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Abstract  Every discrete definable subset of a closed asymptotic couple with ordered scalar field k
is shown to be contained in a finite-dimensional k-linear subspace of that couple. It follows that the
differential-valued field T of transseries induces more structure on its value group than what is definable
in its asymptotic couple equipped with its scalar multiplication by real numbers, where this asymptotic
couple is construed as a two-sorted structure with R as the underlying set for the second sort.
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Introduction

The field of Laurent series with real coefficients comes with a natural derivation but is
too small to be closed under integration and exponentiation. These defects are cured by
passing to a certain canonical extension, the ordered differential field T of transseries.
Transseries are formal series in an indeterminate z > R, such as
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where log? z := (log z)?, etc. Transseries, that is, elements of T, are also the logarithmic-
exponential series (LE-series, for short) from [4]; we refer to that paper, or to Appendix A
of our book [2], for a detailed construction of T.

What we need for now is that T is a real closed field extension of the field R of real
numbers and that T comes equipped with a distinguished element x > R, an exponential
operation exp: T — T and a distinguished derivation d: T — T. The exponentiation here
is an isomorphism of the ordered additive group of T onto the ordered multiplicative
group T> of positive elements of T; we set e/ := exp(f) for f € T. The derivation 9
comes from differentiating a transseries termwise with respect to x, and we set f’ := 9(f),
f"" = 02(f), and so on, for f € T; thus, 2’ = 1, and 9 is compatible with exponentiation:
(ef) = f'ef for f € T. Moreover, the constant field of T is R, that is, {f € T : f' =0} =
R; see again [2] for details. Before stating our new results, we introduce some conventions:

Notations and conventions. Throughout, m, n range over N = {0, 1, 2, ...}. Ordered
sets, ordered abelian groups, and ordered fields are totally ordered, by convention. Given
an ambient ordered set S, a downward closed subset of S, also called a cut in S, is a
set D C S such that for all a, b€ S with a <b € D we have a € D. For an (additively
written) ordered abelian group I' we set

I'” == I'\{0}, I'S := {yel:~<0} = = {yel:y>0}

For any field K we let K* = K \ {0} be its multiplicative group. A differential field is a
field K of characteristic 0 with a derivation 9: K — K, and we set o' := d(a) for a € K,
and let bt := V' /b be the logarithmic derivative of b € K* when the ambient differential
field K with its derivation 9 is clear from the context; note that then (ab)t = a + b for
a,be K*.

Our book [2] culminated in an elimination theory for the differential field T of
transseries. As a consequence, we found that the induced structure on its constant field
R is just its semialgebraic structure: if X C R" is definable in T, then X is semialgebraic
(in the sense of R). (Here and throughout “definable in M” means “definable in M with
parameters from M?”.)

The story is more complicated for the structure induced by T on its value group. To
explain this, we recall that the natural valuation ring

Or= {f€T: |f| <r for some real r > 0}

of the real closed field T is clearly 0-definable in T as a differential field, which is how we
construe T in the rest of this paper. Let v: T* — I't be the corresponding valuation on
the field T. We may consider I't as the quotient T*/= and v as the natural map to this
quotient where =< is a O-definable equivalence relation on T*.

Thus, I'r is part of T®?. What is the structure induced by T on I't? It includes the
structure of I't as an ordered (by convention, additively written) abelian group. Moreover,
the derivation of T induces a function ) : F%& — Tp by w(vf) = v(fT) for f € T* with
vf # 0. The structure (I'r, 1) consisting of the ordered abelian group I'r with the function
1 is the asymptotic couple of T, a notion introduced for differential-valued fields — among
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which is T—by Rosenlicht [7]. There is also a natural 0-definable scalar multiplication
(r,y)—ry: RxTp —Tp

that makes I't into a vector space over R; it is given by rv(f) = v(f") for f € T~, and
the reason it is 0-definable (in T°9) is that ra = 3 (for r € R and «, 8 € I'y) iff there
are f, g € T* such that a = vf, f =vg and rfT = ¢f. For this reason, we consider the
2-sorted structure 't = ((T'r, ¥), R;s¢) consisting of the asymptotic couple (I'r, ©), the
field R, and the above scalar multiplication

sc: RxTp — Ty, sc(r,y) =ry.

The basic elementary properties of this 2-sorted structure were determined in [1]. This
structure encodes important features of T, and in this paper, we prove a new result about
it in § 5:

Theorem 0.1. Let I't be equipped with its order topology, and let X C 't be
definable in T't. Then the following are equivalent:

(i) X is contained in a finite-dimensional R-linear subspace of T'r;
(il) X is discrete;
(iii) X has an empty interior in T'r.

We also know from [2, Corollaries 14.3.10, 14.3.11] that for any non-zero differential
polynomial G(Y) € T{Y'} the subset {vy: y € T*, G(y) =0} of I'r is discrete. The set
of zeros of

GY):=Y2Y'y® —y2(v®)2 _y(y)2y®@ 4 (v')*
in T is
{aebecw ca,b,ce R} U {aebz ta,be R}.

For this G the set {vy: yeT*, Gy = O} is not contained in a finite-dimensional
R-linear subspace of I't and thus not definable in the 2-sorted structure I't by the theorem
above. We treat this example in more detail at the end of § 1.

The authors of [1] had speculated that the subsets of I'r definable in T¢? might be just
those that are definable in the 2-sorted structure I't. The above is a counter example
but leaves open the possibility that I't is stably embedded in T®%. In this connection, we
note that for all intents and purposes, we can replace the 2-sorted structure I'y by the
1-sorted structure (I't; 4, R1, sc) consisting of the asymptotic couple (I'r; 1)) expanded
by the set R1 C 'y, where 1 = v(z~!) € I'7 is the unique fixed point of ¢, and by the
function

sc : (R1) xI'p — I'y,  sc(rl,y) :=ry.

Why revisit closed asymptotic couples?

The proof of Theorem 0.1 requires the results of [1], suitably extended. This was our
original motive for revisiting the subject of closed asymptotic couples. The theorem itself
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is of interest but is also needed for its application to the induced structure on the value
group of T.

The quantifier elimination (QE) for closed asymptotic couples in [1] was expected to
help in obtaining a QE for T. The latter is achieved in [2, Chapter 16], but there we
needed only a key lemma from [1], not its QE for closed asymptotic couples. That key
lemma is [1, Property B], and is given a self-contained proof of five dense pages in [2, §
9.9]. Since then, we found a simpler way to obtain the QE in [1] that does not use the key
lemma alluded to but depends on some easier-to-prove new lemmas that have also other
applications; see § 2. This new proof of QE, given in § 3, is another reason for revisiting
the subject of closed asymptotic couples. (We derive the “key lemma” itself as a routine
consequence of the QE for closed asymptotic couples: Proposition 6.3.)

For his study of transexponential pre-H-fields in [6, Chapter 6] and [5], Nigel
Pynn-Coates introduced a modified version of “closed asymptotic couple” and adapted
accordingly some material from our (unpublished) 2017 version of this paper. Getting
the paper published is also more urgent now because in our recent proof that maximal
Hardy fields are n; we use results from § 4 below.

Finally, this paper gives us an opportunity to enhance and better organize parts of [1],
and acknowledge gaps in some proofs there; we intend to close these gaps in a follow-up
to the present paper. No familiarity with [1] is needed, but we do assume as background
some 20 pages (mainly on asymptotic couples) from [2], namely parts of § 2.4 on ordered
abelian groups, Sections 6.5, 9.1 (subsection on asymptotic couples), 9.2 (first four pages),
and 9.8. For the reader’s convenience, we also repeat definitions of key notions concerning
asymptotic couples and H-fields.

We thank Nigel Pynn-Coates for his careful reading of this paper, and corrections, and
the referee for helpful comments.

1. Preliminaries

We only consider asymptotic couples of H-type, calling them H -couples for brevity. Thus,
an H-couple is a pair (T, 1) consisting of an ordered abelian group I' with a map :
I'# — T, such that for all o, 3 € T'#,

(AC1) o+ #0 = (a+ ) = min(y(a), ¥(F));

(AC2) ¢(ka) = ¥(a) for all k € Z7;

(AC3) a >0 = a+9(a) > ¥(B);

HC) 0<a<f = Y(a) =2 ¥(f).

(As an aside, note that (AC2) and (HC) together imply (AC1); had we observed this
earlier, it would have shortened some arguments in [2, § 9.8]; the reader can use it to
the same effect in § 2 of the present paper.) Let (I', ) be an H-couple. By (AC1) and
(AC2) the function v is a valuation on the abelian group I'; as usual, we extend % to
: T — T := T U {00} by ¥(0) := oo; we use a' as an alternative notation for ¢(a)) and
set o' :=a +af for a € T'. Also ¥ := )(I'7). We recall from [2, Corollary 9.2.16] a basic
trichotomy for H-couples which says that we are in exactly one of the following three
cases:

)
)
)
C)
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1) has a (necessarily unique) gap, that is, an element v € I' such that ¥ < v <

is grounded, that is, ¥ has a largest element;

has asymptotic integration, that is, I' = (I'7)".

We say that (T, ¢) is closed if T' is divisible, ¥ CT' is downward closed, and (T, )
has asymptotic integration. We also use the qualifiers having a gap, grounded, having
asymptotic integration, and closed for H-couples with extra structure.

An H-cut in (T, 1) is a downward closed set P C T such that ¥ C P < (I'”)’. The set
Ul :={aecTl: a< Bforsomes € U} is an H-cut in (T, v), and if (T, 1) is grounded or
has asymptotic integration, this is the only H-cut in (I, ¢). If (T, ¥) has a gap [, then
Ul U {3} is the only other H-cut in (T, v).

In particular, if (T, v) is closed, then ¥ is the only H-cut in (T, ¢), but in eliminating
quantifiers for closed H-couples in § 3, it is essential to have a predicate for this H-cut
in our language.

Where do closed H-couples come from?

We recall from [2, Chapter 10] that an H-field is an ordered differential field K with
constant field C' such that:

(H1) o’ > 0 for all a € K with a > C}

(H2) O = C + o, where O is the convex hull of C in the ordered field K, and o is the
maximal ideal of the valuation ring O.

Let K be an H-field, and let O and o be as in (H2). Thus, K is a valued field with valuation
ring O. Let v: K* — T be the associated valuation. The value group I' = v(K*) is made
into an H-couple (T, ¥)—the H-couple of K—by 1 (vf) := v(fT) for f € K* withvf # 0.
We call K Liouville closed if it is real closed and for all a € K there exists b € K with
a =10 and also a b € K* such that a = bf.

If K is Liouville closed, its H-couple is closed as is easily verified. We recall from [2]
that T is a Liouville closed H-field.

Ordered vector spaces

Throughout we let k, kg, and k™ be ordered fields. Recall that an ordered vector space
over k is an ordered abelian group I' with a scalar multiplication k x I' — I" that makes
I' into a vector space over k such that ¢y > 0 for all c € k~ and v € I'”. Let I" be an
ordered vector space over k. Then any k-linear subspace of I is considered as an ordered
vector space over k in the obvious way. We shall need the following easy result about I':

Lemma 1.1. Let 'y be a k-linear subspace of I'. Suppose I' contains an element &
with 0 < e <T'g. Then Ty is closed in I with respect to the order topology on T.
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Proof. Let v € I'\I'g. With ¢ as in the hypothesis, we observe that the interval
(y—¢,7+¢) can have at most one point in it from Ty, and so by decreasing ¢ we
can arrange that (y —e, v +¢)NTy = 0. O

The k-archimedean class of a € T is
[alk == {y €T |y] <cla] and |a| < ¢|y| for some ¢ € k~ }.

Let [T be the set of k-archimedean classes. Then [T'], is a partition of I', and we linearly
order [ by

[k < [Blk = cla| < |B]forall cek”
< [a]x # [Blk and |af <|B].

Thus, [0]x = {0} is the smallest k-archimedean class. For o, 3 €T, ¢ € k* we have
[calk = [a]k and [a + Bl < max([a]g, [Blk), with equality if [k # [O]k-

Lemma 1.2. Let T'# {0} be an ordered vector space over k such that [T7] has no
least element. Then every finite-dimensional k-linear subspace of I is discrete with respect
to the order topology on I'.

Proof. First note that if v, ..., v, €7 and [yi]k, ---, [Yn]e are distinct, then
Y1, ---, ¥n are k-linearly independent. Thus, for a finite-dimensional k-linear subspace
A # {0} of T we can take § € A7 such that [§]g is minimal in [A7]s. Then for any o € A
and 3 € I'” with [B]x < [6]x we have a+ 3 & A. O

Lemma 1.2 takes care of the easy direction (i) = (ii) in Theorem 0.1. The direction (ii)
= (iii) is trivial. The harder direction (iii) = (i) uses a generality on expanded vector
spaces, to which we now turn.

Let V' be a vector space over a field C. We consider the two-sorted structure (V, C;sc)
consisting of the abelian group V, the field C, and the scalar multiplication sc: C' x V' —
V of the vector space V. Let X C V. Then we have the expansion V = ((V, X), C;s0
of (V, C;sc). Let V* = ((V*, X*), C*;s0) be an elementary extension of V. Let C*V be
the C*-linear subspace of V* spanned by V.

Lemma 1.3. Assume V* is |V|T-saturated. Then X is contained in a finite-
dimensional C-linear subspace of V' if and only if X* C C*V.

Proof. If X Cvi+---+Cuv,, v1,...,v, €V, then X*CC*vy +---+ C*v, C
C*V. We prove the contrapositive of the other direction, so assume X ¢ Cvy + --- 4+ Cu,
for all vy, ..., v, € V. Then X* € C*vy +--- 4+ C*v,, for all vy, ..., v, € V, and so by
saturation we get an element of X* that does not lie in C*V. O

For certain (V, C;sc) this will be applied to sets X C V that are definable in a suitable

expansion of (V, C;sc), with X* the corresponding set in an elementary extension of that
expansion.
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H-couples over ordered fields

Ordered vector spaces come into play as follows. Let K be a Liouville closed H-field. It
has the (ordered) constant field C, and the H-couple (T, ). We have a map (c, 7) —
cy: O xI' = T such that cvf = vg whenever f, g € K* and cft = g'. This map makes
I into an ordered vector space over C, and 1(cy) = 9 (v) for all c € C* and v € T'7.

Accordingly, we define an H-couple over k to be an H-couple (T, ) where the ordered
abelian group I is also equipped with a map k x I' — I" making I" into an ordered vector
space over k such that (cy) = () for all ¢ € k* and v € T'7. Thus, the H-couple of a
Liouville closed H-field is naturally an H-couple over its constant field.

Let (T', v) be an H-couple over k. A basic fact is that for distinct o, 3 € I'” we have

[¥(a) — ¥Y(B)]k < [ — Blg, since for all ¢ € k7, we have (o) — ¥(8) = ¥(ca) — ¥(cB) =
o(c(a — B)), by [2, 6.5.4(ii)]. Note also that for all a, 3 € T'7,

[k = [Ble = ¥(a) =(B).

Hahn spaces

These are the ordered Hahn spaces from [2, § 2.4]: a Hahn space T" over k is an ordered
vector space over k such that for all o, 3 € I'” with [a]g = [3]x there exists ¢ € k* such
that [ — ¢/ < [ok.

Examples. (1) Any one-dimensional ordered vector space over k is a Hahn space
over k.

(2) Any k-linear subspace of a Hahn space over k is a Hahn space over k.
(3) Any ordered vector space over the ordered field R is a Hahn space over R.
(4) The ordered Q-vector space Q + Qv/2 C R is not a Hahn space over Q.

We say that an H-couple (I, ¢) over k is of Hahn type if for all a, 3 € T7 with
(a) = 1(B) there exists a scalar ¢ € k such that ¥(a — ¢f) > ¥(«); equivalently, T is a
Hahn space over k and for all o, 3 € I'7,

Pla) =4(B) = [odk = [Bk-

Let K be a Liouville closed H-field. We made its H-couple (T, ¢) into an H-couple over
its constant field C, and as such (T, ¢) is of Hahn type.

Details on the example in the introduction

We consider the Liouville closed H-field T and its element = with 2’ = 1. For z € T with
2’ ¢ R we have

22" = () = =) = (¢/2)=0 < 2’ =tz for some t € R*
< z=se'" for some s,t € R*.

Considering also the case where 2’ € R we conclude that

{zeT: 22" = (¢)?} = {se'” : s,t eR}.
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Next, let y € T* and suppose z := y' satisfies zz” = (2/)2. Then y = re" for some r € R
and u € T with v/ = 2. For z = se’® with s, t c Rand u € T, v/ = z we get u € Re!® +R

ift #0,andu € Rz + Rift = 0. Hence y = ae®®” or y = a e for some a, b, ¢ € R. From
22" = (2)? we get

vy = ) — ()P + () =0
In this way, we get for
GY)=YY'Y® —y2(y@®)2 _y(y')2Y® 4 (v')*
that its set of zeros in T is
{aebccz ta,b,ce ]R} U {aebz ta,be R}.

It is easy to see that for 0 < ¢ < d in R we have [v(e®” )]z < [v(e®"")]g, so the set {vy:
yeT*, Gy = 0} is not contained in a finite-dimensional R-linear subspace of I'r.

2. Extensions of H-couples

In this section, (', ¥) and (T, ¥1) are H-couples over k. An embedding

h: (T,¢) — (1, ¢1)

is an embedding h: I' — I'; of ordered vector spaces over k such that

h(¥(v)) = 1 (h(7)) for y € T7.

If I' €Ty and the inclusion I' < I'y is an embedding (I, ¥) — (I'1, ¢1), then we call
(T'1, 1) an extension of (T, ¢). If (T'y, 1) is of Hahn type and extends (T, ¢), then
(T, v) is of Hahn type.
Embedding lemmas
The lemmas in this subsection are the analogues for H-couples over k of similar lemmas

for H-couples in [2, § 9.8]. The proofs are essentially the same, so we omit them.

Lemma 2.1. Let 8 be a gap in (T, ¢). Then there is an H-couple (I + ka, ¥%) over
k that extends (T', v) such that:

(i) @ >0 and o/ = f3;

(ii) if i: (T, ) — (I'1, ¢1) is an embedding and oy € T'1, a1 >0, o) =i(0), then i
extends uniquely to an embedding j: (I' + ko, 9*) — (I'y, 11) with j(a) = as.
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The universal property (ii) determines (I' 4+ ka, %) up to isomorphism over (I, ),
and 0 < ca < I'> for all ¢ € k”; moreover, for all ¥ € I" and ¢ € k with v + ca # 0,

Y(v), ify#0,

0 — «, otherwise.

Yoy + ca) = { 1)

Note also that [I' + ka]r = [ U {[a]k }, so for U* := 4*((I' + ka)?) we have:
U =TU{f—a}, max¥*=19%a)=/-a (2)

Lemma 2.1 goes through with o < 0 and a;; < 0 in place of o > 0 and a1 > 0, respectively.
In the setting of this modified lemma, we have I'S < ca < 0 for all ¢ € k~, (1) goes
through for v € T and ¢ € k with v 4 ca # 0, (2) goes through. So we have two ways to
remove a gap. Removal of a gap as above leads by (2) to a grounded H-couple over k,
and this is the situation we consider next.

Lemma 2.2. Assume that VU has a largest element (3. Then there exists an H-
couple (T + ka, ¥*) over k that extends (T, 1) with « # 0, o' = (3, such that for any
embedding i: (T', ) — (I'1, ¢1) and any oy € I‘f with o) =i(8) there is a unique
extension of i to an embedding j: (I + ka, ¥*) — (I'y, ¥1) with j(a) = a.

Let ([ + ka, 9) be as in Lemma 2.2. Then 'S < ca < 0 for all c € k7, [[' + ka]g =
[T U {[a]k}, so (2) holds for U* := ¢*((T" + ka)?). Thus, our new W-set ¥ still has a
maximum, but this maximum is larger than the maximum [ of the original U-set ¥. By
iterating this construction indefinitely and taking a union, we obtain an H-couple over k
with asymptotic integration.

Once we have an H-couple over k with asymptotic integration, we can create an
extension with a gap as follows:

Lemma 2.3. Suppose that (I', v) has asymptotic integration. Then there is an
H-couple (I' + kf3, 1) over k extending (I, ) such that:

(i) ¥ <pg<(I7);

(ii) for any (T'1, v1) extending (T', 1) and 31 € Ty with ¥ < (31 < (I'”)’ there is a unique
embedding (I' + k@3, ¥g) — (I'1, ¢1) of H-couples over k that is the identity on I'
and sends (3 to [3;.

Let (T, ¢) and (I' 4+ k3, 1) be as in Lemma 2.3. If (I + ka, 1) is also an H-couple
over k extending (T, v) with ¥ < o < (I'”)’, then by (ii) we have an isomorphism (T +
kg3, vg) — (I + ka, ¥,) of H-couples over k that is the identity on I' and sends [ to a.
In this sense, (I' + k3, 1) is unique up to isomorphism over (I', ¢). The construction of
(T' + kB, v3) gives the following extra information, with ¥g the set of values of 93 on

T+ kﬂ)#

Corollary 2.4. The set T' is dense in the ordered abelian group T+ k@, so [['|x =
[+ kB, Y3 =V and § is a gap in (T + kS, ¥3).
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Recall that a cut in an ordered set .S is just a downward closed subset of S, and that an
element a of an ordered set extending S is said to realize a cut D in S if D <a < S\ D

(soa¢S).

Lemma 2.5. Let D be a cut in [[7]g and let 3 € T be such that 3 < (I>)", v <3
for all v € T7 with [y]g > D, and 3 < 6 for all § € T'# with [0], € D. Then there exists
an H-couple (T' @ ka, ¥%) over k that extends (T', v), with o > 0, such that:

(i) [a]g realizes the cut D in [['7]g, and ¢¥*(a) = ;

(i) for any embedding i: (T, ¢) — (I'1, ¥1) and «y € 'y such that [aq]g realizes the
cut {[i(6)], : [0k € D} in [i(T7)], and ¢1(ay) =i(B), i extends uniquely to an
embedding j: (T @ ka, ¥*) — (T'y, ¢1) with j(a) = a;.

Moreover, [I' @ kalx = [I]k U {[o]r} and ¥* :=¢*((I' @ ka)?) = WU {B}. If (T, ) is
grounded, then so is (I' ® ka, ¥®). If (T', ¢) has asymptotic integration, then so does
(T @ ka, ¥*). If 3 € Ul, then a gap in (T, ¢) remains a gap in (I' @ ka, ¥%).

Proof. By a straightforward analogue of [2, Lemma 2.4.5] we extend I" to an ordered
vector space I'* = T' @ ka over k with a > 0 such that [a], realizes the cut D in [[7]g.
Then [I'® kajk = [k U {[a]x}. We extend ¢ to v*: (I'*)* — T by

V*(v + ca) := min{y(y), 8} for y €T, c e k*.

Apart from some obvious changes, we now follow the proof of [2, Lemma 9.8.7]. This
gives the desired results, except for the last Claim of the lemma. To prove that claim,
let 3€ Wl let vy €T be a gap in (I, ¢), and assume towards a contradiction that -
is not a gap in (I'*, ¥®). Then v > ¥, so v= (6 +ca) with § €T, c€ k™ and 0 <
d+ca <T~”. Then [0 + calg ¢ [Tk, so [0 + calk = [@]k. As ¥ has no largest element, we
get U < (0 + ca)t = af = 3, a contradiction. O

The case of Hahn type

In Lemma 2.1 (and in its variant with o < 0), in Lemma 2.2, and in Lemma 2.5 for 5 ¢ ¥,
we have:

if (T, ) is of Hahn type, then so is (T 4+ ko, ).

Suppose (T, ) and (I'+ k3, ¢g) are as in Lemma 2.3, and (T, ) is of Hahn type.
We claim that then (I' + k@, ¢3) is also of Hahn type. To prove this claim, recall from
Corollary 2.4 that I is dense in I' 4+ k3. It follows easily that for non-zero oy, ay € I' + kf3
with 15(a1) = ¥3(a2) we have [a1]k = [a2]k. It remains to show that I' + k3 is a Hahn
space over k. So let ay, ag € I'+ kf be non-zero with [o]x = [a2]k. By density again,
and the fact that [T = [I' 4+ k5]x has no least element > [0]g, we have 71, 72 € T such
that [a; — Y1)k < [aa]k and [ag — 2]k < [a2]k. Take ¢ € k™ such that [y; — ey2k < [11]k-
It follows easily that then [ — cas]r < [a1]k-

https://doi.org/10.1017/50013091522000219 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091522000219

540 Matthias Aschenbrenner, Lou van den Dries and Joris van der Hoeven

New extension lemmas

The three next lemmas will enable in the next section a simpler proof of QE for closed
H-couples than in [1]: in that paper, we needed “properties (A) and (B)” with long and
tedious proofs, and here we avoid this.

Lemma 2.6. Suppose (I'1, ¢1) extends (I', ¥). Let § € I'1 \ T and oy € T be such that
(B—ap)" ¢T. Then (8 — ag)’ = max {(8— ) : a € '}. If in addition I' is cofinal in
[y, then (8 — ap)! < some element of U.

Proof. Suppose a € T' and (8 — a)! > (83— ap)’. Then a —ag = (8 — ag) — (8 — )
gives (8 — ap)t = (o — )T €T, a contradiction. Assume |8 — ag| > |y|, v € T#. Then
(B—ag)t <Al e O

Lemma 2.7. Suppose (I', ¢) is closed and (T'1, 11) and (T, ¥.) are H-couples over k
extending (I', ¥). Let § € I'1 \T" and B, € ', \ T realize the same cut in I', and suppose
that 37 ¢ T' and T'< are cofinal in (T + kB")<. Then Bl ¢ T, and 37 and Bl realize the
same cut in T'.

Proof. Let a € I'”. We claim:
fl<al = pi<al, pi>al = pi>al.

To prove the first implication, assume 87 < af. Then |3 > |a|, so |B.| > |a|, and thus
Bl < at. Since (T, ¥) is closed and I'< is cofinal in (' 4 k31)<, we can replace in this
argument a by some v € I'” with 57 < 4T < af, to get 61 <At < af, and thus ﬂl <af
as claimed. The second implication follows in the same way.

If 3 < ~f for some v € I'7, then (T, ) being closed gives the desired conclusion. If
BT > W, then we use instead U < g7 < (I'>) and ¥ < gl < (I'>)'. O

Lemma 2.8. Suppose (I'1, ¥1) extends (T, ¢). Let 8 € T'1 \ I and ag, oy € T be such
that Bg ¢ T for By :=f — ap and 61 ¢ U for p := ﬂg — ay. Assume also that |Go| > |«
for some a € T#. Then 3} < f].

Proof. From |G| > |a| with a €7 we get ﬂg <af. Also, ,6’3; —af ¢T and
(65 — a1k ¢ [Tk, hence [B] — al]x > [6] — a1]. In view of [2, 6.5.4(i)], this gives

ﬁO:min(ﬁg,aT) < (ﬁg—aT)T < (ﬂg—al)Eﬂ

3. Eliminating quantifiers for closed H-couples

Eliminating quantifiers for closed H-couples requires a predicate for their W-set, and in
this connection, we need to study the substructures of the thus expanded H-couples.
Accordingly, we define an H-triple over k to be a triple (I', ¢, P) where (', ¢) is an
H-couple over k and P C T is an H-cut in (T, ).
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Lemma 3.1. Let (', ¢, P) be an H-triple over k, and let 3 € P\ V. Then (T, ¢, P)
can be extended to an H-triple (T’ ® ka, ¥, P*) over k such that:

(i) @ >0 and Yv*(a) = 3

(ii) given any embedding i: (T', ¢, P) — (I'*, ¢*, P*) and any element o* >0 in I'*
with ¢¥*(a*) = i(f), there is a unique extension of i to an embedding j: (I' @
ka, ¥°, P?) — (T*, 4%, P*) with j(a) = a*.

If (T, 4) is of Hahn type, then so is (T ® ka, ¥*).

Proof. Distinguishing various cases this follows from Lemma 2.5, especially the claims
beginning with “Moreover”. Use also “The case of Hahn type”. O

An H-closure of an H-triple (T, ¢, P) over k is defined to be a closed H-triple
(T, ¥°, P°) over k that extends (T, ¢, P) such that any embedding

I, P) — (I, 97, PY)
into a closed H-triple (I'*, ¢*, P*) over k extends to an embedding
(I, 9, PC) — (I, 9", P).

Corollary 3.2. Every H-triple over k has an H-closure. Every H-triple over k of
Hahn type has an H-closure that is of Hahn type.

Proof. This is a straightforward consequence of Lemmas 2.1, 2.2, and 3.1, using for
the second statement also the remarks in “The case of Hahn type”. [

We consider H-triples as Lg-structures where Ly is the natural language of ordered
vector spaces over k, augmented by a constant symbol oo, a unary function symbol
¥, and a unary relation symbol P. The underlying set of an H-triple (T, ¢, P), when
construed as an Lg-structure, is I', rather than I', and the symbols of £, are interpreted
in (T, ¢, P) as usual, with co serving as a default value:

P(0) = ¢Y(00) =7+ 00=00+7 =00+ 00=—00= €00 =00
for v € T and ¢ € k. Also 0T := oo for the zero element 0 € ', so I'f = ¥ U {c0}.

Theorem 3.3. The Ly-theory of closed H-triples over k has QE.

The proof of QE

Towards Theorem 3.3 we consider an H-triple (T, ¢, P) over k and closed H-triples
(T'1, 91, P1) and (T4, 9., Py) over k that extend (T, ¢, P), and such that (T'x, ¥., Ps) is
IT'|"-saturated. For v € T'y we let (I'(7), ) be the H-couple over k generated by I' U {~}
in (I'y, ¥1), and set P, := Py NT(y).

Let 8 €Ty \T. Theorem 3.3 follows if we can show that under these assumptions
(T(B), ¥g, Pz) can be embedded over I' into (T, 1., Py). We first do this in a situation
that may seem rather special:
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Lemma 3.4. Suppose (', ¢)) has asymptotic integration and (I' + k)" = I't. Then
(T(B), ¥, P3) can be embedded over I into (T, ¥, Px).

Proof. From (I + kB3)" = I'l we get I'(3) = I' + k3. We have six cases:

Case 1: (T>)T <n < (I'>) and n € P, for some 1 € I' + kB3. Fix such 7. Then T is
dense in I' 4+ kn =T + kg, by Corollary 2.4, so [I' + kf]x = [I']x. Moreover, there is no
m #nin T + kB with (I'™)T < n; < (I')". By saturation, we can take 7, € I', such that
()" < n. < (I>)" and 7, € P.. Then [2, 2.4.16] yields an embedding i: ' + kB — T,
of ordered vector spaces over k that is the identity on I'" with i(n) = n,.. This i embeds
(F<ﬂ>7 w[% Pﬁ) into (F*a ¢*7 P*)

Case 2: (T>) <5 < (I'>)" and 5 ¢ Py for some n € T' + k3. Fixing such 7, we repeat
the argument of Case 1, except that now 7, ¢ P, instead of 7, € Pi.

Case 3: [T + kB = [k, but there is no n € I' + kB with (I'>)" <5 < (I'>)". Then
Pg is the only H-cut of I'(). Saturation yields 8, € I', realizing the same cut in I' as
3. Then [2, 2.4.16] yields an embedding i: I' + k3 — T of ordered vector spaces over k
that is the identity on I' with i(8) = (.. For v € T 4+ kf we have [i(7)]x = [V]x € [[]k, so
i(y)t =~" € I'!. Thus, i embeds (I'(8), g, Pg) into (I, ¥, P.).

Assume next that we are not in Case 1, or Case 2, or Case 3. Then [I" + k0x # |-
Take v € I'(3) \ T such that v >0 and [v]x ¢ [k, so ()] = [ U {[1]k}. We are
not in Case 1 or Case 2, so Ps is the only H-cut of (I'(3), ¥g). Let D be the cut in
I realized by v and E:=T\ D, so D <~ < E. Then D has no largest element, and so
DNT> #(: if d = max D, then we have 0 <y —d < I'>, and thus (I'*)" < (y — ) <
(I, contradicting that we are not in Case 1. Likewise, E has no least element. Here
are the remaining cases:

Case 4: ' € (D>°)" N E. Saturation yields v, € I', realizing the same cut in ' as 7.
Then 7§ = ~T € (D>, and [2, 2.4.16] yields an embedding i: I’ + k3 — I, of ordered
vector spaces over k that is the identity on I' with i(y) = 7,; this ¢ embeds (I'(8), ¥3, P3)
into (I's, ¥s, Px).

Case 5: v" € (D>°)T > Et. Then saturation yields a 7. € I, realizing the same cut in
T as v, with 71 = 4T, By [2, 2.4.16] this yields an embedding i: I' + k3 — T, of ordered
vector spaces over k that is the identity on I" with i(7y) = 7., and so as before ¢ embeds
(F<6>7 Vg, Pﬁ) into (P*a Py P*)

Case 6: 7 € Et < (D>°)1. This is handled just like Case 5. O

Note that Cases 4, 5, 6 in the proof above do not occur if (T'y, ¥1) is of Hahn type.
In view of Corollary 3.2 and Lemma 3.4, Theorem 3.3 reduces to:

Lemma 3.5. Suppose (T, ¥) is closed and (I + k)t # 't for all vy € Ty \ . Then
(T(B), g, P3) embeds into (T'y, 1., P.) over I

Proof. If y €'} \T and ¥ <~y < (I'>), then (I +ky)' =TT, contradicting our
assumption. Hence there is no such 7. It follows that I'< is cofinal in T'y.

Take ag € T such that (3 — ag)t ¢ T'T. Since (T, 9) is closed, this means (3 — ag)t ¢ T.
Next take a; € I' with ((8 — ag)T — a;)T ¢ I'f. Continuing this way, we obtain sequences
ag, a1, g, ... in T and Gy, B1, Ba, ... in T(B) \ T with

60 = ﬁ — Qp, /Bn—i-l = ﬁ;*an_pl for all n,
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such that 8f ¢ T for all n. By Lemma 2.8 we have 53 < ﬁI < ﬁ; < ---. It follows that
[Bole > [B1le > [B2]k > -+, with [Ba]k ¢ [[]g for all n. In particular, the family (3,) is
k-linearly independent over I', and

(@) =T DkBo© k1 Dk @ --- .

By saturation we can take G, € T'y \ T realizing the same cut in I" as §. This gives an
embedding ey: I' ® kG — T, of ordered vector spaces over k that is the identity on I and
sends [ to [.. We define recursively B, € (I's)oo by

Bxo = Ps — g, Betns1) = Bl —ani1.
Assume inductively that .o, ..., B«n € ['x and that we have an embedding
en : '+ kBo+ -+ kB, — L.

of ordered vector spaces over k that is the identity on I' and sends (3; to (,; for i =
0, ..., n. Then (3, and (., realize the same cut in I, and so ﬂln ¢ T, and 3 and ﬂln
realize the same cut in I' by Lemma 2.7. Hence (3,11 and B,(n41) € I'x \ T realize the

same cut in I'. Moreover, ﬂin < ﬁl( by Lemma 2.8. We have

n+1)
[T+ kBo+ -+ kBnlk = Dl U {[Bolk, - [Bulk},  [Bole > > [Bulk > [Busilk-

Let D be the cut realized by [Bn41]e in [ + k8o + - - - + KBy ]k. Then the above together
with [Banlk > [Bens1)]ie shows that [B,(,41)]k realizes the e,-image of the cut D in
[en(T + KBy + -+ + kfB)]k. Hence e, extends to an embedding

ent1 : D4+ KB+ -+ kB, + kB — L.

of ordered vector spaces over k that is the identity on I' and sends B, 11 to Bi(nt1)-
This leads to a map e: T'(3) — I', that extends each e, and is, therefore, an embedding
of H-couples over k. Since Pjs is the only H-cut in I'(3), e embeds (I'(5), ¥, Pg) into
(Ty, ¥, Py) over T O

This concludes the proof of Theorem 3.3.

Let Ty be the L-theory of closed H-triples over k. Let Ty, be the Lg-theory whose
models are the closed H-triples (T, 1, P) over k with 0 € P, equivalently ¥ N T~ 2 ().
Let Tj be the Lg-theory whose models are the closed H-triples (I, ¢, P) over k with
0 ¢ P, equivalently ¥ C T'<.

Corollary 3.6. The Ly-theory Ty, has exactly two completions: Ty, and Ty .

Proof. We have an H-triple ({0}, ¥, {0}) over k that embeds into every model of
Ty, and an H-triple ({0}, 4o, 0) over k that embeds into every model of T}s. Here 1 is
the “empty” function () — {0}. O

Suppose K is a Liouville closed H-field. Then its H-couple (T', %) is naturally an
H-couple over its constant field C'. The case (T, ¢) = T2 corresponds to the derivation
0 of K being small (that is, 9f <1 for all f <1 in K), while the case (I', ¢) =TS
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corresponds to this derivation not being small. For example, the usual derivation % of T
is small. The derivation xQ% on T is not small, but T with this derivation is still Liouville
closed.

4. Simple extensions

Let (T, ¥) be an H-couple over k with asymptotic integration, and let (I'*, ¢)*) be an
H-couple over k that extends (T, ¢). For v € I'*, let (I'(), 1) denote the H-couple over
k generated by T'U {v} in (T'*, ¢o*). Let 8 € T* \ T". The following result yields a useful
description of the “simple” extension (I'(3), ¥g), where i, n range over N = {0, 1, 2, .. .}:

Proposition 4.1. One of the following occurs:

(a) (T+kB)T =TT;

(b) there are sequences (;) in T' and (f3;) in T'* such that (8;) is k-linearly indepen-
dent over T, By =3 — ap and [iy1 = ﬁj — ;41 for all i, and such that T'(8) =

I'e @, kbi-

(¢)n there are ay, ..., a, €T, and non-zero By, ..., 3, € I'* such that By = 8 — ay,
Biv1 = ﬂ;[ — a1 for i < m, the vectors [, ..., By, B3I are k-linearly independent
over I', (T + kg})" =T1, and I'(3) =T & @, kB & k3.

(d),, there are ay, ..., o, €I, and non-zero fy, ..., B, € I'" such that By = [ — ay,
Biv1 = 63 — 41 for i < n, the vectors By, ..., By are k-linearly independent over

I, Bl e D\TT, and I'(B) =T & @, kB:.

Note that in case (a) we have T'(5) =T @ k3, a case described in more detail in Lemma
3.4. The proof below gives extra information about the other cases.

Proof. Suppose we are not in case (a). Then we have ag € I and fy := 8 — o with
ﬁg ¢ I'T. This is the first step in inductively constructing elements o; € ' and 3; € T{(8) \
[y, either for all ¢, or for all 7 < n for a certain n. Suppose we already have «, ..., a, € T
and fo, ..., B, € T(B) \ T with o and Fy as above, ;11 = ﬁz —ayy1 and ﬂg ¢ T for
i<mn,and B ¢ ', Thus, [B]x ¢ [k for i < n.

Claim 1: ) <--- < g,

Claim 2: thereisnone ' +kfBy+ -+ kB, with ¥ < n < (I'”)".

To prove Claim 1, assume towards a contradiction that ﬂj > B;f 41> ¢t <n. Then

by Lemma 2.8 we have 0 < |G| <>, so ¥ < g/ < (I'’)’, and thus [8;11]x € [[]x by
Corollary 2.4, a contradiction. It follows from Claim 1 that [So]g > -+ > [Gn]k and that
8o, - ., OBn are k-linearly independent over I'. As to Claim 2, suppose towards a con-
tradiction that ¥ <~y + 6 < (I'”)" where vy €T, § € kfy + --- + kB3,. Then § # 0, and
50 [0]g ¢ [T)g. With D := ¥ —~v and E := (I'”)’ — v, we have D < § < E. On the other
hand, for every ¢ € I'” there are d € D and e € E with e —d < ¢, so " is dense in T + k¢
by [2, 2.4.17], contradicting [d]x ¢ [I']x. This concludes the proof of Claim 2.
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If (8] — any1)f ¢ T for some ay, 41 €T (so Bf ¢ T), then we take such an a1 and
set Bpi1 = 5}; — Qpt1- If there is no such ay,11, then the construction breaks off, with
a, and [, as the last vectors.

Suppose the construction goes on indefinitely. Then it yields infinite sequences (c;)
and (;) as in case (b), in particular, I'(8) =T & @, , k3,

Ug = " (D(B)7) = VU {al:ieN},

and (I'(4), ¥3) has asymptotic integration by Claim 2.

Next, assume that the construction stops with «, and (3, as the last vectors. Thus,
(T + k81T =T'T. We have two cases:

Case 1: 3/ ¢ I'. Then ay, ..., an, Bo, - -, Bn are as in case (c),,. Here is why. Set A :=
I+ kB, so AT =T't. From ﬁg ¢ At for all i <n and Claim 1 we obtain that Gy, ..., (B,
are k-linearly independent over A, with

(A+kBo+-+kBn) C A+kfy+-+ kB,

and 3 € A + kfy, which proves the assertion.
Case 2: 3/ €T'. Then ag, ..., @, Bo, - -, Bn are as in case (d),. Here is why. From

Bg ¢ I'T for all i <n and Claim 1 we obtain that 3y, ..., 3, are k-linearly independent
over I', with

(T+kBo+--+kBu) C T+kBy+-- + kB,
and 3 € " + kfy, which proves the assertion. 0

In case (d),, we have 3/ € I'\ I'f, and this cannot happen if (T, ¢) is closed. The proof
of Proposition 4.1 yields some further results that are needed later:

Lemma 4.2. Let («;) and (5;) be as in (b). Then:
(i) B ¢ T for all i, and thus [3;]s ¢ [ for all i;
(ii) (61) is strictly increasing, and thus ([3;]) is strictly decreasing;
) D3]k = [k U{[Bi]k : i € N}, and thus U = WU {8} : i € N};
(iv) there is no n € T{3) with ¥ < n < (I'>)/;
)
)

(iii

(v) (I(B), ¥3) has asymptotic integration;
(vi

If (T, 4) is closed and v € T* \ T realizes the same cut in I' as 3, then we have an
isomorphism (I'(B), ¥3) — (L'(7), ¥) of H-couples over k that is the identity on I' and
sends (3 to . If (', ¢) is of Hahn type, then so is (I'(3), ¢g).

I'< is cofinal in T'{(3)<.

Proof. As to (i), this follows from the k-linear independence of (3;) over I" and from
ﬁi = Bit1 + a;11. Hence the sequences (a;), and (f3;) conform to the construction in
the proof of Proposition 4.1, and so other parts of that proof yield (ii)—(vi). The next
statement follows as in the proof of Lemma 3.5 using Lemma 2.7 and (iv).
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Suppose that (T, ¥) is of Hahn type. We show that then I'(3) is a Hahn space; the
additional argument required for showing that (I'(3), ¥g) is of Hahn type is similar and
left to the reader. So let 1, 8o € T'(3)7 satisfy [01]x = [62]r; we have to find ¢ € k such
that [51 — C52]k < [51]].;,. Now

Si=m+> cufi da=r+) cofi My eET,
i i

with all ¢;1, ¢;o € k, and ¢;1 = ¢;5 = 0 for all but finitely many ¢. Consider first the case
[61]k S [F]k Then [’}/1]].3 > [ﬁi]kz for all ¢ with ¢;; 75 0, by (1), (11), (111), and so §; = Y1+ aq
with [a1]k < [v1]ke = [01]k, and likewise dy = vo + ao with [k < [12]k = [02]k. Take ¢ €
k such that [y1 — cy2]k < [11]k- Then 01 — cdo = 1 — ¢y2 + @1 — cag, so [01 — o]k <
[71]k = [01]k. Next, suppose [01]x ¢ [[|k. Then ¢;; # 0 for some 4; let j be the least such
i. Then [y1]k < [Bj]x and [01]kx = [B;]k by (ii). Now j is also the least ¢ with ¢;2 # 0, in
view of [01]k = [02]k. Then [§1 — 2]k < [01] for ¢ € k with ¢;1 = ccjo. O

Lemma 4.3. Let oy, ..., an, B1, ..., By beasin (c),, and set A ;=T + k3], so AT =
I'and T(3) = AD kBy @ --- @ kfB,. Then:

(i) T'< is cofinal in A<;

(ii ﬂo, e ,6’;‘1 ¢ T,, and thus [Bolk, ---, [Bnlk ¢ [Alk;
- < B, and thus [Bolk > -+ > [Bnlk;

g =T U{B), ..., B} and [[(B)]k = [Ale U {[Bolk, - -, [Bulk};

)
)
iii)
iv)
) thereisnoy € A+kfBy+ -+ kB,_1 with0 <~y <T>;

i) if |B,| = « for some o € T, then I'< is cofinal in T'(3)< and so a gap in (A, ¥a),
if any, remains a gap in (T’ <ﬂ>, ¥g);

(vii) if |B,| < >, then (I'(B), 13) is grounded with max ¥z = 3] ;

(viii) if (A, ¥a) has no gap, then there is non € T'(3) with ¥ < n < (I'”)’, and so I'< is
cofinal in T'(8)< and (I'(3), ¥3) has asymptotic integration.

Proof. As to (i), if 6 € A and I'S < § < 0, then ¥ < 6, contradicting AT = T'T. Ttem
(ii) follows from the k-linear independence of By, ..., 3., 3} over I and from ﬂ = fir1 +
@it for i < n. Next, we obtain (iii) from Claim 1 in the proof of Proposition 4.1, and
then (iv) follows easily. As to (v), by (ii) and (iii) we have

[A+KkBo+ 4 kBn-1li = [Alk U {[Bolks - - -, [Bn—1]k }-

Thus, assuming towards a contradiction that (v) is false gives vy € AU{fo, ..., Bn-1}
with 0 < |y| < I'>. Then ¥ < ~f < ('), and so v ¢ A. Hence v = f3; with i < n, and so
vy eT +kBy+ - + kB, contradicting Claim 2 in the proof of Proposition 4.1 with 4T in
the role of n. By similar arguments, if 0 < v < I’ for some v € T'(3), then 0 < |3,,| < T'”.
This gives (vi). For (vii), assume |3,| < T™. Then (i), (iv), (v) give [B,]x = min[['(3)7 ],
and thus max Vs = 3] .
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As to (viii), note first that W = Wa. Assume (A, ¥a) has no gap. Then (A, a) has
asymptotic integration. Hence by Claim 2 in the proof of Proposition 4.1, applied to A
instead of T', there is no n € T'(#) with ¥ < n < (I'”)’. O

Lemma 4.4. Let oy, ..., &y, Bo, .., By be as in (d),. Then:
(i) ﬂg, ey Bhoy ¢ T, ) ¢ ¥, and thus [Bolk, -, [Bul & [Tlks
(ii < B, and thus [Bolk > -+ > [Bulk;

) B
(i) Tg=T U {ﬂo, <o, 81} and [D(B))k = [T U {[ﬂo]k, e [ﬁn]k},
(iv) there is non € T(B) with ¥ <n < (I'>)";

)

(v) T'< is cofinal in T(3)<, and (I'(3), ¥3) has asymptotic integration.

Proof. The first part of (i) follows from the recursion satisfied by Sy, ..., O, the
k-linear independence of f3y, ..., 3, over I', and B} ¢ W. Claim 1 in the proof of Propo-
sition 4.1 gives (ii), which together with (i) yields (iii). Claim 2 in that proof gives (iv),
which has (v) as an easy consequence. (]

The next result is crucial in the proof of Theorem 0.1 in § 5. Here (I'*, ¥*) is equipped
with an H-cut P*, and we set P := P*NT = W¥! and P, := P* NI (y) for v € T'*, so we
have the H-triples (T, ¢, P), (I'(7), ¥y, Py) C (I'*, ¥*, P*) over k.

(T*)<. Then for some ¢ € (I'*)~, all v € '™ with | —~| < ¢ yield an isomorphism
(F<ﬁ>? 1/%1, Pﬁ) - (F<7>7 1/%/,

Proof. Suppose we are in Case (a) of Proposition 4.1. There are three subcases:

Subcase 1: (I'>)T < n < (I'>)" and 1 € P* for some 1 € I + k3. Fix such 1 and recall
from Case 1 in the proof of Lemma 3.4 that I" is dense in I' + kn = I' + k3. Thus, ife € I'*
and 0 < e < I'>, then (I'>)" < 5 — & < 1. Moreover, P* has no largest element, so we can
take e € (I'*)™ so small that for all ¢ € T* with | — (| < e we have (I'>)T < ¢ < (I')’ and
¢ € P*; in particular, such ( realizes the same cut in I" as 7. Take o € I and ¢ € k™ with
B = a+ cn. Then for ¢ as above and v := a + ¢ the condition |n — (| < & amounts to
|6 — | < 6 := |c|e, with an isomorphism (I'(3), vg, Pg) — (L'(v), ¥, Py) over I sending
0B to 7.

Subcase 2: (') < n < (I'>)" and n ¢ P* for some n € T' + k3. This can be treated in
the same way as Subcase 1.

Subcase 3: there is no n € I' + k3 with (') < 7 < (I'>)’. Take § € T'* such that 0 <
§ <T”. Then all v € I'* with |y — 3] < 4 realize the same cut in I' as 3: otherwise we
would have a € T with 0 < |a — 3| < T, so (I'™)f < (o — 3)T < ('), a contradiction.
Now (I'*, ¢*) is of Hahn type, so [I'+ kS]x = [[']x. As in Case 3 in the proof of Lemma
3.4 this yields for any such v an isomorphism (I'(3), ¢3, Pg) — (I'(7), ¥, P,) over I'
sending [ to 7.

Assume we are in Case (b) of Proposition 4.1, and let («;) and (5;) be as in that case.
Let € € T'* be such that [¢]g < [Bo]k. Then o +e = (8 +¢) — ao, [Bo + €]k = [Fo]k, and

Lemma 4.5. Assume (I'*, *) is closed, of Hahn type, and T'< is not cofinal in
)
)

P,) over I sending (3 to .
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thus (By +¢)f = ﬂg. It follows that with § + ¢ instead of 5 we are also in case (b), with
associated sequences (o;) and (5;c), with Bp ¢ := o + € and §; c := [; for i > 1. As noted
in the proof of Lemma 4.2, the sequences («;), (5;) conform to the construction in the
proof of Proposition 4.1, and so the latter proof yields an isomorphism (I'(3), ¢, Pg) —
(T(B+¢), Yate, Pste) over I' that sends §; to §; . for each 4, and thus 5 to 5 +«.

Next, assume we are in Case (c),, of Proposition 4.1, and let «y, ..., an, Bo, ..., On be
as in that case. As before, let ¢ € I'* be such that [¢]g, < [Go]k- Then By + e = (8 + ¢) — ap,
[Bo + €]k = [Bolk, 0 (Bo + &)t = ﬁg. Hence with 3 + ¢ instead of 3 we are again in case
(¢c)n, with associated sequences «, ..., a, and By, ..., By, with Gy = o +¢ and
Bi.c := Bi for 1 <i < n. Note also that 3 and 3 + ¢ give rise to the same A =T + kj3} =
I+ kﬁ;fm. It now follows from Lemma 4.3 that we have an isomorphism (I'(3), 13) —
(T(B+¢€), Ypte) of H-couples over k that is the identity on A and sends 3; to §; . for
each i < n, and thus, 8 to §+&. Since 8 and (3 + ¢ yield the same A, it follows easily
from (vi), (vii), (viii) of Lemma 4.3 that this isomorphism maps Pg onto Pg..

Finally, assume we are in Case (d),, of Proposition 4.1, and let a, ..., an, Bo, ..., Bn
be as in that case. Let ¢ € I'* be such that [e]x < [Bo]k. Then By +e = (8 +¢) — ao, [Bo +
elk = [Bolr, so (Bo +¢)f = ﬁg. Hence with 8 + ¢ instead of 8 we are again in case (d),,
with associated sequences ayg, ..., ayn and By, ..., Bn.e, With By 1= By + ¢ and 3, . :=
B; for 1 < i < n. Then Lemma 4.4 yields an isomorphism (I'(3), ¥3, Pg) — (I'(8 +¢),
Yg+e, Paye) of H-triples over k that is the identity on I' and sends f; to §; . for each
i < n, and thus 3 to 0+ ¢. O

5. Closed H-couples of Hahn type

So far we have treated H-couples over k as one-sorted structures, by keeping k fixed and
having for each scalar ¢ a separate unary function symbol that is interpreted as scalar
multiplication by ¢. We now go to the setting where an H-couple over k is viewed as a
2-sorted structure with k as a second sort, and thus with “Hahn type” as a first-order
condition. Extending an H-couple may now involve extending k, so we begin with a
subsection on the process of scalar extension for Hahn spaces. We remind the reader that
the ordered scalar field k is not necessarily real closed.

Scalar extension

Let ' be a Hahn space over k, and let k™ be an ordered field extension of k. Then
we have the vector space T'g+ := k™ @1 I" over k™. We have the k-linear embedding v —
1®~: I' = 'k~ via which we identify I with a k-linear subspace of I'g+. We make ['g+ into
a Hahn space over k™ as follows: for any v € Ff* we have v =c1v1 + - - + ¢ Ym With
m=1,c¢, .., em €K, vy vm €7, [l >+ > [Ymlr; then v > 0 iff ¢; > 0.
This makes I' into an ordered k-linear subspace of I'g~, and we have an order-preserving
bijection [V]g — [V]k*: [T — [Tr*]r=-

Lemma 5.1. Assume [['7] has no least element. Then for every v* € I'y+ \ T' there
is an element € € I'> such that |y* — | > ¢ for all y € T.

Proof. Let v* € Tp= \T, 507  =c171 + -+ + CmYm Withm > 1, ¢1, ..., ¢ € (K*)™,
Yooy Ym €07, [nlke > -+ > [Ym]e- To show that v* has the claimed property we can
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assume ¢; ¢ k. Take any ¢ € I'” with [e]g < [11]x, and assume towards a contradiction
that 7 € T and |y* — | < 2. Then bl = (1"l = [yl 50 [k = P s and hence [y —
vk < [11]k with ¢ € k. In view of

YV —y=(a—ontert - +ommm—(r—on)
and ¢ # ¢, this yields a contradiction. O
We also have the following universal property:

Corollary 5.2. Any embedding I’ — I'* of ordered vector spaces over k into an ordered
vector space I'* over k™ such that the induced map [['| — [[*|g~ is injective extends
uniquely to an embedding I'y+ — I'* of ordered vector spaces over k*.

Let (T, ¢) be an H-couple over k of Hahn type and k™ an ordered field extension
of k. The H-couple (T, ¢)g= := (I'g~, 1g~) over k™ is determined by requiring that -
extends 1. Note that then (I", 1)g+ is also of Hahn type and has the same U-set as (I, ).
The following is close to [1, Lemma 3.7], whose proof uses a form of Hahn’s Embedding
Theorem. Here we use instead Lemma 5.1.

Lemma 5.3. If y €T is a gap in (I', ¢), then ~ remains a gap in (I', ¥)g+. If v* is
a gap in (T, )k, then v* € T'. Thus, (T, 1) has asymptotic integration if and only if
(T, ¥)k~ has asymptotic integration.

Proof. Suppose towards a contradiction that v € T" is a gap in (T, ¢), but not in
(T, ¥)k+. Then v =« with a € T'z. \I'. From v < (I'”)" we get 0 < a <T'”, but this
contradicts that by Lemma 5.1 we have |a| > ¢ for some ¢ € T'~.

Next, assume v* is a gap in (T, ¢)g-. Then ¥ < 4* < (I'”)’, and for all € € T~ there
are a € U and 3 € (I'”)’ (namely o := ! and 3 := ¢’) with 3 — a < e. In view of Lemma
5.1 this yields v* € T O

Normalized H-couples

Let (T, ¢) be an H-couple over k. By [2, § 9.2], if ¥ N T # (), then () = ~ for a unique
~ € I'”; this unique fixed point of ¢ on ' is then denoted by 1. Referring to (T, ¢) as a
normalized H-couple means that W NI~ # (), and that we consider I" as equipped with
this fixed point 1 as a distinguished element. (The term “normalized” is justified, because
for any H-couple over k with underlying ordered vector space I' # {0} we can arrange
U NT> # by replacing its function ¢ with a suitable “shift” a + ¢ where o € T'.) For
minor technical reasons, it is convenient to restrict our attention in the remainder of this
paper to normalized H-couples; this is hardly a loss of generality, as we saw. Note also
that the H-couple of T is normalized by taking 1 = v(z~1).
Below we construe a normalized H-couple over k as a 2-sorted structure

T = ((F,w),k;sc)

where (T, ¢) is an H-couple as defined in the beginning of § 1, k is an ordered field, and
sc: k xI' = T is a scalar multiplication that makes I' into an ordered vector space over
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k (but we shall write ¢y instead of sc(c, ) for ¢ € k and v € I'), such that ¢(cy) = ¥(v)
for c € kX, v € I'; in addition we assume I' to be equipped with an element 1 > 0 such
that ¢(1) = 1. Such T is said to be of Hahn type if the H-couple (T, 9) over k is of Hahn
type as defined in § 1. In the same way, we may consider a normalized H-triple over k
as a 2-sorted structure

I = ((T,v, P), k;sc).

The language and theory of normalized H-triples of Hahn type

We construe a normalized H-triple T' = ((T', ¢, P), k;s¢) of Hahn type as an Lp-
structure, where Ly is the two-sorted language with the following non-logical symbols:

(i) P, <, 0, 1,00, —, +, ¥, interpreted as usual in I'y, := ' U {co}, the linear ordering
on I' being extended to a linear order on I'y, by v < oo for v € I'; and with oo
serving as a default value by setting —oo = 0o, v+ 00 =00+ 7 =00+ 00 = ¥(0) =
(00) = oo for v € T

(ii) <, 0,1, 00, —, +, -, interpreted as usual in ko := k U {oco}, the linear ordering on
k being extended to a linear order on k., by ¢ < oo for ¢ € k, and with co serving
as a default value by setting —oco =00, ¢+ 00 =004 ¢ =00+ 00 = coo = coc =
oooco = oo for ¢ € k;

(iii) a symbol sc for the map ko X I'oo — I's that is the scalar multiplication on k x T,
and taking the value oo at all other points of koo X I'oo;

(iv) asymbol : for the function I'2, — k., that assigns to every (a, 8) € I'? with [a] <
[Blk and [ # 0 the unique scalar o : § = ¢ € k such that [a —c¢f]r < [Bk, and
assigns to all other pairs in I'2_ the value cc.

The symbols in (i) should be distinguished from those in (ii) even though we use the
same written signs for convenience. The two default values oo are included to make all
primitives totally defined. Note that in (iv) we have a : =0 if [a]x < [5]k.

Using al : b1 = a/b for a, b € k with b # 0, we see that a substructure of a normalized
H-triple of Hahn type is also a normalized H-triple of Hahn type, with possibly smaller
scalar field. Thus, the Lg-theory of normalized H-triples of Hahn type has a universal
axiomatization (which would be easy to specify). Let there be given normalized H-triples
of Hahn type,

Iy = ((To,v0, Po), ko;sco) and T = ((T', 4, P), k;sc).

An embedding Ty — T is a pair i = (iy, i5) whose vector part iy : [ — I' is an embedding
of ordered abelian group and whose scalar part is: kg — k is an embedding of ordered
fields such that iy (cy) = is(c)iv(y) and v € Py < iy(v) € P for all ¢ € kg and « € Ty,
and iy (1o (y)) = ¥(iv (7)) for all non-zero v € Ty (and so iy (1) = 1 and i.(a : §) =iy (@) :
iv(0B) for all a, B €T). If kg = k, then an embedding e: (T, ¥, Py) — (T, ¢, P) of H-
triples over k in the usual sense yields an embedding (e, idg): Ty — T as above.
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Quantifier elimination

Let Ty be the Lp-theory of normalized closed H-triples of Hahn type, and recall
that the H-couple of T is naturally a model of T. In this subsection, we let T' =
(T, v, P), k;so) and T = ((T'*, »*, P*), k™;sc*) denote normalized closed H-triples of
Hahn type, construed as models of Tp. The key embedding result is as follows:

Proposition 5.4. Assume I'* is k-saturated for k = |T|T. Let Ty be a substructure
of T with scalar field kq. Let an embedding ig: I'g — I'* be given, and an embedding e:
k — k" of ordered fields such that e|r, = (ig)s. Then ig can be extended to an embedding
i: I' — I'" such that is = e.

Proof. By Corollary 5.2 on extending scalars, the remarks following it, and (to handle
the P-predicate) Lemma 5.3 we can reduce to the case ko = k. It remains to appeal to

the embedding result established in the proof of Theorem 3.3. O
In what follows, formula means Lg-formula. Let x = (x4, ..., x,,) denote a tuple of
distinct scalar variables and y = (y1, ..., yn) a tuple of distinct vector variables.

Corollary 5.5. Suppose that T is a substructure of I'*. Then
I' T (as Ly-structures) <= k< k™ (as ordered fields).

Proof. The direction = being trivial, we assume k < k™ and shall derive I' < T'*. By
induction on formulas ¢(z, y) (with z and y as above) we show that for all T' and T'* as
in the hypothesis of the lemma and all ¢ € k™ and v € T'™,

T'E¢c,y) = T Eolen). (*)

For the inductive step, let ¢ = 326, where 6 = 0(x, y, z) is a formula and z is a single
variable of the scalar or vector sort. The direction = in (?7) holds by the (implicit)
inductive assumption. Assume I'* |= ¢(c, v) where ¢ € k" and v € I'™. Take a k-saturated
elementary extension I'y of I'; where k = [['*|T. Let k; be the scalar field of I';. Then we
have an elementary embedding e: k* — k; that is the identity on k. Proposition 5.4 (with
I, T'*, I'; in the roles of T'y, T', T'*) gives an embedding i: I'" — I'; where is = e and
iy is the identity on I'. By the (tacit) inductive hypothesis on 6 we obtain I'1 = ¢(c, ),
and thus T' = ¢(c, 7). O

With z, y as above, call a formula n(z, y) a scalar formula if it has the form
C(si(x, y), ..., sn(z, y)) where ((z1, ..., zn) is a formula in the language of ordered
rings (as specified in (ii) of the description of Lg), where 21, ..., zx are distinct scalar
variables and si(z, y), ..., sy(z, y) are scalar-valued terms of Ly.

Theorem 5.6. Every formula ¢(x, y) is Ty-equivalent to a boolean combination of
scalar formulas n(z, y) and atomic formulas a(z, y).

As a consequence, extending Ty by axioms that the scalar field is real closed gives
outright QE, without requiring scalar formulas.
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Proof. Suppose (¢, v) € k™ x I'™ and (c*, v*) € (k*)™ x (I'*)™ satisfy the same scalar
formulas n(z, y) and atomic formulas a(z, y) in T and T'*, respectively. It suffices to derive
from this assumption that (¢, v) and (c¢*, 7*) satisfy the same formulas in I' and I'*. We
may assume that T'* is k-saturated where x = |T'|*. Let Ty with scalar field ko be the
substructure of T' generated by (¢, v). Since (¢, ) and (¢*, v*) realize the same atomic
formulas o(z, y), we have an embedding i : T'g — I'* such that ig(c) = ¢* and io(y) = 7*.
They also realize the same scalar formulas 7(zx, y), so we have an elementary embedding
e: k — k™ agreeing with (ig)s on k. Proposition 5.4 then yields an embedding 7: I' — T'*
extending i with is = e. Then i is an elementary embedding by Corollary 5.5, so (¢, )
and (c*, v*) do indeed satisfy the same formulas in T' and T'*. O

Discrete definable sets

We are finally ready to prove the theorem announced in the introduction. We state it
here in its natural general setting:

Theorem 5.7. LetT' = ((T', ¥, P), k;sc¢) be a normalized closed H-triple of Hahn type
and let X C T be definable in I'. Then the following are equivalent:

(i) X is contained in a finite-dimensional k-linear subspace of T';
(ii) X is discrete;

(iii) X has empty interior in T

Proof. The direction (i) = (ii) holds by Lemma 1.2. The direction (ii) = (iii) is
obvious. (These two implications do not need X to be definable.)

As to (ili) = (i), assume X has empty interior. Take a formula ¢(y) over ' in a
single vector variable y that defines the set X in I'. We use Theorem 5.6 to arrange
that ¢(y) is a boolean combination of scalar formulas over T' and atomic formulas over
I'. Take a |['|T-saturated elementary extension T'" = ((I'*, ¢*, P*), k™;sc*) of T, and let
X* CT* be defined by ¢(y) in T'*. We identify T'g- with k"I’ CT* in the usual way.
We Claim that X* C I'y«. (This gives (i) by Lemma 1.3.) Consider the substructure
Ty = ((Tg+, i+, Prx+), k*;sc®) of T'"; it has asymptotic integration by Lemma 5.3. Let
X+ C Ty be defined in Tk« by ¢(y). Then Xg- = X* N+, so our claim amounts
to X* = Xg~. Suppose towards a contradiction that v* € X*\ Xg«. In particular, v* €
I'* \ T'g+. Saturation yields an € € I'* such that 0 < € < ¢*v for all positive ¢* in k" and
all positive vy € T, so 0 < ¢ < I'z., and thus I'z. is not coinitial in (I'*)~. Lemma 4.5 then
yields a § > 0 in I'* such that all v € T'* with |y —v*| < ¢ yield an isomorphism

(Fk*<7*>aw'y*7p'y*) = (Fk*<’y>7"/)'yvp'y) - (F*’w*’P*)

of H-triples over k* sending v* to . Hence s(v*) = s() for such v and any scalar-valued
Ly-term s(y) over ', and so T'™ = ¢(«y) for those . Thus, the interval (v* — 6, v* + 4)
in I'* lies entirely in X*, contradicting that X* is discrete in I'*. O
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6. Further results about closed H-couples

We briefly return to the one-sorted setting of H-couples (or H-triples) and give two easy
applications of Theorem 3.3.

Definable closure

Let T* = (T'*, ¢*, P*) be a closed H-triple over k. Then we have the notion of the
definable closure of a set T' C T'* in T'*, and thus of such a set I being definably closed in
[*. If T' C I'* is definably closed in T'*, then T is (the underlying set of) a subgroup of T'*
with ¢*(I'7) C T, and thus we have an H-triple (T, ¢, P) over k with (T, v, P) C T"*.

Proposition 6.1. Let (I', ¢, P) be an H-triple over k with (I, ¢, P) C T'. Then:
T is definably closed in (T'*,v*, P*) <= (T',4) has asymptotic integration.

Proof. For =, note that for every v € I' there is a unique o € (I'*)7 with v = «'.
For the converse, assume that (T, 1) has asymptotic integration (so P = W'). Iterating
the construction of Lemma 3.1, we obtain an increasing continuous chain

((F,\,¢,\,P,\))>\<V (with v an ordinal)

of H-triples contained in (I'*, ¥*, P*) as substructures, with (I'o, 1o, Py) = (I, ¥, P),
such that every (I'x, ¥5, Py) has asymptotic integration with Py being the downward
closure of ¥y in I'y, and such that the union

(1,9, P9) == [ (@x, 00, P)

A<y

is closed. The reference to Lemma 3.1 means that for A < A4+ 1 < v we have I'y;1 =
I'y ® kay, with ay > 0 and ai[\ € P\ LZJA(I‘?). That the chain is continuous means that
(Lus ¥n, Pu) = Us<,(Dxs ¥, Py) for limit ordinals p <wv. Any such (I, ¢¢, P°) is
clearly, an H-closure of (T, ¢, P), which explains the superscript c. Since (T'¢, ¢¢, P¢) <
(T*, *, P*), any element of T'* that is definable in T'* over T' must lie in T'°. So let
~¢ € I'°\ T'; to show that then ~°¢ is not definable in I'* over T it suffices by Theorem 3.3
that 7¢ realizes in T'* the same quantifier-free type over I' as some v € ' with v # ~°.
Take A with A < A+ 1 < v such that v¢ € I'x;1 \ I'x. Then

Y=mAday  (m e, dek™).

Take any o # ax in I'y,, such that [o]x = [oa]k. Then ¢ # v := 7\ 4 do. Lemma 3.1
gives an automorphism o of (I'xy1, ¥a+1, Pag1) over I'y with o(a) = ay, so o(y¢) = 7.
Thus, v¢ and v realize in I'* the same quantifier-free type over T'. O

A closure property of closed H-couples

We show here how [1, Properties A and B] and its variant [2, § 9.9] follow from our QE.
Let (T, 1) be an H-couple over k. We extend ¢: I'7 — T to a function 1: T'se — I's
by ¥(0) = ¢(00) :=00. For a1, ..., o, €T, n > 1, we define ¥q,,  a,: oo = T'ec by
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recursion on n:

Vo, (7) = (v — ), Vay, ... om (v) = w(i/’al,-..,anA('V) - an) for n > 2.
Let D be a subset of an ordered abelian group A. Call D bounded if D C [p, ¢| for some

p < g in A, and otherwise, call D unbounded. (These notions and the next one are with
respect to the ambient A.) A (convex) component of D is by definition a non-empty
convex subset S of A such that S C D and S is maximal with these properties. The
components of D partition the set D: for d € D the unique component of D containing
dis
{rve DS [v,d] C D}u{ve D> [d,y] C D}.
Let n > 1, and let a be a sequence oy, ..., a, from I'. We set
D, = {'y el : Yu(y) # oo}.

Thus,

D, =T\ {aq} for n =1, and

D, = {’y € Dy i Yoy () # ozn} forn>1land o =ay,...,00,_1.
One checks easily by induction on n that for distinct 7, 4" € D,

Ya(y) = Yal(y) = oly = 7).

Letn>1,let aq, ..., ap €T, set a:= (ay, ..., ap), and let ¢, ..., ¢, € k.
The next lemma is [2, Lemma 9.9.3], generalized from k = Q to arbitrary k, with the
same (easy) proof.

Lemma 6.2. The function

Y=y + e, (V) + + ntagan (V) t Do — T

is strictly increasing. Moreover, this function has the intermediate value property on every
component of D,,.

Proposition 6.3. Suppose (T, ¢) is closed, (I'*, ¢*) is an H-couple over k extending
(T, ), and v € T* is such that

Vos,ion (1) # 00 (50 95,

.....

_____ a,(7) #F oo fori=1,...,n), and

Y+, (V) + -t etn, e (1) ET.
Then v €T.

Proof. By extending (I'*, 0*) we arrange it to be closed. Then by Theorem 3.3,
(T, o, ¥) 5 (T, ¥*, ¥*), and so we have § € I" such that ¢4, ., (3) # oo and

ﬁ + Cl¢a1 (ﬁ) R anal,m,an (ﬂ) =7+ Cl¢;1 (7) + 4+ anzl,“.,an (’Y)

It remains to note that then g =+ by Lemma 6.2. (]
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7. Final remarks

In [1], we adopted the 2-sorted setting and “Hahn type” at the outset and only observed
in its last section that much went through in a one-sorted setting without Hahn type
assumption and just rational scalars. Here we have reversed this order, since our proof
of Theorem 0.1 required various facts, such as Lemmas 2.7 and 4.5, about “one-sorted”
closed H-couples over an arbitrary ordered scalar field that are not readily available
in [1].

There remain several parts in [1] that we have not tried to cover or extend here.
These concern the definable closure of an H-couple in an ambient closed H-couple, the
uniqueness of H-closures, the well-orderedness of ¥ for finitely generated H-couples,
the weak o-minimality of closed H-couples, and the local o-minimality and o-minimality
at infinity of models of Ty. We alert the reader that our terminology (and notation)
concerning asymptotic couples have evolved since [1], and are now in line with [2], and
so comparisons with the material here and in [1] require careful attention to the exact
meaning of words.

We do intend to treat some of these topics in a follow-up, since our revisit also uncovered
errors in the alleged proofs of weak o-minimality and local o-minimality in [1]. These can
be corrected using the present paper, but this is not entirely a routine matter.
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