transfer” (Taylor and Stone 2009). However, if an agent is
overly conservative in applying previously learned knowl-
edge, much of the similarities between tasks will be ig-
nored, resulting in an “inefficient transfer”. It is nontrivial
to balance between the correctness and efficiency or achieve
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both. (3) Varying state/action space across tasks. In practice,
transferring knowledge learned from smaller environments
to learning in larger environments is extremely useful. How-
ever, most existing works on MTRL assume the state/action
space is shared across tasks.

In an effort to provide guaranteed sample efficiency for
MTRL, Brunskill and Li (2013) propose an algorithm that
clusters the underlying Markov Decision Processes (MDPs)
of tasks into groups and identifies new tasks as learned
groups. However, transferring knowledge from the clustered
MDP models could be an “inefficient transfer” if the under-
lying models are too different to be clustered into a small
number of groups. Similarly, most existing model-based ap-
proaches (Liu, Guo, and Brunskill 2016; Modi et al. 2018)
only exploit model-level similarities, which also makes it
difficult to transfer knowledge among different-sized tasks.

We remedy the aforementioned three issues by extraction
of more commonalities in tasks without suffering from “neg-
ative transfer”. A motivating example is the navigation prob-
lem in mazes with slippery floors which result in stochastic
transitions. For instance, the agent taking an action of going
up on ice could slip to the left, right or down (instead of up)
with a certain probability determined by the slipperiness of
ice. The slipperiness of the floor depends on the landform
of the location, such as sand, marble and ice. We show some
examples of different combinations/distributions of the land-
forms in the maze in Figure 1; the MDP models are drasti-
cally different across different mazes, therefore transferring
knowledge using similarity of models is inefficient.

Figure 1: Examples of landform combinations in Maze,
where stands for sand, stands for marble and stands
for ice. Different landforms have different slippery probabil-
ity, thus different transition dynamics. Consider a

√
S×
√
S

maze with G types of landforms. There could be up to GS

different MDP models, making it prohibitive to extract sim-
ilarities from the models. However, the types of underlying
transition dynamics associated with each state/location are
governed by the number of distinct landforms G.
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However, our key observation is that the same landforms
share the transition dynamics, and knowledge could be
transferred from sand to sand, marble to marble, and ice to
ice. More importantly, we can extend the knowledge learned
from a maze to any-sized mazes consisting of these same
types of landforms (e.g., the 4th example in Figure 1). With
this idea, we achieve more effective and efficient knowl-
edge transfer by exploiting similarities at the level of state-
action transition dynamics instead of MDP model dynam-
ics, allowing knowledge transfer between tasks with vary-
ing state/action space without prior knowledge of inter-
task mappings. The challenge of learning is now reduced to
extracting such “landforms” without prior knowledge of the
tasks.

We propose a novel method called Template Learning
(TempLe) for MTRL, which provably guarantees sample ef-
ficiency and achieves efficient transfer learning for multi-
task reinforcement learning with varying state/action space.
We extract templates for similar state-action transition dy-
namics (landforms in the example above), called Transition
Templates, and confidently improve the efficiency of transi-
tion dynamics estimation in new tasks. By sharing experi-
ence among state-action pairs associated with similar tem-
plates, the learning process is expedited. We introduce two
versions of TempLe: one is for online MTRL without prior
knowledge about models, named Online Template Learning
(O-TempLe), the other further improves the learning effi-
ciency based on a finite-model assumption, named Finite-
Model Template Learning (FM-TempLe).
Summary of Contributions: (1) TempLe achieves a signif-
icant reduction of sample complexity compared with state-
of-the-art PAC-MDP (Probably Approximately Correct in
Markov Decision Processes) algorithms. (2) TempLe covers
two realistic settings, solving MTRL problems in different
regimes – with or without prior knowledge of models. (3) To
the best of our knowledge, TempLe is the first PAC-MDP al-
gorithm that is able to learn tasks with varying state/action
spaces without any prior knowledge of inter-task mappings.

2 Related Work
PAC-MDP MTRL Algorithms. Brunskill and Li (2013)
present the first formal analysis of the sample complexity
for MTRL. They propose a two-phase algorithm and prove
that per-task sample complexity is reduced compared with
single-task learners. However, they require all tasks com-
ing from a small number of models, and when the number
of distinct models is large, their algorithm becomes simi-
lar to single-task learning. In this paper, we show our pro-
posed methods outperform the method provided by Brun-
skill and Li (2013) both in theory and in experiments. There
are other PAC-MDP algorithms for multi-task RL, consid-
ering the problem from different perspectives. For example,
Brunskill and Li (2014) discuss lifelong learning in semi-
Markov decision processes (SMDPs), where options are in-
volved. Liu, Guo, and Brunskill (2016) extend the finite-
model method (Brunskill and Li 2013) to continuous state
space. Feng, Yin, and Yang (2019) and Tirinzoni, Poiani, and
Restelli (2020) significantly reduce the sample complexity,
but are under the assumption of generative models. Modi

et al. (2018) improve the learning efficiency through the as-
sistance of side informations. Abel et al. (2018b) propose
MaxQInit, which transfers the maximum Q values across
tasks. We empirically compare with MaxQInit in this paper.

Reducing MDPs to Compact Ones. There is a line of
research that reduces the original MDPs to compact ones
to achieve sample efficiency, including Relocatable Action
Model (RAM) (Leffler, Littman, and Edmunds 2007), ho-
momorphism (Ravindran and Barto 2003), and ε-equivalent
MDP (Even-Dar and Mansour 2003). However, since learn-
ing such compact structures is usually difficult (e.g., learn-
ing homomorphism is NP-hard as noted by Soni and Singh
(2006)), most of the previous works require some prior
knowledge. To give a detailed comparison, our algorithm
(1) requires no prior knowledge about the MDP struc-
ture. RAM (Leffler, Littman, and Edmunds 2007) requires
knowledge of the “type” of all states (walls, pits, etc) and the
next-state function of all states and type-action outcomes.
Its continuous extension (Brunskill et al. 2008) also needs
knowledge of the types. Homomorphism works (Ravindran
and Barto 2004, 2003; Soni and Singh 2006) require knowl-
edge of (candidate) homomorphisms to compress an SMDP
or transfer knowledge between MDPs. (2) works for gen-
eral RL problems with PAC guarantee. Although Leffler
et al. (2005) (learns latent structure by clustering) and Sorg
and Singh (2009) (learns soft homomorphisms) provide
methods that do not require knowledge of the structure, Lef-
fler et al. (2005) study a simplified non-MDP problem where
actions do not influence state transitions, and Sorg and Singh
(2009) do not provide theoretical guarantees when the target
model is not known in advance.

Overall, our method is different from the above works,
as we do not pre-define the compact structure. Instead, we
observe that the transition dynamics, if permuted into de-
scending order, could be naturally grouped to some tem-
plate. Notably, we learn the similarities rather than assum-
ing knowledge of them. Our method could be more prac-
tical than the above works (Leffler, Littman, and Edmunds
2007; Leffler et al. 2005; Brunskill et al. 2008; Ravindran
and Barto 2004, 2003; Soni and Singh 2006; Sorg and Singh
2009) in multi-task RL, since a new task is often drawn ran-
domly and knowing its structure in advance could be unre-
alistic.

Comparison with C-UCRL (Asadi et al. 2019). C-UCRL
learns a single task by leveraging a state-action equivalence
structure that is similar with our proposed templates. They
provide an improved regret bound in the case of a known
equivalence structure. However, in the more challenging
case of an unknown equivalence structure, as is the setting
of our paper, no regret bound is provided. In contrast, our
work provides a sample complexity guarantee under the un-
known equivalence structure scenario. In addition, C-UCRL
does not extend trivially to multi-task setting since it find a
coarse partition of all state-action pairs at every step, while
in MTRL, new state-action pairs come with new tasks, and
negative transfer problem may exist when the equivalence
structure is unknown.
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3 Preliminaries and Notations
Standard RL Notations. An MDP is defined as a tuple
〈S,A, p(·|·, ·), r(·, ·), µ, γ〉, where S is the state space (with
cardinality S); A is the action space (with cardinality A);
p(·|·, ·) is the transition probability function with p(s′|s, a)
representing the probability of transiting to state s′ from
state s by taking action a; r(·, ·) is the reward function with
r(s, a) recording the reward achieved by taking action a in
state s; µ is the initial state distribution; γ is the discount
factor. Denote the maximum value of r as Rmax. Without
loss of generality, suppose 0 ≤ r(s, a) ≤ 1 for all (s, a), so
Rmax = 1. Here p(·|·, ·) and r(·, ·) together are the model
dynamics of the MDP.

At every step, the agent selects an action based on the cur-
rent policy π. The value function of a policy V π(s), which
evaluates the performance of a policy π , is the expected fu-
ture reward gained by following π starting from s. Similarly,
the action valueQπ(s, a) is the expected future reward start-
ing from pair (s, a). In an RL task, an agent searches for the
optimal policy by interacting with the MDP. We use Vmax

to denote the upper bound of V . In the discounted setting
Vmax = Rmax

1−γ = 1
1−γ .

Sample Complexity. The general goal of RL algorithms is
to learn an optimal policy for an MDP with as few inter-
actions as possible. For any ε > 0 and any step h > 0,
if the policy πh generated by an RL algorithm L satisfies
V ∗ − V πh ≤ ε, we say L is near-optimal at step h. If for
any 0 < δ < 1, the total number of steps that L is not near-
optimal is upper bounded by a function ζ(ε, δ) with prob-
ability at least 1 − δ, then ζ is called the sample complex-
ity (Kakade et al. 2003) of L.

4 Learning with Templates
Asmotivated in the example described in Section 1, the main
idea of this work is to boost the learning process by ag-
gregating similar state-action transition dynamics (see Def-
inition 1). We permute the elements of transition dynam-
ics/probability vectors to be in descending order, and aggre-
gate these permuted transition probabilities to obtain “tem-
plates of transition” defined in Definition 2. We show that
the templates are effective abstractions of the environment.

4.1 Transition Template: An Abstraction of
Dynamics

In this section, we introduce a more compact way to repre-
sent the model dynamics of anMDP.We first formally define
the transition dynamics of a state-action (s-a) pair.
Definition 1 (State-Action (s-a) Transition Dynamics).
For any state-action pair (s, a), its transition dynam-
ics is defined as a length-(S + 1) vector θ(s, a) =
[p(s1|s, a), p(s2|s, a), · · · , p(sS |s, a), r(s, a)], where S is
the number of states.

Note that s-a transition dynamics are different from the
model dynamics, which characterize the transitions for all s-
a pairs. In s-a transition dynamics, the first S elements form
the transition probability vector p(·|s, a). As defined in most
RL literatures (Kakade et al. 2003; Brunskill and Li 2013),

the order of elements in p(·|s, a) is the natural order of the
states. In contrast, we re-order the elements of p(·|s, a) by
their values, and obtain a more compact representation of
the transition dynamics called Transition Template.

Definition 2 (Transition Template). A Transition Template
(TT) g is defined as a tuple (g(p), g(r)), where g(p) ∈ RS

is a transition probability vector with non-increasingly or-
dered elements, i.e.,

∑S
i=1 g

(p)
i = 1 and g(p)i ≥ g(p)j ≥

0, ∀1 ≤ i ≤ j ≤ S; 0 ≤ g(r) ≤ 1 is a scalar represent-
ing the reward.

Any s-a transition dynamics can be permuted to an unique
TT by re-arranging the transition probability vector p(·|s, a)
in a decreasing order and maintaining the reward r(s, a) to
g(r), i.e., g(s,a) = (desc(p(·|s, a)), r(s, a)), where desc or-
ders the elements of p(·|s, a) from the largest value to the
smallest value. For example, if θ(s1, a1) = [0.3, 0.7, 0, 1],
and θ(s2, a2) = [0, 0.3, 0.7, 1], then (s1, a1) and (s2, a2)
have the same TT ([0.7, 0.3, 0], 1), although their s-a transi-
tion dynamics are different.

A TT is a representation of multiple s-a transition dynam-
ics with some similarities. It ignores how the s-a pair tran-
sits to a specific next state, but only considers the patterns
of transition probabilities, allowing more efficient exploita-
tion of similarities. An intuitive example is given in Figure
4 in Appendix A1., where there are 100 distinct s-a transi-
tion dynamics, but only 2 distinct TTs. Appendix F.5 further
discusses the universal existence of such similarities.

4.2 Empirical Estimation of Transition Templates
Section 4.1 defines TT based on the underlying s-a transi-
tion dynamics. However, in reality, we do not have access to
the underlying dynamics. In model-based RL, a key step is
to estimate the dynamics and to build a model of the envi-
ronment. We now illustrate the estimation of TTs, as well as
how TTs augments the learning process.
The conventional estimation of s-a transition dynamics.
A direct estimate of θ(s, a) is obtained through experience,
θ̂(s, a) = [n(s,a,s1)n(s,a) , n(s,a,s2)

n(s,a) , · · · , n(s,a,sS)
n(s,a) , R(s,a)

n(s,a) ], where
n(s, a, s′) is the number of observations of transitioning
from s to s′ by taking action a, n(s, a) is the total num-
ber of observations of (s, a), and R(s, a) is the cumulative
rewards obtained by (s, a). An accurate estimate of the tran-
sition dynamics θ(s, a) requires a large enough number of
observations n(s, a) according to the theory of concentra-
tion bounds. Therefore, it is sample-consuming to accurately
estimate the transition dynamics of each s-a pair in this way.
Augmented estimation of s-a transition dynamics.As dis-
cussed in Section 4.1, different s-a pairs may share the same
TTs. Our goal is then to aggregate the estimations of s-a tran-
sition dynamics associated with the same TTs. We introduce
the following process to obtain estimates of all s-a transition
dynamics:
(1) rough estimation: obtain θ̂(s, a) = [n(s,a,·);R(s,a)

n(s,a) ] for
each (s, a) with a small n;

1Appendix can be found on https://arxiv.org/abs/2002.06659
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Algorithm 1 Online Template Learning (O-TempLe)
Input: user-specified TT gap τ̂ ; error tolerance ε; dis-

count factor γ; regular known threshold m; small known
thresholdms

Output Near-optimal policies {πt}t=1,2,···
1: Initialize an empty TT group set G and TT visit set O
2: for t← 1, 2, · · · do
3: Receive a taskMt

4: Initialize visits n(s, a, ·) ← 0, accumulative re-
wards R(s, a) ← 0, ∀(s, a) ∈ (S,A), an empty known
state-action set K, and an initial policy π

5: for h← 1, 2, · · · , H do
6: Take action ah ← π(sh), get sh+1 and rh
7: Update visits n(sh, ah, sh+1) and R(sh, ah)
8: if (sh, ah) /∈K and ‖n(sh, ah, ·)‖#1 =ms then

( TT identification with the small threshold
9: g̃,og̃,σ ← GEN-TT(n(sh, ah, ·), R(sh, ah))

10: if no g ∈ G is τ̂ -close to g̃ then
11: Add g̃ to G, og̃ to O
12: else
13: Find the closest TT g∗ to g̃
14: TT-UPDATE(g∗,og∗ ,n(sh, ah, ·), R(sh, ah))
15: AUGMENT(o∗

g,n(sh, ah, ·),R(sh, ah),σ)
16: if (sh, ah) /∈K and ‖n(sh, ah, ·)‖#1 ≥m then

( policy update with the regular threshold
17: Update π using visits n and R by RMax
18: add (sh, ah) to K
19: for all (s, a) ∈ (S,A) with identified TT g(s,a) do
20: TT-UPDATE(g(s,a),og(s,a)

,n(s, a, ·), R(s, a))

(2) permutation: permute each θ̂(s, a) to its corresponding
permuted estimates g̃(s,a);
(3) template identification: identify the group of the per-
muted estimate g̃(s,a) such that permuted estimates are sim-
ilar within the group, and obtain a more confident estimate
of TT ĝ aggregating within-group statistics.
(4) augmentation: for every (s, a), obtain a more confident
estimate of the transition dynamics by permuting back its
corresponding TT with accumulated knowledge.

The noisy estimate of transition dynamics will not ren-
der error other than the smaller amount of noise in estimated
transition templates if it is identified into the right group.
To guarantee accurate identification, the ordering of the el-
ements in the noisy estimate should be consistent with the
ground truth. Therefore, the consistency of our estimation
depends on TT gap as defined in Definition 5 and “ranking
gap” as defined in Definition 8 (see Appendix D for details).
An example in Appendix A.1 shows how augmented estima-
tion helps save a large number of samples compared against
the conventional estimation.

Now we are ready to formally introduce our algorithms in
two settings, Online MTRL and Finite-Model MTRL.

4.3 O-TempLe: Online Template Learning
In the online MTRL setting, an agent interacts with mul-
tiple tasks streaming-in, each of which corresponding to

Algorithm 2 TT Functions
1: function GEN-TT(n, R) ( generate TT
2: find permutation σ s.t. σ(n) is in descending order
3: ordered visits o(N)

g ←σ(n),o(R)
g ←R,og←(o(N)

g ,o(R)
g )

4: transition template g← (
o(N)
g

‖n‖!1
,

o(R)
g

‖n‖!1
)

5: return g,og,σ

6: function TT-UPDATE(g,og,n, R) ( add visits to TT
7: og ← og + (descending(n), R)

8: g← (
o(N)
g

‖o(N)
g ‖!1

,
o(R)
g

‖o(N)
g ‖!1

)

9: function AUGMENT(og,n, R,σ) ( augment visits by TT
10: n← n+ σ−1(o(N)

g )

11: R← R+ o(R)
g

a specific MDP. The tasks are i.i.d. drawn from a set
M of MDPs (models). MDPs in M may have different
state/action spaces. The number of MDPs |M| can be ar-
bitrarily large.

We introduce Online Template Learning (O-TempLe) for
the online MTRL setting. O-TempLe is a meta-learning al-
gorithm with model-based “base learners” which compute
policies for the current task. We use RMax (Brafman and
Tennenholtz 2003) as the base learner, and it can be re-
placed by other model-based methods such as E3 (Kearns
and Singh 2002) and MBIE (Strehl and Littman 2005).
The principle of RMax algorithm on an MDP M is to
build an induced MDP based on a known threshold m. A
state-action pair is said to be m-known if the number of
visits/observations n(s, a) ≥ m. A state is m-known if
n(s, a) ≥ m, ∀a ∈ A. The set of allm-known states induces
an MDP Mk, where for any m-known state s, p(s′|s, a) =
n(s,a,s′)
n(s,a) , r(s, a) = R(s,a)

n(s,a) and for any non-m-known state
s, p(s′|s, a) = I{s′ = s}, r(s, a) = Rmax. Then, RMax
computes an optimal policy based on the optimistic model
by dynamic programming.

In contrast, O-TempLe uses augmented estimation intro-
duced in Section 4.2. to reduce the required number of vis-
its to every single s-a pair. Instead of aggregating the es-
timates of all s-a transition dynamics at once, O-TempLe
asynchronously identifies the TTs of s-a pairs and updates
the template groups in an online manner, through measuring
the distances among TTs.

Algorithm 1 illustrates how O-TempLe works. In addition
to the regular known threshold m used in RMax, we design
a smaller known threshold ms, which is the smallest num-
ber of visits to ensure identifying the TTs of all s-a pairs.
If for any (s, a), the total number of visits (‖n(s, a, ·)‖#1 )
reachesms, then the estimated TT g̃ of (s, a) will be gener-
ated by function GEN-TT. If g̃ has at least τ̂ -distance with
all existing TTs, we regard it as a new TT and append it
to set G (Line 10-11); otherwise (Line 12-15), we find the
closest TT to g̃, then synchronize the experience of (s, a)
in the current task and the accumulated experience that its
TT holds by calling functions TT-UPDATE and AUGMENT,
which respectively send the current visits of (s, a) to the cor-
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responding TT, and feed the accumulative visits of the TT
to the current (s, a). GEN-TT, TT-UPDATE and AUGMENT
involve the permutation operations, and are given by Algo-
rithm 2. Accumulated experience of each TT is stored in a
tuple og = (o(N)

g , o(R)
g ), where o(N)

g is the total visits ac-
cumulated by permuted n(s, a, s′) of all (s, a)’s with TT g.
When (s, a) is m-known, the policy is updated (Line 16-
18). Overall, our O-TempLe allows grouped s-a transition
dynamics to share their visit counts, making it much easier
for them to reachm visits than in regular RMax.

Note that Algorithm 1 also works for tasks with varying
state/action space, since the comparison of TTs considers
the non-zero elements of the transition vectors only. One can
compute the difference between two different-sized TTs by
simply padding zeros to the end of the shorter TT.

4.4 FM-TempLe: Finite-Model Template
Learning

Online MTRL setting requires no prior knowledge of the
types of underlying MDPs and improves the sample effi-
ciency by accumulating knowledge with TT groups. How-
ever, under a more restrictive assumption that the number of
possible MDPs C = |M| is known and small, it is possible
to get rid of the dependence on the size of state-action space
and achieve more efficient learning.

We propose Finite-Model Template Learning (FM-
TempLe), an extension of our O-TempLe, under the finite-
model MTRL setting, where the agent still interacts with
streaming-in tasks drawn from a set M of MDPs, but the
number of MDPs in the setM is small and known.

In contrast with O-TempLe, FM-TempLe is able to cor-
rectly identify the TTs of some s-a pairs before they are vis-
ited forms times. This is because the number of underlying
models is small, and thus identifying the model is easy and
inexpensive. It is possible to obtain the TTs for all s-a pairs
immediately after identifying the model, since the way how
TTs are distributed over all s-a pairs is fixed for each MDP
model.

The main steps of FM-TempLe are stated below, and the
details are illustrated in Algorithm 3 in Appendix C. (1) Col-
lecting Models: for the first T1 tasks, the agent acts in the
same way as O-TempLe, but also stores the TT structure of
each model. (2) Grouping Models: the first T1 tasks are clus-
tered into finite groups of models based on their TT struc-
tures. (3) Identifying Models: for any new task, the agent
still follows O-TempLe, but also seeks the true model for
the current task from all the model groups, by ruling out the
groups of models that have different TT structures.

Brunskill and Li (2013) make the same finite-model as-
sumption and propose an algorithm FMRL which extracts
model similarities. However, FMRL can not transfer knowl-
edge between two models which are the same except for
one state-action pair. In contrast, our FM-TempLe extracts
state-action dynamics similarities and thus transferring hap-
pens among any state-action pairs that have similar dynam-
ics. Compared with FMRL, FM-TempLe not only has lower
sample complexity as proved in Section 5, but also saves
computations due to the direct comparison of TTs.

5 Theoretical Analysis
This section provides sample complexity analysis of the
proposed two algorithms O-TempLe and FM-TempLe. Al-
though O-TempLe and FM-TempLe can be applied to tasks
with varying state/action spaces, we assume all tasks have
the same S and A for simplicity of notations, and the analy-
sis extends to varying state/action spaces trivially.

We first assume there is a diameterD such that any state s′
is reachable from any states s in at mostD steps on average.
This assumption is commonly used in RL (Jaksch, Ortner,
and Auer 2010), and it ensures the reachability of all state
from any state on average.

We further define the underlying minimal *2-distance
among TTs as τ , namely TT gap. We also define ν as the
ranking gap; a large ranking gap implies that for any s-a
pair, the probabilities of transitioning to any two states are
substantially different. For any g ∈ G, if g(p)

i > g(p)
j are

two adjacent elements in g(p), then either g(p)
i − g(p)

j ≥ ν,
or g(p)

i − g(p)
j ≤ Õ( ε(1−γ)√

SVmax
)(logarithmic terms are hided

in Õ(·)). The ranking gap implies that for any s-a pair,
the probabilities of transitioning to any two states are ei-
ther very close, or substantially different. Note that the al-
gorithms take a user-specified τ , but do not require in-
put of ν. See Appendix D for formal definitions of TT
gap and ranking gap. For notation simplicity, let ω denote
max{min(τ, ν),O( ε(1−γ)√

SVmax
)}.

Theorem 3 (Sample Complexity of O-TempLe). For any
given ε > 0, 1 > δ > 0, running Algorithm 1 on T
tasks, each for at leastO(DSA

ω2 ln 1
δ ) steps, generates at most

Õ
(

SGV 3
max

ε3(1−γ)3 + TSAVmax
ω2ε(1−γ)

)
non-ε-optimal steps, with proba-

bility at least 1− δ, where G is the total number of TTs.
Remark. (1) Our provided bound achieves state-of-the-art
dependence on the environment size T, S,A for general
MTRL, given that G is independent of T, S,A. (2) When
ε is small, the sample complexity only has a linear depen-
dence on the number of states S and the number of templates
G, because the first term dominates. By definition, G is al-
ways no larger than TSA, the number of all s-a pairs. And
in most environments, we have G , TSA, as discussed in
Appendix F.5. (3) When ε is not small or T is very large, the
sample complexity has linear dependences on T , S and A
since the second term dominates.

O-TempLe does not necessarily require the number of
templates G to be small. A large G suggests the environ-
ment is highly stochastic, e.g., the slipping probabilities of
every grid in maze is sampled from a Gaussian distribution.
In this case, we can still cluster s-a pairs with adequately
close templates, as verified in experiments (see Section 6.3).
Proof Sketch. We first show that for any s-a pair, ms =
Õ( 1

ω2 ) samples would guarantee correct template identifi-
cation and aggregation, and m = Õ( SV 2

max
ε2(1−γ)2 ) samples are

sufficient for estimating the s-a transition dynamics. Then
we prove that all s-a pairs reach ms within finite steps.
Finally, by computing the number of visits to unknown
s-a pairs and applying the PAC-MDP theorem proposed
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by Strehl, Li, and Littman (2012), we get the sample com-
plexity result. Proof details are in Appendix E.
Comparison with a single-task learner. If RMax is sequen-
tially run for every task, the total sample complexity for T
tasks is Õ

(
TS2AV 3

max
ε3(1−γ)3

)
.

(1) When precision is high, i.e., ε is small, a significant im-
provement is achieved, if O(SG), O(TS2A).
(2) When T is large, as long as Õ( SV 2

max
ε2(1−γ)2 )- Õ( 1

ω2 ), our
O-TempLe gains improved sample efficiency.
(3) O-TempLe will not cause negative transfer among tasks.
In the worst case, G = TSA (there is no similarity among
all s-a transition dynamics) or ω2 = Õ( SV 2

max
ε2(1−γ)2 ), O-

TempLe has the same-order sample complexity with RMax.

Theorem 4 (Sample Complexity of FM-TempLe). Under
the finite-model assumption of there are at mostC MDPs for
all tasks, for any given ε > 0, 1 > δ > 0, Algorithm 3 on T
tasks follows ε-optimal policies for all but

Õ
( SGV 3

max

ε3(1− γ)3
+

T1SAVmax

ω2ε(1− γ)
+

(T − T1)DC2Vmax

ω2ε(1− γ)

)
(1)

steps with probability at least 1 − δ, where G is the total
number of TTs, T1 = Ω( 1

pmin
ln C

δ ) is the number of tasks
in the first phase, where pmin is the minimal probability for
a task to be drawn fromM.

Remark. (1) When C is very large, or pmin is very small,
T1 → T and FM-TempLe degenerates to O-TempLe. (2)
If DC2 < SA and T - T1, FM-TempLe requires fewer
samples than O-TempLe.
Comparison with FMRL (Brunskill and Li 2013) FM-
TempLe has a large improvement over FMRL in most cases.
The sample complexity of FMRL for T tasks in our notation
is

Õ
(CS2AV 3

max

ε3(1− γ)3
+

T1S2AV 3
max

ε3(1− γ)3

+ (T − T1)
( DC2Vmax

Γ2ε(1− γ)
+

SCV 3
max

ε3(1− γ)3
))

.

(2)

where T1 = Ω( 1
pmin

ln C
δ ), and Γ is the model difference

gap defined by Brunskill and Li (2013). We organize Equa-
tion 1 and Equation 2 both as three-term forms. The first
term is for learning of all TTs or all models, where FM-
TempLe reduces the dependence on S and gets rid of the de-
pendence onA. The second term is for the first phase, where
FMRL performs the same with a single-task RMax learner,
while FM-TempLe requires much fewer samples to get op-
timal policies. Finally, the last term is for the second phase.
FMRL needs an additional model elimination step for each
task, while FM-TempLe does not. FM-TempLe is worse than
FMRL only in extreme cases where there are fewMDPmod-
els with large model gaps, and a large number of TTs with
small TT gaps or ranking gaps.

6 Experiments
In this section, we demonstrate empirical results to show
O-TempLe and FM-TempLe outperform existing state-of-
the-art algorithms both in the finite-model setting and in

the more realistic online setting. TempLe is able to trans-
fer knowledge between tasks with different sized environ-
ments. More importantly, TempLe has a high tolerance to
model perturbations; it implements efficient transfer even
when the underlying number of TTs is infinite. Our code
is available at https://github.com/umd-huang-lab/template-
reinforcement-learning.
Baselines. We choose the state-of-the-art MTRL algo-
rithms, Abstraction RL (Abs-RL) (Abel et al. 2018a),
MaxQInit (Abel et al. 2018b) and FMRL (Brunskill and Li
2013) as baselines. For Abs-RL and MaxQInit, we use the
code provided by authors. Note that Abs-RL and MaxQInit
have multiple versions due to the selection of different base
learners, we show the ones with their best performance in
this section, and other versions in Appendix F.3. Abs-RL
works for both the online and finite-model setting, whereas
MaxQInit and FMRL work for the finite-model setting only,
since they both require the number of tasks to be small and
known. Meanwhile, to show the effectiveness of our pro-
posed algorithms and other MTRL algorithms, we also run
RMax and Q-learning (Watkins and Dayan 1992) for every
single task without knowledge transfer.

6.1 Finite-Model MTRL
Environment. All the baselines including FMRL, Abs-RL,
MaxQInit are designed for the finite-model setting (note that
Abs-RL also works in the online setting), where the number
of models C is small. We use a similar maze environment as
in FMRL, where MDPs only differ at the goal state.
Performance. We generate two 4 × 4 maze tasks with dif-
ferent goal states as the underlying models, and then ran-
domly sample 50 tasks from the two underlying models. Fig-
ure 2a shows the comparison of per-task rewards. FMRL has
the same performance with RMax in the model-collecting
phase, and then achieves increasing rewards in the following
tasks after it successfully identifies the underlying two types
of MDPs. After 30 tasks, all state-actions pairs in the models
become known, so the per-task reward converges. Similarly,
MaxQInit gains more rewards when it collects adequate
knowledge of the Q values. In contrast, FM-TempLe has a
better start as it learns TTs from the beginning. And model
identification further helps with efficient learning. Over all
tasks, FM-TempLe substantially outperforms other agents,
despite that baselines are designed for the finite-model case.

6.2 Online MTRL
Environment. For the more realistic Online MTRL which
allows the number of MDP models to be extremely large,
we generalize the traditional maze environment to have ar-
bitrary combinations of landforms, as shown in Figure 1. We
use 3 types of landforms, sand, marble and ice, respectively
with slipping probabilities 0, 0.2, and 0.4. In this scenario,
under a certain number of states S, the number of possible
tasks is exponential in S.
Performance. In the online setting, we consider 4×4mazes
with different arrangements of landforms streaming in. The
per-task rewards of each agent are displayed in Figure 2b.
Among all agents, our O-TempLe obtains the highest aver-
age reward. We see during the first 40 tasks, the performance
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(a) Finite-Model MTRL
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(c) Varying-sized MTRL
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Figure 2: Performance of O-TempLe and FM-TempLe compared against state-of-the-art baselines in (a)Online MTRL (to show
TempLe’s ability to efficiently transfer knowledge), (b) Finite-Model MTRL (to show TempLe outperforms baselines even
under environments that the baselines are designed for),(c) varying sized MTRL (to show TempLe extends to varying sized
state space) and (d) Online MTRL with Mixture-of-Gaussians distributed landforms (to show TempLe’s robustness against
noise and model-perturbation). All results are averaged over 20 different random sequences of tasks. Confidence intervals are
omitted to reduce overlapping.

of O-TempLe continuously and rapidly grows by transfer-
ring previous knowledge. In contrast, the performance of
Abs-RL does not increase as more tasks come in and keeps
the same with single-task Q-learning, because the maze en-
vironment is not efficiently abstracted by Abs-RL.
Performance on Varying State Space. To show the feasi-
bility of TempLe for varying-sized environment tasks, and
its ability to generalize knowledge learned in small tasks to
speed up learning in larger tasks, we vary the size of the
mazes across tasks. More specifically, the first 20 tasks are
3 × 3 mazes, followed by 20 4 × 4 mazes, 20 5 × 5 mazes
and 20 6 × 6 mazes. We show O-TempLe’s per-task advan-
tage rewards over single task RMax in Figure 2c, since other
MTRL baselines are not feasible in this setting. The perfor-
mance advantage over RMax increases over more observed
tasks, verifying that O-TempLe transfers knowledge among
different-sized mazes. Experiments on varying action spaces
are shown in Appendix F.4.

6.3 MTRL with Infinite TTs
Environment. We also conduct experiments to show Tem-
pLe’s robustness to noise and model perturbations. which
is crucial for its application to real-world settings where
“landforms” could vary continuously. We draw the land-
forms (slipping probabilities) of each grid from a mixture
of Gaussian distributions, which are centered at 0.2, 0.4, and
0.6 with standard derivation 0.05. In this case, the number
of TTs could be infinitely large.
Performance.We show O-TempLe’s per-task advantage re-
wards over single task RMax and Q-learning in Figure 2d, in
which O-TempLe still achieves successful multi-task learn-
ing. This result demonstrates O-TempLe’s ability of tolerat-
ing noise and generalizing to real-life applications.

6.4 Robustness to Hyper-parameters
TempLe requires a user-specified TT gap τ̂ as input. Also,
both FMRL and FM-TempLe require a user-specified model
gap Γ. We test various hyper-parameters to understand how
significantly the performance of the algorithms could be af-
fected by inaccurate guesses of τ̂ and Γ, shown in Figure 3.
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Figure 3: Hyper-parameter test of TT gap τ̂ and model gap
Γ(the vertical dashed line shows the underlying true value).

According to Figure 3a, the performance of O-TempLe
drops when τ̂ is too large. However, the rewards remain high
for relatively small τ̂ . Figure 3b shows that FM-TempLe gets
higher rewards than RMax when setting Γ ≤ 1, although Γ
has a larger influence on FM-TempLe compared to FMRL,
potentially because the failure of model clustering will cause
more inaccurate TT identification. Note that by definition,
both τ̂ and Γ would not exceed 2 (see Lemma 6). So we
still have a large chance to get higher rewards than RMax by
making an educated guess. The results in Figure 3 guide the
users to specify hyper-parameters when using TempLe.

The results with confidence intervals, comparison of cu-
mulative rewards, and experiments on additional environ-
ments are shown in Appendix F. We also provide an exten-
sion of our work to deep RL is discussed in Appendix F.6.

7 Conclusion and Discussion
In this work, we propose TempLe, the first PAC-MDP
MTRL algorithm that works for tasks with varying
state/action space without any inter-task mappings or prior
knowledge of the MDP structures. This work can be ex-
tended in many directions. For example, one may benefit
from investigating transition probability and reward sepa-
rately. The idea of extracting modular similarities can also
be extended to continuous MDP and deep model-based RL.

9771



Acknowledgements
Huang is supported by startup fund from Department of
Computer Science of University of Maryland, National
Science Foundation IIS-1850220 CRII Award 030742-
00001, DOD-DARPA-Defense Advanced Research Projects
Agency Guaranteeing AI Robustness against Deception
(GARD), Laboratory for Physical Sciences at University of
Maryland, and Adobe, Capital One and JP Morgan faculty
fellowships.

Ethical Impact
Our presented algorithms on multi-task reinforcement learn-
ing facilitate the learning of new tasks using knowledge ac-
cumulated from previously learned tasks. In scenarios where
an RL agent needs to sequentially interact with a series of
environments, e.g., navigation in various places, our pro-
posed algorithm could be applied to improve the learning
efficiency without loss of accuracy. More importantly, our
algorithms are guaranteed to learn near-optimal policies and
avoid negative transfer, which are crucial for high-stakes ap-
plications, such as autonomous driving, market making, and
health-care systems.

Nowadays, Deep Reinforcement Learning (DRL) has
achieved great success in many applications. However, prob-
lems like high variance and instability restrict the use of
DRL in real-life problems. Thus, it is important to study
tabular RL with guarantees, which could potentially bene-
fit DRL and applications involving DRL. Our proposed al-
gorithms, although not in the scope of DRL, could be poten-
tially extended to DRL in the following ways. (1)Our idea of
extracting “relative” transition probability similarity could
be directly used in model-based DRL. For example, the next-
state prediction model usually outputs a Gaussian distribu-
tion for every s-a pair, and one can augment the learned
derivation by averaging over predicts with close derivations,
assuming some similarity about the uncertainty among dif-
ferent states. (2) It is possible to discretize state space and
apply count-based methods, as suggested in by Tang et al.
(2016).

Our work on multi-task reinforcement learning also has
the potential to be applied to other transfer learning tasks
within and outside of the Reinforcement Learning commu-
nity. Any learning in systems that share modular similarities
could potentially benefit from our algorithms to speed up the
training process.
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