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ABSTRACT

The Tonian-Ediacaran Hecla Hoek succession of Svalbard, Norway, represents one of the
most complete and well-preserved Neoproterozoic sedimentary successions worldwide. With
diverse fossil assemblages, an extensive carbonate §'*C record, and sedimentary evidence
for two distinct Cryogenian glaciations, this succession will continue to yield insights into
the Neoproterozoic Earth system; however, at present there are no direct radiometric age
constraints for these strata. We present two new Re-Os ages and initial Os isotope data that
constrain the timing of Neoproterozoic glaciation in Svalbard, providing further support for
two globally synchronous Cryogenian glaciations and insight into pre- and post-snowball global
weathering conditions. An age from the Russgya Member (Elbobreen Formation) facilitates
correlation of the negative carbon isotope excursion recorded therein with the pre-glacial
“Islay” excursion of the Callison Lake Formation of northwestern Canada and the Didikama
and Matheos Formations of Ethiopia. We propose that this globally synchronous ca. 735 Ma
carbon isotope excursion be referred to as the Russgya excursion with northeastern Svalbard as
the type locality. This new age provides an opportunity to construct a time-calibrated geological
framework in Svalbard to assess connections between biogeochemical cycling, evolutionary
innovations within the eukaryotes, and the most extreme climatic changes in Earth history.

INTRODUCTION

The early to middle Neoproterozoic Era
(1000-541 Ma), consisting of the Tonian (1000—
720 Ma) and Cryogenian (720-635 Ma) periods,
represents one of the most eventful chapters of
Earth’s history. The formation and breakup of the
supercontinent Rodinia reorganized global paleo-
geography in the middle to late Tonian (Li et al.,
2008), which in turn may have paved the way for
dynamic marine redox conditions, changes to
biogeochemical cycling, and repeated biological
innovations (e.g., Sperling et al., 2013; Strauss
et al., 2014; Cox et al., 2016; Cohen and Ried-
man, 2018). Beginning with the ca. §810-800 Ma
Bitter Springs excursion, many large-magnitude
(>8%0) negative carbon isotope excursions
(CIEs) punctuate the long-term enriched 6'3C
values of the Neoproterozoic (Halverson et al.,

2005; Shields-Zhou et al., 2016). To interrogate
potential links between these various events more
fully, a temporal framework derived from glob-
ally distributed geologic archives calibrated by
robust radiometric age constraints is required
(e.g., Macdonald et al., 2010; Rooney et al.,
2015; Prave et al., 2016).

The lower and middle Hecla Hoek succes-
sion (Veteranen, Akademikerbreen, and Polaris-
breen Groups) in Svalbard records long-term
shallow-marine deposition through the Tonian
and Cryogenian periods (Fig. 1A; see the Sup-
plemental Material'). Diverse fossil assemblages
(e.g., Knoll and Calder, 1983; Butterfield et al.,
1994; Riedman et al., 2021) and an extensive
carbonate 6'°C record (Halverson et al., 2005)
in these strata have played an important role in
our understanding of Neoproterozoic biological

evolution and biogeochemical cycles. Further-
more, these strata record both the Sturtian and
Marinoan snowball Earth events with glacial
diamictites and have provided key insights into
extreme Neoproterozoic climate events (e.g.,
Halverson et al., 2005, 2018a; Bao et al., 2009;
Hoffman et al., 2012, and references therein;
Fairchild et al., 2016). However, despite its
importance, the Hecla Hoek succession lacks
direct radiometric age constraints. We provide
two new Re-Os dates bracketing glacial strata in
Svalbard that confirm their Cryogenian age and
bolster correlation of pre-Cryogenian chemo-
and biostratigraphic records.

GEOLOGIC BACKGROUND

Svalbard consists of three pre-Devonian
basement domains juxtaposed by significant
north-south—trending Paleozoic strike-slip faults
(Fig. 1B; e.g., Harland, 1997). Well-preserved
Neoproterozoic strata of the Hecla Hoek succes-
sion are exposed in Svalbard’s Eastern basement
domain in the northeastern part of Spitsbergen
and on Nordaustlandet. The Hecla Hoek suc-
cession consists of the siliciclastic-dominated
Veteranen Group (early to middle Tonian),
carbonate-dominated Akademikerbreen Group
(middle to late Tonian), mixed carbonate-silic-
iclastic Polarisbreen Group (late Tonian to late
Ediacaran), and carbonate-dominated Oslobreen
Group (Cambrian to Ordovician) (Fig. 1A). These
strata are interpreted to have been deposited on
the northeastern margin of Laurentia in a ther-
mally subsiding basin adjacent to East Greenland
and without a proximal source of volcanic ash
(Harland, 1997; Halverson et al., 2018a, 2018b).

'Supplemental Material. Detailed analytical methods and sample information, data tables containing all geochemical data, and compiled geochronological and che-
mostratigraphic data. Please visit https://doi.org/10.1130/GEOL.S.18172280 to access the supplemental material, and contact editing @ geosociety.org with any questions.
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Figure 1. Simplified map and stratigraphy of the Neoproterozoic-Ordovician Hecla Hoek succession, Svalbard, Norway. (A) Schematic stra-
tigraphy of the Hecla Hoek succession with existing and new age constraints (see the Supplemental Material [see footnote 1] for references).
Stratigraphic thicknesses are not to scale. Cryo.—Cryogenian; Ediac.—Ediacaran; C.—Cambrian; Ordo.—Ordovician; Dol.—Dolomite; Macdon-
ald.—Macdonaldryggen; Fm.—Formation; Mb.—Member; depo.—depositional. (B) Simplified geological map of Svalbard showing basement
domains and significant faults. Island names are in bold, and red box indicates location of panel C. LYR—Longyearbyen. (C) Simplified geologic
map of northeastern Svalbard, after Dallmann (2015). Sample locations: 1—Sgre Russgya (sample SR-161.5, Russgya Member); 2—Gravela
River (sample J1630, Dracoisen Formation). Mpz.—Mesoproterozoic; Npz.—Neoproterozoic; metased.—metasediments.

Global correlations for the Hecla Hoek succes-
sion are based primarily on lithostratigraphy and
carbon and strontium isotope chemostratigraphy
(Kaufman et al., 1997; Halverson et al., 2005).
The ~2-km-thick Akademikerbreen Group hosts
the ca. 810 Ma Bitter Springs CIE in the upper
Grusdievbreen and lower Svanbergfjellet Forma-
tions (Halverson et al., 2018a, 2018b), and the

upper Russgya Member of the Elbobreen For-
mation records a negative CIE that has been cor-
related with the pre-Sturtian ca. 735 Ma “Islay”
excursion (see the Supplemental Material; Hoff-
man et al., 2012; Rooney et al., 2014; Strauss
et al., 2014; Halverson et al., 2018a, 2018b;
MacLennan et al., 2018). Given age uncertain-
ties in the pre-Sturtian negative CIE of the Islay
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Limestone of Scotland, it has been suggested that
the name “Islay” should be abandoned for this ca.
735 Ma event (Fairchild et al., 2018). The overly-
ing Petrovbreen Member (Elbobreen Formation)
is interpreted to record the ca. 717-661 Ma Stur-
tian glaciation, while the Wilsonbreen Formation
is considered to record the ca. 651(?)-635 Ma
Marinoan glaciation (Hoffman et al., 2012;
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Halverson et al., 2018b); the Dracoisen Forma-
tion begins with the ca. 635 Ma Marinoan cap
dolostone and its associated negative 5'*C excur-
sion (Halverson et al., 2005).

RESULTS
Re-Os Geochronology

Two new Re-Os ages were obtained from
black shale horizons in the Russgya Mem-
ber (Elbobreen Formation) and the Dracoisen
Formation in Nordaustlandet and northern
Ny Friesland, respectively (Fig. 1C). Details
regarding sample location, preparation, and
Re-Os isotopic analysis are available in the
Supplemental Material. Sample SR-161.5
from the Russgya Member yielded a model 1
age of 737.5 £ 9.6 Ma (n = 6, mean square
of weighted deviates [MSWD] = 1.8) with
an initial ¥’0s/1880s (Os;) composition of
0.26 £ 0.03 (Fig. 2A; Table S1 in the Supple-
mental Material); and sample J1630 from the
Dracoisen Formation yielded a model 1 age of
631.2 £ 3.8 Ma (n =7, MSWD = 0.71) with
an Os; of 0.89 £ 0.03 (Fig. 2B; Table S1). Total
uncertainties are reported at 20 and include the
uncertainty of the '¥”Re decay constant.
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Figure 2. Re-Os isochron diagrams of sample
SR-161.5 from the Russgya Member (Mb.),
Akademikerbreen Group (Svalbard, Norway)
(A); and sample J1630 from Dracoisen Forma-
tion (Fm.), Polarisbreen Group (Svalbard) (B).
Data-point labels correspond with those in
Table S1 (see footnote 1). Data-point ellipses
represent 2¢ uncertainty and include the
uncertainty of the '*’Re decay constant.
Os,—initial ¥70s/'®80s; MSWD—mean square
of weighted deviates.
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DISCUSSION
Early to Middle Neoproterozoic
Chronology

The new Re-Os ages from the lower and mid-
dle Hecla Hoek succession add to a growing body
of radiometric ages that bracket Cryogenian gla-
cial deposits globally. The age of 737.5 + 9.6 Ma
from 44 m below the negative CIE in the Russgya
Member (Fig. S1) supports a Sturtian assignment
for the overlying Petrovbreen Member diamictite
and suggests a >10 m.y. unconformity between
the Russgya and Petrovbreen Members (Fig. 1A).
This inference is consistent with truncation of the
negative CIE and a distinctive columnar Kussiella
biostrome bed at the top of the Russgya Member
across northeastern Svalbard (Halverson et al.,
2018a). The Petrovbreen diamictite is overlain
by shale and siltstone of the Macdonaldryggen
Member and carbonate of the Slangen Member,
which are interpreted to represent the post-Sturtian
glacioeustatic transgressive sequence (Fig. 1A;
e.g., Hoffman et al., 2012). The Re-Os age of
631.2 + 3.8 Ma from the Dracoisen Formation,
104 m above the base of the cap dolostone and
~60 m above the maximum flooding surface, con-
firms a Marinoan age for the Wilsonbreen Forma-
tion. This age also confirms correlation to terminal
Marinoan successions in South China, Canada,
Namibia, and Australia, supporting a globally
synchronous deglaciation at ca. 635 Ma, as pre-
dicted by the snowball Earth hypothesis (Fig. 3;
Condon et al., 2005; Calver et al., 2013; Rooney
etal., 2015; Prave et al., 2016; Zhou et al., 2019).

Tonian Chemo- and Biostratigraphy

Robust stratigraphic correlations are crucial
for understanding the drivers behind and feed-
backs between the numerous evolutionary, bio-
geochemical, climatic, and tectonic events that
occurred during the Neoproterozoic Era. Our
new Re-Os ages are consistent with existing cor-
relations of the lower and middle Hecla Hoek
succession with carbon isotope profiles from
other successions leading into the Sturtian glacia-
tion. Data from Svalbard, northwestern Canada,
and Ethiopia demonstrate a large-magnitude pre-
Sturtian negative CIE (down to ~—5%o 8'*C_,,
[carb—carbonate]) followed by a recovery up to
+5%o referred to as either the Islay (Macdonald
et al., 2010; Strauss et al., 2014; MacLennan
etal., 2018) or Russgya excursion (Fig. 4A; see
the Supplemental Material; Hoffman et al., 2012;
Halverson et al., 2018a). This CIE is bracketed
by ages of 739.9 &+ 6.5 Ma and 732.2 + 4.7 Ma
from northwestern Canada (Strauss et al., 2014;
Rooney et al., 2014), which are consistent with
an age of 735.25 £ 0.88 Ma during the recov-
ery from the excursion in Ethiopia (MacLennan
etal., 2018). Our new 737.5 £ 9.6 Ma age from
the Russgya Member, 44 m below the onset of
the CIE, supports a globally synchronous ca.
735 Ma pre-Sturtian CIE that is decoupled from
the onset of glaciation by ~15 m.y. (Fig. 4A).

Here, we propose that the ca. 735 Ma CIE pre-
served in Svalbard, Canada, and Ethiopia be
referred to as the Russgya excursion, with north-
eastern Svalbard as the type locality (following
Halverson et al., 2018a). By doing so, we aban-
don the name “Islay” due to a lack of radiomet-
ric age constraints on the Dalradian Supergroup
in Scotland from which the name was derived
(see the Supplemental Material). A distinct and
younger latest Tonian negative 6'3C excursion
(reaching ~—4%o 8'*C,,,,) that is closely asso-
ciated with the onset of the Sturtian glaciation,
documented in the Garvellach Islands of Scot-
land (Fairchild et al., 2018), the Tambien Group
of Ethiopia (MacLennan et al., 2018), and the
Ugab Subgroup of northern Namibia (Lamothe
et al., 2019), leaves open the possibility for a
mechanistic link between carbon-cycle fluctua-
tions and the onset of glaciation.

More broadly, the Russgya Member age adds
to a growing body of radiometric age constraints
that are consistent with global synchroneity of
Neoproterozoic CIEs within the existing geolog-
ical and analytical uncertainties, such as the ca.
810 Ma Bitter Springs (Swanson-Hysell et al.,
2015) and ca. 570 Ma Shuram (Rooney et al.,
2020) excursions. Therefore, current geochro-
nological data support the careful use of carbon
isotope chemostratigraphic correlations where
independent age constraints are not available
and suggests that these isotopic characteristics
were imparted early in the depositional and/or
diagenetic history of the sediment. Generat-
ing this improved Neoproterozoic time scale is
imperative for investigating the source of these
anomalous carbon isotope signatures, whether
CIEs are related to global carbon-cycle per-
turbations (e.g., Kump and Arthur, 1999) or
instead reflect local platformal processes that
are broadly coincident globally due to tectonic
or environmental drivers (e.g., Ahm et al., 2021).

The Russgya Member Re-Os age also pro-
vides an important constraint on the occurrence
of vase-shaped microfossils (VSMs) from the
Draken, Backlundtoppen, and Elbobreen Forma-
tions (Fig. 1A; Knoll and Calder, 1983; Riedman
et al., 2021). VSMs of the same age and with
similar morphological characteristics from the
Chuar, Uinta Mountain, and Pahrump Groups
of the western United States; Coates Lake and
Mount Harper Groups of northwestern Canada;
Eleonore Bay Group of East Greenland; and
Togari Group of Tasmania demonstrate the
potential for species-level VSM biostratigra-
phy in the early to middle Neoproterozoic (see
the Supplemental Material and Fig. S2; Strauss
etal., 2014; Riedman et al., 2018). Recent work
indicates that VSMs from the Russgya Mem-
ber, as well as from Tonian strata in Tasmania
and the western United States, are associated
with apatite-kerogen scales, pointing to higher
seawater phosphorous concentration than in
the modern ocean (Riedman et al., 2021); thus,
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Figure 3. Existing age
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improving age constraints on additional VSM-
bearing units may prove useful in determining
the existence, timing, and causes of a unique bio-
geochemical and/or evolutionary window that
occurred prior to 737.5 + 9.6 Ma in Svalbard
and between 729.0 + 0.9 and 751.0 £ 7.6 Main
the western United States (Rooney et al., 2018).

The initial osmium isotopic (Os;) composi-
tion of seawater obtained from the units in Sval-
bard can also provide insight into the relative
contribution of juvenile mantle-derived (i.e.,
hydrothermal input) and evolved crustal (i.e.,
continental weathering) sources to the ocean
(Peucker-Ehrenbrink and Ravizza, 2002).
Combined with the limited existing Tonian Os;

chemostratigraphic data, the Russgya Mem-
ber Os; value of 0.26 £ 0.03 supports a trend
toward increasingly juvenile sources preceding
the Sturtian glaciation (Fig. 4B; Rooney et al.,
2014, 2015; Strauss et al., 2014). These data con-
firm that the late Tonian ocean was unradiogenic
globally, which is consistent with the hypothesis
that weathering of juvenile material may have
contributed to CO, drawdown and global cool-
ing leading into the Sturtian glaciation (Goddéris
etal., 2003; Rooney et al., 2014; Cox et al., 2016;
Park et al., 2020). In contrast, the more radio-
genic Os; value of 0.89 = 0.03 from the post-
glacial Dracoisen Formation is consistent with an
increased continental weathering flux resulting

from deglaciation, which is also recorded in the
Os; value of 1.21 4= 0.04 at ca. 632 Ma from the
post-Marinoan Sheepbed Formation in north-
western Canada (Rooney et al., 2015).

CONCLUSIONS

Two new Re-Os ages of 737.5 £ 9.6 Ma
(Russgya Member, Elbobreen Formation) and
631.2 + 3.8 Ma (Dracoisen Formation) provide
the first direct radiometric age constraints on
Neoproterozoic strata in Svalbard. These dates
(1) confirm previous litho- and chemostrati-
graphic correlations between Svalbard and other
key Neoproterozoic successions; (2) provide
further support for two globally synchronous

Figure 4. Pre-Sturtian gla-
ciation chemostratigraphy.
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glaciations during the Cryogenian; (3) are con-
sistent with the synchroneity of the ca. 735 Ma
Russgya CIE; and (4) strengthen the role of the
lower and middle Hecla Hoek succession as a
key Neoproterozoic reference section. Integrat-
ing paleontological and chemostratigraphic
records from Svalbard with other globally dis-
tributed sections may prove useful in elucidating
the cause of major biogeochemical, evolutionary,
and climatic change during the Neoproterozoic.
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