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A B S T R A C T   

Understanding the dynamics of urban growth is among the most important tasks in urban planning due to their 
influence on policy decision-making. Specifically, prediction of urban growth at regional levels is crucial for 
regional policy makers. Making such predictions is difficult because of the existence of complex topological 
structures and the high-dimensional nature of data sets related to urban growth. Spatial and temporal auto- 
correlation and cross-correlations, together with regional social and physical covariates, need to be properly 
accounted for improving the forecasting power of any statistical or machine learning method. To that end, we 
develop novel machine learning methodologies to perform predictions of urban growth at regional levels by 
incorporating lead-lag non-linear relationships among past urban changes in each region and its neighbors. Based 
on this analysis, machine learning algorithms outperform more classical methods, such as a logistic regression, in 
terms of classifying low/high urban growth regions, and the random forest algorithm seems to have the best 
prediction accuracy among the selected machine learning methods. Moreover, the random forest method without 
any external covariates has still a high prediction accuracy which not only confirms that most of variability of 
urban growth can be described by past observations of self and neighboring changes, but also makes it possible to 
perform real forecasting of urban growth without accessing any external covariates. The latter makes this 
modeling framework useful for local policy makers in allocating budget and directing resources appropriately 
based on such predictions.   

1. Introduction 

Accurate prediction of future urban growth and land development is 
one of the fundamental goals of urban modeling. Urban growth dy
namics depend on the multidimensional aspects of the physical, social 
and economic environments. The land development potential on a given 
site is determined based on human behavior and physical and institu
tional limitations. Increased complexity in the dynamics requires 
equivalent mathematical representations in quantitative models, 
providing additional challenges in formulating suitable modeling 
methods, in data requirements, and computational power. 

The main goal in modeling land-use change is to mimic the human 
activities which characterize urban development. Investment decisions 
that result in changes in existing land conditions depend on the expected 
utility from land conversion (Irwin & Geoghegan, 2001). However, 
estimating utility expectation for a potential land-use change on a given 
parcel is not a simple task, due to the unavailability of the necessary 
information. In many studies, proxy information is used to approximate 

the utility function in land-use change models. As mentioned in Verburg, 
Ritsema van Eck, de Nijs, and Dijst (2004), land-use changes depend on 
the complex interactions between human activities and the physical 
environment. In land-use change models, researchers incorporate mul
tiple explanatory variables to approximate people's utility maximization 
behaviours. Tepe and Guldmann (2017) highlight the importance of 
working with disaggregated data to achieve robust model results. 
Finally, there is no consensus about which information should be used as 
proxy. Therefore, there are significant data challenges in land-use 
change modeling. 

Statistical models of urban systems can successfully represent actual 
system dynamics if relationships in real life are precisely formulated. 
However, there are many limitations in building such complex models. 
The first challenge is introducing a successful methodology to account 
for spatial and temporal correlations as well as cross-correlations of 
urban systems in different regions. Recent studies in the field highlight 
the importance of dynamic historical and contemporaneous neighbor
hood relations (Bhat, Dubey, Alam, & Khushefati, 2015; Huang, Zhang, 
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& Wu, 2009; Irwin, Bell, & Geoghegan, 2003; Tepe & Guldmann, 2017; 
Tepe & Guldmann, 2020). The second challenge is data availability. 
Theoretically, land-use change models are based on the utility- 
maximization behaviours of consumers, and land investment decisions 
are affected by institutional and physical limitations. These factors must 
be represented in statistical and machine learning models in order to 
achieve robust results. While some of these factors can be represented 
using direct information, the remainder can only be incorporated using 
proxy data. In parallel to advances in geo-coded data collection, 
modeling methods at spatially disaggregated levels provide heteroge
neous information that can help eliminate some data requirements 
limitations. The third challenge is computational bottlenecks in running 
complex quantitative models with increasing data sizes. 

Machine learning methods (such as random forest, neural networks, 
gradient boosting, etc.) are among the powerful prediction tools avail
able to scientists and forecasters. They are computationally feasible 
methods which can be applied to large-scale data sets and can capture 
complex relationships between the dependent variables and the pre
dictors due to the highly non-linear nature of their estimation. Predict
ing future land-use changes is a complicated task due to the multiple 
parameters affecting urban dynamics and the existence of spatial and 
temporal correlations among urban changes in different regions. The 
main idea of this paper is to tackle the problem of forecasting future 
urban growth using machine learning methods. The growth rates of 
residential, commercial, and occupied parcels at the block group level 
are investigated using the Auditor's geo-coded tax database for the State 
of Florida. The available information on when construction took place 
on each parcel is used to derive measures of land-use dynamics. 
Different spatio-temporal models, incorporating space and time and 
their interactions, are used to investigate land development dynamics. 
The developed machine learning methods are successfully able to cap
ture the non-linear dynamics of urban growth in this rich data set (see 
more details in Section 1 of the supplementary document) and achieve 
satisfactory prediction accuracy (Section 5.1). Another interesting 
outcome of the analysis is the existence of strong non-linear spatial and 
temporal signals in urban growth rate data, which can be utilized to 
perform real out-of-sample forecasts without the use of any external 
covariates (see more details in Section 5.3). Note that there is no access 
to external variables in the future; thus, any method which uses external 
variables cannot make real out-of-sample predictions. This is an 
important observation which makes it possible for regional policy 
makers to have access to highly accurate prediction of urban changes 
and modify local budgets accordingly to reach certain policy goals. A 
brief review of existing works in the literature is provided next. 

2. Related works 

In land-use change modeling, discrete-response models are 
commonly preferred due to the categorical nature of land uses as 
dependent variables. Chomitz and Gray (1996) implement a multino
mial logit to model relationships between new roads and deforestation 
as a result of land conversion from agriculture to commercial uses in 
Belize. Semisubsistence farming, commercial farming, and natural soil 
nitrogen, slope, distance to Belize, etc. vegetation are used as the 
response variables while a set of soil and locational characteristics are 
incorporated as explanatory variables. The potential bias from road 
endogeneity is mostly eliminated by incorporating soil quality into the 
model. Verburg et al. (2004) implement a stepwise logistic regression 
model to investigate temporal dynamics in land development between 
1989 and 1996 in the Netherlands. The determinants of changes in a set 
of land use categories are investigated using detailed location of features 
and accessibility measures. They indicate that accessibility, neighbor
hood interactions and spatial policies play an important role in recent 
years, as compared to historical land developments. 

In addition to temporal dynamics, spatial dependencies are impor
tant components in land-use change modeling, and accounting for such 

dynamics introduces additional complexity in the models. Nahuelhual, 
Carmona, Lara, Echeverria, and Gonzalez (2012) use an autologistic 
regression to analyze timber plantation expansion in south-central Chile 
over two separate periods (1975–1990, 1990–2007), accounting for 
land characteristics and accessibility measures. They conclude that the 
spatiotemporal dynamics formed as a result of the interactions of natural 
and socio-economic drivers are an important factor in timber plantation 
expansion. Yu and Srinivasan (2016) also implement a binary autolo
gistic regression to investigate rural-to-urban land-use change over 
2000–2010 in Beijing. Their explanatory variables are grouped into 
proximity, neighborhood, physical, jurisdictional, and socio-economic 
categories. Their findings indicate a positive association between 
existing land and vacant land in close proximity. Both Nahuelhual et al. 
(2012) and Yu and Srinivasan (2016)) account for spatial dependencies 
in their modeling approaches, using the autocorrelation of neighboring 
spatial units through a spatial weight matrix. Moreover, Carrion-Flores 
and Irwin (2004) utilize a probit model to investigate the land devel
opment potential at the parcel level in the rural areas of the Cleveland 
metropolitan area, where spatial dependencies are assumed to exist 
within the error term. Bhat et al. (2015) model land development pat
terns for Austin's CBD and surrounding areas using a spatial discrete- 
continuous probit model accounting for the spatial lag of the depen
dent variable. 

Incorporating temporal dynamics is critical in land use change 
modeling. Irwin et al. (2003) implement a duration model of land-use 
changes at the parcel level by controlling for spatial dependency 
without an explicit temporal lag. Incorporating spatial dependence and 
temporal dynamics separately is not sufficient to achieve robust model 
results. To that end, Huang et al. (2009) model the spatial and temporal 
dynamics of conversions from rural to urban land uses in New Castle 
County, Delaware, over three separate periods (1984–1992, 1992–1997, 
1997–2002), while Ferdous and Bhat (2013) introduce a spatial panel 
ordered-response probit model controlling for both spatial interactions 
and temporal lags. Gao et al. (2020) compare methods used to control 
for spatial heterogeneity in land development and conclude that the 
spatial lag and localized modeling approaches (such as GWR) provide 
better modeling results. Finally, Tepe and Guldmann (2017, 2020) 
introduce a novel approach for spatio-temporal modeling of land-use 
changes. Both binary and multinomial spatio-temporal autologistic 
regression models are developed for estimating land-use conversions at 
the parcel level in Delaware county, Ohio. Their findings show that land 
developments in neighboring parcels attract the same land use and 
historical land development trends are also positively associated with 
contemporaneous parcel development. 

Spatial components in land-use change modeling introduce compu
tational challenges. When a spatial weight matrix is incorporated using 
spatial lag or spatial error approaches, the computation of the inverse 
matrix is required (Anselin, 1988; Ord, 1975). Alternatively, simulation 
methods, such as Gibbs sampler and EM algorithms, can be considered 
to solve complex log-likelihood functions of discrete-response models 
with spatial lags (Fleming, 2004). However, simulation-based optimi
zation procedures do not guarantee convergence of the maximum like
lihood function during parameter estimation. Most proposed land-use 
change models with such explicit spatial components have less than 
3000 sample observations because of these computational challenges 
(Bhat et al., 2015; Ferdous & Bhat, 2013; Huang et al., 2009; Nahuelhual 
et al., 2012; Yu & Srinivasan, 2016). Tepe and Guldmann (2017, 2020) 
substantially improve the computational feasibility of discrete response 
models by using simulation-based approaches. However, other methods 
are required to achieve robust results when model complexity increase. 
The computational advantages of the Random Forest (RF) and Artificial 
Neural Network (ANN) methods can be considered for such modeling. 

Recent years have witnessed efforts to integrate Machine Learning 
(ML) methods into land-use change models, based on the Cellular 
Automata (CA) approach. Gounaridis, Chorianopoulos, Symeonakis, 
and Koukoulas (2019) apply a Random Forest approach to classify 
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detailed land-use categories, accounting for environmental, physical, 
accessibility, and socio-economic indicators in Attica, Greece. They 
introduce a hybrid modeling approach for land-use change, using both 
CA and RF models. Karimi, Sultana, Babakan, and Suthaharan (2019) 
implement a Support Vector Machine (SVM) model for urban expansion 
in Guilford County, analyzing land-use changes over 2001–2006. Their 
model classifies a given piece of land as vacant or built-up, based on a set 
of predictors grouped under site-specific, proximity and neighborhood 
categories. Their model provides highly accurate results. Also, their 
findings show the importance of the spatial clustering pattern of land use 
/ land category types. Xing, Qian, Guan, Yang, and Huayi (2020) inte
grate spatial and temporal dynamics in a Deep Learning (DL) model used 
as the transition function in CA models. Landsat images and road net
works are used to derive spatiotemporal dynamics in land cover pro
portions, site-specific measures (implicit spatial features, elevation, 
slope), and distances to a set of point of interests (river, railway, high
way, first class road, minor road, city road, railway station, bus station, 
main POIs, and central city). This model successfully captures the 
neighborhood dynamics that are vital to land-use change models, with 
an overall model accuracy of almost 94%. Liang, Dang, Sun, and Wang 
(2020) propose a CA approach combining Markov Chain and RF 
methods to model land use changes in Shanghai, using site-specific, 
proximity, socio-economic characteristics, and planning guidelines. 
This is the only study accounting for institutional factors in land 
development dynamics. Similarly, Okwuashi and Ndehedehe (2021) 
integrate SVM and Markov chain approaches into cellular automata for 
modeling urban changes. Lv et al. (2021) introduce a gravity-based 
approach to account for spatial interactions between cities in their RF- 
CA model. Their model classifies a binary choice of urban and non- 
urban land use types, based on a set of predictor variables covering 
economic, social, educational characteristics and infrastructure and 
environment conditions. Use of a gravitational model in RF-CA advances 
traditional CA modeling by accounting for travel cost in the system. 
Shafizadeh-Moghadam, Minaei, Jr, Asghari, and Dadashpoor (2021) 
apply a Forward Feature Selection algorithm for RF models used as 
transition rules in CA-based land-use change modeling. In RF models, 
urban growth and non-urban persistence are classified based on grids' 
characteristics: slope, altitude and distances from roads, crop, greenery, 
urban, and barren. This study shows the effectiveness of accounting for 
proximity factors in the absence of socio-economic factors. Finally, Yu, 
Hagen-Zanker, Santitissadeekorn, and Hughes (2021) discuss the lack of 
sufficient historical information to calibrate Cellular Automata land-use 
change models. They introduce a Markov Chain Monte Carlo approxi
mation based on Bayesian computation to calibrate CA models. 

There are also a few ML applications to land-use change modeling. 
Zhai et al. (2020) implement a Convolution Neural Network (CNN) 
approach to Vector-based CA modeling. CNN effectively classifies a 
given parcel's land-use category based on parcel site-specific and prox
imity characteristics. This novel approach effectively mimics local 
neighborhood dynamics, using the convolution kernel and local con
nectors. Ron-Ferguson, Chin, and Kwon (2021) investigate land devel
opment dynamics by analyzing the actions taken on vacant lands and 
existing constructions and accounting for a wide range of explanatory, 
including socio-economic, built environment characteristics, and land
scape metrics. They show the importance of the RF method to account 
for complex non-linear relationships in the data. Talukdar et al. (2021) 
introduce a spatiotemporal analysis of land-cover changes using Ma
chine Learning algorithms such as Bagging and RF, where water bodies, 
agricultural land, vegetation, sand bar, bare land and built-up area 
categories are used as response variable and a set of landscape metrics is 
used as the explanatory variables. The bagging model produces more 
accurate predictions, due to higher levels of tree depths as compared to 
the RF model. The model successfully captures land cover fragmentation 
in the study area. These methods provide highly accurate predictions 
due to their incorporating non-linear relations (Bahadori, Yu, & Liu, 
2014; Delasalles, Ziat, Denoyer, & Gallinari, 2019). Basse, Omrani, 

Charif, Gerber, and Bódis (2014) highlight the use of a Cellular 
Automata (CA) based approach using Artificial Neural Networks (ANNs) 
in order to increase model accuracy. Soares-Filho, Rodrigues, and Fol
lador (2013) introduce a heuristic modeling approach based on the 
Genetic Algorithm (GA) to improve the accuracy of land-use change 
models. 

The remainder of the paper is organized as follows. A brief intro
duction to the Auditor's geo-coded tax database for the State of Florida is 
provided in Section 3 while four machine learning methods applied to 
this data set are summarized in Section 4. The main results of the paper, 
including the prediction performance of the developed machine learning 
algorithms, are presented in Section 5. Comparisons of the results with 
similar results in the other literature are provided in Section 6. Finally, 
some concluding remarks and future research directions are stated in 
Section 7. 

3. Data set 

The state of Florida is selected as the study area. The University of 
Florida GeoPlan Center provides statewide Auditor's Parcel Databases. 
The publicly available 2019 database comprises nearly 9 million parcels, 
with data on parcel geometry, year-built, land use, and the two most 
recent sales. Using the information on when constructions took place, 
historical land development conditions at the parcel level are generated 
for all years between 1900 and 2019. These parcel histories provide an 
opportunity to compute the average distances from any parcel to a set of 
points of interest (POI)(recreation, stores, supermarket, etc.; see Table 3 
for the full list of POIs) within a range of 2 miles. Fig. 1 illustrates the 
procedure to compute the average distance to a certain POI from a given 
parcel in a single year. Once parcel-level computations are completed, 
parcel-level data are aggregated at the block group level. The aggregated 
data characterize all Florida 11,394 block groups, with no missing data 
issues. 

We focused on the most recent 5 years, when Florida has experienced 
rapid land development. Table 1 presents descriptive statistics for the 
numbers of single-family, commercial, and occupied parcels in a block 
group in 2015 and 2019. In 2019, almost 59% of all parcels (8,995,663) 
in Florida were single-family residential parcels, a 4.5% increase over 5 
years. Commercial parcels account for approximately 3% of all parcels, 
with a 2.1% raise over 5 years. In 2019, occupied parcels constitute 
almost 73% of the total with a 4% increase over 5 years. The number of 
other land-use parcels increased by 1.9%. Fig. 2 presents parcel maps of 
occupied parcels in Florida in 2015 and 2019. Bigger circles indicate 
larger occupancy. 

4. Methodology 

Statistical and machine learning methods used to model land-use 
changes in Florida are briefly introduced, including Logistic Regres
sion (LR), Random Forest (RF), Artificial Neural Network (ANN), and 
Extreme Gradient Boosting (EGB). The data set is divided into a training 
set (72% of the data set), validation set (8% of the data set) and a test set 
(the remaining 20% of the data set). Vabalas, Gowen, Poliakoff, and 
Casson (2019) and Hansen et al. (2013) used 90% of the data set as a 
training set and 10% of the data set as a validation set, but they used the 
validation set as a test set. We differentiate validation and test sets for 
parameter tuning. We conduct sensitivity analysis for multiple splits, but 
the difference between the result from a single split and multiple splits is 
less than 2%. Before discussing these methods, the dependent variables 
and predictors are presented. 

4.1. Dependent variables 

The data set includes the numbers of parcels for each land use at the 
block group level (single-family residential, vacant, commercial, other 
residential, open spaces, and services). The numbers of single-family 
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residential, commercial, and vacant parcels are the dominant, and other 
land-use categories are excluded from further modeling due to signifi
cant imbalances among the different land uses. The growth rates of 
single-family residential (Y1(t,k)), occupied (Y2(t,k)), and commercial 
(Y3(t,k)) parcels are used as the dependent variables, where t is the index 
of year and k is the number of years in the past from which growth rates 
are computed. All the dependent variables are normalized using log- 

transformation and standardization. A small fraction of 1 (0.001) is 
added to the denominator in order to avoid infinite values in the 
calculation of growth rates. Table 2 further describes the dependent 
variables, Yj(t,k), (j = 1,2,3). Table 2 in Section 4 of the supplementary 
file provides descriptive statistics of these variables. 

Binary versions of the above continuous dependent variables have 
been created and will serve as the main dependent variables in the 
analysis. They are defined as follows: 

Fig. 1. Illustration of the procedure to compute the mean of average distances between a given parcel i to POI k within a 2-mile buffer at time t.  

Table 1 
Descriptive statistics for the numbers of single-family residential, commercial, 
and occupied parcels in block groups in 2015 and 2019.  

Year Land use category Min Mean Median Max Std. 
Dev. 

2015 single-family 
residential 

0 448.1 345 24,269 525.1 

2015 commercial 0 21.5 456 613 35.1 
2015 occupied 0 557.4 58 24,638 549.9 
2019 single-family 

residential 
0 468.4 352 24,389 577.7 

2019 commercial 0 22.0 11 616 35.7 
2019 occupied 0 579.8 464 24,772 605.1  

Fig. 2. Occupancy map of Florida in 2015 and 2019.  

Table 2 
Description of the dependent variables.  

Name Description 

Y1(t, 
k) 

Transformed growth rate of the number of single-family residential parcels 
from year (t − k) to t 

Y2(t, 
k) 

Transformed growth rate of the number of occupied parcels from year (t −
k) to t 

Y3(t, 
k) 

Transformed growth rate of the number of commercial parcels from year (t 
− k) to t  
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Z1i(t, k) =

{
0 (Less developed), if Y1i(t, k) < mY1(k),

1 (Moredeveloped), otherwise,

Z2i(t, k) =

{
0 (Less developed), if Y2i(t, k) < mY2(k),

1 (More developed), otherwise,

Z3i(t, k) =

{
0 (Less developed), if Y3i(t, k) ≤ mY3(k),

1 (More developed), otherwise,

(1)  

where i is the index of a block {1,…,11394}, t is the index of a year 
{2015, 2016, 2017, 2018, 2019}, k is the time lag, set to 5 and 10, mY1(k), 
mY2(k), mY3(k) are the median values of Y1(⋅,k), Y2(⋅,k), and Y3(⋅,k), 
respectively, where Yj(⋅, k) = ∪

t∈T
Yj(t, k), T = {2015, 2016, 2017, 2018, 

2019}, for j = 1,2,3. The median growth rate is used as a threshold to 
create balanced data. Table 3 in Section 4 of the supplementary file 
provides the frequencies for these binary variables. 

4.2. Predictors 

In land-use change models, proximity to POIs is used as proxy in
formation. Accessibility to services provided within a close proximity 
affects investors' decisions. In the absence of direct factors affecting the 
utility function, proximity factors are important approximations (Sha
fizadeh-Moghadam et al., 2021). Twenty eight accessibility measures 
are calculated as means of average distances from parcels to certain POIs 
within 2 miles for each block group. The Table 3 lists and describes these 
variables. The descriptive statistics of these 28 accessibility measures are 
provided in Table 4 of Section 4 in the supplementary file. 

In addition to these twenty eight variables, we use four temporal 
variables and four spatio-temporal variables. The temporal variables, 

Yji(t − k,k), Yji(t − 2k,k), Yji(t − 3k,k), Yji(t − 4k,k), are the k-lag, 2k-lag, 
3k-lag, and 4k-lag growth rates. Nji(t,k,k), Nji(t,2k,k), Nji(t,3k,k), and 
Nji(t,4k,k) are the spatio-temporal variables for j = 1,2,3, with: 

Nji(t, l, k) =
1
10

∑10

p=1
log

(
Yjip(t − l, k) + 1

)
, (2)  

where Yjip(t − l,k) is the Yji(t − l,k) value of the pth closest neighborhood 
block of block i, for l = k, 2k, 3k, 4k. The reason for selecting 10 
neighbors is as follows. We use the K-nearest neighbor spatial concep
tualization approach. Global Moran's I tests (Moran, 1950) are con
ducted for the dependent variables at various K-degree between 1 and 
50. The Global Moran's I test results indicate that there are statistically 
significant spatial dependencies in the dependent variables, while the 
index values reach their highest levels between 5 and 10 nearest 
neighbors. 

All predictors are normalized to enhance the prediction performance 
of statistical and machine learning models. 

4.3. Machine learning methods 

Machine-learning algorithms, including LR, RF, ANN, and EGB, are 
trained and tested using 36 input variables. These models help to predict 
urban development trends for several land-use categories, such as single- 
family residential, occupied, and commercial uses. 

Each method is briefly described next. We use the randomforest 
package (Liaw & Wiener, 2002) for RF, TensorFlow (Allaire & Tang, 
2020) and Keras (Allaire & Chollet, 2020) for ANN, and xgboost (Chen 
et al., 2020) for EGB, all in R. 

LR is a regression model in which a binary dependent variable, with 
values of 0 and 1, is associated with a set of independent variables. More 
details on estimation and inference are provided in Hastie, Tibshirani, 
and Friedman (2009). 

RF is an ensemble learning method for classification (and regression) 
consisting of many decision trees, in which bootstrap samples build each 
decision tree (Breiman, 2001). Specifically, one creates bootstrap sam
ples from the training data set and grows a tree from each bootstrap 
sample. At each node of a tree, a set of features is randomly selected to 
build the next node. RF makes a prediction by aggregating results from 
all grown decision trees. When training RF models, we use 1000 trees 
and set up the size of a random set of features (mtry) to 4 (the number of 
randomly selected variables as a candidate set at each split is 4). The 
node size is set to 3 (the minimum node size is 3). 

The randomforest package provides variable importance measures 
such as Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG) 
(Han, Guo, & Hua, 2016). Considering both MDA and MDG is more 
robust than using any single one of them. Han et al. (2016) suggest a new 
method called MDAMDG, combining MDA and MDG to measure vari
able importance. A large MDA, MDG, and MDAMDG value indicate that 
the corresponding variable is important. 

ANN is a mathematical model inspired by biological neural networks 
(Hastie et al., 2009). ANN is an interconnected group of simple pro
cessing elements called nodes. ANN consists of multiple layers, including 
input layer, hidden layers, and output layer. Each layer involves inter
connected nodes containing activation functions and determines the 
output of the node given input data. In each layer, the output from the 
previous layer becomes an input for the current layer. As an input value 
enters into the node, it gets multiplied by a weight value and added on a 
bias. All weights and biases are estimated by backpropagation (Fan, Ma, 
& Zhong, 2019). 

In our analysis, three layers are used, each with 50, 20, and 2 as 
dimensions of the output spaces. The rectified linear unit (relu) and 
softmax activation functions (Nair & Hinton, 2010; Nwankpa, Ijomah, 
Gachagan, & Marshall, 2018) are used for the hidden layers and output 
layer, respectively. 60 epochs are used to train the model (the learning 
algorithm passes through the entire training data set 60 times) and batch 

Table 3 
Names and descriptions of the accessibility measures.  

Name Description 

Distance to Recreation recreational parcels 
Distance to Stores department stores parcels 
Distance to Supermarket supermarkets parcels 
Distance to Regional Shopping 

Center 
regional shopping centers 

Distance to Community Mall community shopping centers 
Distance to One-story Office one-story office buildings, non-professional 

service buildings 
Distance to Multi-Office multi-story office buildings, non-professional 

service buildings 
Distance to Pro-Service professional service buildings 
Distance to Transport airports, bus terminals, marine terminals, piers, 

marinas 
Distance to Restaurant restaurants, cafeterias 
Distance to Driven-In 

Restaurant 
drive-in restaurants 

Distance to Financial financial institutions 
Distance to Insurance insurance company offices 
Distance to Other Commercial other commercial parcels 
Distance to Other Service other service parcels 
Distance to Wholesale wholesale outlets, produce houses, manufacturing 

outlets 
Distance to Entertainment entertainment parcels 
Distance to Hotel hotels and motels 
Distance to Light Industry light industrial parcels 
Distance to Heavy Industry heavy industrial parcels 
Distance to Industry industrial parcels 
Distance to Agricultural agricultural parcels 
Distance to Institution institutional parcels 
Distance to Education educational parcels 
Distance to Military military parcels 
Distance to Open Space open spaces 
Distance to Hospital hospitals 
Distance to Government government parcels 

Note: all distances are means of average distances from parcels to POIs within a 
2 miles range in each block group. 
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size is set at 512. The categorical cross-entropy is used as the loss 
function while the selected optimizer is Adam (Kingma & Ba, 2014) 
which is an algorithm for gradient-based optimization of stochastic 
objective functions. ANNs were trained using a higher number of layers 
(4 and 5), different epoch sizes (80 and 100), and different batch sizes 
(256 and 1024). However, the prediction accuracy results did not 
change significantly (less than 0.01). Hence, the original settings were 
retained throughout the analysis. 

EGB, which is an efficient implementation of gradient boosting, is an 
ensemble learning method combining the predictive power of multiple 
models to provide an optimal solution (Chen & Guestrin, 2016). 
Gradient boosting builds models sequentially, so that each consecutive 
model tries to correct the errors present in the previous model. 

In this analysis, we use a tree classifier. The maximum depth of a tree 
is set as 15; γ, a parameter to control minimum loss reduction, is set as 3; 
λ, a tuning parameter to control the regularization term, is set at 0; and 
the evaluation metrics is a binary classification error rate. Using 
different values of λ, such as 1, 10, and 50, did not improve the pre
diction accuracy. Therefore, the default value of 0 is used. 

Additional details about these machine learning methods are pro
vided in Section 2 of the supplementary file. 

5. Main results 

We present the main results from the analysis of the Florida urban 
data set, using the machine learning (ML) methods described in the 
previous section. 11394 block groups are used: 9116 block groups for 
model training and 2278 for model testing. Different sets of the 28 
distance-related covariates and 8 spatio-temporal covariates are used as 
input features: models with (1) temporal variables (4, the number of 
covariates), (2) spatio-temporal variables (8), (3) distance-related vari
ables (28), and (4) spatio-temporal and distance-related variables (36). 

5.1. Prediction performance 

Prediction accuracy is an important measure to evaluate binary 
classification models. Various models with different binary dependent 
variables, Z1(t,5), Z1(t,10), Z2(t,5), Z2(t,10), Z3(t,5), and Z3(t,10), are 
evaluated in terms of prediction accuracy at year t ∈

{2015,2016,2017,2018,2019}. Table 4 provides the prediction accuracy 
rates of the four methods over different models variable sets with a 95% 

confidence interval (CI). The best prediction accuracy rates are high
lighted using a bold font. 

Table 4 shows that the highest prediction accuracy is achieved using 
the RF model with spatio-temporal and accessibility covariates. A pre
diction accuracy rate of around 80% is achieved for single-family growth 
prediction over 5 years. It is interesting that ML methods outperform 
statistical models (LR), which confirms the usefulness of such methods 
in urban growth prediction. Comparing the prediction accuracy of the 
accessibility covariates models (28 variables) with the prediction accu
racy of the spatio-temporal and distance covariates models, the latter 
models have a 10% higher accuracy rate on average. This suggests that 
the 8 spatio-temporal covariates play significant roles in the models. The 
28 accessibility features are useful but less informative when compared 
to the spatio-temporal variables, since the temporal models from RF, 
ANN, and EGB have all a higher prediction accuracy than the model 
incorporating only distance-based covariates. Models with smaller time 
intervals display better performances than those with larger time in
tervals. This is expected because prediction over 10 years in future 
seems to be a harder task than prediction over 5 years. 

5.2. Variable selection 

Another important measure to evaluate models is variable selection, 
which can be done using several variable importance measures. Since RF 
has the best prediction performance, we focus these on this method. We 
choose MDAMDG (Han et al., 2016) to evaluate variable importance 
since MDAMDG does variable selection as well as compute variable 
importance. Table 5 provides MDAMDG values for the optimal model. 
The highlighted numbers with an asterisk are the top ten most important 
variables. A dash mark indicates a variable not selected in the optimal 
model. Several temporal and spatial predictors are among the most 
important variables. This justifies the use of these predictors in our 
model. For the single-family growth model, Distance to Education is the 
most important variable among the 28 accessibility variables, followed 
by Distance to Government, Distance to Agricultural, and Distance to 
Institution. For the occupancy growth rate model, Distance to Institution 
is the most important variable, followed by Distance to Government, 
Distance to Industry, Distance to Education, and Distance to Other 
Commercial. For the commercial model, Distance to Government is the 
most important variable among the 28 distance-based variables, fol
lowed by Distance to Institution, Distance to Education, Distance to 

Table 4 
Prediction accuracy of four ML methods over different model variable sets.   

Dependent Model Variable Set LR RF ANN EGB 

over 5 years 

Single-family growth 

temporal 0.6323 ± 0.0089 0.7707 ± 0.0077 0.7943 ± 0.0074 0.7857 ± 0.0075 
spatio-temporal 0.6348 ± 0.0088 0.7925 ± 0.0074 0.7869 ± 0.0075 0.791 ± 0.0075 
dist. Based covariates 0.6517 ± 0.0087 0.7068 ± 0.0084 0.6594 ± 0.0087 0.6853 ± 0.0085 
spatio-temporal + dist. Cov. 0.668 ± 0.0086 0.8066 ± 0.0073 0.7338 ± 0.0081 0.8024 ± 0.0073 

Occupancy growth 

temporal 0.645 ± 0.0088 0.6814 ± 0.0086 0.7015 ± 0.0084 0.6991 ± 0.0084 
spatio-temporal 0.6624 ± 0.0087 0.7068 ± 0.0084 0.7066 ± 0.0084 0.7133 ± 0.0083 
dist. Based covariates 0.5775 ± 0.0091 0.6418 ± 0.0088 0.6134 ± 0.0089 0.6147 ± 0.0089 
spatio-temporal + dist. Cov. 0.6773 ± 0.0086 0.7275 ± 0.0082 0.6781 ± 0.0086 0.7207 ± 0.0082 

Commercial growth 

temporal 0.7223 ± 0.0082 0.751 ± 0.0079 0.7679 ± 0.0078 0.7654 ± 0.0078 
spatio-temporal 0.7216 ± 0.0082 0.7644 ± 0.0078 0.757 ± 0.0079 0.7668 ± 0.0078 
dist. Based covariates 0.7219 ± 0.0082 0.7219 ± 0.0082 0.6852 ± 0.0085 0.7167 ± 0.0083 
spatio-temporal + dist. Cov. 0.7198 ± 0.0082 0.7769 ± 0.0077 0.7062 ± 0.0084 0.758 ± 0.0079 

over 10 years 

Single-family growth 

temporal 0.551 ± 0.0091 0.7732 ± 0.0077 0.7888 ± 0.0075 0.7807 ± 0.0076 
spatio-temporal 0.6453 ± 0.0088 0.7872 ± 0.0075 0.7909 ± 0.0075 0.7862 ± 0.0075 
dist. Based covariates 0.6642 ± 0.0087 0.7171 ± 0.0083 0.6773 ± 0.0086 0.6924 ± 0.0085 
spatio-temporal + dist. Cov. 0.6725 ± 0.0086 0.7976 ± 0.0074 0.7378 ± 0.0081 0.7924 ± 0.0074 

Occupancy growth 

temporal 0.6296 ± 0.0089 0.6594 ± 0.0087 0.679 ± 0.0086 0.6801 ± 0.0086 
spatio-temporal 0.6366 ± 0.0088 0.6853 ± 0.0085 0.6746 ± 0.0086 0.6816 ± 0.0086 
dist. Based covariates 0.5711 ± 0.0091 0.645 ± 0.0088 0.5996 ± 0.009 0.6076 ± 0.009 
spatio-temporal + dist. Cov. 0.6463 ± 0.0088 0.7134 ± 0.0083 0.6499 ± 0.0088 0.7041 ± 0.0084 

Commercial growth 

temporal 0.5353 ± 0.0092 0.7098 ± 0.0083 0.736 ± 0.0081 0.7268 ± 0.0082 
spatio-temporal 0.5382 ± 0.0092 0.7198 ± 0.0082 0.7203 ± 0.0082 0.7228 ± 0.0082 
dist. Based covariates 0.5759 ± 0.0091 0.6439 ± 0.0088 0.6217 ± 0.0089 0.6347 ± 0.0088 
spatio-temporal + dist. Cov. 0.5747 ± 0.0091 0.7349 ± 0.0081 0.661 ± 0.0087 0.7164 ± 0.0083  
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Other Commercial, and Distance to Recreation. 
Model results highlight important dynamics in single-family resi

dential developments. Historical conditions in block groups are the most 
important factor in new residential developments. Similarly, historical 
conditions of neighboring block groups play a significant role in land 
development dynamics. In addition, distances to educational in
stitutions, agricultural lands and government facilities are more 
important than historical conditions of neighboring block groups. 
Finally, distances to financial institutions, professional services, res
taurants, commercial lands, one-story office buildings, institutional 
buildings, and industrial units are important factors in single-family 
residential developments. 

Similar to the single-family residential model, the model results for 
commercial land development provide insights about dynamics in 
commercial land development in Florida. Historical conditions in block 
groups are also the most important factors in contemporaneous com
mercial land development. However, historical conditions of neigh
boring block groups do not play a significant role. Average distances to 
institutional facilities and government facilities are the second impor
tant factors in commercial land development. Distances to educational 
institutions, other commercial lands, industrial lands, recreational areas, 
and industrial facilities are also significant determinants behind the 
commercial land development in Florida. 

5.3. Out-of-sample forecast of land development 

Land development in the future can be predicted by the developed 
machine learning models. The RF prediction model incorporating only 
spatio-temporal variables provides accurate results. When distance- 
based covariates are included, the model accuracy increases by 
approximately 1%. Distance-based variables can be included in pre
dictions of future land developments if the covariates are updated based 
on future scenarios. For example, potential future land development can 
be estimated based on planned new hospitals, schools, shopping centers, 
etc. However, here, we introduce an accurate prediction modeling 
approach using minimum information. We train a RF prediction model 
with 8 spatio-temporal variables using a data set with t = 2019 and k =
5, where RF displays the best performance Section 5.1. The predicted 
values of the growth rates of the numbers of single-family residential 
parcels, occupied parcels, and commercial parcels in 2024 and 2029, are 
depicted in Fig. 3. Blue dots present areas where the growth rate is above 
the median ( ̂Zj(t, k) = 1), whereas red dots present areas in which the 

growth rate is below the median ( ̂Zj(t, k) = 0). These maps suggest that 
the central areas of Orlando, Tampa, and Miami may be less developed 
in the future. Since the central areas of these major cities are mostly 
developed, they provide fewer opportunities for new land 
developments. 

All the machine learning models are developed independently based 
on the dependent variable, thus inference can only be made from the 
corresponding model. However, it is worth to cross interpret the results 
from different models to get meaningful insights. Fig. 4(a) presents areas 
where the growth rate of the number of single-family residential parcels 
is below the median, but the growth rate of occupied parcels is above the 
median. The areas where the growth rate of the number of single-family 
residential parcels is above the median but the growth rate of occupied 
parcels is below the median are shown in Fig. 4(b). Fig. 4(c) presents 
areas where the growth rate of the number of single-family residential 
parcels is below the median but the growth rate of commercial parcels is 
above the median. The areas where the growth rate of the number of 
single-family residential parcels is above the median but the growth rate 
of commercial parcels is below the median is shown in Fig. 4(d). The 
predictions presented in these two figures indicate critical land de
velopments in Florida. When we look at single-family residential de
velopments, we clearly expect fewer developments within built-up 
areas. According to our future predictions, Florida will experience new 
land developments in the peripheral areas of cities, with single-family 
residential being the major driver of these land developments. Such 
conditions could result in threatening environmentally-sensitive areas 
and increasing public infrastructure costs. Such an urban growth pattern 
is expected based on our theoretical understanding of location choice of 
certain land uses. Single-family residential land use cannot compete 
with non-residential and existing residential land uses in developed 
areas, therefore peripheral locations are desirable choices (O'Sullivan, 
2012). 

Similar to occupancy and single-family growth rate, the occupancy 
and commercial results also provide reasonable predictions. Commercial 
parcels are predominantly expected in densely urbanized and coastal 
areas. More commercial developments near coastal areas require further 
investigations in order to evaluate potential risks under sea level rises. 
There are also some expected commercial areas in rural areas, but these 
locations are close to major transportation networks. Similar to our 
discussions on single-family residential parcels, we also see meaningful 
predictions based on our theoretical understanding. Finally, model re
sults successfully capture profit maximization behaviours of commercial 
activities. (O'Sullivan, 2012). 

6. Discussion 

In this section, the best-fitted model results are further discussed by 

Table 5 
Variable importance score (MDAMDG) from RF.  

Variable Z1(t,k) Z2(t,k) Z3(t,k) 

k =
5 

k =
10 

k =
5 

k =
10 

k =
5 

k =
10 

k-lag temporal 36* 18* 36* 36* 34* 36* 
2k-lag temporal 34* 13* 34* 18* 36* 32* 
3k-lag temporal 31* – 18* 32* 32* 26* 
4k-lag temporal 19* – 14 20* 27* 22* 
k-lag neighborhood effect 16* 8* 14 31* – 20* 
2k-lag neighborhood effect – – 21* 13 – – 
3k-lag neighborhood effect 14 8* 21* 9 – 6 
4k-lag neighborhood effect 16* 9* – 11 – 10 
Distance to Driven-In 

Restaurant 
– – – – – – 

Distance to Financial 14 – 16 13 12 – 
Distance to Education 21* 14* 18* 23* 19* 23* 
Distance to Pro-Service 15 – – – 14 – 
Distance to Restaurant 14 – – – 14 – 
Distance to Multi-Office – – – – – – 
Distance to Agricultural 21* 3* 11 14 – – 
Distance to Community Mall – – 10 – – 14 
Distance to Other Service – – – – 13 – 
Distance to Other 

Commercial 
13 – 18* 21* 17* 21* 

Distance to One-story Office 16* – 14 17 12 12 
Distance to Government 20* 8* 23* 20* 24* 25* 
Distance to Institution 16* 9* 26* 24* 23* 22* 
Distance to Industry 14 – 24* 18* 15* 14 
Distance to Entertainment – – 13 – 16* 17 
Distance to Open Space – – – – – – 
Distance to Hotel – – 11 11 10 13 
Distance to Light Industry – – – 11 9 9 
Distance to Recreation 12 – – – 15* 20* 
Distance to Stores – – – – – – 
Distance to Supermarket – – – – – – 
Distance to Transport – – – – – – 
Distance to Heavy Industry – – – – – – 
Distance to Wholesale – – – – – – 
Distance to Regional 

Shopping Center 
– – – – – – 

Distance to Hospital – – – – – – 
Distance to Insurance – – – – – – 
Distance to Military – – – – – –  
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comparing them with results from similar studies in the literature. The 
implemented RF model allows us to rank the importance of the effects of 
the explanatory variables on land development dynamics. Our results 
show the clustering patterns of the same land uses increase future land 
development potentials of this land use. Karimi et al. (2019) obtained a 
similar result in their land-use change modeling. Gounaridis et al. 
(2019) found that the most important factors in land developments are 
road and enterprise densities. In this study, we did not explicitly control 
for these densities. However, being close to certain POIs in dense urban 

areas, such as commercial and institutional services, is a significant 
factor in commercial land developments in Florida. Lv et al. (2021) 
report that densities of restaurants, hospitals and markets play signifi
cant roles in land development dynamics. Further, Shafizadeh-Mogha
dam et al. (2021)’s RF model results indicate that distance to greenery is 
the most significant factor in land development, followed by altitude, 
distances from crops, urban roads and barren land. Our results for single- 
family residential developments, which are the main drivers in Florida's 
land developments, are significantly affected by distances to agricultural 

Fig. 3. Predicted values of the growth rate of single-family residency, occupancy, and commercial parcels in 5 years and 10 years using RF.  
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and large government facilities. In the study conducted by Liang et al. 
(2020), the proposed RF model for land-use changes in Shanghai shows 
that population is the most important factor, followed by GDP, distance 
to subways, distance to airports, and other transportation 
infrastructures. 

We also compare our model prediction accuracy with the bagging 
approach introduced by Talukdar et al. (2021) and Support Vector 
Machine by Karimi et al. (2019). Our test results are presented in 
Table 6. Our best RF models with spatio-temporal and distance based 
covariates outperform Bagging and SVM models. The prediction accu
racy of Bagging is higher than that of SVM in all cases and our best RF 
models are about 2.5% more accurate than the Bagging model. 

7. Concluding remarks 

Accurate predictions of future land development depend on the 
successful representations of actual complex dynamics. A robust land- 
use change model should account for non-linear relationships using 

proxy information about a wide range of aspects of land development. 
Previously introduced models focused on using site-specific, socio-eco
nomic, neighborhood and accessibility components of land develop
ment. Accessing this information is a major limitation to build such 
models. There are also computational challenges in statistical models 
when non-linear relationships are incorporated. In this paper, machine 
learning methods, including Random Forest (RF), Artificial Neural 
Networks (ANNs), and Extreme Gradient Boosting (EGB), are tested 
using only accessibility to certain points of interest while also including 
spatial and temporal components. 

We have used the Auditor's geo-coded tax database for Florida to 
derive historical land developments at the block-group level, based on 
actual year-built information. Since the database includes land use 
categories, accessibilities to a set of services and infrastructures are 
computed. We examine relationships between a set of explanatory var
iables and growth rates of residential, commercial, and occupied parcels 
at the block group level. The RF model provides the most accurate 
predictions and its results are in line with urban growth theories. Also, 

Fig. 4. Numbers of occupied parcels and numbers of single-family residential parcels in 2024 (RF).  
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Table 6 
Prediction accuracy of SVM and Bagging over different model variable sets.  

Dependent variables Model Temporal Spatio-temporal Dist. based covariates Spatio-temporal + Dist. 
cov. 

over 5 years 

Single-family 
growth 

Bagging 0.7614 
(0.0078) 

0.7817 
(0.0076) 

0.6743 (0.0086) 0.7837 (0.0076) 

SVM(linear) - cost = 0.1 0.5857 (0.009) 0.5924 (0.009) 0.6537 (0.0087) 0.672 (0.0086) 
SVM(linear) - cost = 10 0.592 (0.009) 0.5972 (0.009) 0.6549 (0.0087) 0.6729 (0.0086) 

SVM(radial basis) - cost = 10, gamma = 1 
0.7674 
(0.0078) 

0.7573 
(0.0079) 

0.6398 (0.0088) 0.6382 (0.0088) 

SVM(polynomial) - cost = 10, gamma = 1 0.4807 
(0.0092) 

0.531 (0.0092) 0.5788 (0.0091) 0.5969 (0.009) 

SVM(polynomial) - cost = 10, gamma = 2 0.5203 
(0.0092) 

0.5274 
(0.0092) 

0.578 (0.0091) 0.5953 (0.009) 

SVM(polynomial) - cost = 10, gamma = 3 
0.4798 
(0.0092) 

0.5253 
(0.0092) 0.551 (0.0091) 0.5899 (0.009) 

Occupancy growth 

Bagging 
0.6737 
(0.0086) 

0.6883 
(0.0085) 

0.6068 (0.009) 0.691 (0.0085) 

SVM(linear) - cost = 0.1 0.6379 
(0.0088) 

0.6601 
(0.0087) 

0.5838 (0.0091) 0.6788 (0.0086) 

SVM(linear) - cost = 10 
0.6379 
(0.0088) 

0.6602 
(0.0087) 0.582 (0.0091) 0.6737 (0.0086) 

SVM(radial basis) - cost = 10, gamma = 1 
0.6983 
(0.0084) 

0.6687 
(0.0086) 0.5805 (0.0091) 0.5773 (0.0091) 

SVM(polynomial) - cost = 10, gamma = 1 
0.6187 
(0.0089) 

0.5293 
(0.0092) 

0.5439 (0.0091) 0.5798 (0.0091) 

SVM(polynomial) - cost = 10, gamma = 2 0.5383 
(0.0092) 

0.5205 
(0.0092) 

0.5359 (0.0092) 0.5793 (0.0091) 

SVM(polynomial) - cost = 10, gamma = 3 
0.5207 
(0.0092) 

0.5343 
(0.0092) 0.5213 (0.0092) 0.5772 (0.0091) 

Commercial growth 

Bagging 0.748 (0.008) 
0.7504 
(0.0079) 0.7032 (0.0084) 0.753 (0.0079) 

SVM(linear) - cost = 0.1 
0.7219 
(0.0082) 

0.7219 
(0.0082) 

0.7219 (0.0082) 0.7219 (0.0082) 

SVM(linear) - cost = 10 0.7219 
(0.0082) 

0.7219 
(0.0082) 

0.7219 (0.0082) 0.7219 (0.0082) 

SVM(radial basis) - cost = 10, gamma = 1 
0.7368 
(0.0081) 

0.7274 
(0.0082) 0.7141 (0.0083) 0.7163 (0.0083) 

SVM(polynomial) - cost = 10, gamma = 1 
0.2822 
(0.0083) 

0.3069 
(0.0085) 0.5923 (0.009) 0.6024 (0.009) 

SVM(polynomial) - cost = 10, gamma = 2 0.2887 
(0.0083) 

0.3089 
(0.0085) 

0.5715 (0.0091) 0.6087 (0.009) 

SVM(polynomial) - cost = 10, gamma = 3 0.7159 
(0.0083) 

0.3137 
(0.0085) 

0.3041 (0.0084) 0.6043 (0.009) 

over 10 years 

Single-family 
growth 

Bagging 
0.7691 
(0.0077) 

0.7782 
(0.0076) 0.6792 (0.0086) 0.7825 (0.0076) 

SVM(linear) - cost = 0.1 0.572 (0.0091) 
0.5552 
(0.0091) 0.661 (0.0087) 0.6723 (0.0086) 

SVM(linear) - cost = 10 0.5696 
(0.0091) 

0.555 (0.0091) 0.6597 (0.0087) 0.6727 (0.0086) 

SVM(radial basis) - cost = 10, gamma = 1 0.7784 
(0.0076) 

0.7561 
(0.0079) 

0.6655 (0.0087) 0.5337 (0.0092) 

SVM(polynomial) - cost = 10, gamma = 1 
0.6916 
(0.0085) 

0.5718 
(0.0091) 0.5632 (0.0091) 0.6223 (0.0089) 

SVM(polynomial) - cost = 10, gamma = 2 
0.6491 
(0.0088) 0.548 (0.0091) 0.5478 (0.0091) 0.6064 (0.009) 

SVM(polynomial) - cost = 10, gamma = 3 0.5864 (0.009) 0.5558 
(0.0091) 

0.5506 (0.0091) 0.6076 (0.009) 

Occupancy growth 

Bagging 0.6525 
(0.0087) 

0.6681 
(0.0086) 

0.6035 (0.009) 0.6777 (0.0086) 

SVM(linear) - cost = 0.1 
0.6231 
(0.0089) 

0.6422 
(0.0088) 0.5769 (0.0091) 0.6491 (0.0088) 

SVM(linear) - cost = 10 0.623 (0.0089) 
0.6422 
(0.0088) 

0.5751 (0.0091) 0.6469 (0.0088) 

SVM(radial basis) - cost = 10, gamma = 1 0.6773 
(0.0086) 

0.6392 
(0.0088) 

0.583 (0.0091) 0.5716 (0.0091) 

SVM(polynomial) - cost = 10, gamma = 1 0.6017 (0.009) 0.5679 
(0.0091) 

0.5174 (0.0092) 0.5613 (0.0091) 

SVM(polynomial) - cost = 10, gamma = 2 0.5896 (0.009) 
0.5665 
(0.0091) 0.5478 (0.0091) 0.5647 (0.0091) 

SVM(polynomial) - cost = 10, gamma = 3 0.58 (0.0091) 
0.5555 
(0.0091) 

0.5264 (0.0092) 0.568 (0.0091) 

Commercial growth 

Bagging 0.7096 
(0.0083) 

0.7029 
(0.0084) 

0.6191 (0.0089) 0.7059 (0.0084) 

SVM(linear) - cost = 0.1 0.532 (0.0092) 
0.5322 
(0.0092) 0.5448 (0.0091) 0.56 (0.0091) 

SVM(linear) - cost = 10 0.5544 (0.0091) 0.5596 (0.0091) 

(continued on next page) 
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the RF model results reveal that spatio-temporal lags are major factors in 
capturing the variability of the dependent variable. This is an important 
finding, because spatial and temporal lags can be easily incorporated in 
land-use change models and can be utilized to make appropriate policy 
decisions. 

Model results provide important insights into single-family residen
tial and commercial land developments in Florida. Historical conditions 
in block groups are the most important factor in both new single-family 
residential and commercial developments. Distances to educational in
stitutions, agricultural lands and government facilities are important 
factors for single-family residential land development, while, average 
distances to institutional and government facilities play significant roles 
in commercial land development. 

We outline several areas of further research. In this paper, we 
separately model land use categories. Multivariate approaches may 
reach better prediction accuracy and are an interesting topic of future 
research. Further, prediction at finer geographical levels may yield more 
accurate predictions, but will require handling additional computational 
issues. In addition, distance-based covariates cannot be utilized in out- 
of-sample predictions without designing future scenarios. Designing 
future paths of distance-based covariates may be an interesting future 
research direction. Finally, ranking variables based on their importance 
provides some insight about explanatory variables; however, our current 
methodological approach should be improved to obtain causal 
relationships. 
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modelling using advanced methods: Cellular automata and artificial neural 
networks. the spatial and explicit representation of land cover dynamics at the cross- 
border region scale. Applied Geography, 53, 160–171. https://doi.org/10.1016/j. 
apgeog.2014.06.016. ISSN 0143–6228 https://www.sciencedirect.com/science/ 
article/pii/S0143622814001325. 

Bhat, C. R., Dubey, S. K., Alam, M. J. B., & Khushefati, W. H. (2015). A new spatial 
multiple discrete-continuous modeling approach to land use change analysis. Journal 
of Regional Science, 55(5), 801–841. 

Breiman, L. (2001). Random forests. Machine Learning, 450(1), 5–32. 
Carrion-Flores, C., & Irwin, E. G. (2004). Determinants of residential land-use conversion 

and sprawl at the rural-urban fringe. American Journal of Agricultural Economics, 86 
(4), 889–904. 

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings 
of the 22nd acm sigkdd international conference on knowledge discovery and data mining 
(pp. 785–794). 

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., 
Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., & Li, Y. (2020). xgboost: Extreme 
gradient boosting. https://CRAN.R-project.org/package=xgboost. 

Chomitz, K. M., & Gray, D. A. (1996). Roads, land use, and deforestation: A spatial model 
applied to Belize. The World Bank Economic Review, 10(3), 487–512. 

Delasalles, E., Ziat, A., Denoyer, L., & Gallinari, P. (2019). Spatio-temporal neural 
networks for space-time data modeling and relation discovery. Knowledge and 
Information Systems, 61, 1241–1267. 

Fan, J., Ma, C., & Zhong, Y. A selective overview of deep learning. (2019). arXiv preprint 
arXiv:1904.05526. 

Ferdous, N., & Bhat, C. R. (2013). A spatial panel ordered-response model with 
application to the analysis of urban land-use development intensity patterns. Journal 
of Geographical Systems, 15, 1–29. 

Fleming, M. M. (2004). Techniques for estimating spatially dependent discrete choice 
models. In L. Anselin, M. M. Fischer, G. J. D. Hewings, P. Nijkamp, & F. Snickars 
(Eds.), Advances in spatial econometrics (pp. 145–166). Springer-Verlag.  

Gao, C., Feng, Y., Tong, X., Lei, Z., Chen, S., & Zhai, S. (2020). Modeling urban growth 
using spatially heterogeneous cellular automata models: Comparison of spatial lag, 
spatial error and gwr. Computers, Environment and Urban Systems, 81, 101459. 
https://doi.org/10.1016/j.compenvurbsys.2020.101459. ISSN 0198-9715 https:// 
www.sciencedirect.com/science/article/pii/S0198971519303928. 

Gounaridis, D., Chorianopoulos, I., Symeonakis, E., & Koukoulas, S. (2019). A random 
forest-cellular automata modelling approach to explore future land use/cover 
change in Attica (Greece), under different socio-economic realities and scales. 
Science of the Total Environment, 646, 320–335. https://doi.org/10.1016/j. 
scitotenv.2018.07.302. ISSN 0048-9697 https://www.sciencedirect.com/science/ 
article/pii/S0048969718328006. 

Han, H., Guo, X., & Hua, Y. (2016). Variable selection using mean decrease accuracy and 
mean decrease gini based on random forest. In 2016 7th ieee international conference 
on software engineering and service science (icsess) (pp. 219–224). IEEE.  

Hansen, K., Montavon, G., Biegler, F., Fazli, S., Rupp, M., Scheffler, M., … Muller, K.-R. 
(2013). Assessment and validation of machine learning methods for predicting 
molecular atomization energies. Journal of Chemical Theory and Computation, 9(8), 
3404–3419. 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data 
mining, inference, and prediction. Springer Science & Business Media.  

Huang, B., Zhang, L., & Wu, B. (2009). Spatiotemporal analysis of rural-urban land 
conversion. International Journal of Geographical Information Science, 23(3), 379–398. 

Irwin, E. G., Bell, K. P., & Geoghegan, J. (2003). Modeling and managing urban growth at 
the rural-urban fringe: A parcel-level model of residential land use change. 
Agricultural and Resource Economics Review, 32(1), 83–102. 

Irwin, E. G., & Geoghegan, J. (2001). Theory, data, methods: Developing spatially 
explicit economic models of land use change. Agriculture, Ecosystems and 
Environment, 85, 7–23. 

Karimi, F., Sultana, S., Babakan, A. S., & Suthaharan, S. (2019). An enhanced support 
vector machine model for urban expansion prediction. Computers, Environment and 
Urban Systems, 75, 61–75. https://doi.org/10.1016/j.compenvurbsys.2019.01.001. 

Table 6 (continued ) 

Dependent variables Model Temporal Spatio-temporal Dist. based covariates Spatio-temporal + Dist. 
cov. 

0.5322 
(0.0092) 

0.5322 
(0.0092) 

SVM(radial basis) - cost = 10, gamma = 1 0.7219 
(0.0082) 

0.6904 
(0.0085) 

0.5442 (0.0091) 0.5546 (0.0091) 

SVM(polynomial) - cost = 10, gamma = 1 0.6738 
(0.0086) 

0.4573 
(0.0091) 

0.5645 (0.0091) 0.5423 (0.0091) 

SVM(polynomial) - cost = 10, gamma = 2 0.5751 
(0.0091) 

0.4488 
(0.0091) 

0.4943 (0.0092) 0.5402 (0.0092) 

SVM(polynomial) - cost = 10, gamma = 3 0.5452 
(0.0091) 

0.4488 
(0.0091) 

0.5227 (0.0092) 0.5603 (0.0091)  

Y. Kim et al.                                                                                                                                                                                                                                     

https://doi.org/10.1016/j.compenvurbsys.2022.101801
https://doi.org/10.1016/j.compenvurbsys.2022.101801
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=tensorflow
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0015
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0020
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0020
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0020
https://doi.org/10.1016/j.apgeog.2014.06.016
https://doi.org/10.1016/j.apgeog.2014.06.016
https://www.sciencedirect.com/science/article/pii/S0143622814001325
https://www.sciencedirect.com/science/article/pii/S0143622814001325
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0030
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0030
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0030
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0035
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0040
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0040
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0040
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0045
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0045
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0045
https://CRAN.R-project.org/package=xgboost
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0055
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0055
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0060
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0060
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0060
https://arxiv.org/abs/1904.05526
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0070
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0070
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0070
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0075
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0075
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0075
https://doi.org/10.1016/j.compenvurbsys.2020.101459
https://www.sciencedirect.com/science/article/pii/S0198971519303928
https://www.sciencedirect.com/science/article/pii/S0198971519303928
https://doi.org/10.1016/j.scitotenv.2018.07.302
https://doi.org/10.1016/j.scitotenv.2018.07.302
https://www.sciencedirect.com/science/article/pii/S0048969718328006
https://www.sciencedirect.com/science/article/pii/S0048969718328006
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0090
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0090
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0090
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0095
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0095
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0095
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0095
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0100
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0100
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0105
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0105
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0110
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0110
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0110
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0115
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0115
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0115
https://doi.org/10.1016/j.compenvurbsys.2019.01.001


Computers, Environment and Urban Systems 94 (2022) 101801

12

ISSN 0198-9715 https://www.sciencedirect.com/science/article/pii/S019897151 
8304332. 

Kingma, D. P., & Ba, J. Adam: A method for stochastic optimization. (2014). arXiv preprint 
arXiv:1412.6980. 

Liang, Z., Dang, X., Sun, Q., & Wang, S. (2020). Multi-scenario simulation of urban land 
change in shanghai by random forest and ca-markov model. Sustainable Cities and 
Society, 55, 102045. https://doi.org/10.1016/j.scs.2020.102045. ISSN 2210-6707 
https://www.sciencedirect.com/science/article/pii/S2210670720300329. 

Liaw, A., & Wiener, M. (2002). Classification and regression by randomforest. R News, 2 
(3), 18–22. https://CRAN.R-project.org/doc/Rnews/. 

Lv, J., Wang, Y., Liang, X., Yao, Y., Ma, T., & Guan, Q. (2021). Simulating urban 
expansion by incorporating an integrated gravitational field model into a demand- 
driven random forest-cellular automata model. Cities, 109, 103044. https://doi.org/ 
10.1016/j.cities.2020.103044. ISSN 0264-2751 https://www.sciencedirect.com/sci 
ence/article/pii/S0264275120313925. 

Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2), 
17–23. 

Nahuelhual, L., Carmona, A., Lara, A., Echeverria, C., & Gonzalez, M. E. (2012). Land- 
cover change to forest plantations: Proximate causes and implications for the 
landscape in south-Central Chile. Landscape and Urban Planning, 107, 12–20. 

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann 
machines. Icml.  

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. Activation functions: Comparison of 
trends in practice and research for deep learning. (2018). arXiv preprint 
arXiv:1811.03378. 

Okwuashi, O., & Ndehedehe, C. E. (2021). Integrating machine learning with markov 
chain and cellular automata models for modelling urban land use change. Remote 
Sensing Applications: Society and Environment, 21, 100461. https://doi.org/10.1016/j. 
rsase.2020.100461. ISSN 2352-9385 https://www.sciencedirect.com/science/artic 
le/pii/S2352938520306364. 

Ord, K. (1975). Estimation methods for models of spatial interaction. Journal of the 
American Statistical Association, 20(349), 120–126. 

O’Sullivan, A. (2012). Urban economics (Eight ed.). McGraw-Hill/Irwin.  
Ron-Ferguson, N., Chin, J. T., & Kwon, Y. (2021). Leveraging machine learning to 

understand urban change with net construction. Landscape and Urban Planning, 216, 
104239. https://doi.org/10.1016/j.landurbplan.2021.104239. ISSN 0169-2046 
https://www.sciencedirect.com/science/article/pii/S0169204621002024. 

Shafizadeh-Moghadam, H., Minaei, M., Jr, R. G. P., Asghari, A., & Dadashpoor, H. 
(2021). Integrating a forward feature selection algorithm, random forest, and 
cellular automata to extrapolate urban growth in the tehran-karaj region of iran. 
Computers, Environment and Urban Systems, 87, 101595. https://doi.org/10.1016/j. 

compenvurbsys.2021.101595. ISSN 0198-9715 https://www.sciencedirect.com/sci 
ence/article/pii/S0198971521000028. 

Soares-Filho, B., Rodrigues, H., & Follador, M. (2013). A hybrid analytical-heuristic 
method for calibrating land-use change models. Environmental Modelling & Software, 
43, 80–87. https://doi.org/10.1016/j.envsoft.2013.01.010. ISSN 1364-8152 
https://www.sciencedirect.com/science/article/pii/S1364815213000236. 

Talukdar, S., Eibek, K. U., Akhter, S., Ziaul, S., Islam, A. R. M. T., & Mallick, J. (2021). 
Modeling fragmentation probability of land-use and land-cover using the bagging, 
random forest and random subspace in the teesta river basin, bangladesh. Ecological 
Indicators, 126, 107612. https://doi.org/10.1016/j.ecolind.2021.107612. ISSN 
1470-160X https://www.sciencedirect.com/science/article/pii/S1470160X2100 
2776. 

Tepe, E., & Guldmann, J.-M. (2017). Spatial and temporal modeling of parcel-level land 
dynamics. Computers, Environment and Urban Systems, 64, 204–214. https://doi.org/ 
10.1016/j.compenvurbsys.2017.02.005. ISSN 0198-9715 https://www.sciencedirec 
t.com/science/article/pii/S0198971516301880. 

Tepe, E., & Guldmann, J.-M. (2020). Spatio-temporal multinomial autologistic modeling 
of land-use change: A parcel-level approach. Environment and Planning B: Urban 
Analytics and City Science, 47(3), 473–488. https://doi.org/10.1177/ 
2399808318786511 

Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm 
validation with a limited sample size. PLoS One, 14(11). e0224365. 

Verburg, P. H., Ritsema van Eck, J. R., de Nijs, T. C. M., & Dijst, P. S. M. J. (2004). 
Determinants of land-use change patterns in The Netherlands. Environment and 
Planning. B, Planning & Design, 31, 125–150. 

Xing, W., Qian, Y., Guan, X., Yang, T., & Huayi, W. (2020). A novel cellular automata 
model integrated with deep learning for dynamic spatio-temporal land use change 
simulation. Computers & Geosciences, 137, 104430. https://doi.org/10.1016/j. 
cageo.2020.104430. ISSN 0098-3004 https://www.sciencedirect.com/science/artic 
le/pii/S0098300419307708. 

Yu, D., & Srinivasan, S. (2016). Urban land use change and regional access: A case study 
in Beijing, China. Habitat International, 51, 103–113. 

Yu, J., Hagen-Zanker, A., Santitissadeekorn, N., & Hughes, S. (2021). Calibration of 
cellular automata urban growth models from urban genesis onwards - a novel 
application of markov chain monte carlo approximate bayesian computation. 
Computers, Environment and Urban Systems, 90, 101689. https://doi.org/10.1016/j. 
compenvurbsys.2021.101689. ISSN 0198-9715 https://www.sciencedirect.com/sci 
ence/article/pii/S019897152100096X. 

Zhai, Y., Yao, Y., Guan, Q., Liang, X., Li, X., Pan, Y., … Zhou, J. (2020). Simulating urban 
land use change by integrating a convolutional neural network with vector-based 
cellular automata. International Journal of Geographical Information Science, 34(7), 
1475–1499. https://doi.org/10.1080/13658816.2020.1711915 

Y. Kim et al.                                                                                                                                                                                                                                     

https://www.sciencedirect.com/science/article/pii/S0198971518304332
https://www.sciencedirect.com/science/article/pii/S0198971518304332
https://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.scs.2020.102045
https://www.sciencedirect.com/science/article/pii/S2210670720300329
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1016/j.cities.2020.103044
https://doi.org/10.1016/j.cities.2020.103044
https://www.sciencedirect.com/science/article/pii/S0264275120313925
https://www.sciencedirect.com/science/article/pii/S0264275120313925
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0145
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0145
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0150
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0150
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0150
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0155
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0155
https://arxiv.org/abs/1811.03378
https://doi.org/10.1016/j.rsase.2020.100461
https://doi.org/10.1016/j.rsase.2020.100461
https://www.sciencedirect.com/science/article/pii/S2352938520306364
https://www.sciencedirect.com/science/article/pii/S2352938520306364
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0170
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0170
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0175
https://doi.org/10.1016/j.landurbplan.2021.104239
https://www.sciencedirect.com/science/article/pii/S0169204621002024
https://doi.org/10.1016/j.compenvurbsys.2021.101595
https://doi.org/10.1016/j.compenvurbsys.2021.101595
https://www.sciencedirect.com/science/article/pii/S0198971521000028
https://www.sciencedirect.com/science/article/pii/S0198971521000028
https://doi.org/10.1016/j.envsoft.2013.01.010
https://www.sciencedirect.com/science/article/pii/S1364815213000236
https://doi.org/10.1016/j.ecolind.2021.107612
https://www.sciencedirect.com/science/article/pii/S1470160X21002776
https://www.sciencedirect.com/science/article/pii/S1470160X21002776
https://doi.org/10.1016/j.compenvurbsys.2017.02.005
https://doi.org/10.1016/j.compenvurbsys.2017.02.005
https://www.sciencedirect.com/science/article/pii/S0198971516301880
https://www.sciencedirect.com/science/article/pii/S0198971516301880
https://doi.org/10.1177/2399808318786511
https://doi.org/10.1177/2399808318786511
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0210
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0210
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0215
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0215
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0215
https://doi.org/10.1016/j.cageo.2020.104430
https://doi.org/10.1016/j.cageo.2020.104430
https://www.sciencedirect.com/science/article/pii/S0098300419307708
https://www.sciencedirect.com/science/article/pii/S0098300419307708
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0225
http://refhub.elsevier.com/S0198-9715(22)00045-X/rf0225
https://doi.org/10.1016/j.compenvurbsys.2021.101689
https://doi.org/10.1016/j.compenvurbsys.2021.101689
https://www.sciencedirect.com/science/article/pii/S019897152100096X
https://www.sciencedirect.com/science/article/pii/S019897152100096X
https://doi.org/10.1080/13658816.2020.1711915

	Machine learning application to spatio-temporal modeling of urban growth
	1 Introduction
	2 Related works
	3 Data set
	4 Methodology
	4.1 Dependent variables
	4.2 Predictors
	4.3 Machine learning methods

	5 Main results
	5.1 Prediction performance
	5.2 Variable selection
	5.3 Out-of-sample forecast of land development

	6 Discussion
	7 Concluding remarks
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Supplementary data
	References


