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ABSTRACT: Despite continued calls to increase the monitoring of drinking water
systems, few communities and utilities have adopted modern, distributed, and real-time
monitoring systems. Measurements of drinking water quality are often only made at the
treatment plant, with limited grab sampling taking place throughout the distribution
system. At the building level, where most of the public’s exposure to drinking water takes
place, the capacity to make continuous measurements to characterize water quality
dynamics has been almost impossible. Innovation in sensors, microcontrollers, and data
services is underpinning a broader smart cities movement, but their value as a tool in the
management of drinking water systems is still unclear. In this paper, we present a new
open-source wireless sensor platform, which allows water quality to be measured at the
tap. Our internet-connected devices transmit data back to cloud hosted services, where
they can be analyzed in real-time. We provide examples of large-scale deployments within
buildings in Ann Arbor, Michigan, USA and Mexico City, Mexico. In each of these
studies, we demonstrate the detection of phenomena that would have been missed
through existing, low-throughput monitoring approaches. The deployment in Ann Arbor emphasizes the importance of real-time
measurements in a drinking water distribution system, highlighting shifts in neighborhood-scale electroconductivity (a proxy for total
dissolved solids) that would have been missed as part of established sampling procedures. The Mexico City deployment
demonstrates highly variable water quality and supply in intermittent systems and characterizes the variability of chlorine
concentrations between continuous and intermittent portions of the city.
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1. INTRODUCTION

Despite continued calls to increase the monitoring of drinking
water systems,1−3 few communities and utilities have adopted
comprehensive, distributed, and real-time monitoring systems.4

Sensors have been lauded for their promise to revolutionize
drinking water management, but the adoption of real-time data
technologies lags behind other infrastructure sectors.5 As we
embark on unprecedented water challenges around the world,
including natural and anthropogenic pressures on water
resources,6,7 real-time water quality monitoring systems should
be considered as part of a new generation of information-
driven infrastructure to support drinking water management
and research.4,5,8,9

In most countries, federal regulations require public water
managers to monitor treated drinking water to support safety
and public health. Such monitoring typically includes
quantifying the concentrations of disinfectant residuals,
disinfection byproducts, lead, copper, total coliforms, and
some waterborne pathogens at the entry points of and
throughout the distribution system. In the United States,

nearly 100 contaminants are required to be monitored
periodically,10 and regulations are regularly updated based on
public health risk.11 Because water quality characteristics
change throughout distribution, most parameters are required
to be monitored by collecting water from different locations in
the distribution system (e.g., residual disinfectant, total
coliforms), while a few contaminants are monitored at the
tap due to the impact plumbing materials have on water quality
(i.e., lead and copper).10 The required residual disinfectant and
total coliforms monitoring frequency for a public water system
depends on the number of people served, ranging from 480
samples per month in the largest systems (>3.96 M people) to
once per month for the smallest systems (<1000 people).10
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Manual sampling and analyses are labor and resource intensive,
which limits the number of measurements that can be
collected. Achieving a high spatiotemporal measurement
resolution, therefore, is not possible with grab sampling, and
important information can be missed if water quality varies
across the distribution system or changes from day to day.3

Innovations in sensors, microcontrollers, data communica-
tions, and web services have allowed for the rapid expansion of
wireless sensor networks, which are increasingly used to
monitor, model, and control municipal services as part of a
broader smart cities movement.3,12 The fields of stormwater
and wastewater management,13,14 transportation,15 and power
distribution,16 for example, have improved performance and
lowered operational costs through the adoption of real-time
analytics and control. There is an equally exciting opportunity
to harness these technologies for a better understanding of
drinking water systems.
A number of sensor platforms for drinking water have been

evaluated over the past decade.17−22 Most recently, a study
used multiple sensors to study water quality in different stories
of an institutional building to predict chlorine residuals at each
floor based on floor occupancy.23 Organic, inorganic, and
biological contaminants have been detected in lab-scale
experiments using high frequency sensor data from free and
total chlorine, pH, oxidation−reduction potential (ORP),
electroconductivity (EC), and chloride probes.24−27 To our
knowledge, no studies have measured water distribution at the
scale of an entire city nor at the residential tap level. Despite
the demonstrated benefits of real-time monitoring, cities and
municipalities have not yet implemented sensors on a large
scale.
To date, most examples of using wireless sensor networks to

monitor drinking water rely on single-site demonstrations or
short-term deployments. Challenges to large-scale deploy-
ments include the maintenance cost of the systems;25 the
management and storage of real-time, high-frequency data; and
the uncertainty of sensor behavior.4 PipeNet in Boston,
Massachusetts, USA18 and WaterWiSe in Singapore19 are

examples of large-scale deployments that demonstrated the
reliability of node network data communications and detected
leaks and pipe bursts with high-frequency pressure sampling.
These two systems also included pH sensors as a proof of
concept for water quality monitoring. In the PipeNet,
WaterWiSe, and Skadsen et al.25 deployments, sensors were
placed into distribution system pipes or reservoirs. A reliable
and compact formfactor to deploy water quality sensors in
buildings would provide insights where drinking water is
ultimately used.
Drinking water quality changes throughout the distribution

system, as well as inside building plumbing. Variables like
water age, temperature, pipe and fixture materials, and the pipe
surface area to volume ratio have effects on the physicochem-
ical and biological composition of water at the tap.28,29 This is
part of the reason why some contaminants, such as lead and
copper, are required to be monitored at the tap.30 Additionally,
granular data at the building level could provide information
about water quality across intermittent water supply systems.
Intermittent water supply is often unreliable and inconsistent
and has been shown to pose risks to public health.31,32 An
estimated 1 billion people worldwide depend on intermittent
water supply, and that number is projected to increase
significantly in the next decades.32,33

To advance the goal of adopting sensor networks for
drinking water distribution systems, this paper introduces a
novel open-source, end-to-end wireless platform for the real-
time monitoring of drinking water systems capable of
measuring pH, ORP, EC, temperature, and pressure. We
provide results and observations of two large-scale wireless
sensor network deployments, one within buildings in Ann
Arbor, Michigan, USA and one within homes in Mexico City,
Mexico. Our specific objective is to evaluate the performance
of this platform in situ and to summarize practical deployment
considerations for others interested in carrying out similar
studies.

Figure 1. (A) Compact formfactor deployed on standard household pipes, such as kitchen sinks or outdoor spigots. The flow cell with the sensors
and electronics is contained within the enclosure. (B) System architecture including data collection and conditioning within the enclosure and the
cloud architecture for data management and visualization.
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2. METHODS

An open-source wireless sensor node for monitoring drinking
water quality was designed and constructed using low-cost
commercial sensors and electronics, web services, cloud
analytics, and real-time visualization. The design objective
was to create a small, portable, and reproducible platform that
can be connected to a wide range of complex piping setups
used in drinking water distribution, including standard building
taps (Figure 1A). With the use of existing in-home internet or
cellular connectivity, sensor nodes report data in real-time and
are deployable in most buildings and neighborhoods. The
system’s architecture includes (A) hardware and (B) cloud
services and applications. The hardware includes wireless
microcontrollers, analog conditioning circuits, and sensors.
The cloud services include a central database, visualization
capabilities, and remote management tools. An architecture
diagram is provided in Figure 1B.
2.2. Hardware. 2.2.1. Embedded System and Hardware.

The communications core of the hardware platform was built
upon the Particle series of microcontrollers (Photon and
Boron 2G/3G), which can be programmed in C++ and
updated over-the-air using a web interface.34 The node
connects to the internet using wi-fi or cellulardepending
on the connection stability at each site. The core is powered by
a DC 12 V power supply, allowing the node to be plugged
directly into a nearby wall socket or powered via a 12 V
battery. Although the system can operate across lower voltages
(3−5 V), 12 V is necessary to open most commercial solenoid
valves, which are used to trigger sampling. The remaining
electronics, including the microcontroller, carrier boards, and
the sensors, operate with 5 V delivered by an embedded
voltage converter. A backup battery ensures that the nodes
remain operational, even when household power goes out.
The sensors communicate with the microcontroller using

the I2C protocol.35 The sensors are implemented with signal-
conditioning circuits (Atlas Scientific EZO) that facilitate
required and customizable sensor operations, such as
calibrations, temperature corrections, and measurements. The
EZO circuits are electrically isolated and mounted on a carrier
board designed by Whitebox Laboratories.36 A pressure
transducer is connected to the microcontroller’s analog to
digital converter (ADC) via a voltage divider. The measure-

ment timing and transmission frequency of all parameters can
be easily modified remotely to suit a wide range of field
conditions. The sensors are described in more technical detail
in the SI.
The flow cell (housing that exposes the sensors to the water

flow stream) was designed to have a low water consumption
footprint, to include simple operational requirements using
readily available parts, and to be modular. It was built using off-
the-shelf plastic tubing and PVC fittings that hold the sensors
in place. The arrangement of the flow cell, valve, and the
sensors is presented in Figure 1B. The pressure transducer was
placed first in line and outside of the flow cell so that pressure
can always be measured without actuating the valve. The
solenoid valve separates the sensors from the pressurized pipes
and only opens to flush new water into the flow cell. The flow
cell was designed to exhibit plug flow hydraulics to minimize
mixing with previous samples and to prevent the probes from
drying. At the time of writing (2021), the cost of materials to
build the entire unit was approximately $1200 U.S. The sensor
nodes can be built entirely by a single person with limited
electronics experience. The plans for building the entire unit
are shared on our open-source Web site: https://github.com/
kLabUM/DrinkingWaterNodes.

2.3. Cloud Services. The cloud services layer provides
storage of sensor data in an online, secure, timeseries database
(Inf luxDB) and facilitates interactions between user-defined
applications (Kapacitor) and visualization tools (Grafana).
Node operations push conditioned sensor readings to the
database in a custom JSON format after each measurement.
The user-defined applications query the database for the latest
reported readings, and the user can write commands to change
the behavior of desired nodes. The cloud architecture also
facilitates remote management of individual nodes through
Particle’s web-based development environment.34

3. DEPLOYMENTS
The sensor nodes (29 nodes in total) were deployed in two
cities that differ in size, demographics, and drinking water
distribution characteristics. One deployment took place in Ann
Arbor, Michigan, USA and another in Mexico City, Mexico
(Figure 2). Both deployments took place within residences, at
the tap level or entry point into the home. This approach
provided us with two distinct data sets to evaluate the sensor

Figure 2. Locations of deployment of drinking water quality sensor nodes. (A) Map of Ann Arbor, Michigan, USA, deployments. Ten sensor nodes
were deployed within the time period between August 2019 and June 2020. (B) Map of Mexico City, Mexico deployments. Nineteen deployment
sites were part of the study, which took place between January 2019 and March 2020.
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system. In each study, we detected phenomena that would
have been missed by using existing, low-throughput monitor-
ing approaches. The deployment in Ann Arbor illustrates the
importance of collecting real-time measurements in a
continuous supply drinking water system that is consistently
in compliance with regulations by highlighting shifts in
neighborhood-scale EC that would have been missed as part
of established monitoring. The deployment in Mexico City
results in the first dense and continuous water quality data set
available for an intermittent water supply system. The Mexico
City data demonstrate highly variable water quality and supply,
and variable chlorine concentrations between continuous and
intermittent portions of the city. The two cities use different
secondary or residual disinfectants, which offered an
opportunity to apply ORP sensors in systems with chloramine
or combined chlorine (Ann Arbor) and free chlorine (Mexico
City).
3.2. Ann Arbor. The sensor network in Ann Arbor,

Michigan, USA was deployed to study spatiotemporal building
plumbing water quality in a city with a relatively homogeneous
system. Ann Arbor has a population of 120 000 people, covers
75 km2, and contains 800 km of water distribution pipes. The
drinking water is supplied by one drinking water treatment
plant that blends surface water (Huron River) and ground-
water. The source waters are blended with varying ratios, with
higher proportions of surface water during the spring, summer,
and fall and a higher proportion of groundwater during the
winter months. The treatment plant provides 400 L per capita
per day, and finished drinking water is distributed with
monochloramine as the residual disinfectant at a concentration
of approximately 3 mg/L as Cl2. The distribution system is
divided into five pressure districts, all of which are operated
independently and have interconnections to regulate flow,
pressure, and water quality. Previous studies have documented
the drinking water infrastructure in Ann Arbor, including
detailed descriptions of the water treatment train,25,37 the
distribution system, and water quality parameters.37,38 The
Ann Arbor drinking water system is part of the 1% of public
water systems in the United States that serve more than
100,000 people; more than 50% of the population in the
United States is provided drinking water through public water
systems within this size range.39

A total of 10 sensor nodes were deployed in four of the five
pressure districts at a range of distances between 1.7 and 8.5
km from the treatment plant (as measured from a street layout,
not the distribution system). Sensor nodes were placed inside
single family homes: two under a kitchen sink, one under a
bathroom sink, and seven under a laundry/utility room sink.
The deployments lasted from 29 days to 177 days starting in
August 2019 and ending in July 2020 and thus included
seasonal transitions. The deployment study was interrupted by
the COVID-19 pandemic, and visits to households were not
possible for maintenance or collection of grab samples.
Minor and reversible plumbing modifications were made to

accommodate the sensor node water intake and to allow all
effluent water to be discharged directly to the closest drain.
The sampling protocol was identical for all nodes and
throughout the deployment period. It consisted of pressure
readings every 5 min and an open-valve flushing action of 5 s
followed by water quality measurements every 60 min. The
samples taken represented building plumbing water due to the
short amount of time the valve remained open.

3.3. Mexico City. The sensor network in Mexico City was
used to study spatial differences in household water quality and
supply dynamics in neighborhoods across the city. Technical
information on the operation and management of the drinking
water system of Mexico City is not readily available through
public channels. Regions of the city have continuous water
supplies (70% of grid connections), while others have
intermittent water supplies (30% of grid connections).40 The
city has a population of 9 million, covers 3773 km2, and
contains 12 500 km of water distribution pipes.40 The city’s
drinking water sources consist of 42% surface water and 58%
groundwater from 450 wells of various depths tapping into
multiple aquifers.41 There are 58 drinking water treatment
plants that supply an average of 200 L per capita per day and
distribute water with free chlorine as the residual disinfectant.
Of the 19 sensor nodes deployed across the city, 13 were

placed at homes with a continuous drinking water supply, and
six were in homes with intermittent supply. Of the six sites
with intermittent supply, three were supplied water for 8 h per
day (daily intermittency) and three were supplied water for a
few hours at a time throughout the week (weekly
intermittency). The duration of each sensor node deployment
ranged from 4 days to nine months between January 2019 and
April 2020. This period encompassed dry winter and spring as
well as wet summer seasons.
The sensor nodes were connected to a tap next to the water

meter to capture pressure data from the distribution system
and to provide the water availability dynamics at locations with
an intermittent water supply. The sampling protocol included a
pressure reading every 5 min and an open-valve flush action of
10 s followed by a water quality reading every 60 min. When
pressure readings were zero, the flushing and water quality
readings were postponed until water was available again. In one
intermittent home, water quality was measured continuously to
evaluate any potential impacts of stagnation in the flow cell.
Grab samples were also collected from each deployment site,

ranging from one to three times per location during household
visits, and select water quality parameters were measured on-
site, including free chlorine (Palintest 7100, DPD method) and
pH and EC (Hanna hand-held pH-EC combo sensor).

4. RESULTS AND DISCUSSION
4.1. Ann Arbor. The 10 sensor nodes in Ann Arbor

collected 437 157 pressure readings and 85 405 water quality
measurements. The average readings obtained for each of the
10 sensor nodes fell in the following ranges: pH, 9.2−10.0;
ORP, 356−669 mV; EC, 558−997 uS/cm; and pressure, 24−
88 psi. A summary of water quality results is provided in Table
1.
The ORP sensors have a “warmup” time (Figure S1),

requiring an average of 3 h to reach equilibrium once deployed.
We therefore filtered the full data set to remove start-up data
(Figure 3B and Figure S1). The resulting ORP data averaged
454 mV, with a range of 300−750 mV (Figure 3B). On the
basis of average replicate data reported by Copeland and
Lytle,42 at pH 9 and 23 °C, the average ORP value (454 mV)
corresponds to a monochloramine concentration of 2.7 mg/L
as Cl2 and the ORP range corresponds to monochloramine
concentrations ranging from 0.4 to >4 (out of range) mg/L as
Cl2. Considering that the finished water distributed by the Ann
Arbor treatment plant has a monochloramine concentration of
approximately 3 mg/L as Cl2, and monochloramine concen-
trations in the distribution system average 2.55 mg/L as Cl2
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(data provided by the Ann Arbor treatment plant), our ORP
results agree with expected monochloramine concentrations.
Three nodes exhibited an increase in ORP starting in March
2020 (Figure 3B). All three of these devices were located in the
same pressure district.
The deployment in Ann Arbor highlights the benefits of a

sensor network for the purposes of event detection and system-
scale monitoring. The network captured events that would
have been missed as part of conventional sampling campaigns.
For example, the entirety of the Ann Abor system experienced
a rise in EC across a number of weeks (Figure 3A). This period
would provide sufficient time to utility personnel to investigate
the change in more detail, for example, by performing
laboratory tests or by running a cross-reference data log to
check operational status at the plant. Grab sampling was not
possible as part of this study due to the COVID-19 pandemic
and stay-at-home orders.
Given that all sensors measured the EC event, a strong case

can be made for the occurrence of a system-scale event,
compared to if just one sensor node or grab sample would have
reported the change. In consultation with Ann Arbor drinking
water treatment plant personnel, we believe the increase in EC

was related to operational and maintenance changes at the
treatment plant, which included changes in source water blend
ratio and chemical dose adjustments. While these events did
not pose a health risk to the public, our observations highlight
the potential benefits of continuous and distributed monitoring
for future events. It also emphasizes that water quality
parameters do not only vary at the plant but variations can
extend throughout the water system and can be measured at
the tap. The sensor nodes continuously measured the event as
it developed, capturing a baseline trend, a maximum, a return
to baseline conditions, and an additional rise (Figure 3A,
Figure S2). While EC is not a regulated parameter under the
U.S. EPA’s primary drinking water standards, it still provides
aesthetic information about water quality since a typical
conversion factor between EC and TDS is 0.5. TDS (total
dissolved solids) is included in the U.S. EPA’s list of secondary
drinking water standards and is recommended to be below 500
mg/L.43 This means that the observed peak in Figure 3A (933
uS/cm, 466 ppm TDS) did not reach the threshold of TDS
that may negatively influence the taste, smell, or color of
drinking water.
Using ORP signals to accurately measure residual dis-

infectant remains a challenge. Copeland and Lytle42 reported
an increasing variation between ORP duplicate (using two
different sensors) measurements of the same solution, at
increasing pH values. For a sample with chloramine at a pH of
9, they observed an average and maximum ORP variation of 47
mV and 71 mV. Ann Arbor maintains its chloraminated
finished water at a pH slightly above 9, suggesting that ORP
measurements across the system may exhibit high variation
associated with the probes. The relative fluctuations of ORP
signals correspond to changes in disinfection residual, which
make the sensors a valuable tool to detect fluctuations in
disinfectant residual and assist with flushing strategies during
regular distribution system maintenance. For granular decision
making, we recommend taking grab samples for ORP checks to
complement the real-time sensor node signals.
As shown in Figure 3B, three sensor nodes located in

buildings in the same pressure district showed gradually
increasing ORP signals. In the context of drinking water, ORP
is typically associated with disinfectant concentration because
disinfectants are the strongest oxidants present in drinking
water. Therefore, this increase in ORP may point to a higher
concentration of disinfectant in this neighborhood. Following

Table 1. Ann Arbor Water Quality Nodes Deployment
Summary Statistics Per Pressure District in Ann Arbor

pH EC (uS/cm) ORP (mV) pressure (psi)

meana SDa mean SD mean SD mean SD

Northeast
9.2 0.2 755 55 505 129 24 34
10.0 0.1 774 58 418 14 74 20

West
9.7 0.0 744 133 409 22 88 2

Gravity
9.4 0.2 740 59 489 132 55 20
9.5 0.2 832 63 555 94 60 1
9.3 0.2 737 30 493 66 60 2
9.3 0.2 997 352 669 147 59 7

Geddes
9.5 0.3 717 55 541 100 69 7
9.8 0.0 732 48 424 40 73 5
9.5 0.2 588 272 356 76 50 5

aDue to common probe malfunction, pH statistics were calculated
using only the first five days of data.

Figure 3. Signals from the sensor deployment in Ann Arbor, Michigan. The time series are color-coded by the site shown in the map. (A) EC
signals from deployed sensor nodes are shown capturing a system-wide event. (B) ORP signals are used as an indicator to monochloramine
concentrations. Three signals from the same pressure district exhibited a rise in ORP, shown by the triangular, square, and diamond markers.
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the event, the ORP sensors were inspected and tested; they did
not show any damage nor biofilm growth, and they responded
accurately during calibration. This absence of sensor problems
suggests that a transient event indeed may have transpired in
this neighborhood, but no clear cause could be identified (we
verified that no disinfection booster stations are used in Ann
Arbor’s distribution system). This observation underscores
why continuous and distributed sampling is important, as it
could be used as a tool to detect water quality regime shifts as
they occur.
4.2. Mexico City. The 19 sensor nodes deployed across

Mexico City resulted in 358 761 pressure readings and 168 685
water quality data points. The average ranges measured by all
sensor nodes were as follows: pH, 6.8−8.2; EC, 212−1064 uS/
cm; ORP, 204−921 mV; and pressure, 2−50 psi. ORP values
from each deployment site were compared to free chlorine
from grab samples for continuous systems (Table 2) and

intermittent systems (Table 3). EC signals from the sensor
nodes are compared to grab samples at each deployment site in
Table 4. The average pH signals are compared to the
respective grab samples per site and shown in Table S1 in
the Supporting Information.
For the 13 sensor nodes placed in households with

continuous supply, chlorine residuals from grab samples were
used to bin the ORP signals into categories of chlorinated, not
chlorinated, or having varying levels of chlorination. Measure-
ment time series for these households are categorized and
shown in Figure 4, with summaries provided in Table 2. The
ORP averages for chlorinated systems ranged from 688 to 922
mV, with the corresponding average free chlorine concen-
trations ranging from 0.68 to 1.34 mg/L as Cl2. The ORP
averages in systems categorized as not chlorinated ranged from
204 to 257 mV, corresponding to grab samples that had free
chlorine concentrations below the detection limit. The third
categoryvarying levels of chlorinationexhibited average
ORP readings ranging from 493 to 736 mV and free chlorine
concentrations in the corresponding grab samples ranging from
zero to 0.89 mg/L as Cl2.

The ORP signals measured in the intermittent households
are summarized in Table 3. Two of the three ORP signals

obtained from the weekly intermittent households averaged
325 and 733 mV, with standard deviations 79 and 137 mV;
these were normalized to the duration of intermittency. One of
the three ORP signals with weekly intermittencymeasuring
water quality continuouslyresulted in an average of 500 mV
with a standard deviation of 219 mV. This means the data
among these signals is not necessarily comparable, as the
former explains the variability of supplied water only, while the
latter explains the variability of supplied and stored water. The
latter ORP signal is shown in Figure 4C. The variability was
caused by free chlorine decay during periods of stagnation in
between intermittency periods.32,44,45

Of the three daily intermittent sites, one signal was
determined to be associated with a variable chlorination
system based on the high standard deviations from the grab
samples and the ORP signal. The second site with daily
intermittency shows the highest signal average as well as the
lowest standard deviation of all intermittent sites. The third
site with daily intermittent supply was removed from the data
set because of technical issues.
Use of wireless sensor nodes in Mexico City captured

previously unmeasured supply dynamics across a large
intermittent system. Intermittency varies across the city and
can be highly variable in terms of time and water quality. A
grab-sample schedule that captures multiple intermittent
events is complicated, may miss the first flush window, and
is likely impractical in a city the size of Mexico City. ORP
signals from intermittent systems with measurable free chlorine
showed high variability throughout the study period. As
confirmed by grab samples, the observed ORP variability
corresponded with the variability of the disinfectant concen-
trations. Although our data sets are not sufficiently large to
allow for a detailed comparative analysis that links ORP to free
chlorine concentrations, we found that compared to weekly
intermittency sites, one daily intermittent site resulted in a
higher ORP average and lower standard deviation (Table 3);
this may be related to less chlorine variability in supplied water
when the intermittency periods are shorter. This suggests that
the frequency of intermittency plays a role in delivering

Table 2. Continuous Systems ORP and Free Chlorine
Summary Statistics of Deployment Signals and Grab
Samples from Mexico City

ORP signal (mV) free chlorine (mg/L as Cl2)

mean SD mean SD n

Chlorinated
795a 18 1.06 0.18 3
806a 58 1.25 0.18 3
808a 25 0.88 0.41 3
688 169b 0.68 0.08 3
922 68 1.34 0.62 2

Not Chlorinated
257 154 0.04 0.02 2
204 50 0.04 NA 1

Variable Chlorination
542 159 0.78 0.74 3
493 144 0.17 0.14 2
533 94 0.89 0.56 3
644 156 0.37 0.30 2
736 281 0.00 NA 1

aNodes deployed in the same neighborhood. bHigh variability likely
attributed to probe lowered sensitivity during deployment period.

Table 3. Intermittent Systems ORP and Free Chlorine
Summary Statistics of Deployments Signals and Grab
Samples from Mexico City

ORP signal (mV) free chlorine (mg/L as Cl2)

supply type mean SD mean SD n

Weekly Intermittencya

chlorinated 733b 137 0.17 0.13 3c

chlorinated 500b 219d 0.01 0.01 3c

chlorinated 325b 79 0.12 0.11 2c

Daily Intermittencya

variable Cl2 497 151 0.73 0.98 2
chlorinated 769 75 0.86 NA 1

aDetermined from pressure data and from interviews with household
members. bNodes deployed in the same neighborhood. cGrab
samples associated with these deployments are from household
storage since field visits did not align with water supply hours. dNode
with continuous measurements. High variability associated with water
quality change during storage periods. Statistics not normalized to the
intermittency time.
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consistent disinfectant residual concentrations. In other words,
the longer the period between water delivery times, the higher
the risk of not meeting a particular residual disinfectant
concentration target. Generally, the risk of microbial
contamination and transmission of illnesses increases as the
duration of in-home storage increases.44 Data from real-time
sensor networks could be used to manage risk associated with
poor water quality and inform flushing strategies in
intermittent systems.
As water resources become more limited and rationed,

intermittency may become the new norm for many cities. For
example, the water utility of Mexico City expects that, if the
amount of government investment into water supply systems
does not increase, the proportion of intermittency systems
within the city will increase from 30% to 72% over the next
decade.40 Real-time wireless sensor networks provide an
opportunity to monitor and manage such systems more
closely, which could become increasingly useful as more
continuous systems around the world will face greater water
demands and a decrease in water resources.31−33

The system in Mexico City is highly heterogeneous due to
the multiple water sources and treatment plants that supply the
city−surface water, 450 wells, and 58 drinking water treatment
plants.40 This heterogeneity was captured through our wireless
sensor network, which provided an unprecedented spatiotem-
poral data set. As seen in Figure 4A, B, and C, water quality
(ORP) varied significantly across the city, as compared to Ann
Arbor. The pressure signals show different supply quality that
may have impacts on water quality during distribution.
Similarly, EC signals varied across the city (Table 4). For
example, as measured by the grab samples, 11 sites show an
average range of 178−243 uS/cm, two sites range from 404 to
615 uS/cm, and four sites range from 1030 to 1688 uS/cm.
Similar ranges resulted from the EC signals in the sensor
nodes.
Heterogeneity across the Mexico City water supply has been

studied by Mazari-Hiriart et al., who provide results from a

grab sample campaign.41 Their findings report varying
concentrations of metals, other inorganic contaminants, and
biological contaminants. While our wireless sensor network
focused on a limited set of physical parameters, our data are
consistent with the assessment that the system is highly
heterogeneous. This is particularly evident when comparing
the variability of measurements in Mexico City to those made
in Ann Arbor.
Public knowledge about drinking water quality stands at the

core of public health around the world. Trends and projections

Figure 4. ORP and pressure signals from three different deployment sites in Mexico City show the difference in water quality and supply
experienced in neighborhoods across the city: (A) signal from a continuous supply household in the west of the city with measurable free chlorine
and high diurnal pressure variations, (B) signal from a continuous supply household located in the east of the city without measurable free chlorine
and a consistently low supply pressuregaps in data due to connectivity issues, and (C) signal from a weekly intermittent supply household in the
southwest of the city with measurable free chlorine and chlorine decay during periods of intermittency; spikes in pressure correspond to periods of
supply, while the flat line corresponds to periods of no supply.

Table 4. Electroconductivity Summary Statistics of
Deployment Signals and Grab Samples from Mexico City

EC signal (uS/cm) grab sample (uS/cm)

mean SD mean SD n

Continuous
9a 1 216 26 3
9a 1 218 41 3
9a 0 243 54 3
309 293 232 28 2
296 12 204 6 2
772 1695 1688 NA 1
1065 5194 1041 NA 1
8a 2 224 44 3
278 5442 1030 406 2
10a 1 212 11 2
573 72 615 170 2
26a 11 1031 NA 1

Weekly Intermittent
8a 5 199 19 3
224 6334 197 1 2
213 90 178 8 2

Daily Intermittent
475 35 404 9 2
301 89 181 NA 1

aEarly calibration issue, which was subsequently resolved.
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show increasing per capita consumption of purchased water,46

often reported to have worse water quality, and bottled
products, including sugared drinks,47,48 which have led to
global obesity and diabetes type 2 epidemics.49 Trust in water
quality is a complex subject requiring cross disciplinary
research. Our sensor network deployment in Mexico City is
currently being cross-analyzed with qualitative and quantitative
data sets studying public trust in drinking water.50,51 Sensors
may serve as an objective tool to help households and utility
managers “turn on the lights” on an otherwise invisible
infrastructure.
4.3. Platform Performance. As measured by data

transmission reliability (expected vs delivered data packets),
the sensor nodes and cloud architecture successfully collected
and delivered data throughout the deployment study. By
leveraging proven hardware and commercial cloud services,
reliability and server uptime could be maintained without
interruption. One of the novel elements of our sensor node
and cloud architecture is its ability to be deployed at any
location with wi-fi or cellular service. Some individual sensor
nodes experienced outages, mainly due to the instability of
residential wi-fi. The nodes have a built-in feature to
automatically reconnect once wi-fi outages resolve. The easy
upgrade to cellular connectivity provides added reliability with
an extra cost per node and excess data transferred. In terms of
cellular coverage, Particle Inc. provides a list of countries
currently supported through their cellular data plans.52

Regardless of preliminary connectivity, tests should be
performed to scout the wireless reliability of each location
prior to deployment. Some outages were also caused by
residents moving the unit or disconnecting it manually, but not
due to the architecture of the system.
The platform reliably time stamped system-wide events such

as the EC event in Ann Arbor and distributed water quality and
supply variations across Mexico City. By making technology
more accessible and easier to use, these sensor nodes provide
the potential to begin capturing building plumbing dynamics
that have so far remained elusive. To our knowledge, our study
is the first example of a large-scale deployment in distributed
and intermittently supplied households made possible by a
built-for-purpose technology.
4.4. Constrains, Limitations, and Practical Consid-

erations. This paper presents a first step toward making water
quality measurements more accessible through an open source,
real-time water quality wireless sensor network. As with any
new tool, several new venues remain to be studied before it can
become a vetted method. For those interested in carrying out
similar studies, a major time barrier should be reduced since
the steps of our study are provided in detailed web guides,
source code, and blueprints that accompany this paper. While
the platform is an end-to-end solution, it cannot be bought as
an off-the-shelf product and will require hands-on construc-
tion, calibration, and fine-tuning. We expect these practical
barriers to be reduced as the community of adopters grows.
The ease of deployment ensured that our team could install

each household with a sensor node in a single visit of one hour.
This feature limited the need for professional installations and
reduced the burden on residents. All things considered, we
recommend that a team of at least two people construct and
build a fleet of devices. Given the sporadic need to
troubleshoot the nodes or expand their functionality, some
basic knowledge of circuits, electronics, and coding is required.
A basic undergraduate course in these topics should be

sufficient to cover these. Installations require nonintrusive
plumbing modifications (e.g., connecting and disconnecting
threaded fittings), and system maintenance requires data
monitoring and field visits. For reference, the 10 nodes used in
the Ann Arbor deployment were built and tested by two
students in 2 weeks and deployed over a period of 2 weeks.
Recruiting household participants is perhaps the most practical
constraint and may require approval by city authorities or an
internal review board (IRB). This should be considered as
early as possible, as it may take a long time to establish these
relationships. For comparison, the nodes used in Mexico City
were deployed over nine months. The limiting factor in Mexico
City was coordination with residents and the sheer logistics
deploying and maintaining a system in one of the largest cities
in the world. This underscores even further the reliability of
the network, as this limits long and unnecessary trips and
coordination across large areas.
Our sampling protocol remained static throughout the study

period (pressure every five minutes, water quality every hour);
we recommend the use of more advanced operational scripts to
automatically modify the sampling frequency as needed and to
label data points within the script for a more streamlined
analysis (e.g., first flush, bulk supply, building vs water main).
Groups can do this by taking advantage of the micro-
controller’s internet features by simply writing new code and
uploading it wirelessly to field deployed units.
The limitations of the water quality sensors should be

characterized further. When signals show gradual or sudden
changes, but grab samples are not available to validate such
observations, it remains challenging to draw general con-
clusions about water quality. pH and ORP signals can drift or
spike due to sensor malfunction, but unexpected results may
also point to previously unrecognized water quality dynamics
at the tap. Spatial redundancy of a deployment is a benefit of
our cost-effective and distributed approach in such cases, since
it is unlikely that multiple sensors will fail in the same
neighborhood. Further research is needed to understand the
sensor signal dynamics of water quality at the tap. In the
meantime, we recommend the deployment of multiple sites
within a single study region. Furthermore, the real-time
dashboard accompanying the platform should be used daily
for quality control (at least in the early weeks of a deployment)
to ensure that no major sources of noise or outages are present.
As the team becomes more familiar with the individual
nuances of their deployment, the need to quality control the
data daily will become less important.
ORP and EC sensors showed the most potential in our

study, but more detailed process studies are needed to evaluate
the strength of the correlation between measured ORP and
disinfectant residual. While these specific parameters have been
studied in a broad range of water applications, their use as part
of real-time drinking water monitoring networks remains
uncharted. The sensitivity of ORP sensors to new conditions
needs to be further evaluated, since there are existing known
relationships between the ionic strength of a solution and the
time it takes an ORP sensor to stabilize. Currently, ORP
sensors can take anywhere between 15 min and several hours
to reach equilibrium when measuring low ionic strength
waters, such as some drinking waters.53 Because this is the case,
real-time ORP measurements will need further operational
tuning and technology development to achieve measurements
that can be confidently linked to other parameters of interest.
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During regular operation, the time to reach ORP sensor
stabilization was variable (one to three hours). The Mexico
City deployment shows that the sensor stabilization is an initial
phenomenon when sensors are first turned on, rather than
caused by exposure to water (intermittent vs continuous).
While it should be evaluated on a deployment-by-deployment
basis, this stabilization period is likely caused by power supply
state, which underscores the need for a stable power source
and battery backup. Our platform supports this with using a
built-in backup battery, which we recommend as a vital
component of future deployments. When nodes are reset, the
stabilization time period should be accounted for through
visual inspection and an initial grab sample.
4.5. Research Opportunities. In addition to event

detection and monitoring benefits, the EC signals from the
Ann Arbor deployment (Figure 3A) show how a study may be
conducted to quantify the water age and hydraulic patterns of a
distribution system based on the delay and magnitude of the
signals. A dedicated sensor node at the treatment plant could
serve as the baseline for water quality characteristics, while a
deployed sensor network within the distribution system could
inform the time and possible flow paths of the water in the
distribution system. We see future potential to use these sensor
nodes in applications such as water age model calibration using
approaches such as the ones published by Rubulis et al.,54

where EC was proposed as a natural tracer to track the flow of
various water sources within the distribution system. Woo et
al.55 implement dynamic time warping to computationally find
the corresponding elements of various water quality signals
that are offset by a time component and signal magnitude.
Access and availability to sensors has been a major barrier to
release these theoretical approaches but it is now entirely
possible to accomplish this with our platform.
Even when relying on sensors that are lower cost and less

maintained than those used at the plant, the option to generate
long-term summary statistics and time series using real-time
wireless sensor networks has the potential to provide
substantial value. After the sensor network has been deployed
and the water quality baseline has been established through
summary statistics, specific signals can be queried for relative
changes. For example, stable ORP signals can be taken as
validation that chloramine concentrations throughout the day
and across the city remain within a safe range. If the average
and range continuously correspond to previously set values
(e.g., 400 ± 100 mV in chloraminated waters), the wireless
sensor network may have the potential to alleviate some of the
efforts required in field grab sampling, assuming that the
regulator would allow for a reduced number of regulatory
samples. Furthermore, the real-time data could point to
locations of the distribution system that require more
attention. Although U.S. EPA regulations in the United States
still require mandatory grab samples for compliance, more
resources are becoming available for utilities to adopt real-time
online water quality tools that can be used to monitor common
water quality incidents such as nitrification and corrosion.56

The sensor node architecture presented in this paper (Figure
1) can be modified to address and monitor the parameters that
are most relevant to each system and study site.

5. CONCLUSION
Our wireless sensor network shows how a drinking water
distribution system can be continuously monitored at the level
of building plumbing using a cloud-based architecture. This

may present a valuable tool for water quality monitoring,
compliance, research, maintenance, warning system design,
and operations. Potential allocation of resources for infra-
structure projects may benefit from continuous monitoring to
ensure that designs meet intended goals. For those wishing to
implement and evaluate these technologies, our team has made
available all the blueprints and guides as part of a broader effort
to open source water technologies.
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