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Abstract—Near-term quantum computers can hold only a
small number of qubits. One way to facilitate large-scale quantum
computations is through a distributed network of quantum
computers. In this work, we consider the problem of distributing
quantum programs represented as quantum circuits across a
quantum network of heterogeneous quantum computers, in a
way that minimizes the overall communication cost required
to execute the distributed circuit. We consider two ways of
communicating: cat-entanglement that creates linked copies of
qubits across pairs of computers, and teleportation. The hetero-
geneous computers impose constraints on cat-entanglement and
teleportation operations that can be chosen by an algorithm. We
first focus on a special case that only allows cat-entanglements
and not teleportations for communication. We provide a two-
step heuristic for solving this specialized setting: (i) finding an
assignment of qubits to computers using Tabu search, and (ii)
using an iterative greedy algorithm designed for a constrained
version of the set cover problem to determine cat-entanglement
operations required to execute gates locally.

For the general case, which allows both forms of communica-
tion, we propose two algorithms that subdivide the quantum
circuit into several portions and apply the heuristic for the
specialized setting on each portion. Teleportations are then used
to stitch together the solutions for each portion. Finally, we
simulate our algorithms on a wide range of randomly generated
quantum networks and circuits, and study the properties of their
results with respect to several varying parameters.

I. Introduction

Motivation. There are two crucial technological hurdles that
constrain the realization of quantum computing’s potential:
(a) the limited number of qubits, the basic store of quantum
information, in any single quantum computer; (b) severe
loss of information due to noisy operations and unwanted
interactions with the environment [15]. The second hurdle can
be overcome in principle by using error-correcting codes, but
that results in a blowup in the number of qubits needed for a
computation, thereby exacerbating the first hurdle. Distributing
a quantum computation requiring a large number of qubits over
a network of quantum computers (QCs) is a way to overcome
this hurdle [5, 19, 20].

State of the Art. Quantum circuits, which specify a sequence
of gates (operations) on a set of qubits, is a common ab-
straction between higher-level quantum programs and lower-
level computing hardware. Distributing a quantum circuit over
a quantum network involves assigning the circuit’s qubits to
QGCs, and introducing communication operations to perform
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non-local operations (i.e. operations that span multiple QCs).
The cost of distributing a circuit is the number of added
communication operations.

Optimally distributing a given quantum circuit for evalua-
tion over a network of QCs has been the focus of several earlier
works [2,6,11]. They assume a homogeneous network— all
QCs in the network have the same number of qubits, and the
cost of quantum communication between any pair of QCs in
the network is uniform. Even under this setting, the optimal
distribution problem is intractable [2].

While [6] use teleportation as the only means of communi-
cation between QCs, [2] and [11] use cat-entanglement [19]
which allows for the creation of shared copies of qubits (see
§II) and often yields lower-cost solutions. But [2] and [11]
ignore the storage requirements for multiple simultaneous
cat-entanglements which could be substantial [2]. Distributed
quantum computation over heterogeneous networks is consid-
ered in [10], where the cost, measured as increase in circuit
depth, is not minimized, but bounded by a linear factor.

This Paper. In this work, we consider the problem of optimally
distributing a quantum circuit across an arbitrary topology
network of heterogeneous quantum computers. In particular,
we consider the following generalizations to the optimal
distribution problem:

1) The cost of communication between two QCs in a given
network is a function of their network distance.

2) Each QC has specified qubit capacity, and an “execution
memory” of limited size for storing cat-entangled qubits;
these two limits may vary across QCs in the network.

3) Communication may be via cat-entanglement, or telepor-
tation whose effect is to dynamically alter the assignment
of qubits to QCs.

Performing distributed quantum computing in practice, when
technology makes it feasible, will require us to drop the
homogeneity assumption and study the problem in the more
general setting described above.

Contributions and Organization. We formalize the optimal
distribution problem under these generalizations as the DQC
problem. We then provide polynomial-time heuristics for this
intractable problem in multiple steps.

We first consider a special case of DQC, called DQC-
M, that considers only cat-entanglement-based communication
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Fig. 1: Quantum Circuit Example.

(i.e., without generalization (3) above); see §IV. We solve
DQC-M in two steps: (i) First, we use a Tabu-search-based
heuristic to partition the given circuit’s qubits among QCs
taking the heterogeneity of the network and storage limits into
account. (ii) Then, we develop an algorithm for introducing
cat-entanglements to “cover” non-local gates, i.e., gates whose
operands are in assigned to QCs. In a restricted setting, this
yields an O(log n)-approximate solution (here n is the number
of non-local gates).

For solving the general DQC problem (see §V), we provide
two greedy heuristics, Sequence and Split, each using our
solution to the DQC-M problem as a subroutine. Although
Sequence has lower complexity than Split, neither is
uniformly better than the other—we provide examples where
each heuristic outperforms the other. In §VI, we present our
evaluation results, which show that Split performs better
than Sequence in most cases.

We begin with a brief background in quantum computation
and communication (§II) for completeness followed by a
formal description of the problem (§1II).

II. Background: Quantum Computation and
Communication

We start with giving a brief background on two key quantum
concept relevant to our paper: quantum circuits and our choice
of universal gate set as unary and CZ gates, and quantum
communication methods used in our work.

Quantum Circuits. Quantum computation is typically ab-
stracted as a circuit, where horizontal “wires” represent qubits
which carry quantum data, and operations on the qubits per-
formed by vertical “gates” connecting the operand wires [14].
Quantum computers (QCs) evaluate a circuit by applying the
gates in the left-to-right order, so this circuit can also be
understood as a sequence of machine-level instructions (gates)
over fixed number of data cells (qubits).

Analogous to classical Boolean circuits, there are several
universal gate sets for quantum computation: any quantum
computation can be expressed by a circuit consisting only of
gates from a universal gate set. In particular, the “Controlled-
Z” binary gate, denoted by CZ, along with the set of all
possible unary gates forms a universal gate set. We use this
universal gate set in this paper since the symmetry of CZ
gates allows a simpler formulation of distributed execution
by creating linked copies using cat-entanglements (see below).
Fig. 1 shows the pictorial representation of an example circuit,

consisting only of unary gates (boxes) and CZ gates (vertical
connectors). Without loss of generality, we ignore measure-
ment gates; measurement can be postponed to the end and
treated as unary operations.

Quantum Communication. If a given quantum circuit is to
be evaluated in a distributed fashion over a network of QCs,
we have to first distribute the qubits over the QCs. But such
a distribution may induce gates in the circuit to span different
QCs. To execute such non-local gates, we need to bring all
operands’ values into a single QC via quantum communica-
tion. However, direct/physical transmission of quantum data is
subject to unrecoverable errors, as classical procedures such
as amplified signals or re-transmission cannot be applied due
to quantum no-cloning [8,18]." Fortunately, there are other
viable ways to communicate qubits across network nodes, as
described below.

Teleportation. An alternative approach to physically transmit
qubits is via teleportation [4] which requires an a priori
distribution of maximally-entangled pair (MEP) of qubits (e.g.,
Bell Pair) over the two nodes. With an MEP distributed over
nodes A and B, teleportation of a qubit state from A to B
can be accomplished using classical communication and local
gate operations, while consuming/destroying the MEP.

Cat-Entanglement: Creating “Linked Copies” of a Qubit. An-
other means of communicating qubit states is by creating
linked copies of a qubit across QCs, via cat-entanglement
operations [9, 20] which, like teleportation, require a Bell Pair
to be shared a priori. These linked copies are particularly
useful in efficient distributed evaluation of circuits involving
only CZ and unary gates, as follows. The symmetry of CZ
operation allows for either of the qubit operands to act as the
(read only) control operand, and, more importantly, the control
qubit can be just a linked copy of the original qubit operand
(and since a linked copy is read-only, many copies can exist
and used simultaneously). However, since a unary operation
on the original qubit ¢ may change its state, linked copies of ¢
may not remain true copies; thus, we “disentangle” any linked
copies of ¢ via a dual operation called cat-disentanglement
before applying a unary operation on g—the dis-entanglement
operation doesn’t require a Bell Pair.

III. Relevant Concepts and Problem Formulation

In this section, we define the DQC problem of distributing
quantum circuits across quantum computers. We start with an
informal description, define the relevant terms and concepts,
and then formulated the DQC problem addressed in this paper.

Informal Problem Description. The goal of the Distributing
Quantum Circuits (DQC) problem addressed in this paper is to
determine an efficient distribution of a given quantum circuit,
over a given network of QCs. Efficient distribution essentially
entails two tasks: distributing the qubits over the distributed
QCs, and then executing the given gates, including non-local

'Quantum error correction mechanisms [7, 13] can be used to mitigate the
transmission errors, but their implementation is very challenging and is not
expected to be used until later generations of quantum networks.



gates using a judicious combination of teleportation and/or cat-
entanglement operations. Informally, the DQC problem is to
execute the given (centralized) quantum circuit over the given
quantum network using a minimum cost of teleportations and
cat-entanglements used to execute the non-local gates, under
the given memory constraints.

Closest Related Work. The closest work that addresses
the above problem is our own recent work [11] —where
we address the DQC problem under the simple settings of
homogeneous computers with unbounded execution memory
(to store cat-entanglement copies), complete network topology,
and no teleportations. For the simplified setting, [11] presents
a two-step algorithm for the DQC problem, wherein the first
step determines the partitioning of qubits to computers through
balanced graph partitioning and the second step minimizes the
number of cat-entanglement operations via an iterative greedy
approach.

In this paper, we address the generalized DQC problem
wherein each computer may have non-uniform storage mem-
ory (to store the qubits) and bounded non-uniform execution
memory (to allow for copies from cat-entanglements). Most
importantly, we allow teleportations, which may dynamically
change the partitioning of qubits across computers, but can
improve the communication cost.

A. Key Concepts and Terminology

Quantum Circuit Representation. As in [2], we consider the
universal gate set with (binary) CZ and unary gates. Also, in
our context, we do not need to represent the type of unary
gates. Thus, we represent an abstract quantum circuit C' over
a set of qubits @ = {qi1,¢2,...} as a sequence of gates
(91,92, . ..) where each g is either binary CZ gate or a unary
gate. We thus represent binary gates in a circuit as triplets
(¢i,qj, k), where ¢; and ¢; are the two operands, and k is the
time instant (see below) of the gate in the circuit; and unary
gates as pairs (g;, k), where g; is the operand and k is the time
instant. We use N, and N, to denote the number of qubits and
gates in the circuit, respectively.

Each gate occurs uniquely at a time instant. In ad-
dition to the instants where the gates occur, we intro-
duce additional time instants in between gates for cat-
entanglement/teleportation operations. See Fig. 2.

Quantum Network (QN). We represent quantum network
as a connected undirected graph with nodes representing
QCs and edges representing (quantum and classical) direct
communication links. Nodes of the network are denoted by
P; we use the words node, computer, and QC interchangeably.
We denote the number of nodes in the network by N,. Each
computer p € P has quantum memory to store qubits; for
simplicity, we divide this memory into two parts: qubit storage
memory to store the “original” qubits, with capacity denoted
by s,, and execution memory used to store the linked copies
(ebits) from cat-entanglements, with capacity denoted by e,.
Thus, as part of the given QN specification, each node has has
a certain amount of qubit storage and execution memory.
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Fig. 2: In the above figure, the gates are at odd-numbered time
instants t1,%s,...,t9, and the even-numbered time instants
between each pair of consecutive gates have been introduced
for convenience.

Home Computers. To distribute execution of a given quantum
circuit, we first distribute qubits of the given circuit across the
network nodes. At any point of time, each qubit g of the circuit
resides (i.e., is stored) at a unique node in the network—which
we call its home computer or just home. Cat-entanglement will
create a linked copy of a qubit ¢ at another computer, but does
not change ¢’s home. However, a qubit’s home can be changed
by teleporting it to another computer.

The home computers of qubits are represented by a set of

home-computer functions, 7, one for each time instant ¢. Each
home-computer function maps a circuit’s qubits to computers,
ie., m : Q +— P. Thus, m;(q) denotes the home of qubit ¢ at
time ¢t. A home-computer function 7, is valid if and only if it
obeys the storage memory constraint— i.e., for any computer
p with a storage memory of s, units, there are at most s,
qubits ¢ such that m,(¢) = p. A gate (g;,q;,t) is defined as
non-local at time ¢ if ¢; and g; have different home-computers,
ie., m(q;) # me(q;)-
Representing Teleportations. We represent teleportation by a
triplet (g, p, t) which signifies that the qubit ¢ was teleported to
the computer p at time ¢. The teleportation (g, p,t) results in
changing the home-computer function such that m;(¢) = p.
For simplicity, we enforce that teleportations only happen
at times with no gates. To simplify the issue of storage
memory violations due to teleportations, we assume that all
the teleportation at time ¢ happen simultaneously- — and do not
require additional memories for the EPs used in teleportations.
Thus, the set of teleportations occurring at time ¢ can be looked
upon as changing the entire home-computer function from a
valid m;_; to a valid ;.

Migrations (formalizing Cat-Entanglements). As described
before, we use cat-entanglements to make linked copies of
qubits to execute non-local gates. As in our earlier work [11],
we use the term migrations to denote cat-entanglement. How-
ever, since we now allow teleportations which change the
home computers of qubits over time, formal definition of
migrations differs from that used in [11]. Informally, a qubit
q can be migrated from its home computer to another for a
certain duration of time (¢, t.); such a migration is considered



valid if, during the time interval (t,t.), there are no unary
operation on ¢ and its home computer doesn’t change. For
simplicity, we assume that there are no gates at ¢, and ¢..

Definition 1 (Migration): Given a quantum circuit, a quan-
tum network, and the home-computer function at each time
instant, a migration is a quadruple (g¢,p,ts,t.) to denote
migration of qubit g from its home-computer at ¢, to another
computer p for the period (ts,t.). For the migration to be
valid, the following conditions must hold.

o p # m_(gi), i.e., ¢ is migrated to a computer p different
from its home computer at ¢,.

o m(q) = m, (q) for all ¢ in (ts,t.). That is, the qubit ¢’s
home computer doesn’t change for the duration of the
migration; i.e., ¢ is not teleported during the period.

o There are no unary gates on ¢ during (¢s,%.). O

Coverage by a Migration; Home-Coverage. We use the term
“cover” to denote migrations that help execute a non-local
gate, and formally define the notion of coverage of a gate by
migration(s) as follows. A binary gate g = (g¢;,¢;,t) can be
covered by one or two migrations as follows.

1) By a single migration (g, m:(q;),ts,te) or
(g5, m(qi), ts, te), where t5 < t < t.; this represents
migrating one operand to the other’s home computer to
enable the gate’s local execution.

2) By a pair of migrations {(Qiypa t817 tel)7 (Qj7pa ts27 teZ)}
for some computer p, where 51 <t <t and tgo <t <
te2. This represents migrating both operands to a common
computer p and executing the gate locally there.

Coverage of a gate by a single migration is called home-
coverage.

Feasible Set of Migrations. Limited execution memory at
each computer restricts the maximum number of linked copies
that can be present in a computer at any point of time.
Consequently, a set of migrations is feasible only if the created
linked copies obey the execution memory constraint at every
computer at every point of time. We define this formally below.

Let m be a migration, p a computer, and ¢ a time instant,
and let A(m,p,t) be a function that is 1 iff there is a linked-
copy of a qubit at computer p at time ¢ due to migration m.
More formally:

1 ifm=(¢p,tste) and ts <t <t
0  Otherwise

A(m7p7 t) = {

A set of migrations M are said to be feasible if and only
if 32 e Alm,p,t) < e, for all computers p, for all times
t, where e, is the capacity of execution memory at p.

Cost of Migrations and Teleportations. The cost of a
migration (g, p,ts,t.) is defined as the distance between the
nodes m:_(q) to p in the given network graph. This cost
accounts for the fact that migrating a qubit from m;_(q) to
p requires an EP over nodes p and 7, (¢q) whose generation
cost we assume to be proportional to the distance between p
and 7z (¢). Similarly, cost of a teleportation (g, p, t) is defined
as to be the distance between m;_1(q) to p.

Fig. 3: DQC problem instance from Example 1

B. Problem Formulation and Example

We now define the DQC problem formally, based on the
above concepts and terms.

DQC Problem. Given a quantum circuit and a quantum
network, the DQC problem is to: (i) determine a valid home-
computer function at all time instants (which also yields the
teleportations incurred), and (ii) a feasible set of migrations
that cover all the non-local gates, while minimizing the total
cost of migrations and teleportations used.

The above DQC problem can be shown to be NP-hard, by
a reduction from the DQC problem that only allows migration
(and no teleportations) which is known to be NP-hard [2].
We omit the details of the reduction here.

Example 1. Consider a DQC problem instance in Figure 3—a
circuit with four qubits and two computers each with a storage
memory of two and execution-memory of 1. We assume the
computers to be connected by a network link, and thus, the
cost of any migration or teleportation is one. The figure also
illustrates an optimal solution to the DQC problem of cost four.
Initially, qubits ¢; and g2 are assigned to the first computer
(signified by purple circles), while g3 and g4 are assigned to
the second computer (signified by yellow circles). At the time
instant denoted by the red line, the qubit assignment is changed
(via appropriate teleportations): gz is teleported to the second
computer while g3 is teleported to the first. The only non-
local gates are the ones marked in orange and green — each
requiring one migration. Thus, the total cost is 4, comprised
of two teleportations and two migrations.

IV. DQC-M Problem: DQC with Only Migrations

For ease of presentation, we first address a simpler version
of the DQC problem, wherein we do not allow any telepor-
tations. We refer to this problem as DQC-M. In this special
case DQC-M problem, the home-computers of the qubits never
change after the initial placement and we need to cover all the
non-local gates with just migrations. In effect, the DQC-M
problem boils down to picking an initial assignment of qubits
to computers such that non-local gates can be covered with
minimum-cost migrations. We design a two-step algorithm for
the DQC-M problem, as discussed below.

Two-Step Algorithm (DQC-M) for DQC-M. The DQC-M
problem is a direct generalization of the problem addressed in
our earlier work in [11] wherein the computers were assumed
to have uniform storage memory with unbounded execution
memory and the network was assumed to have a complete
topology. As in [11], we develop a two-step algorithm, we call
DQC-M, wherein in the first step we determine the assignment



Algorithm 1 DQC-M

Input: Quantum circuit C' over qubits (), Network graph G
with nodes P

Output: A valid home-computer function 7 and a set of
feasible migrations M™ that cover all non-local gates in C'

I: m < A valid home-computer function such that the cost
required migrations is low.

2: M < A low-cost set of migrations that covers all the
non-local gates resulting from 7.

3: (Post-processing step) M* < A low-cost set of feasi-
ble migrations covering all non-local gates obtained by
resolving memory constraint violations in M.

4: return w, M*

of qubits to computers (i.e., the initial home-computer map-
ping which then remains unchanged), and then, in the second
step, we determine the migrations to cover the non-local gates.
We discuss these two steps in the following subsections. See
the high-level pseudo-code of the two-step DQC—-M algorithm.

A. DQC-M Step 1: Assignment of Qubits to Computers

Here, we address the first step of DOC-M— which assigns
qubits to computers to minimize the cost of migrations re-
quired to cover all the non-local gates. In our earlier work [11]
where we considered a special case of DQC-M problem with
homogeneous network and unbounded execution memories,
we used a balanced graph-partitioning to assign qubits to com-
puters. However, in the current DQC-M problem, the cost of
separating qubits ¢; and g» depends on the specific computers
they are assigned to due to the network’s heterogeneity—
hence, a graph partitioning approach is inapplicable to the
DQC-M problem’s first step. Here, we develop a search-based
algorithm— in particular, based on Tabu search [12]— to
assign qubits to computers.

Tabu Search and Motivation. Tabu search is a local-search
heuristic that starts with an initial solution, and then picks a
better solution among the neighbors of the current solution.
To avoid getting stuck in a local minimum, it sometimes
also picks a worse solution, especially, if there is no better
solution among the neighbors. The key distinction of Tabu
search compared to other local-search algorithms is that it
maintains a list of recently-visited solutions and incurs a
penalty each time one of these solutions is chosen again.
Our motivation for choosing a Tabu-based search heuristic is
that our problem closely resembles the well-studied quadratic-
assignment problem for which Tabu search has been shown to
perform well [16]. This relationship is clear from our objective
function shown under “Solution’ Cost” below.

Tabu Search Algorithm for Assignment of Qubits. To
design a Tabu-search based algorithm for our problem of
assignment of qubits to computers, we need to define three key
aspects of the algorithm: (i) Solution, (ii) Solution’s neighbors,
and (iii) Solution’s Cost.

Solution and Its Neighbors. In our context, a solution is a
valid home-computer function. Neighbors of a given solution
7 can be defined as valid solutions 7’ that result from either:
(i) changing the assignment/mapping of a single qubit without
violating the storage constraint, or (ii) “swapping” of two
qubits mapped to two different computers in 7.

Solution’s Cost. A solution’s cost can be defined as an estimate
of the cost of migrations needed to cover the non-local gates
resulting from the solution’s qubit assignment. More formally,
the cost of a solution 7, denoted by cost(w) is

cost(m) = Z w(q1,q2) X distance(m(q1), m(q2))
q1,92€Q

where w(q1, q2) is the number of migrations needed to cover
the binary gates between ¢; and ¢o if they are assigned to
different computers. We estimate w(q1, g2) as described below.

Estimating w(q1, g2). Let C is the original circuit that includes
two qubits g7 and go. To estimate w(q1, ¢2) in C, we consider
an induced circuit C’ that consists only of qubits g; and ¢
and the sequence of gates from C that involve ¢; and go. We
can compute the optimal number of migrations required to
cover all the gates in the induced circuit C’ when ¢; and ¢
are assigned to different computers using the optimal home-
coverage algorithm (called MS-HC) from [11]. Note that in
C’ only home-coverage of gates by migrations is possible. We
use the optimal number of migrations required in C’ as the
estimate for w(q,gz) in the given circuit C.

Tabu Algorithm. Based on the above discussion, the algo-
rithm (called Tabu) for the first step of DQC-M is defined as
follows:
1) m* = 7 = initial random solution
2) L =[] /* a bounded-length list of forbidden solutions */
3) Repeat for A iterations:
a) ™= argminﬂ'/lel‘gl’lbOI’S(ﬂ')fL COSI(?T/)
b) 7 = 7 if cost(m) < cost(m*)
¢) L = LU {r}, removing the oldest element from L if
necessary to maintain length bound.

4) Return 7*

B. DQC-M Step 2: Selection of Migrations to Cover Gates

In this section, given an assignment of qubits to computers,
we seek to compute a minimum-cost feasible set of migrations
that cover all the non-local gates.

Basic Idea. Selecting migrations to cover non-local gates is
essentially a generalization of the set-cover problem, with two
key differences:

1) First, we are restricted to choose only a feasible set of mi-
grations. Fortunately, the execution-memory constraints
can be expressed as linear constraints—and hence, can
be handled by using approximation techniques from [3]
that studies the related maximum-coverage problem with
linear constraints.

2) Second, a gate may be covered by a pair of migrations to-
gether which translates to allowing a pair of sets to cover



Algorithm 2 Step 2 of DQC-M.

Input: Quantum Network G, Quantum circuit C,
Home-computer function 7.

Output: A set of migrations M that covers all non-local
binary gates.

1: uncovered < non-local binary gates in C' due to 7.
2: while (uncovered) do
3 (S, covered) < COVER-a(uncovered, G, )
4: uncovered < uncovered \ covered
5: M—=MUS
6: return M.

7: function COVER-a(uncovered, G, )
8 minCost = 1;

9: maxCost = |uncovered| x (Diameter of G)

10: for ¢ in [minCost, maxCost] do

11: (S, covered) <+ AG-Algo (¢, C, 7, G, uncovered)
12: if |covered| > a|uncovered| then

13: Break

14: return (S, covered)

an element together; see the “Coverage by a Migration”
paragraph in §III-A. Such a generalization breaks the
submodularity of the objective function—and in general,
can render the coverage problem inapproximable.

It should be noted that with generalization (2) alone but in the
absence of (1), we gave an approximation algorithm in [11].
However, neither the technique from [3] nor [11] can be
extended to handle both the above generalizations together
while ensuring a performance guarantee. Thus, we develop
a heuristic based on [3] as described below. We start with
considering the special case of home-coverage (i.e., select
migrations to cover gates using only home-coverage), and then
extend our algorithm to general coverage.

Approximation Algorithm for Home-Coverage. We note
that MULTIPLICATIVE-UPDATES algorithm from [3], hereafter
referred to as the AG-Algo, maximizes the number of ele-
ments covered under a given cost budget of sets with linear
constraints. In contrast, the Step-2 of DQC-M needs to select
minimum-cost migrations to cover all gates—which is in some
sense, a dual of the problem solved by AG-Algo. To cover all
the gates with minimum-cost migrations based on AG-Algo,
we use an iterative algorithm where, in each iteration, we cover
at least a certain constant fraction « of the remaining gates
using a minimum-cost set of migrations. Iterations are repeated
until all binary gates are covered. To find a minimum-cost set
of migrations covering at least « fraction of the gates using
AG-Algo, we exploit the fact that cost is an integer bounded
by the product of the number of binary gates in a circuit and
the diameter of the network, as shown below.

o For each cost c:

— Select, using AG-Algo, a feasible set of migrations
costing at most ¢ that covers the maximum number of
gates.

o Pick the solution with smallest ¢ for which the AG-Algo
solution could cover « fraction of the remaining gates.

We use @ = 0.4 in our implementation, based on the
approximation factor of the AG-Algo. For a more formal
and complete description, see the pseudocode shown in Al-
gorithm 2. We make two remarks. First, while each iteration
returns a feasible set of migrations, their union may not be
feasible, i.e., may violate execution-memory constraints; we
resolve them as a post-processing step below. Second, in
subroutine COVER-«, we can use a binary search to more
efficiently iterative over all possible costs.

For sake to clarity, we have intentionally omitted details of
the AG-Algo algorithm, but at a high-level it is an iterative
approach that picks the migration based on an objective that
considers both—the number of gates covered as well as the
ability to cause constraint violations.

Performance Guarantee. It can be shown that the above al-
gorithm yields a O(logn)-approximation solution (where n
is the number of non-local gates) for the problem of selec-
tion of minimum-cost set of migrations to cover all gates
given a home-computer function, while bounding the violation
of execution-memory constraints (violations fixed in §IV-C).
Note that n < Ny, the number of all gates in the circuit. We
formalize the performance guarantee below.

Theorem 1: Given a network G, circuit C, and a home-
computer function 7, let k* be the optimal-cost of a set of
feasible migrations that home-covers all the non-local gates
for m, and n be the total number of non-local gates for 7.
Algorithm 2 returns a solution M such that:

e M covers all non-local gates.

o (M| < (logn)k*.

« For every computer p in G, the amount of execution
memory in p used by M at any time instant is at most
(logn)e,. u

Generalization to General Coverage. Recall that the above
algorithm was under the restriction of home-coverage. To
allow for general coverage of gates by migrations, i.e., to allow
a pair of migrations to together cover a gate, we need to modify
the AG-Algo subroutine accordingly. Note that AG-Algo
works iteratively, wherein in each iteration it selects a single
migration. To allow for general coverage, we modify the
AG-Algo subroutine to also consider pairs of migrations for
selection in each iteration. This change is straightforward, and
we omit the details. Unfortunately, allowing general coverage
by migrations breaks down the approximation guarantee of
AG-Algo.

C. Post-Processing to Resolve any Memory Violations.

While our algorithm selects a feasible set of migrations
in every iteration, the overall solution may violate memory
constraints. We resolve these violations by replacing some
migrations with migrations of smaller duration. Consider a
migration (g, p, ts,t.) which covers gates at time ¢1, to and t3.
We can covert this migration into three separate migrations,
viz., (q,p,t1,t1), (¢, p, ta2,t2) and (q,p, t3,ts3), each of which
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Fig. 4: Circuit illustrating the benefit of including teleporta-
tions, see Example 2.

covers the gates at ti,t5 and t3 respectively. The above
conversion reduces the usage of execution memory at p,
while increasing the total cost of migrations. Note that there
always exists a solution that uses only such “instanteneous”
migrations and requires only one unit of execution memory at
each computer, since there is at most one gate at each time
instant. Thus, a simple strategy to resolve execution-memory
violations could be to convert migrations into multiple shorter
migrations iteratively.?

Based on the above, our post-processing algorithm to re-
solve execution-memory violations is as follows: we iteratively
pick the migration that causes a violation and covers the least
number of gates, and covert it into instantaneous migrations
as described above.

Time Complexity of DOC-M Algorithm. Overall, the DOC-M
Algorithm runs in O(AN,* 4 N,n%logn) time, where \ is the
number of iterations chosen for our Tabu search heuristic, N,
is the number of qubits, IV, is the number of computers in the
quantum network, and n is the number of non-local binary
gates with the chosen home-computer function; note n < N,,
the number of gates in the circuit. In our implementation, we
pick A to be 20, beyond which Tabu search offers minimal
improvement in solutions for our instances.

V. General DQC Problem (with Teleportations)

We now consider the general DQC problem which allows
teleportations as well as migrations. We start with illustrating
the benefit of teleportations. Then, we design two algorithms
for the general DQC problem; our algorithms use DOQC-M from
the previous section as a subroutine.

Example 2. Benefit of Teleportations. Consider the circuit
instance shown in Fig. 4(a). We seek to distribute this cir-
cuit across two computers, each with a storage memory of
two units. If we allow only migrations, then it is easy to

Note that since our algorithms only create migrations for yet-uncovered
gates, such a conversion strategy would not yield “redundant” instantaneous
migrations—and thus, conversions alone should yield a feasible solution.
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Fig. 5: Sequence algorithm at index ¢;;;. Note that the
points of teleportation are determined in sequence from right
to left.

observe that the optimal solution assigns the qubits {q1, g2}
and {gs,q4} to the two computers respectively and uses five
migrations to cover all the gates (since only 5 of the 11
gates are non-local for the given home-computer mapping).
Now, consider the solution shown in Fig. 4(b) which uses
teleportations too. Here, we essentially change the home-
computer mapping at the time instant denoted by the red
vertical line, which makes all the gates local; thus, the total
cost is only 2—for the two teleportations needed to change the
home-computer function at the red line. Note that the above
example can be scaled to exhibit arbitrarily large the benefit
from using teleportations.

Sequence Algorithm. Our first algorithm called Sequence
is a greedy approach, wherein we go over the given circuit
from left to right, and determine, at each gate, whether
or not changing the home-computer function just before it
would be beneficial to the overall cost of teleportations and
migrations required. Recall that we create additional time
instants in between gates, and teleportation can only happen
at these additional non-gate instants. Consider a binary gate
at time ¢ 4 1. Let us assume that the Sequence algorithm
has already determined the teleportation points for all the
time points before ¢ — 1. To determine whether teleportations
should happen at ¢ (i.e., the home-computer function should
be changed at t), we estimate the total cost incurred for the
full circuit with optimal teleportations at ¢ (and none later than
t) and compare this estimated cost with no teleportations at
t or later. The cost incurred for the full circuit with optimal
teleportations at ¢, with ¢ prior instants where teleportations
were done, can be estimated in the following way.

(a) Run the DQC-M algorithm on each of the ¢ + 2 sub
circuits resulting from the ¢ previously chosen instants
of teleportation and ¢.

(b) Compute the total migration cost by adding the migration
cost of each sub circuit.

(c) Compute the total teleportation cost by adding the tele-
portation cost between every pair of consecutive sub
circuits.

(d) The cost incurred for the full circuit with optimal tele-
portations at ¢ is the sum of the total migration cost and
total teleportation cost.

The total cost of the whole circuit without teleportation



b 4 tt;,, candidate t, t,
| 1 1 | | i |
! 1 1 1 e e |
qp e— - ' ; . ; .
| 1 1 1 1 | |
4 | | | ; | |
qs; ¢ | | : ; | : 1
q4 —! : L . } 1 1
i Y m '4* — . M

DQC-M DQC-M DQC-M DQC-M DQC-M DQC-M DQC-M

Fig. 6: Split algorithm’s iteration considering ¢;;; as the
next teleportation-point. Note that the points of teleporation
may not be determined in sequence.

at t;41 can also be similarly estimated (in fact, has already
been computed in previous iterations of the algorithm). If
the cost with teleportations at ¢ is lower than without the
teleportations at ¢, then ¢ is added to the list of time instants
where teleportation is to be done.

Split Algorithm. Our alternate approach to solving the
DQC problem is the Split algorithm. Split is similar
to Sequence in that Split also select points of teleporta-
tions iterations through a similar cost-estimation methodology.
However, rather than going over the circuit from left to right,
Split iteratively picks the best time instant anywhere in
the circuit where teleportation will help the most. Consider
a stage in the algorithm, where the time instants ¢1,%o,...,%;
have already been determined to be points of teleportations
in previous iterations; note that these points need not be
ordered left to right. Then, in the following iteration, the
algorithm determines the next point ¢; 4, of teleportation; this
determination is done by exhaustive search, by considering all
possible points in the circuit and picking the one that yields
the best total cost estimate. The total cost can be estimated
in a similar manner as described in the previous Sequence
algorithm. A high-level pseudo-code of SPLIT is as follows.

o Assume 7 points of teleportations ¢1,%s,...,%; have al-
ready been chosen; these may not be in left-to-right order.
We describe how to select ¢;41.

o For every possible time instant ¢ in the circuit not in
{tl, tQ, ‘e ti}i
— Note that choosing ¢ as a point of teleportation results

in ¢ + 2 sub-circuits.

— Run DQC-M on each of these sub-circuits to obtain an
initial home-computer function and a migration cost
associated with each sub-circuit.

— Determine the total estimated cost of picking ¢t = >
migration costs + > teleportation cost of changing the
home-computer function.

o Pick the ¢ with minimum cost as ¢;4; if and only if it
reduces cost from the previous iteration (cost associated

« Repeat the above steps until no ¢ reduces the cost.

e Run DQC-M on each sub-circuit to obtain an initial qubit
assignment, a set of migrations and a set of teleportations.
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Fig. 7: An example wherein Split outperforms Sequence.
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Fig. 8: An example wherein Sequence outperforms Split.

As in the Sequence algorithm, we note that many of the
cost components remain unchanged (as the sub-circuits remain
unchanged) from one iteration to the next. Hence, these cost
components need not be recomputed.

Sequence vs. Split Algorithms. Since Split’s search
methodology is more general, it is expected to outperform
Sequence; this observation is also confirmed in our empir-
ical results in the next section. However, there are specific
instances of the DQC problem where either may outperform
the other.

Fig. 7 shows an instance where Split outperforms
Sequence and Fig. 8) shows an instance where Sequence
outperforms Split. In Fig. 7, we observe that Sequence
tends to pick the earliest point of teleportation that offers an
improvement in cost. In contrast, Split parses the entire
circuit and picks the best point of teleportation. This, however,
is not always preferable. For example, in Fig. 8, Split
chooses the best point of teleportation in the first iteration
(by arbitrary tie-breaking). This forces Split to perform
one migration and two teleportations. In subsequent iterations,
Split can at best replace the migration with a teleportation,



and can never reduce the cost.

Time Complexity of Sequence and Split. Sequence
algorithm parses the circuit from left to right, deciding whether
or not to teleport at each time instant. Its time complexity
is O(Nyg(Tpgc-m + NgNp)), where N, is the number of
qubits, [V, is the number of computers, IV, is the number
of gates in the circuit, and Tpgc.p is the time taken by
the DQC-M algorithm. Split Algorithm repeatedly parses
the whole circuit and picks one point of teleportation in each
parse. Its time complexity is O(N,?(Tpgc-ar + NyNp)). In
both cases, the term N /N, arises from the computation of
teleportations.

VI. Evaluation

Here, we present the evaluation of our algorithms over
randomly generated quantum circuits and networks. The per-
formance metric used in our evaluations is the the overall
communication cost comprising of the total cost of migrations
and teleportations as defined before.

Algorithms Compared. We compare the following four al-
gorithms: (i) DQC-M from §IV, which uses only migrations;
(iii) DQC-M-Greedy which is same as DQC-M, except that
it uses a simple greedy algorithm® instead of DQC-M’s Step
2 to select migrations; (iii) Sequence from §V which de-
termines teleportation points by scanning the circuit from left
to right; (iv) Split from §V which determines teleportations
iteratively at arbitrary time instants.

Generating Random Quantum Networks. A quantum net-
work is created based on the following parameters.

o Number of quantum computers

« Probability of a link, between a pair of nodes.
o Qubit storage capacity of each computer

« Execution memory capacity of each computer

To ensure that we generate only connected networks, we use
a Python-based library [1] to repeatedly generate Erd6s-Rényi
graphs with a given edge probability until a connected graph
is obtained. Erd&s-Rényi graphs are generated on k vertices by
choosing every edge uniformly at random with probability p.
Erd&s-Rényi have the useful property that when p > (1%)%
for some small e > 0, the generated graph is connected
with high probability. In our case, the choices of k£ and p
are sufficient to ensure high probability of connectivity. We
choose the qubit storage capacity of each computer to be 60%
to 140% of the average storage requirement (ratio of number
of qubits to number of computers). Similarly, we choose the
execution memory capacity for each computer to be 30% to
70% of the average storage requirement.

Generating Random Quantum Circuits. A quantum circuit
is created based on the following parameters.

o Number of qubits
« Total number of gates (unary and binary) per qubit

3 An iterative greedy algorithm that selects either a single migration or a pair
of migrations that cover the most number of uncovered binary gates without
considering execution memory constraints.

« Fraction of binary gates, i.e., ratio of binary gates to the
total number gates

Let f be the fraction of binary gates. We generate the gates
sequentially, and, at each point, determine whether the gate
should be binary (unary) with probability of f (1 — f). Then,
we choose the gate operand(s) randomly.

Evaluation Results. We evaluate each of the above four
algorithm over generated random networks and circuits as de-
scribed above. We vary six parameters in our simulations (the
parenthesized values are the corresponding default values): (i)
number of computers (10); (ii) probability of an edge (0.5);
(i) number of qubits (50); (iv) number of gates per qubit
(50); (v) fraction of binary gates (0.5), (vi) execution memory
capacity (30% to 70% of the average storage requirement).

In each of the experiments, we vary one of the above
five parameter values, while fixing the remaining five to their
default values. We present the evaluation plots in Figures 9a-
9e.

Overall, we make the following observations on the relative
performances of the algorithms compared.

o Using a combination of teleportations and migrations
offers a significant reduction in cost compared to using
only migrations; this is by observing that Sequence and
Split algorithms outperform the other two algorithms
in all of our experiments. In particular, in Fig. 9a we
see that allowing teleportations reduces the total cost by
around 10% on average using Sequence and around
15% using Split algorithm.

o In almost all cases, Split outperforms Sequence; this
is as expected, since Split can be looked upon as a
generalization of the Sequence algorithm in terms of
the candidates considered for teleportation times.

o The order of the algorithms from highest to low-
est performance is: Split, Sequence, DQC-M,
DQC-M-Greedy; as expected, DQC-M-Greedy per-
forms the worst since it completely disregards the
execution-memory constraints initially and resolves the
resulting violations in post-processing.

We also observed that the DQC-M algorithm rarely resulted
in memory violations, and thus, rarely required any post-
processing.

We also make the following observations regarding how the
performance of the algorithms varies with varying parameter
values. In Fig. 9c, we observe that with the increase in
the ratio of binary gates, the performance gap between the
various algorithms decreases—since with fewer unary gates,
migrations don’t need to be disentangled much which allows
them to cover more gates, reducing the advantage of tele-
portations over migrations. In Fig. 9d, we observe that the
cost of all algorithms decrease with increasing probability
of a network edge, due to shorter paths. In Fig. 9e, we
observe that the cost of all algorithms increase as expected
with increase in total number of gates. Finally, in Fig. 9f, we
vary the execution memory capacity of each computer in the
quantum network from 1 to 6 units, that is, 20% to 120% of
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Fig. 9: Total communication cost incurred by different algorithms for varying parameter values.

average storage requirement (note that the execution memory
capacity per computer used in all other plots is 30% to 70% of
average storage requirement which amounts to 1 to 4 units for
each computer). As expected, cost decreases with increasing
execution memory until there is sufficient memory.

VII. CONCLUSION

In this paper, we consider the problem of distributing a
quantum circuit across a network of heterogeneous quantum
computers in a way that minimizes the overall communication
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cost. We described efficient algorithms which tackle issues that
arise due to the heterogeneity of the network and different
modes of communication. We evaluated our algorithms on
randomly-generated quantum circuits and networks to study
their performance. Several avenues of future research remain.
Efficient simulation of quantum computations on classical
machines (e.g., [17]), and analysis of quantum programs
(e.g., [21]) employ partitioning similar to this work; it will
be interesting to investigate this relationship further.
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