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ABSTRACT: Because of their diverse functionalities in cells, lipids
are of primary importance when characterizing molecular profiles
of physiological and disease states. Imaging mass spectrometry
(IMS) provides the spatial distributions of lipid populations in
tissues. Referenced Kendrick mass defect (RKMD) analysis is an
effective mass spectrometry (MS) data analysis tool for
classification and annotation of lipids. Herein, we extend the
capabilities of RKMD analysis and demonstrate an integrated
method for lipid annotation and chemical structure-based filtering
for IMS datasets. Annotation of lipid features with lipid molecular
class, radyl carbon chain length, and degree of unsaturation allows
image reconstruction and visualization based on each structural characteristic. We show a proof-of-concept application of the
method to a computationally generated IMS dataset and validate that the RKMD method is highly specific for lipid components in
the presence of confounding background ions. Moreover, we demonstrate an application of the RKMD-based annotation and
filtering to matrix-assisted laser desorption/ionization (MALDI) IMS lipidomic data from human kidney tissue analysis.

Imaging mass spectrometry (IMS) provides valuable
identity, abundance, and spatial distribution information

for molecular components of complex biological tissues. A
variety of IMS approaches are used to explore molecular
profiles of many biological systems and measure small
metabolites,1−4 lipids,5−8 peptides,9−11 glycans,12−14 and
proteins.15−17 Among these molecular classes, lipids are
essential for cell signaling, membrane composition, and
metabolism18−20 but are difficult to study by non-MS means
such as immunostaining or transcriptomics. Matrix-assisted
laser desorption/ionization (MALDI) IMS is a powerful tool
to measure lipids at 10 μm spatial resolutions approaching the
size of a mammalian cell.9,21 In MALDI analyses, tissue
sections between 5 and 20 μm are thaw-mounted on
conductive glass slides and uniformly covered with a chemical
matrix that absorbs ultraviolet radiation and promotes
desorption and ionization of endogenous molecules, including
lipids.9,22,23 Ion intensities from mass spectra acquired from
each pixel are visualized to produce spatially resolved ion
images.24 Because of the abundance and diversity of lipids,
resultant IMS spectra can be complex;7 detected lipids are
often isomeric and/or isobaric and cannot be resolved by using
high mass resolving power alone. Therefore, often ultrahigh
mass resolving power instruments are used for isobar
separation25,26 and other analysis dimensions such as ion
mobility separation,7,27 low energy CID,28 or chemical
modification29,30 are utilized to assign double-bond position
and stereospecifically numbered (sn) position isomers. Given

the direct biosynthetic relationships within lipid families,
methods that can identify lipids, link lipid families, and
preserve their spatial distributions in tissues are essential for
investigating lipid biochemistry.
Kendrick mass defect (KMD) analysis can deduce families of

chemically related compounds, such as lipids, using high-
resolution MS data in a variety of different fields of study.31−33

In KMD analysis, the atomic mass unit reference is changed
from 12C to other groups, such as methylene (or CH2, often
using 12C1 and

1H2 isotopes for carbon and hydrogen atoms)
or other units that repeat in polymer chain elongation. Thus,
the Kendrick mass is the monoisotopic mass-to-charge ratio
(m/z) value adjusted to the new reference; the resultant mass
deficiency or defect, usually rounded to the nearest integer
unit, can be used to discriminate molecular classes that contain
varied mass deficiencies. Given that the CH2-based KM scale
eliminates all CH2 mass defect contributions, molecules such
as lipids that differ by aliphatic chain length have the same
KMD and those with differing degrees of unsaturation exhibit
KMD differences of 0.01335 per unsaturation, which
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corresponds to the KMD of H2. De Pauw et al. demonstrated a
KMD-based IMS visualization tool that filtered MALDI MS
images based on lipid features clustered in KMD space.32

Although molecular families could be grouped by untargeted
clustering algorithms, analyte assignments were provided by
exact mass matching, and molecular classes of clusters were
inferred. As evidenced in this visualization tool, KMD analysis
is well suited to lipidomics; however, the more specialized
referenced KMD (RKMD) approach can provide more direct
information about lipid molecular families.34

Lerno et al. demonstrated that RKMD can be used to
determine the class and degrees of unsaturation for lipidomics
experiments.34 In RKMD analysis, the reference KMD of a
specified lipid headgroup is subtracted from the analyte KMD,
and the difference is divided by 0.0134. Theoretically, if the
resulting quotient is equal to the integer value of zero or less, it
is indicative of a positive classification for a specified lipid
headgroup. Moreover, the absolute value of the RKMD value
indicates the degrees of unsaturation. However, mass measure-
ment errors often preclude an error-free case, and thus, RKMD
values that predict correct chemical classes might not be an
exact integer value. Additionally, the presence of confounding
peaks in mass spectra (such as those from heavy isotopologues,
MALDI matrix species, solvent clusters, and other molecular
classes) presents challenges for conventional RKMD analyses
that lack controls to ensure specificity in lipid classification.
Lerno et al. employed heuristic constraints that limited false-
positive classifications but simultaneously limited the MS
analysis to lipids with less than or equal to six degrees of
unsaturation. This provides an opportunity for method
improvements to expand the coverage of the RKMD analysis
to a wider subset of the lipidome.
Herein, we report a method for lipid feature annotation and

class-based image filtering for lipidomics IMS data using an
RKMD-based approach. We utilized both computationally
generated and experimental MALDI MS imaging datasets from
human kidney tissues to assign lipid features via RKMD
determination of lipid molecular classes, degrees of unsatura-
tion, and numbers of radyl carbons. The latter is a novel
extension of RKMD analysis that allows for increased method
specificity and precision as well as lipid assignment. We show
that class-specific spatial distributions of lipid populations can
be used for automated image filtering and visualization of lipid
descriptors such as molecular class, unsaturation, and radyl
carbons. In previous approaches, spatial analyses depended on
targeted identification of lipids by instrumental methods and
user input to determine relationships in and between
chemically related groups of lipids. In contrast, the presented
method provides an integrated means for identification,
annotation, and rapid visualization of related lipids in IMS
datasets.

■ EXPERIMENTAL SECTION
Sample Preparation. Human kidney tissues were

collected as part of normal non-neoplastic portions of
nephrectomy samples for research purposes by the Coopera-
tive Human Tissue Network at Vanderbilt University Medical
Center.35 Remnant biospecimens were collected in compliance
with the Cooperative Human Tissue Network standard
protocols and National Cancer Institute’s Best Practices for
the procurement of the remnant surgical research material. The
excised tissue was flash-frozen over an isopentane and dry ice
slurry, embedded in carboxymethylcellulose, and stored at

negative 80 °C until use. The kidney tissue was cryosectioned
to a 10 μm thickness, thaw-mounted onto indium tin-oxide
(ITO)-coated glass slides (Delta Technologies, Loveland, CO)
for IMS analysis. Tissues were stored at negative 80 °C and
returned to ∼20 °C within a vacuum desiccator. IMS samples
were coated with a 20 mg/mL solution of 1,5-diaminonaptha-
lene (DAN) dissolved in THF using an HTX TM M3 Sprayer
(HTX Technologies, LLC, Chapel Hill, NC) yielding a 1.67
mg/cm2 coating (0.05 mL/h, 5 passes, 40 °C spray nozzle).
Tissue samples underwent IMS analysis immediately after
matrix deposition.

MALDI TimsTOF IMS. MALDI IMS was performed on a
prototype Bruker timsTOF pro MS system21 (Bruker
Daltonics, Bremen, Germany) in quadrupole-time of flight
(qTOF) only analysis mode. The qTOF ion images were
collected in positive-ion mode at 10 μm pixel size. The laser
beam scan was set to 6 μm2 and 200 laser (λ = 266 nm) shots
per pixel at 10 kHz for laser desorption and 18.6% laser power
(30% global attenuator and 62% local laser power). Mass
spectrometry data were collected from m/z 50 to 2000 in
centroid mode for lipid analysis. Provisional identifications of
tissue lipids were produced using a combination of mass
accuracy (≤3 ppm) and LIPIDMAPS36,37 database searching.
Only even chained lipids were considered because mammalian
systems do not generally produce odd-chain lipids, except in
special circumstances.38,39

Computational Generation of IMS Data. Theoretical
isotopic envelopes for lipids, MALDI matrix clusters, and
peptide ions were calculated using the pyOpenMS (2.6.0)
Python package to provide a proof of concept and to test the
specificity and precision of the RKMD-based method. Peptides
and MALDI matrix clusters were used to test the specificity of
the method for lipids in the presence of confounding species.
Lipid chemical formulas were acquired from the LIPIDMAPS
structure database (LMSD). Each lipid isotopic envelope was
generated from the chemical formula of the protonated, singly
charged molecular ion and data for three isotopologues were
calculated and used in subsequent analyses. The isotopic
envelopes for MALDI matrix (M) cluster ions were calculated
for monomeric [M + H]+ and proton bound dimeric [2M +
H]+, trimeric [3M + H]+, and tetrameric [4M + H]+ ion
clusters of 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-
hydroxycinnamic acid (CHCA), and DAN. In addition,
isotopic envelopes for fragment ions resulting from common
neutral losses (H2O and CO2 from DHB and CHCA and NH3
from DAN) as well as sodium and potassium adducts were
included as potential confounders; sodiated and potassiated
cluster ions were generated according to the rules described by
Keller et al.40 DHB, CHCA, and DAN are three common
choices for MALDI matrix in positive-ion mode lipidomics
MALDI IMS experiments and provide good ionization for a
variety of lipid classes.41 Peptide chemical formulas were
converted from randomly generated peptide sequences with
chain lengths between 1 and 25 amino acids. Each peptide
isotopic envelope was synthetically generated from singly
charged and protonated species and included seven isotopo-
logue peaks. Continuum mass spectra (i.e., with multiple
sampled points over each peak) were generated by calculating
the gaussian distribution of each isotopologue along an m/z
axis from m/z 100 to 1500. The m/z centroid and relative
isotopic abundance values were input for the mean and
amplitude in the Gaussian function. Given that resolving power
remains relatively constant across the mass range in TOF
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instrumentation,42 the Gaussian sigma parameter was held
constant across the m/z range and produced peaks with mass
resolving powers (m/Δm50%) ranging from ∼55 000 to 65 000.
To test the specificity and precision of the RKMD

annotation method, five MS datasets consisting of theoretical
centroid m/z values were generated for protonated, sodiated,
and potassiated lipids, MALDI matrix clusters, and peptides.
Lipid components included protonated, sodiated, and
potassiated ions of 500 lipids, including 62 phosphatidylcho-
line (PC), 60 phosphatidylethanolamine (PE), 61 phosphatidic
acid (PA), 62 phosphatidylglycerol (PG), 59 diacylglycerol
(DG), 22 sphingomyelin (SM), 32 triacylglycerol (TG), 40
ether-linked (O/P-) PC, 35 O/P-PE, 33 O/P-PA, and 34 O/P-
PG. Lipids were chosen pseudo-randomly from LMSD and
had even chains between 28 and 50 radyl carbons and 0 and 9
unsaturations from 11 common lipid classes. The peptide ion
spectrum was generated from 1000 unique peptide sequences,
resulting in 7000 total peaks. The MALDI matrix ion spectrum
was generated from 1305 matrix cluster species, resulting in
3915 total peaks.
The computationally generated IMS dataset was based on a

.PNG image depicting the letters “BU & VU”, and each letter
had a unique set of RGB color values. The RGB color values in
the image were associated with collections of lipid ion isotopic
envelopes related by lipid molecular class, degree of
unsaturation, or number of radyl carbons. At each coordinate
in an equivalently sized two-dimensional array, a spectrum
extending in the 3rd dimension was generated using the lipid
species of the appropriate class. The “BU” coordinates
included spectra containing MS isotopic envelopes from 86
O/P-PG lipids with 0 to 6 double bonds and 28 to 40 radyl
carbons (even radyl carbon chains only). However, “&”
coordinates included spectra containing MS peaks from 216
MS isotopic envelopes from lipids with 4 double bonds in the
PC, PA, PG, and DG classes and with 28 to 40 radyl carbons
(even radyl carbon chains only). Finally, “VU” coordinates
included spectra that contained MS isotopic envelopes from
257 lipids with 34 radyl carbons in the PC, PA, PG, and DG
classes and with 0 to 6 double bonds.
MALDI IMS Data Preprocessing. Bruker MALDI IMS

data was converted to the imzML file format prior to peak
picking and then to a native Python dictionary structure with
custom Python (3.8.5, CPython, Python Foundation) scripts
(preprocessing, annotation, and filtering Python scripts are
publicly available at https://github.com/luketrichardson/
RKMD-MS-Image-Annotation-and-Filtering). Data for un-
sampled coordinates between the maximum x and y image
coordinate were filled with an empty spectrum to make the
data amenable to numpy array operations and matplotlib
image visualization in Python. An internal, quadratic
recalibration of the summed spectrum was performed using
six common lipid features [PC(32:0) + H]+, [PC(34:1) + H]+,
[PC(34:1) + Na]+, [PC(36:1) + H]+, [PC(34:1) + K]+, and
[PC(36:1) + Na]+, resulting in <3 ppm error. Each peak within
each MALDI IMS spectrum was aligned to the recalibrated
summed spectrum. Recalibration and alignment are important
to mitigate the effects of m/z drift and noise on mass
measurement error. The effect of the signal-to-noise ratio
(SNR) on mass measurement error was evaluated for the
RKMD annotation workflow, and RKMD feature annotation
was found to be generally robust down to the signal detection
limit (Figure S1).

RKMD-Based Lipid Annotation. Overall, we annotate
lipids with their sum compositions using an RKMD-based
workflow that uses mass spectrometry data to assign lipid sum
compositions with headgroup, radyl carbon chain length, and
unsaturation information. A representative schematic of the
lipid annotation using this RKMD approach is included in the
Supporting Information (Scheme S1). First, the synthetically
generated or experimentally acquired IMS dataset was input to
the annotation workflow in a Python dictionary structure. On a
per pixel basis, the centroid spectrum was read and aligned to
the recalibrated summed spectrum. A recalibrated summed
spectrum was used to bin m/z values and enhance mass
measurement accuracy by recalibrating the average m/z values
in all acquired mass spectra. Once the mass spectrum was
realigned, RKMD analysis was performed for each peak in the
spectrum for the molecular class headgroup and adduct
RKMD. Twenty different lipid headgroup elemental compo-
sitions (Table S1) and various commonly observed adducts
(Table S2) were used to calculate the reference KMD for each
lipid class and its commonly observed adducts. Specifically, the
reference KMD of the adducted headgroup of each lipid class
was calculated and subtracted from the experimentally
acquired KMD value. The resulting difference was then
divided by 0.0134 (CH2-based Kendrick mass defect of
carbon) to produce the RKMD value.34

For each calculated RKMD value, its distance from the
closest integer value (δ) was determined. The features that
produced an RKMD δ within a user-defined window (δ = 0.35
in this work) for RKMD values between 0 and −9
(corresponding to 0 and 9 unsaturations, respectively) were
considered potential positive annotations for the class-of-
interest; features that did not meet these criteria were excluded
from further processing. The corresponding headgroup and
unsaturation information were used to calculate the number of
radyl carbons for each potential positive classification.
Analogous to using δ acceptance windows, the distance from
the calculated integer values indicating numbers of radyl
carbons (ε) was used to exclude erroneous classifications.
Peaks with radyl carbon ε values greater than 0.001 were
excluded from downstream processing steps as true positive
identifications were found to have radyl carbon ε ≤ 0.001.
Positive integer results were considered unacceptable results,
not in agreement with physical reality.34 For each potential
annotation, m/z, lipid class, adduct, number of radyl carbons,
degree of unsaturation, radyl carbon ε, RKMD δ, even number
radyl carbons (true or false), and peak intensity were stored in
a Python dictionary. This process was repeated for every
molecular class headgroup and an adduct of interest.

Image Filtering and Heuristic Constraints. Lipid
distributions were then visualized based on lipid classes
defined by similarities in the lipid headgroup, degrees of
unsaturation, and the number of radyl carbons. As an example,
a filter for the O/P-PE class is applied for RKMD assignments
of m/z 790.5151, which include [PC(O/P-35:5) + K]+,
[PE(O/P-38:5) + K]+, [LPC(35:5) + K]+, and [LPE(38:5) +
K]+ (Scheme S2). First, assignments were rank-ordered by
ascending RKMD δ values for each peak at each pixel. To limit
false-positive identifications, several heuristic constraints were
applied. Lower and upper limits were placed on the numbers of
radyl carbons and degrees of unsaturation that were accepted
for each lipid molecular class (Table S3). Limits were based on
commonly observed fatty acids43 and radyl carbon chain
lengths for each lipid molecular class in MALDI IMS tissue

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.1c03715
Anal. Chem. 2022, 94, 5504−5513

5506

https://github.com/luketrichardson/RKMD-MS-Image-Annotation-and-Filtering
https://github.com/luketrichardson/RKMD-MS-Image-Annotation-and-Filtering
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c03715/suppl_file/ac1c03715_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c03715/suppl_file/ac1c03715_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c03715/suppl_file/ac1c03715_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c03715/suppl_file/ac1c03715_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c03715/suppl_file/ac1c03715_si_001.pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.1c03715?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


analyses.6,44 Molecular class-specific degree of unsaturation
limits were necessary to curtail false-positive identifications in
which unrealistically high degrees of unsaturation were
calculated.34 Additionally, odd numbered radyl carbon chains
were excluded given that odd-chain fatty acids are uncommon
in human tissues.38,39 After excluding potential annotations by
heuristic constraints, the top-ranked assignment was compared
to the filter criterion, and the RKMD δ was compared to an
m/z value-dependent error limit. If the filter criterion matched
the assignment and the RKMD δ was below the error limit, the
feature intensity was added to the pixel intensity of the filtered
image. The RKMD δ error limit was calculated by eq 1 where δ
is the error limit expressed in terms of RKMD δ, p is the error
limit expressed in terms of ppm error, m is the m/z value of the
feature, and 13415 is a constant that

δ = −
p
m13415 1 (1)

relates RKMD δ to ppm error to approximate a 2.5 ppm error
threshold. The relationship between RKMD δ and ppm error is
inversely related (Figure S2). Given that RKMD δ is
necessarily ≤0.5 for any feature, the maximum error limit
that may be utilized is dependent on eq 1 as a function of m/z.
Although annotations were constrained to highly accurate
annotations in this demonstration (<2.5 ppm error), there is
no mass accuracy requirement (besides that determined by eq
1 at δ = 0.5) given that annotations are rank-ordered among

other putative identifications as in conventional exact mass
database searching workflows. In general, the RKMD workflow
is broadly compatible with medium to ultrahigh mass resolving
power MS instruments that routinely achieve <5 ppm mass
measurement error following internal calibration.

■ RESULTS AND DISCUSSION

RKMD-Based Annotation and Filtering of Computa-
tionally Generated IMS Data. Data processing and analysis
methods in IMS have advanced significantly in recent years to
accelerate the analysis of large data volumes. Data analysis of
IMS is often conducted manually by selective visualization of
m/z values or by unsupervised data reduction (e.g., principal
component analysis (PCA)45) and/or segmentation ap-
proaches46 that group pixels/spectra by similarity.47,48

However, manual analysis can be time consuming, and
unsupervised analyses do not describe the relationships
between pixel groups or may produce uninterpretable results.46

Biologically relevant conclusions are therefore dependent on
the accurate class-based annotation of molecular species in
biomarker discovery workflows. Chemical class annotation is
useful to analyze global trends in data, and one attractive
option for lipid class annotation is the RKMD method.34

However, in conventional RKMD, there is a potential for false-
positive classifications from confounding ions because the only
criterion for chemical classification is an acceptance window
for RKMD values determined by mass measurement error. To

Figure 1. Computationally generated [PG + H]+ RKMD plots (A−C) with their respective zoomed regions (D−F) demonstrate the utility of using
data curation parameters, RKMD δ and radyl carbon ε exclusion windows, to enhance specificity and precision of the RKMD-based annotation
method in the presence of protonated lipids (blue, 500 with three isotopes), sodiated lipids (purple, 500 with three isotopes), potassiated lipids
(orange, 500 with three isotopes), peptides (pink, 1000 with seven isotopes), and MALDI matrix clusters (green, 1305 with three isotopes). The
top row plots (A, D) include all datapoints, plots in the second row (B, E) include datapoints with RKMD δ ≤ 0.1, and plots in the third row (C,
F) include datapoints with RKMD δ ≤ 0.1 and radyl carbon ε ≤ 0.001.
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address this drawback and adapt RKMD for imaging
applications, we implemented an additional data curation
criterion to reduce potential incorrect results and expand the
RKMD approach’s analytical capabilities from classification to
full sum composition lipid annotation. The advantage of this
type of lipid annotation and data analysis is that multiple tissue
images, based on the user-defined lipid classes, can be
generated to study potential correlations and relationships
between different lipids and lipid classes.
In this approach, we increase the specificity and precision of

RKMD-based annotation via exclusion of true-negative peaks
based on the distance from calculated radyl carbon integer
values. The specificity and precision of the RKMD-based
annotation method are demonstrated in application to a
computationally generated complex dataset containing lipids
and potentially confounding species, including MALDI matrix
cluster and peptide ions (Figure 1). Confounding species were
included to evaluate the performance of the approach for their
effective exclusion. MALDI matrix cluster ions are often
observed as background ions in MALDI experiments.49

Likewise, peptides are potential confounders in tissue IMS
lipidomics; although they are not often detected concurrently
with lipids in tissue IMS experiments except in single-cell10 and
small-metabolite1 analyses.
The computationally generated ions were subjected to

RKMD analysis and results are displayed as plots of RKMD as
a function of Kendrick nominal mass (KNM) (Figure 1A−F).
Each row of plots was subjected to a different level of data
curation. In this work, [PG + H]+ was chosen as a reference
lipid headgroup as it exhibited the lowest specificity of all
classes included in the dataset. In Figure 1, MALDI matrix
cluster ions are displayed in green, peptide ions are displayed
in pink, and lipids are shown in three different colors blue
(protonated), purple (sodiated), and orange (potassiated).
Plots labeled “All Peaks” (Figure 1A−C) contain the entire
dataset, whereas plots labeled “Positive ID Region” (Figure
1D−F) show the relevant regions for RKMD classifications.
Prior to any data curation, 1112 peptide, 498 MALDI matrix
cluster, and 2596 true-negative lipid MS datapoints were
observed in the zoomed positive ID region (Figure 1D).
For comparison, lipid, matrix cluster, and peptide data were

first curated by RKMD δ exclusion only with a window of 0.1
or ∼1.9 ppm mass error (Figure 1B,E). This case reflects a
conventional application of RKMD wherein retained data-
points would indicate positively classified species for the
specified headgroup. By imposing the RKMD δ exclusion value
of 0.1, 20.1% (1410) of the 7000 peptide datapoints in the
total space were retained (Figure 1B), and 20.6% (229) of the
1112 peptide datapoints in the positive ID region were
retained (pink, Figure 1E). Similarly, 20.4% (799) of the 3915
MALDI matrix cluster datapoints in the total space were
retained (Figure 1B), and 19.5% (97) of the 498 matrix cluster
datapoints in the positive ID region were retained (green,
Figure 1E). Of the retained lipid datapoints, 55 corresponded
to [PG + H]+ monoisotopic peaks, and 358 corresponded to
heavy isotopologues and/or peaks from other lipid molecular
classes. In the total RKMD space (Figure 1B), the specificity
for correct exclusion of non-[PG + H]+ monoisotopologues
was 83.3% (ratio of true-negative indications to all negatives),
and the precision (ratio of true-positive indications to all
positive indications) imparted by RKMD δ exclusion was 2.1%.
In the positive ID region, these numbers for the specificity and
precision improved to 89.9 and 11.4%, respectively (Figure

1E). Although a significant portion of the confounders was
excluded by utilizing an RKMD δ window (Figure 1E), this
conventional approach lacks the desired level of specificity and
precision for confident lipid annotation.
To demonstrate the enhancement provided in the presented

RKMD-based annotation workflow, the number of radyl
carbons were calculated for each feature assuming a [PG +
H]+ headgroup, and data were curated by a radyl carbon ε
exclusion window of 0.001 in addition to an RKMD δ
exclusion window of 0.1 (Figure 1C,F). Application of radyl
carbon ε exclusion with a window of 0.001 decreased the
number of retained peptide datapoints from 1410 (peptides
retained by RKMD δ exclusion only) to only 79 (1.1% of 7000
total) and matrix cluster peaks from 773 to 64 (1.6% of 3915
total) in the total space (Figure 1C). In the RKMD positive ID
region (Figure 1F), radyl carbon ε exclusion decreased
retained peptide datapoints from 229 to 26 (2.3% of 1112)
and MALDI matrix cluster datapoints from 97 to 8 (1.6% of
498). All potential lipid false-positives were eliminated, leaving
only the 55 peaks corresponding to the 12Call isotopologues of
[PG + H]+ components (Figure 1C,F). This corresponds to a
true-positive rate of 100% for positive identification of all [PG
+ H]+ lipids. In the positive ID region (Figure 1F), specificity
was increased to 98.8% (from 89.9% for RKMD δ exclusion
only) and precision to 78.6% (from 11.4% with only RKMD
δ). Successful exclusion of most matrix clusters and peptide
ions (98.4 and 97.7%, respectively) suggests that the method is
robust in excluding nonlipid components (Figure 1).
Moreover, the observed enhancement in this new approach

enabled assignment of highly unsaturated lipids with greater
confidence, relative to the conventional RKMD δ windowing
exclusion approach via elimination of false-positive lipid
assignments from both heavy isotopologue peaks and
monoisotopic peaks of other classes. For instance, when
solving for [PC + H]+ RKMD values, [PA(34:1) + K]+,
[PA(38:4) + K]+, and [PA(36:6) + K]+ monoisotopic peaks
produce low RKMD δ values at integers −7, −10, and −12,
respectively (purple diamonds, node III, Scheme S1), and
therefore reduce confidence in highly unsaturated PC
assignments in conventional RKMD analyses. However,
solving for each [PA+K]+ component’s radyl carbon chain
length (assuming a [PC + H]+ headgroup) produces large
radyl carbon ε values exceeding the threshold of 0.001 used in
this work (purple diamonds, Scheme S1, node IV), restoring
confidence to highly unsaturated [PC + H]+ assignments.
As a proof of concept, the RKMD-based annotation and

filtering method was applied to a computationally generated
IMS dataset comprised of theoretical MS peaks (Figure 2).
The total ion current (TIC) image of the dataset (Figure 2B)
displays contributions from 559 protonated lipid MS peaks
spatially arranged to display the text “BU & VU”. The summed
mass spectrum of all included lipid components is displayed on
top of the TIC image and is notably complex (Figure 2A).
RKMD-based annotation correctly assigned each lipid, and the
filtering method reconstructed each select class image using
RKMD δ and radyl carbon ε exclusion windows of 0.1 and
0.001, respectively. Specifically, reconstructed images for 86
ether-linked phosphatidylglycerol lipids at “BU” coordinates
(Figure 2C), 216 lipids with four degrees of unsaturation from
PC, PA, PG, and DG chemical classes at “&” coordinates
(Figure 2D), and 257 lipid features with 34 radyl carbons from
PC, PA, PG, and DG chemical classes at “VU” coordinates
(Figure 2E) are shown in Figure 2C−E. Each selected image

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.1c03715
Anal. Chem. 2022, 94, 5504−5513

5508

https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c03715/suppl_file/ac1c03715_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c03715/suppl_file/ac1c03715_si_001.pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.1c03715?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


represents a filtering mode that utilizes a different criterion,
namely, lipid chemical class (Figure 2C), degrees of
unsaturation (Figure 2D), and number of radyl carbons
(Figure 2E). The RKMD-based reconstructed images demon-
strate that this class-based filtering approach can be used to
ascertain the character and localization of related groups of
lipids in IMS data (Figure 2). To evaluate the utility of the

RKMD-based lipid annotation for tissue image reconstruction,
we analyzed MALDI IMS data from human kidney tissues and
highlighted the advantages of a class-based approach for spatial
tissue characterization.

MALDI IMS of Kidney Tissue Lipids. The presented
workflow was applied to a MALDI tissue imaging analysis of
human kidney lipids. Lipids are of primary importance to the
healthy functioning of kidney tissues and characterization of
renal disease.50,51 MALDI MS has enabled detailed inter-
rogations into the spatial distribution and composition of
different lipids in human kidney tissues that have provided key
insights into physiological and disease mechanisms.52−54 The
imaged kidney section (220 000 pixels) contains portions of
the medulla and cortex. Subsections of these regions are visible
at varying degrees in all class-based images, such as medullary
rays, proximal tubules, collecting ducts, blood vessels, and
glomeruli (Figure 3). A composite of all saturated lipids and
monounsaturated PC lipids is shown in Figure 3 (top and
bottom, respectively). To confirm the accuracy of the RKMD-
based annotation method, 44 m/z values that resulted in
provisional identifications made by a combination of mass
accuracy and LIPIDMAPS database searching were submitted
to RKMD-based annotation. The RKMD-based method
produced equivalent assignments in each case after the
application of the heuristic constraints used in the presented
image filtering workflow (Table S4).
Observed lipids from MALDI IMS of kidney tissues from

several different molecular classes were detected and assigned
by the RKMD workflow. At the highest level, resultant images
are composites of all assigned lipid components that are
grouped by molecular class, unsaturation, and radyl carbon
chain length (Figure S3). Although the high-level class
composite images may be useful to evaluate broad differences
in lipid class distributions in tissues, localization of related
lipids can vary significantly with respect to other character-
istics, such as localization of a lipid class with varying radyl
carbon chain lengths or degrees of unsaturation. Some lipid
isomers can even have differing spatial distributions in tissues;
however, these differences cannot be visualized without an
orthogonal dimension of separation such as ion mobility.7

However, in the interest of preserving spatial information, all
molecular metadata for each component was retained such that
subclass images of more specific groupings of lipids could be
easily reconstructed and compared to evaluate localization of
lipid classes with finer differences.
For example, lipid distributions corresponding to saturated

and monounsaturated PC and PE and mono- and diunsatu-
rated SM components were evaluated (Figure 4). Images of

Figure 2. Computationally generated summed mass spectrum (A) for
an MS dataset from 37 044 pixels that included 559 lipids with
pseudo-randomized relative abundances was used to generate the
total ion image shown in (B) and a series of RKMD-based filtered
mass spectrometry images (C−E). The total ion current (TIC) image
(84 × 441 pixels) in (B) depicts the summed intensity for each
coordinate. The selected class images were filtered based on molecular
class, degrees of unsaturation, and radyl carbon chain length. The
molecular class image (C) was filtered for ether-linked phosphatidyl-
glycerol (O/P-PG) lipids; the dataset included 86 O/P-PG lipids at
the “BU” coordinates. The degree of unsaturation image (D) was
filtered for lipids containing 4 unsaturations; this dataset included 216
lipids containing PC, PA, PG, or DG headgroups and all contained
four double bonds at the “&” coordinates. The radyl carbon chain
length image (E) was filtered for lipids with 34 radyl carbons; the
dataset included 257 lipids with 34 radyl carbons from the same four
molecular classes.

Figure 3. Labeled renal tissue structures spanning parts of the medulla and cortex region in class composite images depicting saturated (top) and
monounsaturated PC (bottom).
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saturated PC (Figure 4A) and PE (Figure 4B) and
monounsaturated SM (Figure 4C) components are highly
colocalized in the kidney tissue, showing high abundance
within the glomeruli, blood vessels, and medullary rays (Figure
3). Previously, SM lipids have been characterized throughout
the renal cortex and medulla; moreover, studies have
characterized localization of monounsaturated SM to glomeruli
in healthy rat subjects55 and in diabetic mouse subjects in
response to a high-fat diet.52 In contrast, images of
monounsaturated PC and PE (Figure 4D,E) both show
different spatial distributions compared to saturated PC and
PE (Figure 4A,B). Although some low signal may be observed
from the glomeruli in the cortex, the signal arises primarily
from the proximal tubules. In the medulla, monounsaturated
PC and PE (Figure 4D,E) are colocalized to the renal
collecting ducts; in the cortex, monounsaturated PC and PE
highlight elements of the renal cortical labyrinth and proximal
tubules that surround the glomeruli. Concerning the blood
vessels, saturated (Figure 4A,B) and unsaturated PC and PE
(Figure 4D,E) are negatively correlated. Saturated PC and PE
colocalized to structures above the central blood vessel (light

blue bracket, Figure 4A), and unsaturated PC and PE have
higher abundance in the tissues surrounding the blood vessel
(Figure 4D).
In the interest of further characterizing the behavior of SM

localization, we grouped and displayed SM subclasses by radyl
carbon chain lengths (Figure 5). Each image is a composite of
at least three SM components (except for SM with 38 radyl
carbons (Figure 5C) that has two). The 38 radyl carbon SM
composite image was included to show continuity in the
progression of increasing chain lengths in the SM class. Each
image shows conservation of some features including the
medullary rays, blood vessels, and tubules. For example, 34
radyl carbon SM (Figure 5A) and 42 radyl carbon SM (Figure
5E) are uniquely colocalized to the glomeruli. Based on the
localization of monounsaturated SM to the glomeruli (Figure
4C), we presumed and confirmed that a major component was
SM(34:1), which was characterized previously as an important
mediator for ATP production in glomeruli.52 It should be
noted that for lipids at sufficiently high abundance, other
orthogonal analytical approaches such as tandem MS imaging

Figure 4. RKMD-based filtering applied to a MALDI IMS dataset from human kidney sections with the medulla and cortex visible in all images:
(A) saturated PC, (B) saturated PE, (C) monounsaturated SM, (D) monounsaturated PC, (E) monounsaturated PE, and (F) diunsaturated SM.
Images generated by RKMD-based filtering can be used to rapidly determine lipid trends among functional regions.

Figure 5. RKMD-based filtering applied to a MALDI IMS dataset from human kidney section SM lipids with 34, 36, 38, 40, and 42 radyl carbons in
(A−E) followed by an enlarged region for SM with 42 radyl carbons (F) with further classifications for 1 (G), 2 (H), and 3 (I) unsaturations.
Green and blue arrows indicate blood vessels represented in the 42 radyl carbon SM composite (F) that are colocalized to SM(42:2) (H) and
SM(42:3) (I) and absent in SM(42:1) (G). Reducing class composite images enables localization of discrete sum compositions and attribution of
observed morphological features to more specific groups of lipids.
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could be used to further validate RKMD annotations and
confirm enrichment of certain lipids in a specific tissue region.
The RKMD-based image filtering approach can be applied

to any group or subgroup of lipids with increasing specificity
down to individual lipid sum compositions, reducing
composite images to observe colocalization of very closely
related lipids. Of course, lipid sum composition does not
describe sn position or double-bond position/geometry but is
the greatest level of specificity provided by single-stage MS
measurement and the RKMD-based method. For example, the
42 radyl carbon SM composite class image (Figure 5E,F) was
reduced to the spatial distributions of the three contributing
sum compositions, where SM(42:1), SM(42:2), and SM(42:3)
were visualized in an enlarged region of the cortex (Figure
5G−I).
The RKMD-based annotation and image filtering approach

provide the framework for an intuitive and data-driven
approach for spatial analysis of lipids. High-level class
composite images should allow investigators to make broad
inferences about their data that inform subsequent inter-
rogations with increasing levels of specificity.

■ CONCLUSIONS
This work has demonstrated a method for RKMD-based lipid
annotation and IMS image filtering. The enhanced specificity
and precision of the annotation method were shown through
calculation of radyl carbon chain length and dataset curation
by exclusion of features with distances from radyl carbon
integer values, ε, larger than a window defined in this work as
0.001. When applied to peptide, MALDI matrix cluster, and
lipid MS features, the specificity and precision were broadly
enhanced by radyl carbon ε exclusion when compared to
conventional exclusion only by RKMD δ or distance from
RKMD integer values. A proof-of-concept application to a
computationally generated IMS dataset showed the outputs of
the method, which were filtered and reconstructed images that
use RKMD calculated molecular class, degree of unsaturation,
and radyl carbon chain length as criteria.
Finally, we applied the method to MALDI IMS lipidomic

data from the human kidney tissue section that spanned the
cortex and medulla regions. The filtering method was used to
visualize the spatial distribution of subgroups of PC, PE, and
SM lipids. Colocalization of saturated PC and PE and
monounsaturated SM components was observed throughout
the tissue, namely, in glomeruli, medullary rays, and blood
vessels. However, the addition of one unsaturation to each
molecular class reduced the previously observed correlations
between PC/PE and SM. Of particular note was the
colocalization of SM to cortical glomeruli. To evaluate the
extent of SM localization to glomeruli, we visualized
distributions of SM components with varying chain lengths
noting unique colocalization of SM with 34 and 42 radyl
carbons with glomerular structures. Finally, we reduced the 42
radyl carbon SM composite image to visualize each sum
composition component. Building on this work, future studies
may utilize this workflow to intuitively analyze spatial
distributions of lipid classes within and between samples to
enhance the analysis of lipidomics IMS datasets.
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