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Understanding the dynamics of urban growth is among the most important tasks in urban planning due to their
influence on policy decision-making. Specifically, prediction of urban growth at regional levels is crucial for
regional policy makers. Making such predictions is difficult because of the existence of complex topological
structures and the high-dimensional nature of data sets related to urban growth. Spatial and temporal auto-
correlation and cross-correlations, together with regional social and physical covariates, need to be properly
accounted for improving the forecasting power of any statistical or machine learning method. To that end, we
develop novel machine learning methodologies to perform predictions of urban growth at regional levels by
incorporating lead-lag non-linear relationships among past urban changes in each region and its neighbors. Based
on this analysis, machine learning algorithms outperform more classical methods, such as a logistic regression, in
terms of classifying low/high urban growth regions, and the random forest algorithm seems to have the best
prediction accuracy among the selected machine learning methods. Moreover, the random forest method without
any external covariates has still a high prediction accuracy which not only confirms that most of variability of
urban growth can be described by past observations of self and neighboring changes, but also makes it possible to
perform real forecasting of urban growth without accessing any external covariates. The latter makes this
modeling framework useful for local policy makers in allocating budget and directing resources appropriately
based on such predictions.

the utility function in land-use change models. As mentioned in Verburg,
Ritsema van Eck, de Nijs, and Dijst (2004), land-use changes depend on

1. Introduction

Accurate prediction of future urban growth and land development is
one of the fundamental goals of urban modeling. Urban growth dy-
namics depend on the multidimensional aspects of the physical, social
and economic environments. The land development potential on a given
site is determined based on human behavior and physical and institu-
tional limitations. Increased complexity in the dynamics requires
equivalent mathematical representations in quantitative models,
providing additional challenges in formulating suitable modeling
methods, in data requirements, and computational power.

The main goal in modeling land-use change is to mimic the human
activities which characterize urban development. Investment decisions
that result in changes in existing land conditions depend on the expected
utility from land conversion (Irwin & Geoghegan, 2001). However,
estimating utility expectation for a potential land-use change on a given
parcel is not a simple task, due to the unavailability of the necessary
information. In many studies, proxy information is used to approximate

the complex interactions between human activities and the physical
environment. In land-use change models, researchers incorporate mul-
tiple explanatory variables to approximate people's utility maximization
behaviours. Tepe and Guldmann (2017) highlight the importance of
working with disaggregated data to achieve robust model results.
Finally, there is no consensus about which information should be used as
proxy. Therefore, there are significant data challenges in land-use
change modeling.

Statistical models of urban systems can successfully represent actual
system dynamics if relationships in real life are precisely formulated.
However, there are many limitations in building such complex models.
The first challenge is introducing a successful methodology to account
for spatial and temporal correlations as well as cross-correlations of
urban systems in different regions. Recent studies in the field highlight
the importance of dynamic historical and contemporaneous neighbor-
hood relations (Bhat, Dubey, Alam, & Khushefati, 2015; Huang, Zhang,
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& Wu, 2009; Irwin, Bell, & Geoghegan, 2003; Tepe & Guldmann, 2017;
Tepe & Guldmann, 2020). The second challenge is data availability.
Theoretically, land-use change models are based on the utility-
maximization behaviours of consumers, and land investment decisions
are affected by institutional and physical limitations. These factors must
be represented in statistical and machine learning models in order to
achieve robust results. While some of these factors can be represented
using direct information, the remainder can only be incorporated using
proxy data. In parallel to advances in geo-coded data collection,
modeling methods at spatially disaggregated levels provide heteroge-
neous information that can help eliminate some data requirements
limitations. The third challenge is computational bottlenecks in running
complex quantitative models with increasing data sizes.

Machine learning methods (such as random forest, neural networks,
gradient boosting, etc.) are among the powerful prediction tools avail-
able to scientists and forecasters. They are computationally feasible
methods which can be applied to large-scale data sets and can capture
complex relationships between the dependent variables and the pre-
dictors due to the highly non-linear nature of their estimation. Predict-
ing future land-use changes is a complicated task due to the multiple
parameters affecting urban dynamics and the existence of spatial and
temporal correlations among urban changes in different regions. The
main idea of this paper is to tackle the problem of forecasting future
urban growth using machine learning methods. The growth rates of
residential, commercial, and occupied parcels at the block group level
are investigated using the Auditor's geo-coded tax database for the State
of Florida. The available information on when construction took place
on each parcel is used to derive measures of land-use dynamics.
Different spatio-temporal models, incorporating space and time and
their interactions, are used to investigate land development dynamics.
The developed machine learning methods are successfully able to cap-
ture the non-linear dynamics of urban growth in this rich data set (see
more details in Section 1 of the supplementary document) and achieve
satisfactory prediction accuracy (Section 5.1). Another interesting
outcome of the analysis is the existence of strong non-linear spatial and
temporal signals in urban growth rate data, which can be utilized to
perform real out-of-sample forecasts without the use of any external
covariates (see more details in Section 5.3). Note that there is no access
to external variables in the future; thus, any method which uses external
variables cannot make real out-of-sample predictions. This is an
important observation which makes it possible for regional policy
makers to have access to highly accurate prediction of urban changes
and modify local budgets accordingly to reach certain policy goals. A
brief review of existing works in the literature is provided next.

2. Related works

In land-use change modeling, discrete-response models are
commonly preferred due to the categorical nature of land uses as
dependent variables. Chomitz and Gray (1996) implement a multino-
mial logit to model relationships between new roads and deforestation
as a result of land conversion from agriculture to commercial uses in
Belize. Semisubsistence farming, commercial farming, and natural soil
nitrogen, slope, distance to Belize, etc. vegetation are used as the
response variables while a set of soil and locational characteristics are
incorporated as explanatory variables. The potential bias from road
endogeneity is mostly eliminated by incorporating soil quality into the
model. Verburg et al. (2004) implement a stepwise logistic regression
model to investigate temporal dynamics in land development between
1989 and 1996 in the Netherlands. The determinants of changes in a set
of land use categories are investigated using detailed location of features
and accessibility measures. They indicate that accessibility, neighbor-
hood interactions and spatial policies play an important role in recent
years, as compared to historical land developments.

In addition to temporal dynamics, spatial dependencies are impor-
tant components in land-use change modeling, and accounting for such
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dynamics introduces additional complexity in the models. Nahuelhual,
Carmona, Lara, Echeverria, and Gonzalez (2012) use an autologistic
regression to analyze timber plantation expansion in south-central Chile
over two separate periods (1975-1990, 1990-2007), accounting for
land characteristics and accessibility measures. They conclude that the
spatiotemporal dynamics formed as a result of the interactions of natural
and socio-economic drivers are an important factor in timber plantation
expansion. Yu and Srinivasan (2016) also implement a binary autolo-
gistic regression to investigate rural-to-urban land-use change over
2000-2010 in Beijing. Their explanatory variables are grouped into
proximity, neighborhood, physical, jurisdictional, and socio-economic
categories. Their findings indicate a positive association between
existing land and vacant land in close proximity. Both Nahuelhual et al.
(2012) and Yu and Srinivasan (2016)) account for spatial dependencies
in their modeling approaches, using the autocorrelation of neighboring
spatial units through a spatial weight matrix. Moreover, Carrion-Flores
and Irwin (2004) utilize a probit model to investigate the land devel-
opment potential at the parcel level in the rural areas of the Cleveland
metropolitan area, where spatial dependencies are assumed to exist
within the error term. Bhat et al. (2015) model land development pat-
terns for Austin's CBD and surrounding areas using a spatial discrete-
continuous probit model accounting for the spatial lag of the depen-
dent variable.

Incorporating temporal dynamics is critical in land use change
modeling. [rwin et al. (2003) implement a duration model of land-use
changes at the parcel level by controlling for spatial dependency
without an explicit temporal lag. Incorporating spatial dependence and
temporal dynamics separately is not sufficient to achieve robust model
results. To that end, Huang et al. (2009) model the spatial and temporal
dynamics of conversions from rural to urban land uses in New Castle
County, Delaware, over three separate periods (1984-1992, 1992-1997,
1997-2002), while Ferdous and Bhat (2013) introduce a spatial panel
ordered-response probit model controlling for both spatial interactions
and temporal lags. Gao et al. (2020) compare methods used to control
for spatial heterogeneity in land development and conclude that the
spatial lag and localized modeling approaches (such as GWR) provide
better modeling results. Finally, Tepe and Guldmann (2017, 2020)
introduce a novel approach for spatio-temporal modeling of land-use
changes. Both binary and multinomial spatio-temporal autologistic
regression models are developed for estimating land-use conversions at
the parcel level in Delaware county, Ohio. Their findings show that land
developments in neighboring parcels attract the same land use and
historical land development trends are also positively associated with
contemporaneous parcel development.

Spatial components in land-use change modeling introduce compu-
tational challenges. When a spatial weight matrix is incorporated using
spatial lag or spatial error approaches, the computation of the inverse
matrix is required (Anselin, 1988; Ord, 1975). Alternatively, simulation
methods, such as Gibbs sampler and EM algorithms, can be considered
to solve complex log-likelihood functions of discrete-response models
with spatial lags (Fleming, 2004). However, simulation-based optimi-
zation procedures do not guarantee convergence of the maximum like-
lihood function during parameter estimation. Most proposed land-use
change models with such explicit spatial components have less than
3000 sample observations because of these computational challenges
(Bhat et al., 2015; Ferdous & Bhat, 2013; Huang et al., 2009; Nahuelhual
et al., 2012; Yu & Srinivasan, 2016). Tepe and Guldmann (2017, 2020)
substantially improve the computational feasibility of discrete response
models by using simulation-based approaches. However, other methods
are required to achieve robust results when model complexity increase.
The computational advantages of the Random Forest (RF) and Artificial
Neural Network (ANN) methods can be considered for such modeling.

Recent years have witnessed efforts to integrate Machine Learning
(ML) methods into land-use change models, based on the Cellular
Automata (CA) approach. Gounaridis, Chorianopoulos, Symeonakis,
and Koukoulas (2019) apply a Random Forest approach to classify
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detailed land-use categories, accounting for environmental, physical,
accessibility, and socio-economic indicators in Attica, Greece. They
introduce a hybrid modeling approach for land-use change, using both
CA and RF models. Karimi, Sultana, Babakan, and Suthaharan (2019)
implement a Support Vector Machine (SVM) model for urban expansion
in Guilford County, analyzing land-use changes over 2001-2006. Their
model classifies a given piece of land as vacant or built-up, based on a set
of predictors grouped under site-specific, proximity and neighborhood
categories. Their model provides highly accurate results. Also, their
findings show the importance of the spatial clustering pattern of land use
/ land category types. Xing, Qian, Guan, Yang, and Huayi (2020) inte-
grate spatial and temporal dynamics in a Deep Learning (DL) model used
as the transition function in CA models. Landsat images and road net-
works are used to derive spatiotemporal dynamics in land cover pro-
portions, site-specific measures (implicit spatial features, elevation,
slope), and distances to a set of point of interests (river, railway, high-
way, first class road, minor road, city road, railway station, bus station,
main POIs, and central city). This model successfully captures the
neighborhood dynamics that are vital to land-use change models, with
an overall model accuracy of almost 94%. Liang, Dang, Sun, and Wang
(2020) propose a CA approach combining Markov Chain and RF
methods to model land use changes in Shanghai, using site-specific,
proximity, socio-economic characteristics, and planning guidelines.
This is the only study accounting for institutional factors in land
development dynamics. Similarly, Okwuashi and Ndehedehe (2021)
integrate SVM and Markov chain approaches into cellular automata for
modeling urban changes. Lv et al. (2021) introduce a gravity-based
approach to account for spatial interactions between cities in their RF-
CA model. Their model classifies a binary choice of urban and non-
urban land use types, based on a set of predictor variables covering
economic, social, educational characteristics and infrastructure and
environment conditions. Use of a gravitational model in RF-CA advances
traditional CA modeling by accounting for travel cost in the system.
Shafizadeh-Moghadam, Minaei, Jr, Asghari, and Dadashpoor (2021)
apply a Forward Feature Selection algorithm for RF models used as
transition rules in CA-based land-use change modeling. In RF models,
urban growth and non-urban persistence are classified based on grids'
characteristics: slope, altitude and distances from roads, crop, greenery,
urban, and barren. This study shows the effectiveness of accounting for
proximity factors in the absence of socio-economic factors. Finally, Yu,
Hagen-Zanker, Santitissadeekorn, and Hughes (2021) discuss the lack of
sufficient historical information to calibrate Cellular Automata land-use
change models. They introduce a Markov Chain Monte Carlo approxi-
mation based on Bayesian computation to calibrate CA models.

There are also a few ML applications to land-use change modeling.
Zhai et al. (2020) implement a Convolution Neural Network (CNN)
approach to Vector-based CA modeling. CNN effectively classifies a
given parcel's land-use category based on parcel site-specific and prox-
imity characteristics. This novel approach effectively mimics local
neighborhood dynamics, using the convolution kernel and local con-
nectors. Ron-Ferguson, Chin, and Kwon (2021) investigate land devel-
opment dynamics by analyzing the actions taken on vacant lands and
existing constructions and accounting for a wide range of explanatory,
including socio-economic, built environment characteristics, and land-
scape metrics. They show the importance of the RF method to account
for complex non-linear relationships in the data. Talukdar et al. (2021)
introduce a spatiotemporal analysis of land-cover changes using Ma-
chine Learning algorithms such as Bagging and RF, where water bodies,
agricultural land, vegetation, sand bar, bare land and built-up area
categories are used as response variable and a set of landscape metrics is
used as the explanatory variables. The bagging model produces more
accurate predictions, due to higher levels of tree depths as compared to
the RF model. The model successfully captures land cover fragmentation
in the study area. These methods provide highly accurate predictions
due to their incorporating non-linear relations (Bahadori, Yu, & Liu,
2014; Delasalles, Ziat, Denoyer, & Gallinari, 2019). Basse, Omrani,
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Charif, Gerber, and Bodis (2014) highlight the use of a Cellular
Automata (CA) based approach using Artificial Neural Networks (ANNs)
in order to increase model accuracy. Soares-Filho, Rodrigues, and Fol-
lador (2013) introduce a heuristic modeling approach based on the
Genetic Algorithm (GA) to improve the accuracy of land-use change
models.

The remainder of the paper is organized as follows. A brief intro-
duction to the Auditor's geo-coded tax database for the State of Florida is
provided in Section 3 while four machine learning methods applied to
this data set are summarized in Section 4. The main results of the paper,
including the prediction performance of the developed machine learning
algorithms, are presented in Section 5. Comparisons of the results with
similar results in the other literature are provided in Section 6. Finally,
some concluding remarks and future research directions are stated in
Section 7.

3. Data set

The state of Florida is selected as the study area. The University of
Florida GeoPlan Center provides statewide Auditor's Parcel Databases.
The publicly available 2019 database comprises nearly 9 million parcels,
with data on parcel geometry, year-built, land use, and the two most
recent sales. Using the information on when constructions took place,
historical land development conditions at the parcel level are generated
for all years between 1900 and 2019. These parcel histories provide an
opportunity to compute the average distances from any parcel to a set of
points of interest (POI)(recreation, stores, supermarket, etc.; see Table 3
for the full list of POIs) within a range of 2 miles. Fig. 1 illustrates the
procedure to compute the average distance to a certain POI from a given
parcel in a single year. Once parcel-level computations are completed,
parcel-level data are aggregated at the block group level. The aggregated
data characterize all Florida 11,394 block groups, with no missing data
issues.

We focused on the most recent 5 years, when Florida has experienced
rapid land development. Table 1 presents descriptive statistics for the
numbers of single-family, commercial, and occupied parcels in a block
group in 2015 and 2019. In 2019, almost 59% of all parcels (8,995,663)
in Florida were single-family residential parcels, a 4.5% increase over 5
years. Commercial parcels account for approximately 3% of all parcels,
with a 2.1% raise over 5 years. In 2019, occupied parcels constitute
almost 73% of the total with a 4% increase over 5 years. The number of
other land-use parcels increased by 1.9%. Fig. 2 presents parcel maps of
occupied parcels in Florida in 2015 and 2019. Bigger circles indicate
larger occupancy.

4. Methodology

Statistical and machine learning methods used to model land-use
changes in Florida are briefly introduced, including Logistic Regres-
sion (LR), Random Forest (RF), Artificial Neural Network (ANN), and
Extreme Gradient Boosting (EGB). The data set is divided into a training
set (72% of the data set), validation set (8% of the data set) and a test set
(the remaining 20% of the data set). Vabalas, Gowen, Poliakoff, and
Casson (2019) and Hansen et al. (2013) used 90% of the data set as a
training set and 10% of the data set as a validation set, but they used the
validation set as a test set. We differentiate validation and test sets for
parameter tuning. We conduct sensitivity analysis for multiple splits, but
the difference between the result from a single split and multiple splits is
less than 2%. Before discussing these methods, the dependent variables
and predictors are presented.

4.1. Dependent variables
The data set includes the numbers of parcels for each land use at the

block group level (single-family residential, vacant, commercial, other
residential, open spaces, and services). The numbers of single-family
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Fig. 1. Illustration of the procedure to compute the mean of average distances between a given parcel i to POI k within a 2-mile buffer at time t.

Table 1
Descriptive statistics for the numbers of single-family residential, commercial,
and occupied parcels in block groups in 2015 and 2019.

Year Land use category Min Mean  Median Max Std.
Dev.

2015  single-family 0 448.1 345 24,269  525.1
residential

2015  commercial 0 21.5 456 613 35.1

2015 occupied 0 557.4 58 24,638 549.9

2019  single-family 0 468.4 352 24,389  577.7
residential

2019 commercial 0 22.0 11 616 35.7

2019  occupied 0 579.8 464 24,772  605.1

residential, commercial, and vacant parcels are the dominant, and other
land-use categories are excluded from further modeling due to signifi-
cant imbalances among the different land uses. The growth rates of
single-family residential (Y;(t,k)), occupied (Y2(t, k)), and commercial
(Y3(t, k)) parcels are used as the dependent variables, where t is the index
of year and k is the number of years in the past from which growth rates
are computed. All the dependent variables are normalized using log-

o
q
(

“CUPANCY

20k

15k

© OpenStrestMap contributors 0

(a) Year 2015

transformation and standardization. A small fraction of 1 (0.001) is
added to the denominator in order to avoid infinite values in the
calculation of growth rates. Table 2 further describes the dependent
variables, Yj(t,k), (j = 1,2,3). Table 2 in Section 4 of the supplementary
file provides descriptive statistics of these variables.

Binary versions of the above continuous dependent variables have
been created and will serve as the main dependent variables in the
analysis. They are defined as follows:

Table 2
Description of the dependent variables.
Name Description
Yi(t, Transformed growth rate of the number of single-family residential parcels

k) from year (t — k) to t

Yo(t, Transformed growth rate of the number of occupied parcels from year (t —
k) K tot

Ys(t, Transformed growth rate of the number of commercial parcels from year (¢
k) —ktot

OCCUPANCY
20k
15k
10k
5k
!,
&
eia .
e | © OpenStrestiap contnbutors 0

(b) Year 2019

Fig. 2. Occupancy map of Florida in 2015 and 2019.
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) { 0 (Less developed), if Y;(t, k) < my, ),

1 (Moredeveloped), otherwise,
isz,'(I7 k) < My, k),
Zoi(t, k) = 0 €]

otherwise,

if Y5 (1, k) < my,,

0 (Less developed),
1 (More developed),

(
(
0 (Less developed),
Z3;(l, k) =
1 (More developed), otherwise,
where i is the index of a block {1,...,11394}, t is the index of a year
{2015, 2016, 2017, 2018, 2019}, k is the time lag, set to 5 and 10, my1 ),
My2xk), My3) are the median values of Y1(:,k), Ya(-,k), and Y3(-,k),
respectively, where Y;(-, k) = UTYj(t, k), T = {2015, 2016, 2017, 2018,
te

2019}, for j = 1,2,3. The median growth rate is used as a threshold to
create balanced data. Table 3 in Section 4 of the supplementary file
provides the frequencies for these binary variables.

4.2. Predictors

In land-use change models, proximity to POIs is used as proxy in-
formation. Accessibility to services provided within a close proximity
affects investors' decisions. In the absence of direct factors affecting the
utility function, proximity factors are important approximations (Sha-
fizadeh-Moghadam et al., 2021). Twenty eight accessibility measures
are calculated as means of average distances from parcels to certain POIs
within 2 miles for each block group. The Table 3 lists and describes these
variables. The descriptive statistics of these 28 accessibility measures are
provided in Table 4 of Section 4 in the supplementary file.

In addition to these twenty eight variables, we use four temporal
variables and four spatio-temporal variables. The temporal variables,

Table 3

Names and descriptions of the accessibility measures.

Name

Description

Distance to Recreation

Distance to Stores

Distance to Supermarket

Distance to Regional Shopping
Center

Distance to Community Mall

Distance to One-story Office

Distance to Multi-Office

Distance to Pro-Service
Distance to Transport

Distance to Restaurant

Distance to Driven-In
Restaurant

Distance to Financial

Distance to Insurance

Distance to Other Commercial

Distance to Other Service

Distance to Wholesale

Distance to Entertainment
Distance to Hotel
Distance to Light Industry
Distance to Heavy Industry
Distance to Industry
Distance to Agricultural
Distance to Institution
Distance to Education
Distance to Military
Distance to Open Space
Distance to Hospital
Distance to Government

recreational parcels
department stores parcels
supermarkets parcels
regional shopping centers

community shopping centers

one-story office buildings, non-professional
service buildings

multi-story office buildings, non-professional
service buildings

professional service buildings

airports, bus terminals, marine terminals, piers,
marinas

restaurants, cafeterias

drive-in restaurants

financial institutions
insurance company offices
other commercial parcels
other service parcels
wholesale outlets, produce houses, manufacturing
outlets

entertainment parcels
hotels and motels

light industrial parcels
heavy industrial parcels
industrial parcels
agricultural parcels
institutional parcels
educational parcels
military parcels

open spaces

hospitals

government parcels

Note: all distances are means of average distances from parcels to POIs within a
2 miles range in each block group.
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Yji(t — k, k), Yji(t — 2k, k), Yji(t — 3k, k), Y;i(t — 4k, k), are the k-lag, 2k-lag,
3k-lag, and 4k-lag growth rates. Nj(t,k,k), Nj{(t, 2k,k), Nj(t, 3k, k), and
Nji(t, 4k, k) are the spatio-temporal variables for j = 1,2,3, with:

1 10
Nilt, 1K) = 15 D log (Yip(t =L k) +1), @
p=1

where Yj;(t — L k) is the Yj;(t — k) value of the pth closest neighborhood
block of block i, for I = k, 2k, 3k, 4k. The reason for selecting 10
neighbors is as follows. We use the K-nearest neighbor spatial concep-
tualization approach. Global Moran's I tests (Moran, 1950) are con-
ducted for the dependent variables at various K-degree between 1 and
50. The Global Moran's I test results indicate that there are statistically
significant spatial dependencies in the dependent variables, while the
index values reach their highest levels between 5 and 10 nearest
neighbors.

All predictors are normalized to enhance the prediction performance
of statistical and machine learning models.

4.3. Machine learning methods

Machine-learning algorithms, including LR, RF, ANN, and EGB, are
trained and tested using 36 input variables. These models help to predict
urban development trends for several land-use categories, such as single-
family residential, occupied, and commercial uses.

Each method is briefly described next. We use the randomforest
package (Liaw & Wiener, 2002) for RF, TensorFlow (Allaire & Tang,
2020) and Keras (Allaire & Chollet, 2020) for ANN, and xgboost (Chen
et al., 2020) for EGB, all in R.

LR is a regression model in which a binary dependent variable, with
values of 0 and 1, is associated with a set of independent variables. More
details on estimation and inference are provided in Hastie, Tibshirani,
and Friedman (2009).

RF is an ensemble learning method for classification (and regression)
consisting of many decision trees, in which bootstrap samples build each
decision tree (Breiman, 2001). Specifically, one creates bootstrap sam-
ples from the training data set and grows a tree from each bootstrap
sample. At each node of a tree, a set of features is randomly selected to
build the next node. RF makes a prediction by aggregating results from
all grown decision trees. When training RF models, we use 1000 trees
and set up the size of a random set of features (mtry) to 4 (the number of
randomly selected variables as a candidate set at each split is 4). The
node size is set to 3 (the minimum node size is 3).

The randomforest package provides variable importance measures
such as Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG)
(Han, Guo, & Hua, 2016). Considering both MDA and MDG is more
robust than using any single one of them. Han et al. (2016) suggest a new
method called MDAMDG, combining MDA and MDG to measure vari-
able importance. A large MDA, MDG, and MDAMDG value indicate that
the corresponding variable is important.

ANN is a mathematical model inspired by biological neural networks
(Hastie et al., 2009). ANN is an interconnected group of simple pro-
cessing elements called nodes. ANN consists of multiple layers, including
input layer, hidden layers, and output layer. Each layer involves inter-
connected nodes containing activation functions and determines the
output of the node given input data. In each layer, the output from the
previous layer becomes an input for the current layer. As an input value
enters into the node, it gets multiplied by a weight value and added on a
bias. All weights and biases are estimated by backpropagation (Fan, Ma,
& Zhong, 2019).

In our analysis, three layers are used, each with 50, 20, and 2 as
dimensions of the output spaces. The rectified linear unit (relu) and
softmax activation functions (Nair & Hinton, 2010; Nwankpa, [jomah,
Gachagan, & Marshall, 2018) are used for the hidden layers and output
layer, respectively. 60 epochs are used to train the model (the learning
algorithm passes through the entire training data set 60 times) and batch
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Table 4

Prediction accuracy of four ML methods over different model variable sets.
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Dependent

Model Variable Set

LR

RF

ANN

EGB

over 5 years

over 10 years

Single-family growth

Occupancy growth

Commercial growth

Single-family growth

Occupancy growth

Commercial growth

temporal
spatio-temporal
dist. Based covariates

spatio-temporal + dist.

temporal
spatio-temporal
dist. Based covariates

spatio-temporal + dist.

temporal
spatio-temporal
dist. Based covariates

spatio-temporal + dist.

temporal
spatio-temporal
dist. Based covariates

spatio-temporal + dist.

temporal
spatio-temporal
dist. Based covariates

spatio-temporal + dist.

temporal
spatio-temporal
dist. Based covariates

spatio-temporal + dist.

Cov.

Cov.

Cov.

Cov.

Cov.

Cov.

0.6323 + 0.0089
0.6348 + 0.0088
0.6517 + 0.0087
0.668 + 0.0086

0.645 + 0.0088

0.6624 + 0.0087
0.5775 + 0.0091
0.6773 + 0.0086
0.7223 + 0.0082
0.7216 + 0.0082
0.7219 + 0.0082
0.7198 + 0.0082
0.551 + 0.0091

0.6453 + 0.0088
0.6642 + 0.0087
0.6725 + 0.0086
0.6296 + 0.0089
0.6366 + 0.0088
0.5711 £ 0.0091
0.6463 + 0.0088
0.5353 £ 0.0092
0.5382 £ 0.0092
0.5759 £ 0.0091
0.5747 £ 0.0091

0.7707 £+ 0.0077
0.7925 + 0.0074
0.7068 + 0.0084
0.8066 + 0.0073
0.6814 + 0.0086
0.7068 + 0.0084
0.6418 + 0.0088
0.7275 + 0.0082
0.751 + 0.0079

0.7644 + 0.0078
0.7219 £ 0.0082
0.7769 + 0.0077
0.7732 £ 0.0077
0.7872 £ 0.0075
0.7171 £ 0.0083
0.7976 + 0.0074
0.6594 + 0.0087
0.6853 £ 0.0085
0.645 + 0.0088

0.7134 £ 0.0083
0.7098 + 0.0083
0.7198 £ 0.0082
0.6439 =+ 0.0088
0.7349 £ 0.0081

0.7943 £ 0.0074
0.7869 =+ 0.0075
0.6594 + 0.0087
0.7338 £ 0.0081
0.7015 £ 0.0084
0.7066 + 0.0084
0.6134 + 0.0089
0.6781 + 0.0086
0.7679 £ 0.0078
0.757 £ 0.0079

0.6852 + 0.0085
0.7062 + 0.0084
0.7888 + 0.0075
0.7909 + 0.0075
0.6773 £+ 0.0086
0.7378 + 0.0081
0.679 + 0.0086

0.6746 + 0.0086
0.5996 + 0.009

0.6499 + 0.0088
0.736 + 0.0081

0.7203 + 0.0082
0.6217 + 0.0089
0.661 + 0.0087

0.7857 £ 0.0075
0.791 + 0.0075

0.6853 + 0.0085
0.8024 £ 0.0073
0.6991 =+ 0.0084
0.7133 £ 0.0083
0.6147 £ 0.0089
0.7207 + 0.0082
0.7654 + 0.0078
0.7668 + 0.0078
0.7167 + 0.0083
0.758 + 0.0079

0.7807 + 0.0076
0.7862 + 0.0075
0.6924 + 0.0085
0.7924 + 0.0074
0.6801 + 0.0086
0.6816 + 0.0086
0.6076 + 0.009

0.7041 + 0.0084
0.7268 + 0.0082
0.7228 + 0.0082
0.6347 + 0.0088
0.7164 + 0.0083

size is set at 512. The categorical cross-entropy is used as the loss
function while the selected optimizer is Adam (Kingma & Ba, 2014)
which is an algorithm for gradient-based optimization of stochastic
objective functions. ANNs were trained using a higher number of layers
(4 and 5), different epoch sizes (80 and 100), and different batch sizes
(256 and 1024). However, the prediction accuracy results did not
change significantly (less than 0.01). Hence, the original settings were
retained throughout the analysis.

EGB, which is an efficient implementation of gradient boosting, is an
ensemble learning method combining the predictive power of multiple
models to provide an optimal solution (Chen & Guestrin, 2016).
Gradient boosting builds models sequentially, so that each consecutive
model tries to correct the errors present in the previous model.

In this analysis, we use a tree classifier. The maximum depth of a tree
is set as 15; y, a parameter to control minimum loss reduction, is set as 3;
A, a tuning parameter to control the regularization term, is set at 0; and
the evaluation metrics is a binary classification error rate. Using
different values of 4, such as 1, 10, and 50, did not improve the pre-
diction accuracy. Therefore, the default value of 0 is used.

Additional details about these machine learning methods are pro-
vided in Section 2 of the supplementary file.

5. Main results

We present the main results from the analysis of the Florida urban
data set, using the machine learning (ML) methods described in the
previous section. 11394 block groups are used: 9116 block groups for
model training and 2278 for model testing. Different sets of the 28
distance-related covariates and 8 spatio-temporal covariates are used as
input features: models with (1) temporal variables (4, the number of
covariates), (2) spatio-temporal variables (8), (3) distance-related vari-
ables (28), and (4) spatio-temporal and distance-related variables (36).

5.1. Prediction performance

Prediction accuracy is an important measure to evaluate binary
classification models. Various models with different binary dependent
variables, Z1(t,5), Z1(t,10), Zx(t,5), Z»(t,10), Z5(t,5), and Z3(t,10), are
evaluated in terms of prediction accuracy at year t €
{2015,2016,2017,2018,2019}. Table 4 provides the prediction accuracy
rates of the four methods over different models variable sets with a 95%

confidence interval (CI). The best prediction accuracy rates are high-
lighted using a bold font.

Table 4 shows that the highest prediction accuracy is achieved using
the RF model with spatio-temporal and accessibility covariates. A pre-
diction accuracy rate of around 80% is achieved for single-family growth
prediction over 5 years. It is interesting that ML methods outperform
statistical models (LR), which confirms the usefulness of such methods
in urban growth prediction. Comparing the prediction accuracy of the
accessibility covariates models (28 variables) with the prediction accu-
racy of the spatio-temporal and distance covariates models, the latter
models have a 10% higher accuracy rate on average. This suggests that
the 8 spatio-temporal covariates play significant roles in the models. The
28 accessibility features are useful but less informative when compared
to the spatio-temporal variables, since the temporal models from RF,
ANN, and EGB have all a higher prediction accuracy than the model
incorporating only distance-based covariates. Models with smaller time
intervals display better performances than those with larger time in-
tervals. This is expected because prediction over 10 years in future
seems to be a harder task than prediction over 5 years.

5.2. Variable selection

Another important measure to evaluate models is variable selection,
which can be done using several variable importance measures. Since RF
has the best prediction performance, we focus these on this method. We
choose MDAMDG (Han et al., 2016) to evaluate variable importance
since MDAMDG does variable selection as well as compute variable
importance. Table 5 provides MDAMDG values for the optimal model.
The highlighted numbers with an asterisk are the top ten most important
variables. A dash mark indicates a variable not selected in the optimal
model. Several temporal and spatial predictors are among the most
important variables. This justifies the use of these predictors in our
model. For the single-family growth model, Distance to Education is the
most important variable among the 28 accessibility variables, followed
by Distance to Government, Distance to Agricultural, and Distance to
Institution. For the occupancy growth rate model, Distance to Institution
is the most important variable, followed by Distance to Government,
Distance to Industry, Distance to Education, and Distance to Other
Commercial. For the commercial model, Distance to Government is the
most important variable among the 28 distance-based variables, fol-
lowed by Distance to Institution, Distance to Education, Distance to
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Table 5

Variable importance score (MDAMDG) from RF.
Variable Zy(t,k) Zy(t,k) Zs3(t,k)

k= k= = k= = k=
5 10 5 10 5 10
k-lag temporal 36~ 18+ 36~ 36* 34+ 36*
2k-lag temporal 34* 13+ 34* 18+ 36* 32%
3k-lag temporal 31* - 18* 32* 32* 26*
4k-lag temporal 19* - 14 20* 27* 22*
k-lag neighborhood effect 16* 8* 14 31+ - 20*
2k-lag neighborhood effect - - 21* 13 - -
3k-lag neighborhood effect 14 8* 21* 9 - 6
4k-lag neighborhood effect 16* 9* - 11 - 10
Distance to Driven-In - - - - - -
Restaurant
Distance to Financial 14 - 16 13 12 -
Distance to Education 21* 14+ 18* 23* 19* 23*
Distance to Pro-Service 15 - - - 14 -
Distance to Restaurant 14 - - - 14 -
Distance to Multi-Office - - - - - -
Distance to Agricultural 21* 3* 11 14 - -
Distance to Community Mall - - 10 - - 14
Distance to Other Service - - - - 13 -
Distance to Other 13 - 18* 21* 17* 21*
Commercial

Distance to One-story Office 16* - 14 17 12 12
Distance to Government 20* 8* 23* 20* 24* 25%
Distance to Institution 16* 9% 26* 24* 23* 22%
Distance to Industry 14 - 24* 18* 15* 14
Distance to Entertainment - - 13 - 16* 17
Distance to Open Space - - - - - -
Distance to Hotel - - 11 11 10 13
Distance to Light Industry - - - 11 9 9
Distance to Recreation 12 - - - 15* 20*

Distance to Stores - - - - — _
Distance to Supermarket - - - - - _
Distance to Transport - - - - - _
Distance to Heavy Industry - - - - - _
Distance to Wholesale - - - - - .
Distance to Regional - - - - - _
Shopping Center
Distance to Hospital - - - - - -
Distance to Insurance - - - - - —
Distance to Military - - - - - _

Other Commercial, and Distance to Recreation.

Model results highlight important dynamics in single-family resi-
dential developments. Historical conditions in block groups are the most
important factor in new residential developments. Similarly, historical
conditions of neighboring block groups play a significant role in land
development dynamics. In addition, distances to educational in-
stitutions, agricultural lands and government facilities are more
important than historical conditions of neighboring block groups.
Finally, distances to financial institutions, professional services, res-
taurants, commercial lands, one-story office buildings, institutional
buildings, and industrial units are important factors in single-family
residential developments.

Similar to the single-family residential model, the model results for
commercial land development provide insights about dynamics in
commercial land development in Florida. Historical conditions in block
groups are also the most important factors in contemporaneous com-
mercial land development. However, historical conditions of neigh-
boring block groups do not play a significant role. Average distances to
institutional facilities and government facilities are the second impor-
tant factors in commercial land development. Distances to educational
institutions, other commercial lands, industrial lands, recreational areas,
and industrial facilities are also significant determinants behind the
commercial land development in Florida.
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5.3. Out-of-sample forecast of land development

Land development in the future can be predicted by the developed
machine learning models. The RF prediction model incorporating only
spatio-temporal variables provides accurate results. When distance-
based covariates are included, the model accuracy increases by
approximately 1%. Distance-based variables can be included in pre-
dictions of future land developments if the covariates are updated based
on future scenarios. For example, potential future land development can
be estimated based on planned new hospitals, schools, shopping centers,
etc. However, here, we introduce an accurate prediction modeling
approach using minimum information. We train a RF prediction model
with 8 spatio-temporal variables using a data set with t = 2019 and k =
5, where RF displays the best performance Section 5.1. The predicted
values of the growth rates of the numbers of single-family residential
parcels, occupied parcels, and commercial parcels in 2024 and 2029, are
depicted in Fig. 3. Blue dots present areas where the growth rate is above

the median (Zj@\k) = 1), whereas red dots present areas in which the

growth rate is below the median (Z;(t,k) = 0). These maps suggest that
the central areas of Orlando, Tampa, and Miami may be less developed
in the future. Since the central areas of these major cities are mostly
developed, they provide fewer opportunities for new land
developments.

All the machine learning models are developed independently based
on the dependent variable, thus inference can only be made from the
corresponding model. However, it is worth to cross interpret the results
from different models to get meaningful insights. Fig. 4(a) presents areas
where the growth rate of the number of single-family residential parcels
is below the median, but the growth rate of occupied parcels is above the
median. The areas where the growth rate of the number of single-family
residential parcels is above the median but the growth rate of occupied
parcels is below the median are shown in Fig. 4(b). Fig. 4(c) presents
areas where the growth rate of the number of single-family residential
parcels is below the median but the growth rate of commercial parcels is
above the median. The areas where the growth rate of the number of
single-family residential parcels is above the median but the growth rate
of commercial parcels is below the median is shown in Fig. 4(d). The
predictions presented in these two figures indicate critical land de-
velopments in Florida. When we look at single-family residential de-
velopments, we clearly expect fewer developments within built-up
areas. According to our future predictions, Florida will experience new
land developments in the peripheral areas of cities, with single-family
residential being the major driver of these land developments. Such
conditions could result in threatening environmentally-sensitive areas
and increasing public infrastructure costs. Such an urban growth pattern
is expected based on our theoretical understanding of location choice of
certain land uses. Single-family residential land use cannot compete
with non-residential and existing residential land uses in developed
areas, therefore peripheral locations are desirable choices (O'Sullivan,
2012).

Similar to occupancy and single-family growth rate, the occupancy
and commercial results also provide reasonable predictions. Commercial
parcels are predominantly expected in densely urbanized and coastal
areas. More commercial developments near coastal areas require further
investigations in order to evaluate potential risks under sea level rises.
There are also some expected commercial areas in rural areas, but these
locations are close to major transportation networks. Similar to our
discussions on single-family residential parcels, we also see meaningful
predictions based on our theoretical understanding. Finally, model re-
sults successfully capture profit maximization behaviours of commercial
activities. (O'Sullivan, 2012).

6. Discussion

In this section, the best-fitted model results are further discussed by
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Fig. 3. Predicted values of the growth rate of single-family residency, occupancy, and commercial parcels in 5 years and 10 years using RF.

comparing them with results from similar studies in the literature. The
implemented RF model allows us to rank the importance of the effects of
the explanatory variables on land development dynamics. Our results
show the clustering patterns of the same land uses increase future land
development potentials of this land use. Karimi et al. (2019) obtained a
similar result in their land-use change modeling. Gounaridis et al.
(2019) found that the most important factors in land developments are
road and enterprise densities. In this study, we did not explicitly control
for these densities. However, being close to certain POIs in dense urban

areas, such as commercial and institutional services, is a significant
factor in commercial land developments in Florida. Lv et al. (2021)
report that densities of restaurants, hospitals and markets play signifi-
cant roles in land development dynamics. Further, Shafizadeh-Mogha-
dam et al. (2021)’s RF model results indicate that distance to greenery is
the most significant factor in land development, followed by altitude,
distances from crops, urban roads and barren land. Our results for single-
family residential developments, which are the main drivers in Florida's
land developments, are significantly affected by distances to agricultural
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Fig. 4. Numbers of occupied parcels and numbers of single-family residential parcels in 2024 (RF).

and large government facilities. In the study conducted by Liang et al.
(2020), the proposed RF model for land-use changes in Shanghai shows
that population is the most important factor, followed by GDP, distance
to subways, distance to airports, and other transportation
infrastructures.

We also compare our model prediction accuracy with the bagging
approach introduced by Talukdar et al. (2021) and Support Vector
Machine by Karimi et al. (2019). Our test results are presented in
Table 6. Our best RF models with spatio-temporal and distance based
covariates outperform Bagging and SVM models. The prediction accu-
racy of Bagging is higher than that of SVM in all cases and our best RF
models are about 2.5% more accurate than the Bagging model.

7. Concluding remarks
Accurate predictions of future land development depend on the

successful representations of actual complex dynamics. A robust land-
use change model should account for non-linear relationships using

proxy information about a wide range of aspects of land development.
Previously introduced models focused on using site-specific, socio-eco-
nomic, neighborhood and accessibility components of land develop-
ment. Accessing this information is a major limitation to build such
models. There are also computational challenges in statistical models
when non-linear relationships are incorporated. In this paper, machine
learning methods, including Random Forest (RF), Artificial Neural
Networks (ANNs), and Extreme Gradient Boosting (EGB), are tested
using only accessibility to certain points of interest while also including
spatial and temporal components.

We have used the Auditor's geo-coded tax database for Florida to
derive historical land developments at the block-group level, based on
actual year-built information. Since the database includes land use
categories, accessibilities to a set of services and infrastructures are
computed. We examine relationships between a set of explanatory var-
iables and growth rates of residential, commercial, and occupied parcels
at the block group level. The RF model provides the most accurate
predictions and its results are in line with urban growth theories. Also,
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Table 6
Prediction accuracy of SVM and Bagging over different model variable sets.
Dependent variables Model Temporal Spatio-temporal  Dist. based covariates ~ Spatio-temporal + Dist.
Ccov.
. 0.7614 0.7817
Bagging (0.0078) (0.0076) 0.6743 (0.0086) 0.7837 (0.0076)
SVM(linear) - cost = 0.1 0.5857 (0.009) 0.5924 (0.009) 0.6537 (0.0087) 0.672 (0.0086)
SVM(linear) - cost = 10 0.592 (0.009) 0.5972 (0.009) 0.6549 (0.0087) 0.6729 (0.0086)
SVM(radial basis) - cost = 10, gamma = 1 0.7674 0.7573 0.6398 (0.0088) 0.6382 (0.0088)
Single-family =08 = (0.0078) (0.0079) : : ' :
growth SVM(polynomial) - cost = 10, gamma = 1 (()64:(?; 2 0.531 (0.0092)  0.5788 (0.0091) 0.5969 (0.009)
) B B 0.5203 0.5274
SVM(polynomial) - cost = 10, gamma = 2 (0.0092) (0.0092) 0.578 (0.0091) 0.5953 (0.009)
. 0.4798 0.5253
SVM(polynomial) - cost = 10, gamma = 3 (0.0092) (0.0092) 0.551 (0.0091) 0.5899 (0.009)
. 0.6737 0.6883
Bagging (0.0086) (0.0085) 0.6068 (0.009) 0.691 (0.0085)
0.6379 0.6601
M(li - =0.1 E . 1 3 .
SVM(linear) - cost = 0 (0.0088) (0.0087) 0.5838 (0.0091) 0.6788 (0.0086)
. 0.6379 0.6602
SVM(linear) - cost = 10 (0.0088) (0.0087) 0.582 (0.0091) 0.6737 (0.0086)
. . 0.6983 0.6687
over 5 years Occupancy growth SVM(radial basis) - cost = 10, gamma = 1 (0.0084) (0.0086) 0.5805 (0.0091) 0.5773 (0.0091)
. 0.6187 0.5293
SVM(polynomial) - cost = 10, gamma = 1 (0.0089) (0.0092) 0.5439 (0.0091) 0.5798 (0.0091)
. 0.5383 0.5205
SVM(polynomial) - cost = 10, gamma = 2 (0.0092) (0.0092) 0.5359 (0.0092) 0.5793 (0.0091)
. 0.5207 0.5343
SVM(polynomial) - cost = 10, gamma = 3 (0.0092) (0.0092) 0.5213 (0.0092) 0.5772 (0.0091)
Baggin, 0.748 (0.008) 0.7504 0.7032 (0.0084) 0.753 (0.0079)
g8ing - : (0.0079) : : - :
0.7219 0.7219
M(li - t=0.1 721 5 2 .721 . 2
SVM(linear) - cost = 0 (0.0082) (0.0082) 0.7219 (0.0082) 0.7219 (0.0082)
. 0.7219 0.7219
SVM(linear) - cost = 10 (0.0082) (0.0082) 0.7219 (0.0082) 0.7219 (0.0082)
. . . -~ -~ 0.7368 0.7274
Commercial growth SVM(radial basis) - cost = 10, gamma = 1 (0.0081) (0.0082) 0.7141 (0.0083) 0.7163 (0.0083)
0.2822 0.3069
M(pol; ial) - =1 =1 .592 . .602 5
SVM(polynomial) - cost = 10, gamma (0.0083) (0.0085) 0.5923 (0.009) 0.6024 (0.009)
. 0.2887 0.3089
SVM(polynomial) - cost = 10, gamma = 2 (0.0083) (0.0085) 0.5715 (0.0091) 0.6087 (0.009)
. 0.7159 0.3137
SVM(polynomial) - cost = 10, gamma = 3 (0.0083) (0.0085) 0.3041 (0.0084) 0.6043 (0.009)
. 0.7691 0.7782
Bagging (0.0077) (0.0076) 0.6792 (0.0086) 0.7825 (0.0076)
. 0.5552
SVM(linear) - cost = 0.1 0.572 (0.0091) (0.0091) 0.661 (0.0087) 0.6723 (0.0086)
. 0.5696
SVM(linear) - cost = 10 (0.0091) 0.555 (0.0091) 0.6597 (0.0087) 0.6727 (0.0086)
Single-family . . -~ - 0.7784 0.7561
growth SVM(radial basis) - cost = 10, gamma = 1 (0.0076) (0.0079) 0.6655 (0.0087) 0.5337 (0.0092)
. 0.6916 0.5718
SVM(polynomial) - cost = 10, gamma = 1 (0.0085) (0.0091) 0.5632 (0.0091) 0.6223 (0.0089)
SVM(polynomial) - cost = 10, gamma = 2 ?(')633;8) 0.548 (0.0091) 0.5478 (0.0091) 0.6064 (0.009)
. 0.5558
SVM(polynomial) - cost = 10, gamma = 3 0.5864 (0.009) (0.0091) 0.5506 (0.0091) 0.6076 (0.009)
0.6525 0.6681
Baggi X . 5 5
agging (0.0087) (0.0086) 0.6035 (0.009) 0.6777 (0.0086)
over 10 years . _ 0.6231 0.6422
SVM(linear) - cost = 0.1 (0.0089) (0.0088) 0.5769 (0.0091) 0.6491 (0.0088)
. 0.6422
SVM(linear) - cost = 10 0.623 (0.0089) (0.0088) 0.5751 (0.0091) 0.6469 (0.0088)
0.6773 0.6392
h M ial basis) - =1 =1 B X 1 .571 5 1
Occupancy growt] SVM(radial basis) - cost = 10, gamma (0.0086) (0.0088) 0.583 (0.0091) 0.5716 (0.0091)
SVM(polynomial) - cost = 10, gamma = 1 0.6017 (0.009) ?(')5507;1) 0.5174 (0.0092) 0.5613 (0.0091)
. 0.5665
SVM(polynomial) - cost =10, gamma =2  0.5896 (0.009) (0.0091) 0.5478 (0.0091) 0.5647 (0.0091)
. 0.5555
SVM(polynomial) - cost = 10, gamma =3  0.58 (0.0091) (0.0091) 0.5264 (0.0092) 0.568 (0.0091)
. 0.7096 0.7029
Bagging (0.0083) (0.0084) 0.6191 (0.0089) 0.7059 (0.0084)
Commercial growth g\ 1(linear) - cost = 0.1 0.532 (0.0092) ?(‘)50302922) 0.5448 (0.0091) 0.56 (0.0091)
SVM(linear) - cost = 10 0.5544 (0.0091) 0.5596 (0.0091)

(continued on next page)
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Table 6 (continued)
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Dependent variables Model Temporal Spatio-temporal  Dist. based covariates  Spatio-temporal + Dist.
cov.

0.5322 0.5322
(0.0092) (0.0092)

SVM(radial basis) - cost = 10, gamma =1  0.7219 0.6904 0.5442 (0.0091) 0.5546 (0.0091)
(0.0082) (0.0085)

SVM(polynomial) - cost = 10, gamma = 1 0.6738 0.4573 0.5645 (0.0091) 0.5423 (0.0091)
(0.0086) (0.0091)

SVM(polynomial) - cost = 10, gamma =2  0.5751 0.4488 0.4943 (0.0092) 0.5402 (0.0092)
(0.0091) (0.0091)

SVM(polynomial) - cost =10, gamma =3  0.5452 0.4488 0.5227 (0.0092) 0.5603 (0.0091)
(0.0091) (0.0091)

the RF model results reveal that spatio-temporal lags are major factors in
capturing the variability of the dependent variable. This is an important
finding, because spatial and temporal lags can be easily incorporated in
land-use change models and can be utilized to make appropriate policy
decisions.

Model results provide important insights into single-family residen-
tial and commercial land developments in Florida. Historical conditions
in block groups are the most important factor in both new single-family
residential and commercial developments. Distances to educational in-
stitutions, agricultural lands and government facilities are important
factors for single-family residential land development, while, average
distances to institutional and government facilities play significant roles
in commercial land development.

We outline several areas of further research. In this paper, we
separately model land use categories. Multivariate approaches may
reach better prediction accuracy and are an interesting topic of future
research. Further, prediction at finer geographical levels may yield more
accurate predictions, but will require handling additional computational
issues. In addition, distance-based covariates cannot be utilized in out-
of-sample predictions without designing future scenarios. Designing
future paths of distance-based covariates may be an interesting future
research direction. Finally, ranking variables based on their importance
provides some insight about explanatory variables; however, our current
methodological approach should be improved to obtain causal
relationships.
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