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ON A DIFFERENTIAL INTERMEDIATE VALUE PROPERTY

MATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES, AND JORIS VAN DER HOEVEN

Abstract. Liouville closed H-fields are ordered di�erential fields where the
ordering and derivation interact in a natural way and every linear di�erential
equation of order 1 has a nontrivial solution. (The introduction gives a precise
definition.) For a Liouville closed H-field K with small derivation we show
that K has the Intermediate Value Property for di�erential polynomials if
and only if K is elementarily equivalent to the ordered di�erential field of
transseries. We also indicate how this applies to Hardy fields.

Introduction
Throughout this introduction K is an ordered di�erential field, that is, an or-

dered field equipped with a derivation ∂ : K æ K. (We usually write f Õ instead of
∂f , for f œ K.) Its constant field

C := {f œ K : f Õ = 0}

yields the (convex) valuation ring

O :=
)

f œ K : |f | 6 c for some c œ C
*

of K, with maximal ideal

O :=
)

f œ K : |f | < c for all c > 0 in C
*

.

(It may help to think of the elements of K as germs of real valued functions and
of f œ Og and f œ Og as f = O(g) and f = o(g), respectively.) The above
definitions exhibit C, O, and O as definable in K in the sense of model theory.

Key example: the ordered di�erential field T of transseries, which contains R
as an ordered subfield, and where C = R. We refer to [3] for the rather elaborate
construction of T and for any fact about T that gets mentioned without proof.

Other important examples are Hardy fields. (Hardy [6] proved a striking theorem
on logarithmic-exponential functions. Bourbaki [5, Ch. V] put this into the general
setting of what they called Hardy fields.) Here we can give a definition from scratch
that doesn’t take much space. Notation: C is the ring of germs at +Œ of continuous
real-valued functions on halflines (a, +Œ), a œ R. For r = 1, 2, . . . , let C

r be the

2020 Mathematics Subject Classification. 03C64, 12H99.
The first-named author was partially supported by NSF Grant DMS-1700439.

1

https://doi.org/10.33044/revuma.2892


2 M. ASCHENBRENNER, L. VAN DEN DRIES, AND J. VAN DER HOEVEN

subring of C consisting of the germs at +Œ of r-times continuously di�erentiable
real-valued functions on such halflines. This yields the subring

C
<Œ :=

‹

rœN>1

C
r

of C, and C
<Œ is naturally a di�erential ring. For a germ f œ C we let f also

denote any real valued function representing this germ, if this causes no trouble.
A real number is identified with the germ of the corresponding constant function:

R ™ C
<Œ

™ C.

A Hardy field is by definition a di�erential subfield of C
<Œ. Examples:

Q, R, R(x), R(x, ex), R(x, ex, log x), R(�, �Õ, �ÕÕ, . . . ),
where x denotes the germ at +Œ of the identity function on R. All these are even
analytic Hardy fields, that is, its elements are germs of real analytic functions.

Let H be a Hardy field. Then H is an ordered di�erential field: for f œ H,
either f(x) > 0 eventually (in which case we set f > 0), or f(x) = 0, eventually,
or f(x) < 0, eventually; this is because f ”= 0 in H implies f has a multiplicative
inverse in H, so f cannot have arbitrarily large zeros. Also, if f Õ < 0, then f is
eventually strictly decreasing; if f Õ = 0, then f is eventually constant; if f Õ > 0,
then f is eventually strictly increasing.

In order to state the main result of this paper we need a bit more terminology:
an H-field is a K (that is, an ordered di�erential field) such that:

• for all f œ K, if f > C, then f Õ > 0;
• O = C + O (so C maps isomorphically onto the residue field O/O).

We also say that K has small derivation if for all f œ O we have f Õ
œ O. Hardy

fields have small derivation, and any Hardy field containing R is an H-field.
An H-field K is said to be Liouville closed if it is real closed and for every f

in K there are g, h œ K◊ such that f = gÕ = hÕ/h. The ordered di�erential field T
is a Liouville closed H-field with small derivation. Any Hardy field H ´ R has a
smallest (with respect to inclusion) Liouville closed Hardy field extension Li(H).
(The notions of “H-field” and “Liouville closed H-field” are introduced in [1]. The
capital H is in honor of Hardy, Hausdor�, and Hahn, who pioneered various aspects
of our topic about a century ago, as did Du Bois-Reymond and Borel even earlier.)

Now a very strong property: we say K has DIVP (the Di�erential Intermediate
Value Property) if for every polynomial P œ K[Y0, . . . , Yr] and all f < g in K with

P (f, f Õ, . . . , f (r)) < 0 < P (g, gÕ, . . . , g(r))

there exists y œ K such that f < y < g and P (y, yÕ, . . . , y(r)) = 0. (Existentially
closed ordered di�erential fields have DIVP by [9] and [10, Proposition 1.5]; this
has limited interest for us since the ordering and derivation in those structures do
not interact.) Actually, DIVP is a bit of an afterthought: in [3] we considered
instead two robust but rather technical properties, w-freeness and newtonianity,
and proved that T is w-free and newtonian. (One can think of newtonianity as a
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variant of di�erential-henselianity.) Afterwards we saw that “w-free + newtonian”
is equivalent to DIVP, for Liouville closed H-fields. Our aim is to establish this
equivalence: Theorem 2.7, the main result of this short paper.

We did not consider DIVP in [3], but it is surely an appealing property and
easier to grasp than the more fundamental notions of w-freeness and newtonianity.
(The latter make sense in a wider setting of valued di�erential fields where the
valuation does not necessarily arise from an ordering, as is the case for H-fields.)

Besides [3] we shall rely on [7], which focuses on a particular ordered di�erential
subfield of T, namely Tg, consisting of the so-called grid-based transseries; see
also [3, Appendix A]. We summarize what we need from [7] as follows:

Tg is a newtonian w-free Liouville closed H-field with small derivation, and Tg

has DIVP. We alert the reader that the terms newtonian and w-free do not occur
in [7], and that Tg there is denoted by T.

We call attention to the fact that K is a Liouville closed H-field i� K |= LiH for a
set LiH (independent of K) of sentences in the language of ordered di�erential fields.
Also, for H-fields, “w-free” is expressible by a single sentence in the language of
ordered di�erential fields, and “newtonian” as well as “DIVP” by a set of sentences
in this language. The reason that “w-free + newtonian” is central in [3] are various
theorems proved there, which are also relevant here. To state these theorems, we
consider an H-field K below as an L-structure, where

L := { 0, 1, +, ≠, ◊, ∂, <, 4 }

is the language of ordered valued di�erential fields. The symbols 0, 1, +, ≠, ◊, ∂, <
name the usual primitives of K, and 4 encodes its valuation: for a, b œ K,

a 4 b :≈∆ a œ Ob.

We can now summarize what we need from [3, Chapters 15, 16] as follows:
The theory of newtonian w-free Liouville closed H-fields is model complete, and

is the model companion of the theory of H-fields. The theory of newtonian w-free

Liouville closed H-fields whose derivation is small is complete and has T as a

model.
For an H-field K its valuation ring O and so the binary relation 4 on K can be

defined in terms of the other primitives by an existential formula independent of K.
However, by [3, Corollary 16.2.6] this cannot be done by a universal such formula
and so for the model completeness above we cannot drop 4 from the language L.
Corollary 0.1. Every newtonian w-free Liouville closed H-field has DIVP.
Proof. Let K be a newtonian w-free Liouville closed H-field. If the derivation of K
is small, then DIVP follows from the results from [7] quoted earlier and the above
completeness result from [3]. Suppose the derivation of K is not small. Replacing
the derivation ∂ of K by a multiple „≠1∂ with „ > 0 in K transforms K into its
so-called compositional conjugate K„, which is still a newtonian w-free Liouville
closed H-field, and K has DIVP i� K„ does. By 4.4.7 and 9.1.5 in [3] we can
choose „ > 0 in K such that the derivation „≠1∂ of K„ is small. ⇤
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This gives one direction of Theorem 2.7. In the rest of this paper we prove a
strong version, Corollary 2.6, of the other direction, without using [7] but relying
heavily on various parts of [3] with detailed references. Theorem 2.7 and the results
quoted above from [3] yield the result stated in the abstract: a Liouville closed
H-field with small derivation is elementarily equivalent to T i� it has DIVP.

Connection to Hardy fields. Every Hardy field H extends to a Hardy field
H(R) ´ R, and H(R) is in particular an H-field. We refer to [4] for a discus-
sion of the conjecture that any Hardy field containing R extends to a newtonian

w-free Hardy field. At the end of 2019 we finished the proof of this conjecture
by considerably refining material in [3] and [8]; this amounts to a rather complete
extension theory of Hardy fields. Note that every Hardy field extends to a maximal
Hardy field, by Zorn, and so having established this conjecture we now know that
all maximal Hardy fields are elementarily equivalent to T, as ordered di�erential
fields. Since C has the cardinality c = 2›0 of the continuum, there are at most
2c many maximal Hardy fields, and we also have a proof that there are exactly
that many. (We thank Ilijas Farah for a useful hint on this point.) These remarks
on Hardy fields serve as an announcement. A rather voluminous work containing
the proof of the conjecture is currently being prepared for publication. We also
hope to include there a proof of DIVP for newtonian w-free H-fields that does not
depend as in the present paper on it being true for Tg, whose proof in [7] uses the
particular nature of Tg.

We have a second conjecture about Hardy fields in [4], whose proof is not yet
finished at this time (May 2021): for any maximal Hardy field H and countable

subsets A < B in H there exists y œ H such that A < y < B. This means
that the underlying ordered set of a maximal Hardy field is an ÷1-set in the sense
of Hausdor�. Together with the (now established) first conjecture and results
from [3] it implies: all maximal Hardy fields are back-and-forth equivalent as ordered

di�erential fields, and thus isomorphic assuming CH, the continuum hypothesis.

1. Preliminaries
In order to make free use of the valuation-theoretic tools from [3] and to make

this paper self-contained modulo references to specific results from the literature,
we provide more background in this section before returning to DIVP.

Notation and terminology. Throughout, m, n range over N = {0, 1, 2, . . . }.
Given an additively written abelian group A we let A ”= := A \ {0}. Rings are
commutative with identity 1, and for a ring R we let R◊ be the multiplicative group
of units (consisting of the a œ R such that ab = 1 for some b œ R). A di�erential

ring will be a ring R containing (an isomorphic copy of) Q as a subring and equipped
with a derivation ∂ : R æ R; note that then CR :=

)
a œ R : ∂(a) = 0

*
is a subring

of R, called the ring of constants of R, and that Q ™ CR. If R is a field, then so
is CR. An ordered di�erential field is in particular a di�erential ring.

Let R be a di�erential ring and a œ R. When its derivation ∂ is clear from the
context we denote ∂(a), ∂2(a), . . . , ∂n(a), . . . by aÕ, aÕÕ, . . . , a(n), . . . , and if a œ R◊,
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then a† denotes aÕ/a, so (ab)† = a† + b† for a, b œ R◊. In Section 2 we need
to consider the function Ê = ÊR : R æ R given by Ê(z) = ≠2zÕ

≠ z2, and the
function ‡ = ‡R : R◊

æ R given by ‡(y) = Ê(z) + y2 for z := ≠y†.
We have the di�erential ring R{Y } = R[Y, Y Õ, Y ÕÕ, . . . ] of di�erential polynomials

in an indeterminate Y over R. We say that P = P (Y ) œ R{Y } has order at
most r œ N if P œ R[Y, Y Õ, . . . , Y (r)].

For „ œ R◊ we let R„ be the compositional conjugate of R by „: the di�erential
ring with the same underlying ring as R but with derivation „≠1∂ instead of ∂. We
then have an R-algebra isomorphism

P ‘æ P „ : R{Y } æ R„
{Y }

with P „(y) = P (y) for all y œ R; see [3, Section 5.7].
For a field K we have K◊ = K ”=, and a (Krull) valuation on K is a surjective

map v : K◊
æ � onto an ordered abelian group � (additively written) satisfying

the usual laws, and extended to v : K æ �Œ := � fi {Œ} by v(0) := Œ, where the
ordering on � is extended to a total ordering on �Œ by “ < Œ for all “ œ �.

Let K be a valued field: a field (also denoted by K) together with a valuation
ring O of that field. This yields a valuation v : K◊

æ � on the underlying field
such that O = {a œ K : va > 0} as explained in [3, Section 3.1]. We introduce
various binary relations on the set K by defining for a, b œ K:

a ® b :… va = vb, a 4 b :… va > vb, a ª b :… va > vb,

a < b :… b 4 a, a º b :… b ª a, a ≥ b :… a ≠ b ª a.

It is easy to check that if a ≥ b, then a, b ”= 0, and that ≥ is an equivalence relation
on K◊. We also let O = {a œ K : va > 0} be the maximal ideal of O, so O/O is
the residue field of the valued field K. A convex subgroup � of the value group �
of v gives rise to the �-coarsening of the valued field K; see [3, 3.4].

H-fields and pre-H-fields. As in [3], a valued di�erential field is a valued field K
with residue field of characteristic zero and equipped with a derivation ∂ : K æ K.
An ordered valued di�erential field is a valued di�erential field K equipped with
an ordering on K making K an ordered field. We consider any H-field K as an
ordered valued di�erential field whose valuation ring is the convex hull in K of its
constant field C, in accordance with construing it as an L-structure as specified in
the introduction.

A pre-H-field is by definition an ordered valued di�erential subfield of an H-field.
By [3, Sections 10.1, 10.3, 10.5], an ordered valued di�erential field K is a pre-H-
field i� the valuation ring O of K is convex in K, f Õ > 0 for all f > O in K, and
f Õ

ª g† for all f, g œ K◊ with f 4 1 and g ª 1. Any Hardy field H is construed
as a pre-H-field by taking the convex hull of Q in H as its valuation ring, giving
rise to the so-called “natural valuation” on H as an ordered field. At the end of
Section 9.1 in [3] we give Q(

Ô
2 + x≠1) as an example of a Hardy field that is not

an H-field. Any ordered di�erential field K with the trivial valuation ring O = K
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is a pre-H-field (so the valuation ring of a pre-H-field K is not always the convex
hull in K of its constant field, in contrast to Hardy fields and H-fields). If K is
a pre-H-field whose valuation ring is nontrivial, then the valuation topology on K
equals its order topology, by [3, Lemma 2.4.1].

Let K be a pre-H-field. Then the derivation of K and its valuation v : K◊
æ �

induce an operation Â : � ”=
æ �, given by Â(vf) = v(f†) for f ”® 1 in K◊; the

pair (�, Â) is called the H-asymptotic couple of K; see [3, Section 9.1]. Below
we assume some familiarity with (�, Â), and properties of K based on it, such
as K having asymptotic integration and K having a gap [3, Sections 9.1, 9.2]. The
flattening of K is the �˜-coarsening of K where �˜ = {vf : f œ K◊, f Õ

ª f}, with
associated binary relations ®

˜, 4˜ etc.; see [3, 9.4].

2. DIVP
In this section K is a pre-H-field. We let O be its valuation ring, with maximal

ideal O, and corresponding valuation v : K◊
æ � = v(K◊). Let (�, Â) be its

H-asymptotic couple, and � :=
)

Â(“) : “ œ �”=
*

. Recall that “K has DIVP”
means: for all P (Y ) œ K{Y } and f < g in K with P (f) < 0 < P (g) there is a y œ K
such that f < y < g and P (y) = 0. Restricting this to P of order 6 r, where r œ N,
gives the notion of r-DIVP. Thus K having 0-DIVP is equivalent to K being real
closed as an ordered field. In particular, if K has 0-DIVP, then � = v(K◊) is
divisible. From [3, Section 2.4] recall our convention that K> = {a œ K : a > 0},
and similarly with < replacing >.

Lemma 2.1. Suppose � ”= {0} and K has 1-DIVP. Then ∂K = K, (K>)† =
(K<)†

is a convex subgroup of K, � has no largest element, and � is convex in �.

Proof. We have yÕ = 0 for y = 0, and yÕ takes arbitrarily large positive values in K
as y ranges over K>O = {a œ K : a > O}, since by [3, Lemma 9.2.6] the set (�<)Õ

is coinitial in �. Hence yÕ takes all positive values on K>, and therefore also all
negative values on K<. Thus ∂K = K. Next, let a, b œ K>, and suppose s œ K
lies strictly between a† and b†. Then s = y† for some y œ K> strictly between
a and b; this follows by noting that for y = a and y = b the signs of sy ≠ yÕ are
opposite.

Let — œ � and take a œ K with v(aÕ) = —. Then a º 1, since a 4 1 would
give v(aÕ) > �. Hence for – = va < 0 we have – + –† = —, so –† > —. Thus � has
no largest element. Therefore the set � is convex in �. ⇤

Thus the ordered di�erential field Tlog of logarithmic transseries [3, Appendix A]
does not have 1-DIVP, although it is a newtonian w-free H-field.

Does DIVP imply that K is an H-field? No: take an ›0-saturated elementary
extension of T and let � be as in [3, Example 10.1.7]. Then the �-coarsening of K
is a pre-H-field with DIVP and nontrivial value group, and has a gap, but it is not
an H-field. On the other hand:
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Lemma 2.2. Suppose K has 1-DIVP and has no gap. Then K is an H-field.

Proof. In [3, Section 11.8] we defined
I(K) := {y œ K : y 4 f Õ for some f œ O},

a convex O-submodule of K. Since K has no gap, we have
∂O ™ I(K) = {y œ K : y 4 f Õ for some f œ O}.

Also � ”= {0}, and so (�, Â) has asymptotic integration by Lemma 2.1. We show
that K is an H-field by proving that I(K) = ∂O, so let g œ I(K), g < 0. Since (�>)Õ

has no least element we can take positive f œ O such that f Õ
º g. Since f Õ < 0,

this gives f Õ < g. Since (�>)Õ is cofinal in � we can also take positive h œ O such
that hÕ

ª g, which in view of hÕ < 0 gives g < hÕ. Thus f Õ < g < hÕ, and so 1-DIVP
yields a œ O with g = aÕ. ⇤

We refer to Sections 11.6 and 14.2 of [3] for the definitions of l-freeness and
r-newtonianity (r œ N). From the introduction we recall that Ê(z) := ≠2zÕ

≠ z2.
Below, compositionally conjugating an H-field K means replacing it by some K„

with „ œ K>; this preserves most relevant properties like being an H-field, being
l-free, r-DIVP, and r-newtonianity, and it replaces � by � ≠ v„.

Lemma 2.3. Suppose K is an H-field, � ”= {0}, and K has 1-DIVP. Then K is

l-free and 1-newtonian, and the subset Ê(K) of K is downward closed.

Proof. Note that K has (asymptotic) integration, by Lemma 2.1. Assume towards
a contradiction that K is not l-free. We arrange by compositional conjugation
that K has small derivation, so K has an element x º 1 with xÕ = 1, hence x > C.
A construction in the beginning of [3, Section 11.5] yields by [3, Lemma 11.5.2] a
pseudocauchy sequence (lfl) in K with certain properties including lfl ≥ x≠1 for
all fl. As K is not l-free, (lfl) has a pseudolimit l œ K by [3, Corollary 11.6.1].
Then s := ≠l ≥ ≠x≠1, and s creates a gap over K by [3, Lemma 11.5.14]. Now
note that for P := Y Õ + sY we have P (0) = 0 and P (x2) = 2x + sx2

≥ x, so by
1-DIVP we have P (y) = 1 for some y œ K, contradicting [3, Lemma 11.5.12].

Let P œ K{Y } of order at most 1 have Newton degree 1; we have to show that P
has a zero in O. We know that K is l-free, so by [3, Proposition 13.3.6] we can pass
to an elementary extension, compositionally conjugate, and divide by an element
of K◊ to arrange that K has small derivation and P = D + R, where D = cY + d
or D = cY Õ with c, d œ C, c ”= 0, and where R ª

˜ 1. Then R(a) ª
˜ 1 for all a œ O.

If D = cY + d, then we can take a, b œ C with D(a) < 0 and D(b) > 0, which in
view of R(a) ª D(a) and R(b) ª D(b) gives P (a) < 0 and P (b) > 0, and so P has
a zero strictly between a and b, and thus a zero in O. Next, suppose D = cY Õ.
Then we take t œ O

”= with v(t†) = v(t), that is, tÕ
® t2, so

P (t) = ctÕ + R(t), P (≠t) = ≠ctÕ + R(≠t), R(t), R(≠t) ª tÕ.

Hence P (t) and P (≠t) have opposite signs, so P has a zero strictly between t
and ≠t, and thus P has a zero in O.

From Ê(z) = ≠z2
≠ 2zÕ we see that Ê(z) æ ≠Œ as z æ +Œ and as z æ ≠Œ

in K, so Ê(K) is downward closed by 1-DIVP. ⇤
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For results involving r-DIVP for r > 2 we need a variant of [3, Lemma 11.8.31].
To state this variant we introduce as in [3, Section 11.8] the sets

G(K) := {a† : a œ K \ O} ™ K>, L(K) := ≠G(K)†
™ K.

The superscripts ø, ¿ used in the statement of Lemma 2.4 below indicate upward,
respectively downward, closure in the ordered set K, as in [3, Section 2.1].

Lemma 2.4. Let K be an H-field with asymptotic integration. Then

K> = I(K)>
fi G(K)ø, ‡

!
K>

\ G(K)ø
"

™ Ê
!
L(K)

"
¿.

Proof. If a œ K, a > I(K), then a > b† for some b œ Kº1, and thus a œ G(K)ø.
Next, let s œ K>

\ G(K)ø; we have to show that ‡(s) œ Ê
!
L(K)

"
¿. Note that

s œ I(K)> by what we just proved. From [3, 10.2.7 and 10.5.8] we obtain an
immediate H-field extension L of K and a œ Lº1 with s = (1/a)Õ. As in the
proof of [3, 11.8.31] with L instead of K this gives ‡(s) œ Ê

!
L(L)

"
¿, where ¿

indicates here the downward closure in L. It remains to note that Ê is increasing
on L(L) by the remark preceding [3, 11.8.21], and that L(K) is cofinal in L(L)
by [3, 11.8.14]. ⇤

The concept of w-freeness is introduced in [3, Section 11.7]. If K has asymptotic
integration, then by [3, 11.8.30]: K is w-free … K = Ê

!
L(K)

"
¿

fi ‡
!
G(K)

"
ø.

The next lemma also mentions the di�erential field extension K[i] of K, where
i2 = ≠1, as well as linear di�erential operators over di�erential fields like K and
K[i]; for this we refer to [3, Sections 5.1, 5.2].

Lemma 2.5. Suppose K is an H-field, � ”= {0}, r > 2, and K has r-DIVP. Then

the following hold, with (i), (ii), (iii) using only the case r = 2:

(i) K = Ê(K) fi ‡(K>) = Ê
!
L(K)

"
¿

fi ‡
!
G(K)

"
ø
;

(ii) K is w-free and Ê(K) = Ê
!
L(K)

"
¿
;

(iii) for all a œ K the operator ∂2
≠ a splits over K[i];

(iv) K is r-newtonian.

Proof. For (i) we use the end of [3, Section 11.7] to replace K by a compositional
conjugate so that 0 œ �. Then K has small derivation, and we have a œ K> such
that a ”® 1 and a†

® 1. Replacing a by a≠1 if necessary, this gives a† = ≠„ with
„ ® 1, „ > 0, so a ª 1. Then „≠1a† = ≠1; replacing K by K„ and renaming the
latter as K, this means that a† = ≠1. Let f œ K; to get f œ Ê

!
L(K)

"
¿
fi‡

!
G(K)

"
ø,

note first that 1 = (1/a)†
œ G(K), so 0 œ L(K). Also Ê

!
L(K)

"
¿

™ Ê(K) by
Lemma 2.3.

If f 6 0, then Ê(0) = 0 gives f œ Ê
!
L(K)

"
¿. So assume f > 0; we first show

that then f œ ‡(K>). Now for y œ K>, f = ‡(y) is equivalent (by multiplying
with y2) to P (y) = 0, where

P (Y ) := 2Y Y ÕÕ
≠ 3(Y Õ)2 + Y 4

≠ fY 2
œ K{Y }.

See also [3, Section 13.7]. We have P (0) = 0 and P (y) æ +Œ as y æ +Œ (because
of the term y4). In view of 2-DIVP it will su�ce to show that for some y > 0 in
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K we have P (y) < 0. Now with y œ K> and z := ≠y† we have
P (y) = y2

!
‡(y) ≠ f

"
= y2

!
Ê(z) + y2

≠ f
"
, hence

P (a) = a2
!
Ê(1) + a2

≠ f
"

= a2(≠1 + a2
≠ f) < 0,

so f œ ‡(K>). By the second inclusion of Lemma 2.4 this yields f œ Ê
!
L(K)

"
¿

or f œ ‡
!
G(K)ø

"
. But we have ‡

!
G(K)ø

"
™ ‡

!
G(K)

"
ø, because ‡ is increasing

on G(K)ø by the remark preceding [3, 11.8.30]. This concludes the proof of (i),
and then (ii) follows, using for its second part also the fact we stated just before
[3, 11.8.29] that Ê(K) < ‡

!
G(K)

"
.

Now (iii) follows from K = Ê(K)fi‡(K>) by [3, Section 5.2, (5.2.1)]. As to (iv),
let P œ K{Y } of order at most r have Newton degree 1; we have to show that P
has a zero in O. For this we repeat the argument in the proof of Lemma 2.3 so that
it applies to our P , using w-freeness instead of l-freeness, [3, Proposition 13.3.13]
instead of [3, Proposition 13.3.6], and r-DIVP instead of 1-DIVP. ⇤
Corollary 2.6. If K is an H-field, � ”= {0}, and K has DIVP, then K is w-free

and newtonian.

There are non-Liouville closed H-fields with nontrivial derivation that have DIVP;
see [2, Section 14]. By Lemma 2.3 and Lemma 2.5 (iii), Liouville closed H-fields
having 2-DIVP are Schwarz closed as defined in [3, Section 11.8].

Theorem 2.7. Let K be a Liouville closed H-field. Then

K has DIVP ≈∆ K is w-free and newtonian.

Proof. The forward direction is part of Corollary 2.6. The backward direction is
Corollary 0.1. ⇤
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[9] M. F. Singer, The model theory of ordered di�erential fields, J. Symbolic Logic 43 (1978),

no. 1, 82–91. MR 0495120.
[10] S. Spodzieja, A geometric model of an arbitrary di�erentially closed field of characteristic

zero, Trans. Amer. Math. Soc. 374 (2021), no. 1, 663–686. MR 4188196.

M. Aschenbrenner
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