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Symplectic fillings of asymptotically
dynamically convex manifolds I

Zhengyi Zhou

Dedicated to the memory of Chenxue.

Abstract

We consider exact fillings with vanishing first Chern class of asymptotically dynamically convex
(ADC) manifolds. We construct two structure maps on the positive symplectic cohomology
and prove that they are independent of the filling for ADC manifolds. The invariance of
the structure maps implies that the vanishing of symplectic cohomology and the existence of
symplectic dilations are properties independent of the filling for ADC manifolds. Using them,
various topological applications on symplectic fillings are obtained, including the uniqueness
of diffeomorphism types of fillings for many contact manifolds. We use the structure maps
to define the first symplectic obstructions to Weinstein fillability. In particular, we show that
for all dimension 4k + 3, k � 1, there exist infinitely many contact manifolds that are exactly
fillable, almost Weinstein fillable but not Weinstein fillable. The invariance of the structure
maps generalizes to strong fillings with vanishing first Chern class. We show that any strong
filling with vanishing first Chern class of a class of manifolds, including (S2n−1, ξstd), ∂(T ∗L×
Cn) with L simply connected, must be exact and have unique diffeomorphism type. As an
application of the proof, we show that the existence of symplectic dilation implies uniruledness.
In particular, any affine exotic Cn with nonnegative log Kodaira dimension is a symplectic
exotic Cn.
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1. Introduction

One natural question in symplectic topology is understanding symplectic fillings of a contact
manifold. One aspect of the question is understanding the existence of symplectic fillings.
Contact obstructions to the existence of symplectic fillings were first discovered by Eliashberg
[20]. There are various obstructions to fillings of different flavors, cf. [40] and references therein.
There are also topological obstructions to the existence of almost Weinstein fillings [13].
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Another aspect of the question is understanding the uniqueness of symplectic fillings. The
first result along this line is by Gromov [27] that exact fillings of the standard contact 3-sphere
are unique. In [20], Eliashberg proved fillings of (S3, ξstd) are diffeomorphic to blow-ups of the
ball. Shortly after, McDuff [41] generalized the result to lens space L(p, 1). In dimension 3,
several uniqueness or finiteness results of symplectic fillings were obtained on T 3 [62], lens space
L(p, q) [39] and S∗Σg [59]. Only the results on S3, L(p, 1), T 3 obtained uniqueness of symplectic
fillings, while other results are about topological types of fillings. The dimension 3 case is special
since we have more tools like intersection theory of holomorphic curves and Seiberg–Witten
theory. In higher dimensions, Eliashberg–Floer–McDuff [21, 42] proved that any exact filling
of (S2n−1, ξstd) is diffeomorphic to the ball B2n. The Eliashberg–Floer–McDuff method was
generalized by Oancea–Viterbo [49] to obtain homological information for symplectic aspherical
fillings of simply connected subcritically fillable contact manifolds. Barth–Geiges–Zehmisch [7]
extracted refined homological information and showed that symplectic aspherical fillings of
simply connected subcritically fillable contact manifolds have unique diffeomorphism types
via h-cobordism.

The symplectic aspect of the uniqueness in higher dimensions remains largely unknown.
However, there are some evidences. Seidel–Smith [55] showed that any exact filling of
(S2n−1, ξstd) has vanishing symplectic cohomology. In [68], we showed that any exact filling
with vanishing first Chern class of a simply connected flexibly fillable contact manifold has
vanishing symplectic cohomology. It turns out that those contact manifolds are asymptotically
dynamically convex (ADC) in the sense of Lazarev [37].† The ADC condition is a generalization
of the index-positive condition introduced in [18, §9.5]. A contact manifold Y 2n−1 is called
index-positive, if there is a nondegenerate contact form so that every Reeb orbit γ has positive
degree, that is, μCZ(γ) + n− 3 > 0. There are many natural ADC contact manifolds, for
example, boundaries of cotangent bundles of manifolds of dimension at least 4, boundaries
of flexible Weinstein domains and links of terminal singularities (Remark 3.11). The ADC
property is a condition on the Conley–Zehnder index, which is suitable for Floer theoretic study.
The importance of index-positive/ADC is that positive symplectic cohomology is independent
of the filling, hence a contact invariant [18, 37] via neck-stretching. Combining invariance of
positive symplectic cohomology and vanishing of symplectic cohomology, the tautological long
exact sequence of symplectic cohomology yields that any exact filling with vanishing first Chern
class of a simply connected flexibly fillable contact manifold has the same cohomology group
as the flexible filling.

The above result serves as a basic prototype of studying symplectic fillings of ADC manifolds:
We first prove some invariance results on the Floer theory of fillings of ADC manifolds,
then we infer invariant symplectic or topological properties from there. The key point in this
paper is that the invariance is not limited to some Floer cohomology like positive symplectic
cohomology, but also structure maps on those Floer cohomology. The substance of this paper is
constructing two structure maps and proving their invariance with respect to fillings for ADC
manifolds. Then we will derive various symplectic and topological applications from them on
both uniqueness and existence aspects of symplectic fillings.

1.1. Invariance of restriction and persistence of vanishing

Let W be an exact filling of Y , the first structure map δ∂ is the composition of δ : SH∗
+(W ) →

H∗+1(W ) and the restriction H∗+1(W ) → H∗+1(Y ), where δ is the connecting map in
the tautological long exact sequence . . . → SH∗(W ) → SH∗

+(W ) → H∗+1(W ) → . . .. In the
following, we will restrict to topologically simple fillings of ADC manifolds, that is, those

†In fact, all contact manifolds in the first paragraph are ADC, when c1 = 0.



114 ZHENGYI ZHOU

fillings W such that c1(W ) = 0 and π1(Y ) → π1(W ) is injective (when Y is strongly ADC
(Definition 3.5), we only require c1(W ) = 0†). Our first theorem is the following.

Theorem A. Let Y be a (strongly) ADC contact manifold. Then δ∂ : SH∗
+(W ) → H∗+1(Y )

is independent of topologically simple exact fillings.

Remark 1.1. Unless specified, our coefficient can be any ring with a default setting of Z.

Since whether 1 ∈ im δ is equivalent to whether 1 is mapped to 0 in the unital map
H∗(W ) → SH∗(W ), 1 ∈ im δ∂ is equivalent to SH∗(W ) = 0. This reproves the vanishing result
in [68]. Moreover, unlike the proof based on the formal properties of symplectic cohomology in
[68], the proof here explains the background geometry to some extent by finding a persistent
holomorphic curve. Moreover, we have the following finer invariance result on the topology of
the filling.

Corollary B. Let Y be a (strongly) ADC contact manifold, then SH∗(W ) = 0 is a
property independent of topologically simple exact fillings. In that case, H∗(W ) → H∗(Y )
is independent of topologically simple exact fillings, that is, for two topologically simple exact
fillings W,W ′, we have an isomorphism H∗(W ) � H∗(W ′) such that the following commutes:

The invariance of H∗(W ) → H∗(Y ) is a very strong topological constraint, especially when
it is injective. In particular, by the universal coefficient theorem, Corollary B implies [7,
Theorem 1.2(a)] if the exact filling is topologically simple. Combining with Theorem E below
yields a Floer theoretic proof of exact and c1 = 0 fillings of simply connected subcritically
fillable contact manifolds have unique diffeomorphism type by the h-cobordism argument in
[7, §5]. Moreover, we can extract the topology condition required for the h-cobordism argument
to reach the following uniqueness result for some only Liouville fillable contact manifolds
(Corollary 3.14) and flexible fillable contact manifolds.

Theorem C. Exact fillings W with vanishing first Chern class of the following contact
manifolds Y with dimY � 5 have unique diffeomorphism types.

(i) Y = ∂(V × C) simply connected, where V is a simply connected Liouville domain such
that c1(V ) = 0 and dimV > 0.

(ii) Y is the boundary of the flexible cotangent bundle Flex(T ∗Q) for simply connected Q
with χ(Q) = 0.

Remark 1.2. The contact boundary Y := ∂(V × C) was also considered in [7, §2.6], where
Barth–Geiges–Zehmisch proved that for every symplectic aspherical filling W of Y , we must
have that H∗(Y ) → H∗(W ) is surjective. Using Corollary B, if we assume c1(V ) = 0 and W is
topologically simple, then H∗(W ) → H∗(Y ) is invariant and injective, see Corollary 6.10.

Remark 1.3. SH∗(W ) = 0 is a restrictive condition, the major classes of examples are
flexible Weinstein domains [9, 47], V × C for Liouville domains V [48]. These two classes

†Roughly speaking, strongly ADC requires that Reeb orbits are contractible in addition to the asymptotically
dynamically convex condition.
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provide many examples with ADC boundaries as long as the first Chern class vanishes. Recall
that if V ⊂ W is an exact subdomain, the Viterbo transfer map SH∗(W ) → SH∗(V ) is a unital
ring map. Since the 0 ring is the terminal object in the category of unital rings, a symplectic
manifold W with SH∗(W ) = 0 should be understood as the simplest symplectic manifold and
the contact boundary has the best chance of having unique exact fillings.

Theorem A also holds for symplectic cohomology with local systems, and Corollary B holds
if the ring structure still exists. In particular, those results can be applied to cotangent bundles
considered in [5], whose symplectic cohomology without local system does not vanish. In
particular, we have the following invariance result for cotangent bundles.

Theorem D. Let Q be a manifold such that the Hurewicz map π2(Q) → H2(Q) is nonzero
and ST ∗Q is ADC (for example, dimQ � 4), then we have the following.

(i) H∗(W ; C) → H∗(ST ∗Q; C) is independent of the topologically simple exact filling W
as long as H2(W ; Z/p) → H2(ST ∗Q; Z/p) is surjective for every prime p.

(ii) If π1(Q) = 0, and Q is spin, then the independence of H∗(W ; C) → H∗(ST ∗Q; C) for
topologically simple W holds as long as H2(W ) → H2(ST ∗Q) is nonzero. If Q is not spin, we
need to assume im(H2(W ; Z/2) → H2(ST ∗Q; Z/2)) contains π∗w2(Q)|ST∗Q, where π : T ∗Q →
Q is the projection and w2(Q) ∈ H2(Q; Z/2) is the second Stiefel–Whitney class of Q.

(iii) If, in addition, we have χ(Q) = 0, then the rational homotopy type of W with same
conditions above is T ∗Q.

We also study the symplectic cohomology of covering spaces and prove an analogous
statement to Theorem A, which implies the following theorem. It can be viewed as a
generalization of [7, Theorem 1.2(b)].

Theorem E. Assume Y is an ADC contact manifold, with a topologically simple exact
filling W such that SH∗(W ) = 0 (integer coefficient without local systems) and π1(Y ) →
π1(W ) is an isomorphism. Then π1(Y ) → π1(W ′) is an isomorphism for any other topologically
simple exact filling W ′. If Y is strongly ADC with the same property and π1(Y ) is abelian,
then π1(Y ) → π(W ′) is an isomorphism for any other topologically simple exact filing W ′.†

The results above can be put under one theme: understand whether the symplectic filling
is unique. It is conjectured that exact fillings of flexibly fillable contact manifolds are unique.
Since Theorems A–E can be applied to a larger class of contact manifolds in addition to
flexibly fillable contact manifolds (see § 6), they suggest that contact manifolds with unique
exact fillings may go beyond flexibly fillable contact manifolds.

For (S3, ξstd,), Eliashberg [20] and McDuff [41] showed that symplectic fillings of the
standard contact 3-sphere are symplectic blow-ups of the standard ball. Hence it has a unique
exact filling. However, the procedure of blow-up destroys both exactness and c1 = 0. Hence
in this special case, one can trade the exactness condition to c1 = 0 condition and still has
the uniqueness of fillings, in particular exactness is equivalent to c1 = 0. In higher dimension,
the exactness/symplectic asphericity plays an important role in [7, 49] while c1 = 0 is not
required or used. But if we study it using Floer theory, nonexactness only adds technical
difficulties and can be overcome by a dimension argument [30] when c1 = 0. However, c1 = 0
plays a fundamental rule, since the ADC property is an index property. Therefore, we can
generalize Eliashberg–McDuff’s result in the c1 = 0 direction to higher dimensions as follows.

†Note that in the strongly ADC context, topologically simple filling only requires c1 = 0, hence it is a stronger
conclusion compared to the ADC case above.
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Theorem F. Let (Y, ξ) be a tamed asymptotically dynamically convex (TADC) manifold
(Definition 6.2) with one topologically simple exact filling W , such that SH∗(W ; Q) = 0.
Assume H2(W ; Q) → H2(Y ; Q) is injective and H1(W ; Q) → H1(Y ; Q) is surjective. Then
any topologically simple strong filling of Y is exact.

The strategy of proving Theorem F is showing the invariance of H∗(W ; Q) → H∗(Y ; Q) like
Corollary B for strong fillings. Then exactness is a consequence of such invariance. TADC
maifolds are more general than index-positive manifolds, but more restricted than ADC
manifolds. Examples of TADC manifolds that Theorem F can be applied are boundaries of
Cn(n � 2), T ∗M × C,W × C, where W is the Milnor fiber of

∑
xai
i = 0, ai ∈ N with

∑
1
ai

� 1,
and products among them. In particular, Theorem F implies that any strong filling of
(S2n−1, ξstd) with vanishing first Chern class must be exact†, hence is diffeomorphic to B2n.
Theorem F can also be applied to non-Weinstein example, for example, ∂(V × C), where V is
the exact but not Weinstein domain in [40], since ∂(V × C) is TADC by Theorem 6.3. Another
source of examples are cotangent bundles with local systems, we can get exactness from c1 = 0
and similar conditions in Theorem D, see Theorem 8.14.

Remark 1.4. Theorem F is expected to hold for ADC manifolds. In the general ADC
case, we need to stretch along expanding contact hypersurfaces since nonexact filling may not
contain the whole negative end of the symplectization of Y . Then we need more functoriality
than we are able to get. However, the expanding issue indicates using an SFT description may
be a better way to prove the generalization, see Remarks 1.7 and 8.15.

Remark 1.5. It is worthwhile to compare our method with the method in [7, 42, 49],
where the method can be summarized as finding a ‘homological foliation’ by rational curves
in a partial compactification of the filling. Such method has the benefit of only assuming
exactness/symplectic asphericity. Our method is from a very different perspective, which
essentially only assumes c1 = 0 as in Theorem F, while the exactness in assumptions of previous
theorems are only for the simplicity of the setup. Therefore we cover different aspects of the
uniqueness of filling, that is, c1 = 0 versus symplectic asphericity. Moreover, we are able to
extract some symplectic invariance through the study of symplectic cohomology. By [7], exact
filling W of subcritically fillable contact manifold Y must have c1(W ) = 0 if c1(Y ) = 0 when
dimW � 6. Combining Theorem F and Remark 1.4, it suggests that for fillings of subcritically
fillable contact manifolds, exactness is equivalent to c1(W ) = 0. In particular, if there is any
procedure of modifying a filling, exactness and c1(W ) = 0 must be destroyed at the same time.
This is the case for blow-up.

Remark 1.6. The condition of c1 = 0 is necessary for the results above to hold. For
example, the once blow-up of the standard ball B2n, that is, the total space O(−1)
of the degree −1 bundle over CPn−1, has nonvanishing symplectic cohomology [53] and
H∗(O(−1)) → H∗(S2n−1) is different from H∗(B2n) → H∗(S2n−1). By the Viterbo transfer
map, such phenomena persist for all exact domains considered above after once blow-up.

1.2. Persistence of dilation

The second structure map is related to the symplectic dilation introduced by Seidel–Solomon
[58]. To explain the structure map, first recall that symplectic cohomology is equipped with
a degree −1 BV operator Δ. Then a symplectic dilation is an element x ∈ SH1(W ) such

†Although in this special case, proving H∗(W ; Q) = H∗(B2n; Q) is enough. The general case requires the
invariance of H∗(W ; Q) → H∗(Y ; Q).
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that Δ(x) = 1. The existence of symplectic dilation puts strong restrictions on Lagrangians
that can be embedded exactly [56, 58]. On the cochain level, Δ also respects the splitting into
positive and zero symplectic cohomology. Therefore we have a well-defined degree −1 map Δ+ :
SH∗

+(W ) → SH∗−1
+ (W ). Then there is a well-defined degree −1 map Δ∂ : ker Δ+ → coker δ∂ .

When Y is ADC and W is topologically simple exact, we have that Δ+ is independent of the
filling. Moreover, by Theorem A, δ∂ is independent of the filling. Then our second main result
is the following.

Theorem G. Let Y be an ADC manifold, then for any two topologically simple exact
fillings W1,W2, we have an isomorphism Γ : SH∗

+(W1) → SH∗
+(W2), such that:

(i) δ∂ ◦ Γ = δ∂ ;
(ii) Δ+ ◦ Γ = Γ ◦ Δ+;
(iii) Δ∂ ◦ Γ = Δ∂ .

The property of whether 1 ∈ im Δ∂ is closely related to the existence of symplectic dilation.
We have the following corollary. A stronger version concerning symplectic dilation on exact
fillings can be found in Corollary 4.17.

Corollary H. Let Y be an ADC contact manifold of dimension � 5. Then the existence
of symplectic dilation is independent of Weinstein fillings.

The vanishing of symplectic cohomology and the existence of symplectic dilations can be
understood as the first two levels of indications of the complexity of symplectic manifolds.
In fact, there exists a whole hierarchy of structures after them called higher dilations, all of
them have associated structure maps similar to δ∂ ,Δ∂ , which are also independent of the
topologically simple exact filling for ADC manifolds. Details of the construction will appear in
the sequel paper [69].

Remark 1.7. Following [10], positive symplectic cohomology should be understood as the
nonequivariant linearized contact homology. When Y is ADC, positive symplectic cohomology
can be viewed as nonequivariant cylindrical contact homology, since the augmentation from
filling is trivial by degree reason. δ∂ ,Δ∂ should have an equivalent description using SFT on
Y . In particular, when the analytic foundation for the full SFT is completed (in a forthcoming
paper by Fish and Hofer), one should be able to strengthen results in this paper to contact
manifolds admitting a Reeb flow without a degree zero orbit and its asymptotic version based
on the same argument. From SFT point of view, for any linearized nonequivariant contact
homology HC∗(Y ), one should be able to define a map HC∗(Y ) → Hn+1−∗(Y ) by counting
holomorphic curves (with one positive puncture and multiple negative punctures) with one
marked point mapped to Y × {0} along with the augmentation. When the augmentation is
from a filling, then the map is the composition SH∗

+(W ) → H∗+1(W ) → H∗+1(Y ). It will
imply Theorem A, since ADC contact manifolds should have no nontrivial augmentation
by degree reason. Roughly speaking, the set of fillings is closely related to the set of
augmentations. The theme of this paper can be summarized as: if a contact manifold admits
a unique augmentation, then many Floer theoretic properties of the filling are independent
of the filling. It is possible to prove such claim by reformulizing constructions in this paper
using SFT.

1.3. Obstructions to Weinstein fillings and cobordisms

One natural question in the study of symplectic fillings is understanding the difference between
exact fillability and Weinstein fillability. In dimension 3, exact fillable but not Weinstein
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fillable manifold was found by Bowden [12]. In higher dimension, such examples were found by
Bowden–Crowley–Stipsicz [13]. Their obstruction is topological in nature and their examples
are exactly fillable, but not almost Weinstein fillable. Hence the next question we could ask is
whether the topological obstruction is sufficient, or whether there is a contact manifold with
exact filling and almost Weinstein filling, but no Weinstein filling. In § 6, we answer the question
by proving the following.

Theorem I. Let k � 1, there exist infinitely many pairwise noncontactomorphic 4k + 3
dimensional contact manifolds, such that they are exactly fillable, almost Weinstein fillable,
but not Weinstein fillable.

To prove Theorem I, we need new obstructions to Weinstein fillability beyond topological
obstructions. Using Theorems A and G, for ADC contact manifolds, im δ∂ , im Δ∂ contain a
nontrivial element of grading higher than 1

2 dimW that are symplectic obstructions to the
existence of Weinstein fillings (Corollaries 3.14 and 4.19). Such obstructions, to our best
knowledge, are the first symplectic obstructions to Weinstein fillability. This answers a Wendl’s
question [63, Question 14] on the existence of obstructions to Weinstein fillability of contact
structures in higher dimensions. With such obstructions, in addition to proving Theorem I,
we give simple constructions of many exactly fillable, but not Weinstein fillable manifolds in
dimension � 7. Hence they exist in abundance.

We can also use similar ideas to study symplectic cobordism. Corollary B and Theorem G
show that whether 1 ∈ im δ∂ , im Δ∂ are actually contact invariants for ADC manifolds. Hence
they can be used to develop obstructions to symplectic cobordisms. In particular, we have the
following.

Corollary J. Let Y 2n−1 be an ADC contact manifold with a Weinstein filling W such
that c1(W ) = 0 for n � 3. Let V be a Weinstein domain. If one of the following conditions
holds, then there is no Weinstein cobordism from ∂V to Y .

(i) If 1 ∈ im δ∂ for W , and 1 /∈ im δ∂ for V .
(ii) If 1 ∈ im Δ∂ for W , and 1 /∈ im Δ∂ for V .
(iii) If W admits a symplectic dilation, and V does not admit a symplectic dilation.

A stronger version of Corollary J concerning obstructions to exact cobordisms can be
found in Theorem 7.1. Note that usually, an algebraic obstruction to cobordism will come
from SFT type invariants [36], which is difficult to define and compute. However, our
obstruction is based on symplectic cohomology, hence is relatively easy to define and compute
compared to the SFT. As explained in Remark 1.7, it can be understood as an easy
case of some SFT obstructions. In § 7, we use Corollary J to give many pairs of contact
manifolds that admit almost Weinstein cobordisms but no Weinstein cobordism in every
dimension � 5.

1.4. Constructions of ADC manifolds

ADC contact manifolds exist in abundance. Moreover, subcritical and flexible surgeries preserve
the ADC property by the work of Lazarev [37]. In order to provide examples to Theorem I,
we prove two more constructions of ADC manifolds, which bear independent interests.

Theorem K. Let V be an exact domain such that c1(V ) = 0, dimV > 0, then ∂(V × C)
is ADC. If V,W are two exact ADC domains (Definition 3.8) of dimension at least 4 with
vanishing first Chern classes, then ∂(V ×W ) is ADC.
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When V is a Weinstein domain and V × C is a subcritical Weinstein domain, then the
theorem above follows from [37, 64]. Repeatedly using subcritical and flexible surgeries and
Theorem K, we have a lot of examples of ADC contact manifolds, and many of them have
either vanishing symplectic cohomology or symplectic dilation, hence Theorems A and G can
be applied.

1.5. Uniruledness

At last, we discuss a byproduct of proofs of Theorems A and G. Uniruledness in the symplectic
setting was studied by McLean [45], an exact domain W is called (k,Λ)-uniruled if and only
if for every point p in the interior W 0, there is a proper holomorphic curve in W 0 passing
through p with area at most Λ and the domain Riemann surface S has the property that
rankH1(S; Q) � k − 1. McLean showed that the algebraic uniruledness for affine varieties is
rather a symplectic property. Hence it is reasonable to look for symplectic characterization of
uniruledness.

Theorem L. Let W be an exact domain and there exists a symplectic dilation, then W is
(1,Λ)-uniruled, for some Λ ∈ R+.

The specific value of Λ is not relevant, as it is not an invariant with respect to the homotopy
of Liouville forms. The key property needed in order to use results from [45] is that we have
such a Λ that will bound areas of curves from above. The existence of symplectic dilation is
very far from being equivalent to (1,Λ)-uniruledness. In fact, the existence of k-dilation in [69]
will also imply uniruledness. On the other hand, if W is not 1-uniruled, then SH∗(W ) �= 0.
By [45], the algebraic uniruledness is equivalent to symplectic uniruledness. Since the log
Kodaira dimension provides obstruction to algebraic uniruledness for affine varieties, we have
the following corollary, which provides a simple proof of the existence of exotic Stein Cn for
n � 3 by taking complex exotic Cn with nonnegative log Kodaira dimension, which exists in
abundance [66].

Corollary M. Let V be an affine variety of nonnegative log Kodaira dimension, then
SH∗(V ) �= 0 and there is no symplectic dilation. In particular, any complex exotic Cn with
nonnegative log Kodaira dimension is a symplectic exotic Cn.

In particular, any affine variety admitting a Calabi–Yau compactification has nonzero
symplectic cohomology and hence is not displaceable by [32]. Similar results are investigated
in [60].

Organization of the paper

In § 2, we review symplectic cohomology and give a different treatment of the cochain complex
on the zero action part. In § 3, we construct an alternative description of δ∂ and prove
Theorems A–E via neck-stretching. Since we will compare cochain complexes on two different
fillings, naturality is very important. We carry out a detailed discussion on naturality in §§ 2
and 3. In § 4, we review the BV operator and symplectic dilation and construct Δ∂ . Then
we prove Theorem G and show that Δ+,Δ∂ are invariants of exact domains up to exact
symplectomorphisms. In § 5, we discuss uniruledness and prove Theorem L and its corollaries.
In § 6, we prove Theorem K and use the symplectic obstructions introduced in §§ 3 and 4 to
prove Theorem I. In § 7, we discuss obstructions to symplectic cobordisms. In § 8, we generalize
the construction to strong fillings with vanishing first Chern class and finish the proof of
Theorem F. We explain our orientation conventions in the Appendix.
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2. Symplectic cohomology

In this section, we review the basics of symplectic cohomology. However, on the zero action
part, we will use a Morse–Bott construction following [19]. Such modification is important
to the proof of our main theorem and applications to uniruledness. We will first focus on the
theory of exact fillings, the situation for nonexact fillings will be discussed in § 8. We assume our
contact manifolds and fillings are connected throughout the paper unless specified otherwise.

2.1. Hamiltonian–Floer cohomology using cascades

Let W be a Liouville domain with a Liouville form λ. Then we have the completion Ŵ :=
W ∪ ∂W × [1,∞) with the completed Liouville form λ̂. Unless specified otherwise, the Reeb
flow on the contact boundary (∂W, λ|∂W ) is nondegenerate throughout this paper. Let S denote
the length spectrum of the Reeb orbits, that is, the set of periods of periodic orbits. Given a
time-dependent Hamiltonian H on Ŵ , the symplectic action of a contractible loop x : S1 → Ŵ
is defined by

AH(x) := −
∫
S1

x∗λ̂ +
∫
S1

Ht ◦ x(t)dt. (2.1)

Symplectic cohomology is defined as the Floer cohomology of (2.1) for a Hamiltonian H =
r2, r 
 0 [55]. Alternatively, symplectic cohomology can be defined as the direct limit of Floer
cohomology of H = Dr, r 
 0 for D → ∞ [18, 52]. In this paper, we will fix one special
Hamiltonian, and our convention for Hamiltonian vector field is ω(·, XH) = dH. First we
consider a Hamiltonian H = h(r) such that H = 0 on W and H = h(r) when r > 1 such that
h′′(r) > 0 and limr→∞ h′(r) = ∞. Then the periodic orbits of XH are all points in W , and
S1 families of nonconstant periodic orbits corresponding to Reeb orbits γ on ∂W shifted
to the level r, where r is given by h′(r) =

∫
γ
λ|∂W . The action of such orbit is then given

by −rh′(r) + h(r), which is a strictly decreasing function since h′′(r) > 0. Then following
[11], we can put a small time-dependent perturbation supported near each S1 family of
nonconstant periodic orbits, such that the periodic orbits of the perturbed Hamiltonian are
points in W and pairs of nondegenerate nonconstant orbits near each S1 family of nonconstant
periodic orbits of H. We will fix one such perturbed Hamiltonian and call it H. Let P∗(H)
denote the set of nonconstant contractible periodic orbits of H, then H has the following
properties.

(1) H = 0 on W .
(2) H = h(r), such that h′′(r) > 0 on ∂W × (1, ρ] for some ρ and h′(ρ) < minS.
(3) There are nonempty disjoint intervals (ai, bi) moving toward infinity with (a0, b0) =

(1, ρ), such that H|∂W×(ai,bi) is a function f(r) with f ′′(r) > 0 and f ′(r) /∈ S.
(4) There exists 0 = D0 < D1 . . . converging to ∞, such that all periodic orbits of action

� −Di are contained in W i := {r � ai}.

Definition 2.1. A Morse function f on W is admissible if ∂rf > 0 on ∂W and f has a
unique local minimum. The class of admissible Morse functions is denoted by M(W ).

Remark 2.2. H is not strictly Morse–Bott, since the critical points of AH are not Morse–
Bott nondegenerate along ∂W ⊂ W . We will see in Proposition 2.6 that such points are invisible
to our moduli spaces, also see [19].

On the symplectization ∂W × (0,∞), a compatible almost complex structure is called
cylindrical convex if J preserves ξ = kerλ|∂W and J(r∂r) = Rλ, where Rλ is the Reeb vector
field on (∂W, λ|∂W ).
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Definition 2.3. A time-dependent almost complex structure J : S1 → End(TŴ ) is
admissible if and only if the following holds.

(i) J is compatible with dλ̂ on Ŵ .
(ii) J is cylindrical convex on ∂W × (ai, bi).
(iii) J is S1-independent on W .

The class of admissible almost complex structure is denoted by J (W ).

For the Hamiltonian H, we are almost in a Morse–Bott case. We adopt the cascades
treatment [19] of the Morse–Bott situation, hence we pick any admissible Morse function
f on W . Let C(f) denote the set of critical points of f . Let g be a metric on W . Then we define
the following three moduli spaces.

Mx,y := {u : Rs × S1
t → Ŵ

∣∣ ∂su + J(∂tu−XH) = 0, lim
s→−∞u = x, lim

s→∞u = y}/R; (2.2)

Mp,q := {γ : Rs → W
∣∣ d

ds
γ + ∇gf = 0, lim

s→−∞ γ = p, lim
s→∞ γ = q}/R; (2.3)

Mp,y :=

{
u : C → Ŵ ,

γ : (−∞, 0] → W

∣∣∣∣∣∂su + J(∂tu−XH) = 0, ∂sγ + ∇gf = 0,
lim

s→−∞ γ = p, u(0) = γ(0), lim
s→∞u = y,

}
/R; (2.4)

where p, q ∈ C(f), x, y ∈ P∗(H). In (2.4), the R action is the dilation preserving 0, which under
the polar coordinate z = e2π(s+it) is the translation in s. Since ∂rf > 0 on ∂W , the Floer
equation is well defined on C, because the condition u(0) = γ(0) implies u(0) ∈ W 0 (the interior
of W ), where XH = 0 near it. In particular, the Floer equation is the Cauchy–Riemann equation
near 0 ∈ C. There will be no Mx,q, for otherwise the Floer part u will have negative energy.

Remark 2.4. The Morse–Bott situation here is much simpler than [19], since we only
have one nonisolated critical manifold W and its action is the maximum among all critical
points. Therefore only three types of moduli spaces above need to be considered, that is, there
is no cascades with multiple levels. Moreover, when one end is asymptotic to a point in W 0,
that is, in (2.4), the equation degenerates to the Cauchy–Riemann equation, hence there is no
new analysis.

The Gromov–Floer compactification of them is standard and was considered in [19], the
only place that needs attention is (2.4). In particular, the curve u in (2.4) could break at a
point in W . Since we choose J to be convex near ∂W and u(0) ∈ W 0, then the integrated
maximum principle below implies that the component breaking at a point in W is contained
in W . But since W is exact, such configuration cannot exist in the compactification. Moreover,
since J is cylindrical on ∂W × (ai, bi), the integrated maximum principle prevent curves from
escaping to infinity. The following is a special form of the integrated maximum principle of
Abouzaid–Seidel [3], we recall it from [18] and state it for strong fillings, since we will use it
in § 8.

Lemma 2.5 [18, Lemma 2.2]. Let (W,ω) be a strong filling of (Y, α) with completion (Ŵ , ω̂).
Let H : Ŵ → R be a Hamiltonian such that H = h(r) near r = r0. Let J be a ω̂-compatible
almost complex structure that is cylindrical convex on Y × (r0, r0 + ε) for some ε > 0. If both
ends of a Floer cylinder u (that is, the u component in (2.2) and (2.4)) are contained inside
Y × {r0}, then u is contained inside Y × {r0}. This also holds for Hs depending on s ∈ R if
∂sHs � 0 on r > r0 and Hs = hs(r) on (r0, r0 + ε) such that ∂s(rh′

s(r) − hs(r)) � 0 and Js is
cylindrical convex on Y × (r0, r0 + ε).
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The original statement of [18, Lemma 2.2] requires that W is exact and the conditions on
H and J hold on a neighborhood of the hypersurface r = r0. However, their proof is based on
integration of the curve outside r0. Moreover precisely, we can choose a sequence of regular
values ri > r0 of πR ◦ u such that ri → r0. Then the integration argument in [18, Lemma 2.2]
implies that the curve is inside every r = ri hypersurface as long the symplectic manifold is
exact outside r = r0 and the conditions on H and J hold on the (r0, r0 + ε) for some ε > 0.

Proposition 2.6. The Gromov–Floer compactification of the moduli spaces (2.2)–(2.4)
above are the following.

(i) Mx,y := ∪z1,...,zk∈P∗(H)Mx,z1 × . . .×Mzk,y, for x, y ∈ P∗(H).
(ii) Mp,q := ∪r1,...,rk∈C(f)Mp,r1 × . . .×Mrk,q, for p, q ∈ C(f).
(iii) Mp,y := ∪ r1,...,rj∈C(f)

z1,...,zk∈P∗(H)

Mp,r1 × . . .×Mrj ,z1 × . . .×Mzk,y, for y ∈ P∗(H) and p ∈

C(f).

Proof. The claim for (ii) is the standard result in Morse theory. In (i), there are no other
breakings due to action reasons. Curves in Mx,y will not escape to infinity, since Lemma 2.5
can be applied to r ∈ (ai, bi) for some i big enough. For (iii), there exists δ > 0, such that on
∂W × [1 − δ, 1] we have ∂rf > 0. Then the curve u in (2.4) has the property that u(0) ∈ Wδ :=
W\(∂W × (1 − δ, 1]). Then for x ∈ P∗(H), we can consider the following moduli space which
will also be used later:

Bx :=
{
u : C → Ŵ

∣∣ ∂su + J(∂tu−XH) = 0, lim
s→∞u = x, u(0) ∈ Wδ

}
/R. (2.5)

Then we claim the Gromov–Floer compactification of Bx is given by

Bx :=
⋃

x1,...,xk∈P∗(H)

Bx1 ×Mx1,x2 × . . .×Mxk,x.

This is because if there is a limit curve with a nontrivial component, u breaks in W . Since
AH is not Morse–Bott along ∂W , hence it may not be true that lims→∞ u exists. However, we
still have the limit set of u for s → ∞ is contained in W . Since we can apply Lemma 2.5 to
r = 1, hence u is contained in W and then the equation degenerates to the Cauchy–Riemann
equation and u extends to CP1 by removal of singularity for J-curves. Due to the exactness
assumption, there is no such nontrivial curve. It is clear that the compactness of Bx implies
the claim on (iii). �

If c1(W ) = 0, then there is a Z-grading assigned to elements of C(f), P∗(H) by

|p| = ind p, p ∈ C(f); |x| = n− μCZ(x), x ∈ P∗(H).

The convention here is consistent with the grading rule in [52], that is, the unit will have grading
0. For each component of Ma,b, we can assign a well-defined virtual dimension virdimMa,b :=
|a| − |b| − 1. In general, the above assignment defines a Z/2-grading.

Remark 2.7. Most of the results in this paper except those in § 5 require a Z-grading, hence
we will impose the c1(W ) = 0 condition in most situations. To get a Z-grading on symplectic
cohomology generated by contractible orbits, one only needs c1(W )|π2(W ) = 0. One special
case of such condition is c1(W ) is torsion. All results in the paper holds for this generalized
condition. However, it seems that such generalization does not add many new examples. Hence
we state all results in the simplified condition c1(W ) = 0.

The following transversality is standard in symplectic cohomology. If we allow the Morse
function to be generic, then transversality is easy to see. Using generic Morse function is
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enough for this paper, but for simplicity, we show transversality for any admissible Morse
function f , this is made possible by that the evaluation map on the universal moduli spaces is
submersive [43, §3.4].

Proposition 2.8. For every admissible Morse function f , let g be a metric on W such
that (f, g) is a Morse–Smale pair. Then there exists a subset J�1

reg(H, f, g) ⊂ J (W ) of second

category (in particular it is dense), such that for every J ∈ J�1
reg(H, f, g), Mx,y is a compact

manifold of dimension |x| − |y| − 1 with boundary when |x| − |y| � 2 for x, y ∈ C(f) ∪ P∗(H)
and ∂Mx,y = ∪z∈C(f)∪P∗(H)Mx,z ×Mz,y. Here � 1 indicates that transversality holds for
moduli spaces up to dimension 1.

Proof. The situation for Mp,q, p, q ∈ C(f) follows from the Morse–Smale assumption, and
the situation for Mx,y, x, y ∈ P∗(H) is standard on symplectic cohomology. Hence we need
to prove transversality for Mp,y, y ∈ P∗(H), p ∈ C(f). We consider the uncompactified moduli
space By in (2.5). Using the standard argument by universal moduli spaces and u is somewhere
injective [25], the universal moduli space

By,J l := {u : C → Ŵ , J ∈ J l(W )|∂su + J(∂tu−XH) = 0, lim
s→∞u = y, u(0) ∈ W 0}/R. (2.6)

is cut out transversely, where J l(W ) is the Banach manifold of Cl admissible almost complex
structures. Moreover, by [43, Proposition 3.4.2, Lemma 3.4.3], ev0 : Bx,J l → W 0, u �→ u(0) is
transverse to all stable manifolds of ∇gf . Then by the Sard–Smale theorem, there is a second
category subset of J l(W ), such that the uncompactified Mp,y is cut out transversely. Then
using the argument of Taubes [25, Theorem 5.1], we get a second category subset J�1

reg (f, g) of
smooth admissible almost complex structures where transversality holds†. Since the breaking
in Mp,y is either a Morse breaking at a critical point of f or a Floer breaking at a nonconstant
periodic orbit of H, in particular no new gluing analysis is required. This finishes the proof. �

Moreover, M∗,∗ can be equipped with orientations following [24]. We use ± instead of ∪
to indicate the relation on orientations in a union. For example, M∗,∗ is oriented such that
∂Mx,y =

∑
Mx,z ×Mz,y, that is, the boundary orientation is the product orientation. We

explain our orientation convention in the Appendix. In the following, we will use the coherent
orientations without proof.

Using the almost complex structure J in Proposition 2.8, we can define the following cochain
complexes by counting M∗,∗.

(1) C(H, J, f) is a free Z-module generated by P∗(H) ∪ C(f).
(2) C0(H, J, f) is a free Z-module generated by C(f).
(3) C+(H, J, f) is a free Z-module generated by P∗(H).

The differentials are defined by

dy =
∑
x

#Mx,yx.

Since each Floer cylinder has nonnegative energy, we have that Mx,y �= ∅ implies AH(x) �
AH(y). Hence there are finitely many x such that Mx,y �= ∅ for a fixed y. In particular, the
differential is well defined. C0(H, J, f) is the Morse complex of f on W and a subcomplex of
C(H, J, f), hence we abbreviate it to C0(f). We abbreviate the quotient complex C+(H, J, f)

†An alternative approach to get smooth almost complex structures is by considering smooth complex
structure with derivative controlled by a sequence ε0, ε1, . . ., see [23, §5]. For results in this paper, using Cl

almost complex structures is also sufficient.
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to C+(H, J) since it does not depend on f (even the regularity requirement for J to define
C+(H, J) does not depend on f).

Remark 2.9. In this paper, the default coefficient is Z, since usually the Z-coefficient theory
carries more information. However, all results in this paper hold for any coefficient except for
the results in § 8, where we need to use the Novikov coefficient over Q.

By construction, there is a tautological short exact sequence,

0 → C0(f) → C(H , J, f) → C+(H, J) → 0, (2.7)

We use d0, d+ to denote the differential on C0(f) and C+(H, J), respectively. Let d+,0 denote
the map from C+(H, J) to C0(f) in the definition of d for C(H, J, f). Then d+,0 is a
cochain map C+(H, J) → C0(f)[1], and it induces the connecting map δ : H∗(C+(H, J)) →
H∗+1(C0(f)) in the induced long exact sequence. d+,0 is defined by counting Mp,y for y ∈
P∗(H) and p ∈ C(f). Moreover, since the differential always increases action, for every i ∈ N,
we can define CDi(H, J, f) and CDi

+ (H, J) to be the subcomplexes of C(H, J, f), C+(H, J)
generated by orbits with action � −Di, or equivalently those contained in W i. Moreover, by
Lemma 2.5, the curve appears in the differential of CDi

(+) is contained in W i. We will call it the
length filtration, and in the exact case, it coincides the action filtration. Then we have

lim−→H∗(CDi(H, J, f)) = H∗(C(H , J, f)), lim−→H∗(CDi
+ (H, J)) = H∗(C+(H)),

similarly for the tautological long exact sequence.
The next proposition shows that what we defined is a model for the symplectic cohomology.

Proposition 2.10. There are isomorphisms SH∗(W ) → H∗(C(H , J, f)) and SH∗
+(W ) →

H∗(C+(H, J)), such that the following long exact sequences commutes

Proof. We prove the isomorphism using a continuation argument from a nondegenerate
Hamiltonian. We use another Hamiltonian H, such that H = H on ∂W × [ρ,∞), H = h(r)
with h′′(r) > 0 on ∂W × [1, ρ] and h′(ρ) < minS. Moreover, H � H everywhere and H is a C2

small admissible Morse function on W . Then for a generic choice of J1, the Floer cohomology
of AH defines SH∗(W ) and SH∗

+(W ). Then we choose a homotopy Hs such that Hs = H
when s < 0, Hs = H when s > 1 and Hs = H = H when r � ρ and ∂sHs � 0. Let Js be a
homotopy of admissible almost complex structures such that Js = J, s < 0 and Js = J1, s > 1.
Let P(H) denote the set of contractible periodic orbits of H, then we have P∗(H) = P∗(H)
and P(H) = P∗(H) ∪ C(H|W ). Then we define the following moduli spaces,

Nx,y := {u
∣∣ ∂su + Js(∂tu−XHs

) = 0, lim
s→−∞u = x, lim

s→∞u = y}, (2.8)

x ∈ P∗(H), y ∈ P∗(H).

Np,y :=

{
u : C → Ŵ ,

γ : (−∞, 0] → W

∣∣∣∣∣∂su + Js(∂tu−XHs
) = 0, ∂sγ + ∇gf = 0,

lim
s→−∞ γ = p, u(0) = γ(0), lim

s→∞u = y

}
, (2.9)

p ∈ C(f), y ∈ P(H).
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Since we assume ∂sH � 0, Nx,y �= ∅ implies that AH(x) � AH(y) by energy reasons. Therefore
if x ∈ P∗(H), y ∈ C(H|W ), then Nx,y = ∅. By the same reason in Proposition 2.6, we have the
following compactification,

Na,b =
⋃

a1∈C(f)∪P∗(H),
b1∈P(H)

Ma,a1 ×Na1,b1 ×Mb1,b.

Similarly, we can find a generic Js such that transversality holds for all moduli spaces of
dimension � 1. This would yield a cochain map Φ from C(H, J) to C(H , J, f). Note that
Φ preserves the length filtration and induces isomorphism on the first page of the spectral
sequence. This is because on the action between −Di+1 and −Di part, Φ induces identity on
the first page, since Hs = H = H there. This shows Φ is a quasi-isomorphism on the positive
symplectic cohomology. On the part with action close to 0, the contribution to Φ is from
Np,y for y ∈ C(H|W ), then we can apply Lemma 2.5 to r = ρ. Hence everything is contained
in W ∪ ∂W × [1, ρ]. Then following [25], for Hs|W∪∂W×[1,ρ] sufficiently C2-small, there exists
regular Js independent of t ∈ S1. Then the moduli space can be identified with the usual
continuation map in Morse theory. This shows Φ is a quasi-isomorphism and induces the
commutative diagram of exact sequences. �

Remark 2.11. If we consider the continuation map from C(H, J, f) to C(H, J1), then we
need to flow in the direction of ∇gf from p ∈ C(f). Thus the degenerate ∂W may not be
invisible anymore. This could cause problem in compactness and Fredholm setups. As pointed
out in [19, §5], the difficulty can be overcome by choosing a particular homotopy.

2.2. Naturality of the construction

Since we will need to change almost complex structure in the neck-stretching process and
compare things in two different domains, to keep track of the naturality of maps we write
down, it is important to specify the choice of almost complex structure and the regularity
requirement. To emphasize this aspect, we will always spell out the almost complex structure
when needed.

In order to prove d2 = 0, we need transversality for moduli spaces up to dimension 1.
However, to define d+ or d, we only need transversality for moduli spaces up to dimension
0. Therefore we have another two larger second category subsets of J (W ): Jreg,+(H) ⊃
Jreg(H, f, g) ⊃ J�1(H, f, g) so that d+ and d are defined, respectively. Similarly, we define
JDi

reg,+(H), JDi
reg (H, f, g), that is, sets of admissible almost complex structures such that d+, d

are defined on CDi
+ (H, J) and CDi(H, J, f), respectively. Due to the a priori energy control,

JDi
reg are open.

Proposition 2.12. Let J ∈ Jreg,+(H) or Jreg(H, f, g), then d+, d are differentials, respec-
tively.

Proof. We will show that d2
+ = 0 on CDi

+ (H, J), the other cases are similar. Since we have
an a priori energy bound, by compactness, there exists an open neighborhood U ⊂ J (W ) of J ,
such that U ⊂ JDi

reg,+(H). Since J�1
reg (H, f, g) is dense, we choose J ′ ∈ U ∩ J�1

reg (H, f, g). Let
d+,J′ be the differential defined using J ′, then d2

+,J′ = 0. We claim d+ = d+,J′ . Let Js, s ∈ [0, 1]
be a smooth path connecting J and J ′ in U , we can consider the moduli space ∪sMx,y,Js

for
|x| − |y| = 1. The regularity of each Js implies that it is a compact manifold with boundary
Mx,y,J and Mx,y,J′ , since other boundary will involve Mx′,y′,Js

with |x′| − |y′| � 0, which is
empty by regularity of Js. This proves the claim. �
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Remark 2.13. Using Jreg instead of J�1
reg is important in the neck-stretching argument.

The index room provided by the ADC condition only allows us to argue that moduli spaces
Mx,y up to dimension zero stays completely in the symplectization of the boundary and are
regular after neck-stretching. This forces us to use J ∈ Jreg instead of J�1

reg , see Remark 3.13
for details.

Next we recall the continuation map when varying J . Given J1, J2 ∈ Jreg(H, f, g) and
homotopy Js ∈ J (W ) such that Js = J2 for s < 0 and Js = J1 for s > 1, then we can define
the following moduli spaces.

(1) For x, y ∈ P∗(H), Nx,y is defined to be the compactification of the following

{u
∣∣ ∂su + Js(∂tu−XH) = 0, lim

s→−∞u = x, lim
s→∞u = y}.

(2) For p ∈ C(f), y ∈ P∗(H), Np,y is defined to be the compactification of the following{
u : C → Ŵ ,

γ : (−∞, 0] → W

∣∣∣∣∣∂su + Js(∂tu−XH) = 0, ∂sγ + ∇gf = 0,
lim

s→−∞ γ = p, u(0) = γ(0), lim
s→∞u = y

}
.

Then for generic choice of Js, the moduli space Na,b is a compact manifold with boundary
of dimension |a| − |b| whenever |a| − |b| � 1. The boundary configuration of Nx,y implies the
following cochain map

ΦJs
: C∗(H, J1, f) → C∗(H, J2, f),

⎧⎪⎨⎪⎩
y �→

∑
|a|−|y|=0,

a∈P∗(H)∪C(f)

#Na,ya, y ∈ P∗(H),

q �→ q, q ∈ C(f).

Similarly for J1, J2 ∈ Jreg,+(H), for generic choice of Js, we defined the following cochain map.

ΦJs,+ : C∗
+(H, J1, f) → C∗

+(H, J2, f), y �→
∑

|x|−|y|=0,
y∈P∗(H)

#Nx,yx.

Then we have the following standard result on the naturality of the construction.

Proposition 2.14. Cochain morphisms ΦJs
and ΦJs,+ up to homotopy are independent

of the choice of Js. Moreover, it is functorial with respect to concatenation of homotopies up
to homotopy.

This proposition follows from a standard homotopy argument, cf. [6]. Since we are not varying
H, the analytic setups are similar to Propositions 2.6 and 2.8. Hence we omit the proof. By
Proposition 2.14, we may suppress Js in Φ,Φ+. Another observation is that Φ(CDi(H, J, f)) ⊂
CDi(H, J, f), similarly for CDi

+ (H, J), we use ΦDi ,ΦDi
+ to denote the restrictions, they also

satisfy Proposition 2.14. Similar to Proposition 2.12, we only need regularity of Js for moduli
spaces up to dimension 0 to get well-defined ΦDi ,ΦDi

+ . The key property we need in the
neck-stretching is the following.

Lemma 2.15. Assume that we have a smooth family Js : [0, 1] → JDi
reg(H, f, g)

or JDi
reg,+(H), then ΦDi : CDi(H, Ja, f) → CDi(H, Jb, f) or ΦDi

+ : CDi
+ (H, Ja, f) →

CDi
+ (H, Jb, f) are identities (up to homotopy) for any 0 � a, b � 1, respectively.

Proof. We prove the CDi case, as the CDi
+ case is similar. It is sufficient to prove the following:

for any a ∈ [0, 1], there exists a δ > 0 such that for every |b− a| < δ, we have ΦDi is homotopic
to identity from the chain complex using Ja to the one using Jb. Let ρ(s) be a smooth function
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such that ρ(s) = 0 for s � 0 and ρ(s) = 1 for s � 1. Then we have a family of homotopies of
almost complex structures Jε,s = Ja+ερ(s) for ε in a neighborhood of 0. In the following, by
a regular homotopy of almost complex structures, we mean a homotopy of almost complex
structures such that moduli spaces up to dimension 0 in the definition of continuation map
are cut out transversely. Then J0,s ≡ Ja is a regular homotopy of almost complex structures
and the continuous map is identity corresponding to constant cylinders over periodic orbits.
Since there is a universal energy bound when restricted on CDi , by compactness, there exists
δ > 0 such that if |ε| < δ, Jε,s is a regular homotopy. It is clear that the trivial cylinders on
periodic orbits contribute to the continuation map. But there are no other contribution, due
to compactness and that J0,s has no other contributions to the continuation map. �

Remark 2.16. From Proposition 2.12, d is constant on each Js. Lemma 2.15 says the
obvious identification is natural, that is, it is the continuation map, which has the functorial
property in Proposition 2.14.

In Proposition 2.12, we know that d+ on CDi
+ is defined using J ∈ JDi

reg,+(H). We still
need to verify that d+,0 is well defined on CDi

+ for later application. Following the proof of
Proposition 2.12, let U ⊂ J (W ) be an open neighborhood of J that is contained in JDi

reg,+(H).
Pick any J ′ ∈ U ∩ Jreg(H, f, g), then d+,0,J ′ is defined, and by Proposition 2.12 it is a cochain
map using d+ defined by J since d+ is locally constant.

Proposition 2.17. d+,0 above is well defined on CDi
+ up to homotopy.

Proof. Let J ′′ �= J ′ ∈ U ∩ Jreg(H, f, g), then there exists a regular homotopy Js connecting
J ′′ and J ′, and the continuation map gives the following relation

Φ+,0 ◦ d+,J′′ + d+,0,J ′′ = d+,0,J ′ ◦ Φ+ + d0 ◦ Φ+,0.

By Lemma 2.15 and Proposition 2.14, Φ+ is homotopic to identity. By the argument in
Proposition 2.12, d+,J′ = d+,J′′ = d+. This implies that d+,0,J ′′ and d+,0,J ′ are homotopic
as cochain maps from CD

+ (H, J) → C0(f)[1]. �

The above discussion shows that, down to an action lower bound, we only need regularity
for moduli spaces up to dimension 0 to define differentials or cochain maps up to homotopy.

3. Invariance of restriction map and persistence of vanishing

In this section, we prove Theorem A, the strategy of the proof is contained in the following
picture, which we will explain in detail.

3.1. Morse description of the restriction H∗(W ) → H∗(∂W )

In this section, we assume admissible Morse function f satisfies ∂rf > 0 on ∂W × [1 − ε, 1].
Let h be a Morse function on ∂W × {1 − ε}. We pick Riemannian metrics g, g∂ on W and
∂W × {1 − ε}, respectively. Then we can define the following moduli spaces

Rp,q :=

⎧⎨⎩γ1 : (−∞, 0] → ∂W × {1 − ε}
γ2 : [0,∞) → W

∣∣∣∣∣∣
d
dsγ1 + ∇g∂h = 0, d

dsγ2 + ∇gf = 0,

lim
s→−∞ γ1 = p, γ1(0) = γ2(0), lim

s→∞ γ2 = q

⎫⎬⎭,

where p ∈ C(h), q ∈ C(f). By adding broken flow lines in W and on ∂W × {1 − ε}, we have
that Rp,q admits a compactification Rp,q. Then we have the following.
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Figure 1. Pictorial proof of Theorem A.

Proposition 3.1 [34, Proposition 2.2.8]. Given f, h as above, there exist generic metrics
g, g∂ , such that the unstable manifolds of ∇gf intersect stable manifolds of ∇g∂h transversely
in W . Then Rp,q is a manifold with boundary of dimension |p| − |q| if |p| − |q| � 1. When
dimRp,q = 1,

∂Rp,q = −
∑

∗∈C(h)

Mp,∗ ×R∗,q +
∑

∗∈C(f)

Rp,∗ ×M∗,q.†

†Then counting Rp,q defines a cochain map R : C(f) → C(h) between Morse cochain
complexes. And on cohomology, it is the restriction map H∗(W ) → H∗(∂W × {1 − ε}) =
H∗(∂W ).

In the following, we fix (f, g, h, g∂) such that Proposition 3.1 holds. Therefore on the complex
level, the composition of SH∗

+(W ) → H∗+1(W ) → H∗+1(∂W ) is given by the composition of
C+(H, J) → C0(f)[1] → C(h)[1], with the map defined by counting the moduli space Rp,q ×
Mq,y for y ∈ P∗(H), p ∈ C(h), q ∈ C(f), which is the l = ∞ part of Figure 1. Next we show
that the middle C0(f)[1] can be bypassed. First, we define the following moduli space

Pp,y :=

{
u : C → Ŵ

γ : (−∞, 0] → ∂W × {1 − ε}

∣∣∣∣∣∂su + J(∂tu−XH) = 0, d
dsγ + ∇g∂h = 0,

lim
s→−∞ γ = p, u(0) = γ(0), lim

s→∞u = y

}
/R,

for p ∈ C(h), y ∈ P∗(H), where the R-dilation acts on the u part. The equation makes
sense, since on ∂W × {1 − ε} we have H = 0. Then we have a compactification Pp,y and
when transversality holds, it defines a map from C+(H, J) → C(h)[1], which is the l = 0
part of Figure 1. In the following, we will show that it is homotopic to the composition
C+(H, J) → C0(f)[1] → C(h)[1]. To such purpose, we define the following moduli space for
p ∈ C(h), y ∈ P∗(H) involving finite time flow lines of ∇gf ,

Hp,y :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u : C → Ŵ ,

l > 0,
γ1 : (−∞, 0] → ∂W × {1 − ε},
γ2 : [0, l] → W

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂su + J(∂tu−XH) = 0,
d
dsγ1 + ∇g∂h = 0,
d
dsγ2 + ∇gf = 0,
lim

s→−∞ γ1 = p, γ1(0) = γ2(0),

u(0) = γ2(l), lim
s→∞u = y

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
/R,

†That is, the boundary orientation on Mp,∗ ×R∗,q is the opposite of the product orientation and the
boundary orientation on Rp,∗ ×M∗,q is the product orientation.
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where the R-dilation acts on the u part. In addition to configurations of breaking at an
orbit in P∗(H) or a point in C(f), the compactification of Hp,y also contains Rp,q ×Mq,y

corresponding to l = ∞, that is, a Morse breaking of the middle gradient flow line in W , and
Pp,y corresponding to l = 0 on the nose. In particular, we have the following.

Proposition 3.2. Hp,y has a compactification

Hp,y := Hp,y ∪q∈C(f) Rp,q ×Mq,y ∪ Pp,y ∪q,∈C(f),x∈P∗(H) Mp,q ×Hq,x ×Mx,y.

For a generic choice of J , any p, y such that |p| − |y| � 2, we have Hp,y is a manifold with
boundary of dimension |p| − |y| − 1. And

∂Hp,y =
∑

q∈C(f)

Rp,q ×Mq,y − Pp,y +
∑

x∈P∗(H)

Hp,x ×Mx,y +
∑

q∈C(h)

Mp,q ×Hq,y.

To keep track of the regularity of almost complex structures, we introduce the following
notations.

(1) J�1
reg,P (H, h, g∂) is the set of regular admissible J for moduli spaces Pp,y of dimension up

to 1. And JDi

reg,P (H, h, g∂) is the set of regular admissible J for moduli spaces Pp,y of dimension
up to 0 and action down to −Di.

(2) J�1
reg,H(H, f, g, h, g∂) is the set of regular admissible J for moduli spaces Hp,y of

dimension up to 1.

Then all of them are of second category, and JD
reg are open. By looking at the potential

boundary configurations, we have various relations among Jreg, for example, J�1
reg,P (H, h, g∂) ⊂

JDi
reg,+(H), J�1

reg,H(H, f, g, h, g∂) ⊂ JDi
reg (H, f, g) ∩ JDi

reg,P (H, h, g∂).
An instant corollary of Proposition 3.2 is that if J ∈ J�1

reg (H, f, g) ∩ J�1
reg,P (H, f, g) ∩

J�1
reg,H(H, f, g, h, g∂), then the composition of C+(H, J) → C0(f)[1] → C(h)[1] is homotopic

to P : C+(H, J) → C(h)[1] defined by counting Pp,y. The following proposition is in the same
spirit of Proposition 2.17. Since P is defined on CDi

+ if J ∈ JDi

reg,P (H, h, g∂) and d+,0 is defined
if J ∈ JDi

reg,+(H), the following proposition shows that they are the same up to homotopy for
such J of low regularity.

Proposition 3.3. Let J ∈ JDi
reg,+(H) ∩ JDi

reg,P (H, h, g∂), then P is defined. In this case,

R ◦ d+,0 is homotopic to P on CDi
+ (H, J, f). P is compatible with continuation maps on CDi

+

up to homotopy, that is, the following is commutative up to homotopy,

Proof. There exists an open neighborhood U ⊂ J (W ) of J contained in JDi
reg,+(H) ∩

JDi

reg,P (H, h, g∂). Then using J ′ ∈ U ∩ J�1
reg (H, f, g) ∩ J�1

reg,P (H, f, g) ∩ J�1
reg,H(H, f, g, h, g∂),

we have that P defines a cochain map homotopic to R ◦ d+,0,J ′ . By Proposition 2.17, d+,0,J ′

is well defined up to homotopy for different J ′. Finally, similar to Proposition 2.12, d+, P are
locally constant. The compatibility with continuation map is standard, where the homotopy is
defined by considering moduli spaces similar to P∗,∗ but with an s-dependent almost complex
structure and without quotienting the R-action (which does not exist). �
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All the above discussions about naturality lead to the following proposition that will be used
in the proof of Theorem A.

Proposition 3.4. Let J i ∈ JDi
reg,+(H) ∩ JDi

reg,P (H, h, g∂), then the direct limit of the

following computes SH∗
+(W ) → H∗+1(∂W ):{

H∗(CD1
+ (H, J1)) → H∗(CD2

+ (H, J2)) → . . .
}
→ H∗+1(∂W ),

where the horizontal arrows in the bracket are continuation maps and maps H∗(CDi
+ (H, Ji)) →

H∗+1(∂W ) are defined by P .

Proof. Pick a regular enough J , such that the direct limit of{
H∗(CD1

+ (H, J)) → H∗(CD2
+ (H, J)) → . . .

}
→ H∗+1(∂W )

computes SH∗
+(W ) → H∗+1(∂W ). By Proposition 3.3 and functoriality of continuation maps,

this diagram is isomorphic to the sequence in the claim by continuation maps. �

3.2. Independence

Asymptotically dynamically convex (ADC) contact manifolds was introduced in [37]. Let (Y, ξ)
be a 2n− 1 dimensional contact manifold with a contact form α, then we define

P<D(α) :=
{
γ

∣∣∣∣γ is a contractible Reeb orbit and
∫
γ

α < D

}
.

If c1(ξ) = 0, then for any contractible nondegenerate Reeb orbit x, there is an associated
Conley–Zehnder index μCZ(x) ∈ Z. The degree of x is defined to be deg(x) := μCZ(x) + n− 3.

Definition 3.5. Let (Y, ξ) be a contact manifold. Y is called k-ADC if and only if there
exists a sequence of contact form α1 > . . . > αi > . . . and real numbers D1 < . . . < Di < . . . →
∞, such that all (contractible) Reeb orbits in P<Di(αi) are nondegenerate and have degree
greater than k. Y is called strongly k-ADC if, in addition, all Reeb orbits of αi with period
smaller than Di are contractible. We will abbreviate (strongly) 0-ADC manifolds to (strongly)
ADC manifolds.

Remark 3.6. In general, when c1(ξ) = 0, choosing a trivialization of detC ξ will assign a
Conley–Zehnder index to every Reeb orbit. The Conley–Zehnder index of γ is independent of
trivializations if γ is annihilated by H1(Y ; Z) = [Y, S1] (which is the space of trivializations up
to homotopy), that is, β(γ) = 0 for any β ∈ H1(Y ; Z) in the pairing H1(Y ; Z) ⊗H1(Y ; Z) → Z.
The reason of considering topologically simple filling W is to make sure a Reeb orbit γ
contractible in W is assigned with a well-defined Conley–Zehnder index using only the
boundary. From this point of view, one can consider a slight generalization of ADC manifolds
and their topologically simple fillings, that is, P<D now stands for orbits annihilated by
H1(Y ; Z) with period < D and topologically simple filling now requires H1(W ; Z) → H1(Y ; Z)
is injective and c1(W ) = 0. Most results in the paper hold in such setting too.

Example 3.7. Contact manifolds admitting flexible Weinstein fillings with vanishing first
Chern class are ADC by the work of Lazarev [37] and are strongly ADC for subcritically fillable
contact manifolds. Moreover, Lazarev showed that ADC is preserved under flexible surgery†.

†Some extra conditions need to be satisfied when attaching a 2-handle, cf. [37, Theorem 3.17].



SYMPLECTIC FILLINGS OF ADC MANIFOLDS 131

Cotangent bundle T ∗M is ADC whenever dimM � 4. Quantization bundles over a positive
monotone symplectic manifold are ADC, whenever the degree of the bundle is not too big.

In the following, we introduce an analogous definition for filling, which will be used in the
construction of ADC manifolds in § 6. Assume contact manifold (Y, ξ) has a symplectic filling
W with c1(W ) = 0. Let x be a nondegenerate Reeb orbit, if x is contractible in W , then a
canonical Conley–Zehnder index can be assigned.

Definition 3.8. Let (W,λ) be a Liouville domain with c1(W ) = 0. W is called k-ADC
if there exist positive functions on ∂Wf1 > . . . > fi > . . . and real numbers D1 < . . . < Di <
. . . → ∞, such that all contractible (in W ) Reeb orbits of (∂W, fiλ) with period smaller than Di

are nondegenerate and have degree greater than k. W is called strongly k-ADC if, in addition,
all Reeb orbits of fiλi with period smaller than Di are contractible in W . In particular, if W
is ADC, then ∂W is also ADC.

Example 3.9. In § 6, we show that V × C is always ADC for any Liouville domain V with
c1(V ) = 0 and dimV > 0. V ×W is always ADC, given V,W are both ADC Liouville domains
of dimension � 4. They provide more examples of ADC contact manifolds.

Example 3.10. It is possible that ∂W is ADC but W is not ADC, the source of this
discrepancy is that we can have Reeb orbits that are noncontractible in the boundary but are
contractible in the filling and have low SFT degree. For example, S1 is ADC, but the D disk
is not ADC.

Remark 3.11. Dynamical convexity was introduced in [31] on (S3, ξstd) as a substitute of
the geometric convexity. For (S2n−1, ξstd), a contact form is dynamical convex if the minimal
Conley–Zehnder index is n + 1, as it is the case for convex hypersurfaces in R2n. Note that this
is the lowest degree that is nontrivial in the cylindrical contact homology of (S2n−1, ξstd).
Following this idea, Abreu–Macarini [4] defined dynamical convex for a larger class of
contact manifolds, as a property of contact forms. Although with similar names, Lazarev’s
asymptotically dynamically convexity has a very different motivation, which is a generalization
of index-positive in [18] and is related to the existence of nice contact forms introduced in
[22]. It is clear that ADC is equivalent to sup α1>α2>...,

D1<D2<...→∞
(infx∈P<Di (αi),i∈N deg(x)) > 0. Such

number is an invariant of the contact topology. A similar number was defined by McLean [46]
and shown to be equal to twice the minimal discrepancy for a large class of isolated singularities,
when it is nonnegative. In particular, the link is ADC if the singularity is terminal.

From the first glance of Pp,y, Pp,y has some chance to be independent of the filling since both
p, y only depend on the contact boundary. However, the curve u in Pp,y may rely on the filling.
If we have the ADC property, a neck-stretching argument implies that Pp,y actually does not
see the interior of W . Neck-stretching argument was used to show independence of SH∗

+(W )
in [18] for index-positive convex manifolds. It is easy to show H∗(CDi

+ (H, J)) → H∗+1(∂W )
is independent of filling for any Di by neck-stretching. But we also need some naturality of
the independence. In the case of independence of SH∗

+(W ), naturality was discussed carefully
in [37, Proposition 3.8] for ADC manifolds. In the following, we give a simplified treatment.
Since in our case H will not change and is already constant on W , we can bypass the Viterbo
transfer map in the proof of [37, Proposition 3.8].

Let (Y, α) be an ADC contact manifold with two topologically simple fillings W1,W2 with
fixed Hamiltonians H1 = H2 = H outside W1,W2 as in § 2. Note that W1,W2 both contain
the negative end of symplectization (Y × (0, 1),d(rα)). Since Y is ADC, for every i ∈ N+, there
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Figure 2. Yi ⊂ ̂W∗

Figure 3. Moduli spaces for the definition of JDi
reg,SFT (H, h, g∂).

exist contact type surfaces Yi ⊂ Y × (0, 1 − ε) ⊂ W1,W2, such that Yi lies outside of Yi+1 and
contractible Reeb orbits of contact form rα|Yi

has the property that the degree of an orbit is
greater than 0 if the period of the orbit is smaller than Di, see Figure 2.

Neck-stretching near Yi is given by the following. Assume Yi × [1 − εi, 1 + εi]ri does not
intersect each other for some small εi. Assume J |Yi×[1−εi,1+εi]ri

= J0, where J0 is independent
of S1 and ri and J0(ri∂ri) = Ri, J0ξi = ξi, where ξi = ker rα|Yi

. Then we pick a family of
diffeomorphism φR : [(1 − εi)e1− 1

R , (1 + εi)e
1
R−1] → [1 − εi, 1 + εi] for R ∈ (0, 1] such that φ1 =

id and φR near the boundary is linear with slope 1. Then the stretched almost complex structure
NSi,R(J) is defined to be J outside Yi × [1 − εi, 1 + εi] and is (φR × id)∗J0 on Yi × [1 − εi, 1 +
εi]. Then NSi,1(J) = J and NSi,0(J) gives almost complex structures on the completions of
the cobordism between Y and Yi, the filling of Yi and the symplectization Yi × R+. Since we
need to stretch along different contact surfaces, we assume the NSi,R(J) have the property
that NSi,R(J) will modify the almost complex structure near Yi+1 to a cylindrical almost
complex structure for R from 1 to 1

2 and for R � 1
2 , we only keep stretching along Yi. We use

JDi

reg,SFT (H, h, g∂) to denote the set of admissible regular J , that is, almost complex structures
satisfying Definition 2.3 on the completion of the cobordism between Y and Yi and asymptotic
(in a prescribed way as in the stretching process) to J0 on the negative cylindrical end, such
that the following two moduli spaces in Figure 3 up to dimension 0 with action of the positive
end � −Di are cut out transversely. It is an open dense set.

Proposition 3.12. With setups above, there exist admissible J1
1 , J

2
1 , . . . , J

1
2 , J

2
2 , . . . on Ŵ1

and Ŵ2, respectively, and positive real numbers ε1, ε2, . . . <
1
2 such that the following holds.

(i) For R < εi and any R′, NSi,R(J i
∗), NSi+1,R′(NSi,R(J i

∗)) ∈ JDi
reg,+(H) ∩

JDi

reg,P (H, h, g∂). Moreover, for such almost complex structures, all zero-dimensional
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moduli spaces Mx,y and Pp,y are the same for both W1,W2 and contained outside Yi for
x, y ∈ P∗(H) with action � −Di, q ∈ C(h).

(ii) J i+1
∗ = NSi,

εi
2
(J i

∗) on W i
∗.

Proof. We prove the proposition by induction. We first choose a J1 such that NS1,0(J1) ∈
JD1

reg,SFT (H, h, g∂). Assume Mx,y is not contained outside Y1 in the stretching process. Then a
limit curve u outside Y1 has one component by [18, Lemma 2.4]†. Moreover, by the argument
in [18, Lemma 2.4], u can only be asymptotic to Reeb orbits γj that are contractible in W∗ on
Y1 with period smaller than D1. Since W∗ is topological simple, γj is contractible in Y1. Note
that ind(u) = |y| − |x| −

∑
(μCZ(γj) + n− 3) < 1 as μCZ(γj) + n− 3 > 0. Since we need to

quotient the R-action, the expected dimension of the moduli space of such u is negative. By our
regularity assumption on NS1,0(J1), u is cut out transversely, which contradicts its existence.
Hence for R close to 0, using NS1,R(J1), we have Mx,y lives outside Y1. Since NS1,0(J1) ∈
JD1

reg,SFT (H, h, g∂) and every curve in Mx,y lives outside Y1, we have NS1,R(J1) ∈ JD1
reg,+(H)

for R small. Similarly, we have the same property for Px,q and NS1,R(J1) ∈ JD1
reg,H(H, h, g∂) for

R small. The argument can be applied to stretching on both Y1, Y2 and a compactness argument
shows that for every R′ ∈ [0, 1], there exists εR′ > 0 and δR′ > 0 such that the same regular and
outside property hold for NS2,δ(NS1,ε)(J1) for ε < εR′ and |δ −R′| < δR′ . Therefore Claim (i)
holds for some ε1. Since NS2,0(NS1,0(J1)) has the property that all curves in Figure 3 with
x, y ∈ CD1

+ must be contained outside Y1, that is, curves in Mx,y,Pp,y (which are viewed as limit
curves after stretching), then we may assume ε1 is small enough such that NS2,0(NS1,

ε1
2

(J1)) ∈
JD1

reg,SFT (H, h, g∂). Therefore we can perturb NS1,
ε1
2

(J1) outside W 1
∗ near orbits in W 2

∗ \W 1
∗

to J2 such that NS2,0(J2) ∈ JD2
reg,SFT (H, h, g∂), this will not influence the previous regular

property for periodic orbits with action down to −D1 by the integrated maximum principle
(Lemma 2.5). Then we can keep the induction going. It is clear the construction can be made
on both W1,W2 yielding the same Mx,y and Pp,y. �

Remark 3.13. From the proof above, it is clear that we cannot guarantee NSi,R(J i)
in J�1

reg,+(H) for all R small unless we assume 1-ADC. Moreover, there is no guarantee for
NSi,R(J i) in Jreg(H, f, g), that is why we need Propositions 2.17 and 3.3.

Proof of Theorem A. Using the almost complex structures from Proposition 3.12, we have
the following sequence for both fillings{

CD1
+ (NS1,

ε1
2
J1) → CD2

+ (NS2,
ε2
2
J2) → CD3

+ (NS3,
ε3
2
J3) . . .

}
→ C(h)[1], (3.1)

where each complex and the map P to C(h)[1] are identified with each other for both fillings.
Therefore it suffices to show the continuation map CDi

+ (NSi,
εi
2
J i) → C

Di+1
+ (NSi+1,

εi+1
2

J i+1)
is naturally identified. The continuation map is decomposed into continuation maps

Φ : CDi
+ (NSi,

εi
2
J i) → CDi

+ (NSi+1,
εi+1

2
(NSi,

εi
2
J i))

and
Ψ : CDi

+ (NSi+1,
εi+1

2
(NSi,

εi
2
J i)) → C

Di+1
+ (NSi+1,

εi+1
2

J i+1).

Then Φ is identity by Lemma 2.15 using homotopy NSi+1,s(NSi,
εi
2
)(J i) for s ∈ [ εi+1

2 , 1].
Since J i+1 is the same as NSi,

εi
2
(J i) inside W i, then the integrated maximum princi-

ple implies that Ψ is composition CDi
+ (NSi+1,

εi+1
2

(NSi,
εi
2
J i)) id→ CDi

+ (NSi+1,
εi+1

2
J i+1) ↪→

†Note that our symplectic action has the opposite sign compared to [18, Proposition 9.17].
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C
Di+1
+ (NSi+1,

εi+1
2

J i+1), which is the inclusion, hence it is the same for both W1,W2. Therefore
continuation maps in (3.1) are inclusions, hence the whole diagram can be identified, and
Proposition 3.4 implies the theorem. �

Proof of Corollary B. If SH∗(W ) = 0, then 1 ∈ im δ∂ . Then by Theorem A, for any other
topologically simple exact filling W ′, we have 1 ∈ im δ∂ . Then SH∗(W ′) = 0 and Theorem A
implies the invariance of H∗(W ; Z) → H∗(Y ; Z). �

Using Theorem A, we derive the following obstruction to Weinstein fillability.

Corollary 3.14. Let Y be a 2n− 1 dimensional ADC contact manifold and n � 3. If Y
admits a topologically simple exact filling W such that a nontrivial element of grading greater
than n is in the image of SH∗

+(W ) → H∗+1(Y ), then Y does not admit Weinstein fillings.

Proof. Assume otherwise that Y admits a Weinstein filling W ′. Since n � 3 and W ′ is built
from Y by attaching index k � n � 3 handles, we have c1(W ′) = 0 and π1(Y ) → π1(W ′) is
isomorphism, that is, W ′ is topologically simple. Then SH∗

+(W ′) → H∗+1(W ′) → H∗+1(Y ) is
isomorphic to SH∗

+(W ) → H∗+1(Y ). Since H∗(W ′) is supported in degree � n, we arrive at a
contradiction. �

When the obstruction in Corollary 3.14 does not vanish for one contact manifold, it is easy
to construct infinitely many obstructed examples by the following.

Proposition 3.15. Let Y be a contact manifold, such that conditions in Corollary 3.14
hold. For any ADC contact manifold Y ′ with a topologically simple exact filling W ′, the contact
connected sum Y #Y ′ is not Weinstein fillable.

Proof. By assumption, the image of SH∗
+(W ) → H∗+1(Y ) contains an element α′ of grading

k � n + 1. That is, the image of SH∗
+(W ) → H∗+1(W ) contains an element α, which restricts

to α′. That is, α is mapped to 0 in SHk(W ). Note that k cannot be 2n− 1, for otherwise it will
imply that H2n−1(W ; R) → H2n−1(Y ; R) is surjective, which contradicts the Stokes’ theorem.
By [15], if we view α ∈ Hk(W�W ′), then α is mapped to 0 in SHk(W�W ′). This implies that α
is in the image of SHk−1

+ (W�W ′) → Hk(W�W ′). Since n + 1 � k < 2n− 1, α restricted to the
boundary Y #Y ′ is represented by α′ and nonzero. This implies that δ∂ contains a nontrivial
element of degree k for W�W ′. By [37], Y �Y ′ is ADC, and it is direct to check that W�W ′ is
topologically simple. Then by Corollary 3.14, Y #Y ′ is not Weinstein fillable. �

3.3. Symplectic cohomology for covering spaces

Before proving Theorem E, we need to introduce symplectic cohomology for covering spaces.
Let W be an exact domain and π : W̃ → W a covering (not necessarily connected). The idea is
lifting all geometric data to the covering space to define a Floer theory. We define the following
two sets:

P̃∗(H) := {(x, a)|x ∈ P∗(H), a ∈ ̂̃
W,π(a) = x(0)},

C̃(f) := {(p, a)|p ∈ C(f), a ∈ ̂̃
W,π(a) = p}.

Then we can define M(x,a),(y,b) for (x, a), (y, b) ∈ P̃∗(H), C̃(f) as follows, if (x, a), (y, b) ∈
P̃∗(H),

M(x,a),(y,b) := {u ∈ Mx,y|u(s, 0) lifts to a path from a, b in ̂̃
W},
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other cases are similar. Hence for regular J , M(x,a),(y,b) is always diffeomorphic to some
connected components of Mx,y with the same orientation. In particular, by Proposition 2.8,
M(x,a),(y,b) is always a compact manifold with boundary of dimension |x| − |y| − 1 when
|x| − |y| � 2 and ∂M(x,a),(y,b) =

∑
(z,c) M(x,a),(z,c) ×M(z,c),(y,b). Then we can use them to

define a cochain complex C̃∗(H, J, f). However, the generator set is infinite even with an
action bound, and since we are trying to define the cohomology of the covering space, the
cochain complex is the direct product in the fiber direction, that is, ⊕x

∏
a Z〈 (x, a) 〉. The

differential on a generator is again defined by

d(y, b) =
∑
(x,a)

#M(x,a),(y,b)(x, a).

The compactness of Mx,y implies that for any b, there are at most finitely many a such
that M(x,a),(y,b) �= ∅. Therefore the differential is well defined on the complex. We can
similarly define C̃∗

+(H, J), C̃∗
0 (f). By definition, the cohomology H∗(C̃0(f)) is the cohomology

of the universal cover H∗(W̃ ), since the cochain complex is dual to the Morse homology
complex with Z[π1(W )] local system, which computes the homology of the universal cover
[29, §3.H]. Moreover, there is always a cochain morphism C∗

(+/0)(H, J, f) → C̃∗
(+/0)(H, J, f)

defined by sending x →
∏

a(x, a) corresponding to the pull-back to the covering. We define
SH∗(W̃ ), SH∗

+(W̃ ) to be the cohomology of C̃∗(H, J, f), C̃∗
+(H, J). Then we have a long

exact sequence,

. . . → H∗(W̃ ) → SH∗(W̃ ) → SH∗
+(W̃ ) → H∗+1(W̃ ) → . . . .

Moreover, the natural maps SH∗
(+/0)(W ) → SH∗

(+/0)(W̃ ) are compatible with the long exact

sequence. We can lift everything discussed before to W̃ , hence there is the following analogue
of Theorem A.

Proposition 3.16. Under the same assumption as in Theorem A, let π : W̃ → W be a
covering, then Ỹ := ∂W̃ is a covering of Y and δ̃∂ : SH∗

+(W̃ ) → H∗+1(Ỹ ) is independent of

the topologically simple exact filling W ′ and covering W̃ ′, as long as ∂W̃ ′ = Ỹ .

Theorem 3.17. Assume Y is an ADC contact manifold. If W is a topologically simple
exact filling of Y such that π1(Y ) → π1(W ) is isomorphism and SH∗(W ) = 0, then for any
other topological simple exact filling W ′, we have π1(Y ) → π1(W ′) is an isomorphism.

Proof. Assume π(Y ) → π(W ′) is only injective. Then the universal cover W̃ ′ restricted to
boundary is π1(W ′)/π1(Y ) copies of the universal cover Ỹ . Let W̃ be the universal cover of W .
Since π1(Y ) → π1(W ) is an isomorphism, we have ∂W̃ = Ỹ . Since SH−1

+ (W̃ ) → H0(Ỹ ) = Z is
surjective, SH−1

+ (W ) → H0(Y ) is an isomorphism and the following commutative diagram

Since π1(W ′)/π1(Y ) copies of the universal cover W̃ restricted to boundary is also
π1(W ′)/π1(Y ) copies of Ỹ , then by Proposition 3.16, we have that SH−1

+ (W̃ ′) → H0(∂W̃ ′) =∏
π1(W ′)/π1(Y ) Z is surjective. However, SH−1

+ (W̃ ′) → H0(∂W̃ ′) factors through H0(W̃ ′) = Z,
which contradicts that the cardinality of π1(W ′)/π1(Y ) is greater than 1. �
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Proof of Theorem E. It is sufficient to prove the strongly ADC case, as the ADC case is
proven in Theorem 3.17. Since π1(Y ) → π1(W ) is an isomorphism, we have H1(Y ) → H1(W )
is an isomorphism. By the universal coefficient theorem, we have H1(W ) → H1(Y ) is an
isomorphism and H2(W ) → H2(Y ) is an isomorphism on the torsion part. By Corollary B, we
have the same thing holds on W ′. Then using the universal coefficient theorem again, we have
H1(Y ) → H1(W ′) is an isomorphism. Since π1(Y ) is abelian, this implies that π1(Y ) → π1(W ′)
is injective, and then by Theorem 3.17, we have π1(Y ) → π1(W ′) is an isomorphism. �

3.4. Local systems

Albers–Frauenfelder–Oancea [5] found examples of cotangent bundles with vanishing symplec-
tic cohomology after appropriately twisting by local systems. Since cotangent bundles are ADC,
when base manifolds have dimension at least 4, we discuss the analogue of Theorem A for local
systems and its applications to symplectic topology in this part. The discussion here works
for general local systems; however, to get interesting applications, we will only consider the
following special local systems. We use L0W to denote the connected component of contractible
loops in the free loop space LW and let R be a commutative ring.

Definition 3.18. An admissible local system on a Liouville domain W is a flat R bundle
over L0W and is trivial on the constant loops.

Let R× denote the group of units in R, then using parallel transportation, a flat R bundle
over L0W is represented by a class in Hom(π1(LW ), R×)/R×, where the R× action is given
by conjugation. We use Ω0W to denote the space of contractible-based loops in W . Note that
we have a short exact sequence of groups,

0 → π1(Ω0W ) → π1(L0W ) → π1(W ) → 1

from the fibration π : L0W → W , where π is the evaluation map at the starting point.
Moreover, we have

π1(L0W ) � π1(Ω0W ) � π1(W ),

where π1(W ) acts on π1(Ω0W ) by conjugation. As a consequence, we have

Hom(π1(L0W ), R×) � Hominv(π2(W ), R×) × Hom(π1(W ), R×),

where Hominv(π2(W ), R×) ⊂ Hom(π2(W ), R×) is the subgroup of π1(W )-invariant elements.
The projection to the Hom(π1(W ), R×) corresponds to the restriction on constant loops.
Therefore an admissible local system is represented by an element of Hominv(π2(W ), R×)/R×,
in other words, it can be represented by a trivial extension of a π1(W )-invariant local system
on Ω0W .

With an admissible local system ρ, we can define symplectic cohomology with local system
ρ, where the cochain complex is generated by fibers ρx � R of the local system over x ∈ P∗(H)
or constant loop x ∈ C(f). The differential now needs to take the parallel transportation into
account, that is,

da =
∑
x

∑
u∈Mx,y

sign(u)ρu(a), a ∈ ρy, (3.2)

where Mx,y is a zero-dimensional moduli space, and ρu an R-module map ρy → ρx, that is, the
parallel transportation determined by u when we view u as a path in L0W connecting y and
x. We use SH∗(W ; ρ) to denote the cohomology, such theory shares all properties of SH∗(W ).
In particular, we have the following proposition from the same argument of Theorem A.
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Proposition 3.19. Let Y be an ADC manifold, then δ∂,ρ : SH∗
+(W ; ρ) → H∗+1(W ;R) →

H∗+1(Y ;R) is independent of topologically simple fillings W and ρ, as long as ρ|L0Y is fixed.

To illustrate the necessity of the ADC condition, we consider the cotangent circle bundle
ST ∗S2 � RP3, then the minimal Conley–Zehnder index is 1, which makes it not ADC. By [5],
there is a local system on L0T

∗S2, such that SH∗(T ∗S2, ρ) = 0. However, the local system on
L0RP3 is trivial, hence it has a trivial extension to L0T

∗S2, whose symplectic cohomology is
not zero. As a consequence, δ∂,ρ depends on ρ in this non-ADC case.

To make Proposition 3.19 useful as Theorem A, we will explain that SH∗(W ; ρ) is a ring
and H∗(W ;R) → SH∗(W ; ρ) is a ring map. The product structure on symplectic cohomology
is defined by counting holomorphic curves on 3-punctured spheres, with two positive puncture
and one negative puncture, cf. [52]. We fix a trivialization of ρ on constant loops. Given
any such curve u with positive ends asymptotic to x, y and negative end asymptotic to z, it
determines a module morphism ρu : ρx ⊗R ρy → ρz as follows:

ρx ⊗R ρy
ρu1⊗Rρu2−→ ρx′ ⊗R ρy′

m→ ρx′
y′
ρu3−→ ρz, (3.3)

where x′, y′ are the based loops with the same base point as the following picture shows, x′ � y′

is the concatenation of x′ and y′, u1, u2, u3 are the cylinders represented by the colored region
in Figure 4 and m : ρx′ ⊗R ρy′ → ρx′
y′ is the conical isomorphism in [5, Lemma 1] if we fix a

Figure 4 (colour online). Parallel transportation on pair of pants

trivialization of ρ on constant loops.

Proposition 3.20. Given a pair-of-pants curve u, ρu in (3.3) is well defined and only
depends on the homotopy class of u.

Proof. Since the merging of x, y into x′ � y′ is not unique, the potential ambiguity follows
from different ways of merging. More explicitly, if we have two choices of merged based loops
x′, y′ and x′′, y′′, then there are two cylinders ux, uy from x′, y′ to x′′, y′′, respectively, and
ux(s, 0) = uy(s, 0), ∀s. We can form a concatenation of cylinders ux � uy from x′ � y′ to x′′ � y′′.
Then it suffices to prove the following commutative diagram:

(3.4)

Let p be the common base point of x′, y′, that is, p = x′(0) = y′(0), we recall m from [5, Lemma
1],

m : ρx′ ⊗ ρy′ → ρp ⊗ ρp → ρp → ρx′
y′ ,
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where the first map is determined by two paths γx′ , γy′ of based loops from x′, y′ to the
constant loop p, the middle map is determined by the conical isomorphism R⊗R R → R since
we fix a trivialization over constant loops and the last map is determined by the inverse of
the concatenation of γx′ and γy′ , which is a path from p to x′ � y′ in the based loop space. By
the homotopy lifting property of L0W → W , there exists a lift γx′,x′′ of ux(s, 0) extending γx′ ,
similarly for y′, y′′, then we have the following commutative diagram:

γx′,x′′ may not be homotopic to ux. But to prove (3.4), it suffices to prove the following
commutative diagram

(3.5)

where v and w are two loops in L0W such that v(s, 0) = w(s, 0) for s ∈ S1. Note that the local
system is trivial on W and we can modify v by elements in im(π1(W ) → π1(L0W )) from the
inclusion of constant loops without changing ρv. Therefore we can assume v(s, 0) = x′′(0) for all
s ∈ S1. We may assume the same thing for w. Let γx′′ , γy′′ denote the path in Ω0W connecting
x′′, y′′ to x′′(0) = y′′(0). Then it suffices to prove the following commutative diagram

(3.6)

Therefore it suffices to prove that ργx′′vγ−1
x′′ γy′′wγ−1

y′′
= ρ(γx′′
γy′′ )(v
w)(γx′′
γy′′ )−1 . Therefore it

is enough to verify that γx′′vγ−1
x′′ γy′′wγ−1

y′′ is homotopic to (γx′′ � γy′′)(v � w)(γx′′ � γy′′)−1 as
a loop in L0W . Note that (γx′′ � γy′′)(v � w)(γx′′ � γy′′)−1 = (γx′′vγ−1

x′′ ) � (γy′′wγ−1
y′′ ) and both

(γx′′vγ−1
x′′ ), (γy′′wγ−1

y′′ ) represent a based loop of based loops in ΩΩ0W , where the base is the
constant loop x′′(0). Then the claim follows from the same proof for the fact that second
homotopy groups are abelian. Note that (3.4) also implies that ρu only depends on the
homotopy class of u. �

As a consequence of Proposition 3.20, we can count pair-of-pants moduli spaces twisted by ρu
to define a ring structure on SH∗(W ; ρ). That H∗(W ;R) → SH∗(W ; ρ) is a ring map follows
from the same argument for untwisted symplectic cohomology, see [52].

Proof of Theorem D. We use local systems with R = C. The assumption implies that
dimQ � 3, in particular, π1(ST ∗Q) → π1(T ∗Q) is an isomorphism. We first assume that Q
is oriented and spin. Following [5], we consider local systems on L0W trivial on W induced
from Z/p ⊂ C∗, which are represented by Hominv(π2(W ),Z/p) � H2

inv(W̃ ,Z/p), where W̃ is
the universal cover of W and π1(W ) acts on the cohomology by deck transformation. By [5,

Proposition 6, 9], H2(W ) π∗
→ H2

inv(W̃ ) contains nontrivial images if and only if the Hurewicz
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map π2(W ) → H2(W ) is nonzero. In the case of (i), by [5, Theorem 1], there exists an admissible
local system ρ such that SH∗(T ∗Q; ρ) = 0. Moreover, such local system is represented by
an element in the image of H2(T ∗Q; Z/p) → H2

inv(T̃ ∗Q; Z/p) for some prime p. Then the
local system on L0ST

∗Q is represented by the restriction to H2
inv(S̃T ∗Q; Z/p) and it is from

an element of H2(ST ∗Q; Z/p). By assumption, H2(W ; Z/p) → H2(ST ∗Q; Z/p) is surjective,
which implies that ρ|L0ST∗Q extends to W . Hence the claim follows from Proposition 3.19.
If Q is nonorientable or not spin, given a local system ρ, we have SH∗(T ∗Q, ρ⊗ σTQ) =
Hn−∗(LQ, ρ⊗ oQ) [1, Chapter 3], where oQ is the orientation local system on Q and σTQ is
an admissible local system defined in [1, Chapter 2], which is transgressed from H2(Q,Z/2)
(in the oriented not spin case, it is transgressed from the second Stiefel–Whitney class). Hence
by assumption, this local system σTQ can be extended to W . Hence the invariance follows
similarly as we can find an admissible local system ρ such that Hn−∗(LQ, ρ⊗ oQ) = 0 by [5,
Theorem 1].

For case (ii), if Q is spin, there exists some prime p such that H2(W ; Z/p) → H2(ST ∗Q; Z/p)
is nonzero. Since when π1(Q) = 0, any nontrivial element of H2(T ∗Q; Z/p) = H2(ST ∗Q; Z/p)
determines a local system with vanishing symplectic cohomology, then the claim follows. For
not spin manifold, σTQ is the transgression of the second Stiefel–Whitney class, hence it can
also be extended to W by our condition.

If χ(Q) = 0, then we have a section s : Q → ST ∗Q and Q
s→ ST ∗Q → T ∗Q is a homotopy

equivalence. Therefore the invariance of H∗(W ; C) → H∗(ST ∗Q; C) implies that H∗(W ; Q) →
H∗(ST ∗Q; Q) s∗→ H∗(Q; Q) is an isomorphism. In particular, the composition Q

s→ ST ∗Q ↪→ W
induces a rational homotopy equivalence. �

Remark 3.21. It is possible to get invariance of Z/p cohomology for p > 2 under the
similar assumptions as in Theorem D. We can consider Z/p-local systems that are trivial on
constant loops, such local system is classified by Hom(π1(L0W ), (Z/p)×)/(Z/p)×. Since for
any g �= 1 ∈ (Z/p)×, we have 1 − g ∈ (Z/p)×, then [5, Proposition 3] applies to get vanishing
of symplectic cohomology.

3.5. Diffeomorphism type

In some situations, the invariance of cohomological information H∗(W ; Z) → H∗(Y ; Z) would
yield information about the diffeomorphism type via h-cobordism. Such argument was used
extensively in [7]. In the following, we extract some of the topological conditions from [7] such
that the h-cobordism argument can be used. In particular, combining with the results from
previous sections, we get the uniqueness of diffeomorphism type for many cases.

Definition 3.22. An oriented manifold W with boundary is good if the following conditions
hold.

(i) There exists W0 diffeomorphic to W and is contained in the collar neighborhood of ∂W .
(ii) There exists a locally closed manifold V ⊂ ∂W , such that V → ∂W → W induces

isomorphism on cohomology and the corresponding copy of V0 on W0 is homotopic to V in the
collar neighborhood of ∂W .

Example 3.23. The major source of good domains is the following.

(i) W = DT ∗Q for manifold Q with χ(Q) = 0. Then there exists a section s : Q → ST ∗Q.
Then we may take V = s(Q).

(ii) W = M × D. Then V may be taken as M × {1}.
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Proposition 3.24. Let W be a good domain with boundary Y . If Y has a another filling
W ′ such that H∗(W ′) → H∗(Y ) is isomorphic to H∗(W ) → H∗(Y ), then W ′ = W ∪H, where
H is a homology cobordism from Y to Y .

Proof. In the collar neighborhood of Y in W ′, we have a W0 diffeomorphic to W . By deleting
this W0, we have cobordism X from Y to Y . We claim H∗(W ′) → H∗(W0) is an isomorphism.
Let F : V × [0, 1] be the homotopy from V to V0 in the collar neighborhood. This follows from
the following commutative diagram

By assumption, we have H∗(W0) → H∗(∂W0) → H∗(V0) is an isomorphism and the first arrow

H∗(W ′) F∗
→ H∗(V × [0, 1]) → H∗(V ) is identified with H∗(W ′) → H∗(Y ) → H∗(V ), hence an

isomorphism. Therefore, H∗(W ′) → H∗(W0) is an isomorphism. Then by excision, we have
H∗(W ′,W0) = H∗(X, ∂W0) = 0. Then the universal coefficient and Poincaré duality implies
H∗(X, ∂W0) = H∗(X, ∂W ′) = 0. Therefore X is a homology cobordism. �

Once we know that Y is simply connected and the cobordism X in Proposition 3.24 is simply
connected, the homology cobordism becomes h-cobordism by the relative Hurewicz theorem.
Therefore, when dimX � 6, we have X is diffeomorphic to Y × [0, 1]. In particular, we can
prove Theorem C.

Proof of Theorem C. Contact manifolds in the statement of Theorem C are ADC, where case
(i) follows from Theorem 6.3. It follows from Corollary B and Proposition 3.24 that different
fillings are differed by homology cobordisms. Note that by Theorem 3.17, we have W is simply
connected. Then the homology-cobordism X from Proposition 3.24 is simply connected by the
Van Kampens Theorem. In particular, X is an h-cobordism. Therefore the diffeomorphism
type is unique. �

4. Persistence of symplectic dilation

Symplectic cohomology is naturally equipped rich algebraic structures, in particular, SH∗(W )
is a BV algebra with a degree −1 BV operator Δ, cf. [58]. With such structure, symplectic
dilation was introduced in [58] as an element x of SH1(W ), such that Δ(x) = 1.

Example 4.1. If SH∗(W ) = 0, then 0 is a symplectic dilation. If W admits a symplectic
dilation and M be another Liouville domain, then W ×M admits a symplectic dilation by [56,
Example 2.6].

Example 4.2 [58, Example 6.4]. T ∗S2 admits a dilation with field coefficient k if char(k) �=
2, and T ∗Sn admits dilation for any coefficient when n � 3. T ∗CPn also admits dilation if
char(k) �= 2. T ∗K(π, 1) does not admit dilation, in particular there is no dilation on T ∗Tn.

More examples with symplectic dilations are constructed by Lefschetz fibrations, since by
[58, Proposition 7.3], if the fiber F of a 2n-dimensional Lefschetz fibration M → C contains
a dilation for n > 2, then so does M . By repeatedly applying this result, Seidel [56, Example
2.13] showed that the Milnor fiber of a singularity of form p = z2

0 + z2
1 + z2

2 + q(z3, . . . , zn)
admits symplectic dilations.
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Example 4.3. The link of p = z2
0 + z2

1 + z2
2 + za3

3 + · · · + zan
n = 0 with 2 � ai ∈ N is ADC.

The associated Milnor fiber provides examples with ADC boundaries admitting symplectic
dilations. The contact boundary admits a Morse–Bott contact form whose generalized Conley–
Zehnder indices were computed in [35, §5.3.1]. The Reeb orbits are completely classified by two
natural numbers T,N . Let IT be the maximal subset of I := {0, 1, . . . , n} such that lcmi∈IT ai =
T and IT has at least two elements. There are also some restrictions on N , see [35] for detail.
Then there is a 2(#IT − 2)-dimensional family of Reeb-orbits with period NT and generalized
Conley–Zehnder index

2
∑
i∈IT

NT

ai
+ 2

∑
i∈I−IT

�NT

ai
� + #(I − IT ) − 2NT. (4.1)

Then the minimal Conley–Zehnder index after a small perturbation is (4.1) minus #IT − 2.
When T is even, the Conley–Zehnder index of a small perturbation is at least NT + 2N(#IT −
3) + #I − 2#IT + 2, hence the degree is at least NT + 2N(#IT − 3) + 2#I − 2#IT − 2 which
is positive if N > 1. When N = 1, it is least 2#I − 6 � 2. When T � 3 is odd, the degree is
at least 2N#IT + 3NT − 3 + 2#I − 2#IT − 2 − 2NT � NT + 2#I − 5 > 0. Therefore such
manifold is ADC.

Like the vanishing of symplectic cohomology, the existence of symplectic dilation is also
preserved under the Viterbo transfer map. That is, let V ⊂ W be a Liouville subdomain, then
the Viterbo transfer map SH∗(W ) → SH∗(V ) preserves the BV structure. In particular, if
W admits a symplectic dilation, so does V . Therefore, the existence of symplectic dilation
may be viewed as an indication of the complexity of the Liouville domain, which is next to
the vanishing of symplectic cohomology. The goal of this section is to prove for ADC contact
manifolds that the existence of symplectic dilation is a property independent of the filling in
many cases, hence measures the contact complexity. This is done by showing independence of
a structure map as before, which also bears interests.

4.1. BV operator Δ

Similar to the discussion in § 2, we will define Δ using H. However, to make sure Lemma 2.5 can
be applied, we need to consider two such functions H+,H−, such that the following holds.

(1) H+ and H− satisfy same conditions of H in § 2, and share the same (ai, bi) and D+
i �

D−
i .
(2) mint∈S1 H−(t, x) � maxt∈S1 H+(t, x) for all x ∈ Ŵ .
(3) On each (ai, bi), H+ = f+(r) and H− = f−(r) and rf ′

+(r) − f+(r) � rf ′
−(r) − f−(r).

Roughly speaking, the requirements above ask that H− grows faster than H+, for example
,H− is a perturbation of 2r2 and H+ is a perturbation of r2. We fix such two functions and
also fix a smooth decreasing function ρ(s) : R → R, such that ρ(s) = 1 for s < 0 and ρ(s) = 0
for s > 1. Then we define

Hθ
s,t := ρ(s)H−(t + θ) + (1 − ρ(s))H+(t).

Then for s < 0, we have Hθ
s,t = H−(t + θ) and for s > 1 we have Hθ

s,t = H+(t). Moreover
by construction, ∂sHθ

s,t = ρ′(s)(H−(t + θ) −H+(t)) � 0. Moreover, on region (ai, bi), Hθ
s,t =

ρ(s)f−(r) + (1 − ρ(s))f+(r). Then

∂s(r∂rHθ
s,t −Hθ

s,t) = ∂s(r(ρ(s)f−(r) + (1 − ρ(s))f+(r))′ − (ρ(s)f−(r) + (1 − ρ(s))f+(r)))

= ρ′(s)(rf ′
−(r) − f−(r) − rf ′

+(r) + f+(r)) � 0.

In particular, the conditions in Lemma 2.5 are satisfied for Hθ
s,t, ∀θ ∈ S1 on (ai, bi).
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Remark 4.4. The extra complexity is due to that H depends on t. If we twist H to get
Hθ

s,t, it is never true that ∂sHθ
s,t � 0. Hence Lemma 2.5 cannot be applied and the compactness

proof fails. An alternative fix is using an autonomous Hamiltonian and the cascades moduli
spaces to define the BV operator as in [11].

Let Js,θ(W ) be the set of smooth families of admissible almost complex structures Jθ
s,t :

Rs × S1
θ → J (W ), such that there exist J−, J+ ∈ J (W ) with Jθ

s,t = J−,t+θ when s < 0 and
Jθ
s,t = J+,t when s > 1. Let Js,θ,J−,J+(W ) ⊂ Js,θ(W ) be the set of families with positive ends

given by J+ and negative end given by J−. Then for J+ ∈ Jreg(H+, f, g), J− ∈ Jreg(H−, f, g),
for a generic choice of Jθ

s,t ∈ Js,θ,J−,J+(W ), we have the following moduli spaces.

(1) For x ∈ P∗(H−), y ∈ P∗(H+), MΔ
x,y is defined to be the compactification of the moduli

space of solutions (u, θ) to the following:

∂su + Jθ
s,t(∂tu−XHθ

s,t
) = 0, lim

s→−∞u = x(· + θ), lim
s→∞u = y. (4.2)

(2) For x ∈ P∗(H+), p ∈ C(f), MΔ
p,x is defined to be the moduli space of solutions (u, θ, γ)

to the following:

∂su + Jθ
s,t(∂tu−XHθ

s,t
) = 0,

d
ds

γ + ∇gf = 0, γ(−∞) = p, u(0) = γ(0), lim
s→∞u = x. (4.3)

Since ∂sH
θ
s,t � 0, any solution u to ∂su + Jθ

s,t(∂tu−XHθ
s,t

) = 0 will have the property that

AH−(u(−∞)(· − θ)) −AH+(u(∞)) � 0. (4.4)

As a consequence, there is no MΔ
x,p for p ∈ C(f) and x ∈ P∗(H−). By the construction of Hθ

s,t,
Lemma 2.5 can be applied to get compactness of MΔ

∗,∗. Therefore we have the following with
a similar proof to Propositions 2.6 and 2.8.

Proposition 4.5. For a generic choice of Jθ
s,t, we have MΔ

a,b is a compact manifold with

boundary of dimension |a| − |b| + 1 when |a| − |b| � 0. And ∂MΔ
a,b := −

∑
MΔ

a,∗ ×M+
∗,b −∑

M−
a,∗ ×MΔ

∗,b, where M−
∗,∗,M+

∗,∗ are moduli spaces associated to H− and H+.

By this boundary configuration, Δ defines a cochain map C(H+, J+, f) →
C(H−, J−, f)[−1]. Moreover, Δ decomposes into Δ+ and Δ+,0, which count MΔ

x,y and
MΔ

p,x, respectively. In particular, Δ+ is a cochain map C+(H+, J+) → C+(H−, J−)[−1]. By

(4.4), Δ maps CD+
i (H+, J+, f) to CD−

i (H−, J−, f). Therefore we use ΔD+
i ,ΔD+

i
+ and ΔD+

i
+,0

to denote the restrictions, respectively. Lemma 2.5 implies that curves appearing in ΔD+
i are

contained in W i.
Let δ− denote the connecting map H∗(C+(H−, J−)) → H∗+1(C0(f)). Then we can define

a degree 1 map

φ : ker Δ+ ⊂ H∗(C+(H+, J+)) → coker δ−, x �→ Δ+,0(x) − d+,0(b), (4.5)

where x ∈ C+(H+, J+), b ∈ C+(H−, J−) such that Δ+(x) = d+(b).

Proposition 4.6. φ is well defined. If ψ is a cochain map on C = C+ ⊕ C0 that can be
decomposed into ψ+ + ψ0 + ψ+,0, such that Δ ◦ ψ − ψ ◦ Δ = η ◦ d− d ◦ η for η = η+ + η+,0,
then on cohomology we have φ ◦ ψ+ = ψ0 ◦ φ.
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Proof. Note that we have d2 = 0 and Δ ◦ d + d ◦ Δ = 0. When we write them using the zero
and positive decomposition, we have the following formula.

d0 ◦ Δ+,0 + d+,0 ◦ Δ+(x) + Δ+,0 ◦ d+(x) = 0, (4.6)

d0 ◦ d+,0 + d+,0 ◦ d+ = 0. (4.7)

We first show that d0 ◦ φ(x) = 0, that is

d0 ◦ φ(x) = d0 ◦ Δ+,0(x) − d0 ◦ d+,0(b)

= −d+,0 ◦ Δ+(x) − Δ+,0 ◦ d+(x) − d0 ◦ d+,0(b)

= −d+,0 ◦ d+(b) − Δ+,0 ◦ d+(x) − d0 ◦ d+,0(b)

= −Δ+,0 ◦ d+(x).

Since d+(x) = 0, we have φ(x) is closed.
Now we consider x′ := x + d+(y), then we can choose b′ := b + Δ+(y), then we have

φ(x′) − φ(x) = Δ+,0 ◦ d+(y) − d+,0 ◦ Δ+(y)

= d0 ◦ Δ+,0(y).

Hence the difference is exact. Finally, we consider b′ = b + c where d+(c) = 0. Then we have
the difference is d+,0(c) which is in the image of δ.

If we have such ψ and η, then we have the following:

ψ+ ◦ d+ = d+ ◦ ψ+, (4.8)

ψ0 ◦ d+,0 + ψ+,0 ◦ d+ = d0 ◦ ψ+,0 + d+,0 ◦ ψ+, (4.9)

ψ+ ◦ Δ+ − Δ+ ◦ ψ+ = d+ ◦ η+ − η+ ◦ d+, (4.10)

ψ0 ◦ Δ+,0 + ψ+,0 ◦ Δ+ − Δ+,0 ◦ ψ+ = d0 ◦ η+,0 + d+,0 ◦ η+ − η+,0 ◦ d+. (4.11)

Then (4.8) implies that ψ+ induces a map on H∗(C+). (4.9) implies that δ ◦ ψ+ = ψ0 ◦ δ on
cohomology. (4.10) implies that ψ+ ◦ Δ+ = Δ+ ◦ ψ+ on cohomology. Finally, for x, b ∈ C+ with
Δ+(x) = d+(b), d+(x) = 0, we have

Δ+ ◦ ψ+(x)
(4.10)
= ψ+ ◦ Δ+(x) − d+ ◦ η+(x) + η+ ◦ d+(x)

= ψ+ ◦ d+(b) − d+ ◦ η+(x)

(4.8)
= d+ ◦ ψ+(b) − d+ ◦ η+(x).

Therefore we have

φ ◦ ψ+(x) = Δ+,0 ◦ ψ+(x) − d+,0 ◦ ψ+(b) + d+,0 ◦ η+(x)

(4.11)
= ψ0 ◦ Δ+,0(x) + ψ+,0 ◦ Δ+(x) − d0 ◦ η+,0(x) − d+,0 ◦ ψ+(b)

= ψ0 ◦ Δ+,0(x) + ψ+,0 ◦ d+(b) − d+,0 ◦ ψ+(b) − d0 ◦ η+,0(x)

(4.9)
= ψ0 ◦ Δ+,0(x) − ψ0 ◦ d+,0(b) + d0 ◦ ψ+,0(b) − d0 ◦ η+,0(x)

= ψ0 ◦ φ(x) + d0 ◦ ψ+,0(b) − d0 ◦ η+,0(x).

That is, φ ◦ ψ+ = φ0 ◦ φ on cohomology. �
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4.2. Continuation maps

There are two continuation maps we need to consider, one is the continuation from H+ to
H−. The other is the continuation from homotopies of almost complex structures and its
compatibility with Δ+ and φ.

4.2.1. Continuation map from H+ to H−. Let Hs := ρ(s)H− + (1 − ρ(s))H+, that is
H0

s,t. In particular, Lemma 2.5 can be applied to Hs on (ai, bi). Then we can consider the
compactified moduli spaces of the following:

{u : R × S1 → Ŵ
∣∣ ∂su + Js(∂tu−XHs

) = 0, lim
s→−∞u = x, lim

s→∞u = y},

for x ∈ P(H−), y ∈ P∗(H+).{
u : C → Ŵ ,

γ : (−∞, 0] → W

∣∣∣∣∣∂su + Js(∂tu−XHs
) = 0, ∂sγ + ∇gf = 0,

lim
s→−∞ γ = p, u(0) = γ(0), lim

s→∞u = x

}
for x ∈ P(H+), p ∈ C(f). We denote them by Nx,y and Np,x. Then for J+ ∈
Jreg(H+, f, g), J− ∈ Jreg(H−, f, g), there exists generic homotopy Js from J− to J+, so that
the moduli spaces above are compact smooth manifolds with boundaries, when the expected
dimension is � 1. In particular, it defines a cochain map Θ : C(H+, J+, f) → C(H−, J−, f)
by counting Nx,∗ when x ∈ P∗(H+) and is identity on C0(f). Θ respects the splitting into C0

and C+. Moreover, Θ maps CD+
i (H+, J+.f) → CD−

i (H−, J−, f). We will show in § 4.6 that Θ
is an isomorphism on cohomology. The following functoriality of the continuation map is also
verified in § 4.6.

Proposition 4.7. Let J1
+, J

2
+ ∈ JD+

i
reg (H+, f, g) and J1

−, J
2
− ∈ JD−

i
reg (H−, f, g), then the

following diagram is commutative up to homotopy:

where the horizontal maps are continuation maps constructed above and the vertical maps are
continuation maps in Proposition 2.14.

4.2.2. Compatibility with homotopies of J . Assume we have J+,1, J+,2 ∈ Jreg(H+, f, g)
and J−,1, J−,2 ∈ Jreg(H−, f, g) and regular homotopies Js,+, Js,− from J+,2, J−,2 to J+,1, J−,1,
respectively, so that the continuation map in Proposition 2.14 is defined, and are denoted
by Φ+,Φ−. Assume Jθ

s,t,1 and Jθ
s,t,2 are two homotopies with ends J−,1, J+,1 and J−,2, J+,2,

respectively, such that Proposition 4.5 holds.
Following [1, §2.2.3], we consider a family of almost complex structures Jr,θ

s,t such that:

(1) when r � 0, Jr,θ
s,t = Js−r,t+θ,− if s < 0 and is Jθ

s+r,t,1 if s � 0. They patch up smoothly
by our definition of Js and Jθ

s,t;
(2) when r 
 0, Jr,θ

s,t = Jθ
s−r,t,2 if s < 0 and is Js+r,t,+ if s � 0;

(3) for every r, when s 
 0, Jr,θ
s,t = J+,1, when s � 0, Jr,θ

s,t = Jt+θ,−,2.

Then for x ∈ P∗(H−), y ∈ P∗(H+), we can consider the moduli space of solutions (u, θ, r) to

∂su + Jθ,r
s,t (∂tu−XHθ

s,t
) = 0, lim

s→−∞u = x(· + θ), lim
s→∞u = y. (4.12)
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Let Tx,y denote the compactification, we can similarly consider Tp,x for x ∈ P∗(H+), p ∈ C(f).
Then for generic choice of Jr,θ

s,t , T∗,∗ is a compact manifold with boundary if the expected
dimension is � 1. Let Δ1,Δ2 be the BV operators defined using Jθ

s,t,1 and Jθ
s,t,2. Let

η : C(H+, J+,1, f) → C(H−, J−,2, f) be the operator counting rigid points in T∗,∗. Then the
boundary configuration leads to the following relation

Φ− ◦ Δ1 − Δ2 ◦ Φ+ = dJ−,2 ◦ η − η ◦ dJ+,1 .

Moreover, both Φ+,Φ− have splittings into Φ±
+ + idC0 +Φ±

+,0 and η has splitting into η+ + η+,0.
That is, they are in the form that Proposition 4.6 can be applied.

The following propositions show that the structure we defined is the same BV operator
defined in [58]. We will prove them in § 4.6.

Proposition 4.8. Using the identification in Proposition 2.10 to identify SH∗(W )
with H∗(C(H+, J+, f)), then Θ−1 ◦ Δ : H∗(C(H+, J+, f)) → H∗−1(C(H+, J+, f)) is the BV
operator on SH∗(W ).

Proposition 4.9. Θ−1 ◦ Δ+ : H∗(C+(H+, J+, f)) → H∗−1(C+(H+, J+, f)) and φ :
ker Δ+ → coker δ are invariants of exact domains up to exact symplectomorphisms using the
identification in Proposition 2.10.

Hence, from now on, we will proceed the construction using H−,H+.

Proposition 4.10. W admits a symplectic dilation if and only if 1 ∈ imφ(im(SH(W ) →
SH+(W )) ∩ ker Δ+) = imφ(ker δ ∩ ker Δ+).

Proof. If SH∗(W ) = 0, then coker δ = 0, hence 1 is always in the image and there
exists a dilation. In the following, we will consider the case when SH∗(W ) �= 0. Using
Proposition 4.8, assume x′ ∈ C(H+, J+, f) closed satisfies Δ([x′]) = 1 on cohomology, where
1 is represented by the unique local minimum of f . Since x′ can be written as x + y, where
x ∈ C+(H+, J+), y ∈ C0(f), we have Δ+(x) + Δ+,0(x) = 1 + d(b) for b ∈ C+(H−, J−). Then
we have Δ+(x) = d+(b), hence φ(x) = Δ+,0(x) − d+,0(b) = 1. Since Θ preserves 1, we have 1
is in the image of φ : im(SH(W ) → SH+(W )) ∩ ker Δ+ → coker δ.

On the other hand, if φ(x) = 1 for x ∈ C+(H+, J+) and [x] ∈ im(H∗(C(H+, J+, f)) →
H∗(C+(H+, J+))) ∩ ker Δ+, that is, there exists y ∈ C0(f), such that x + y is closed, we
have Δ+,0(x) − d+,0(b) = 1 + c, where c ∈ C0(f) is closed and [c] ∈ im δ− and d+(b) = Δ+(x).
Since [c] ∈ im δ−1, [c] in H∗(C(H−, J−, f)) is zero. Therefore we have Δ(x + y) = Δ(x) =
Δ+,0(x) + Δ+(x) = d(b) + 1 + c, which is 1 in cohomology. Therefore x + y is a dilation. �

By composing with the restriction map H∗(W ) → H∗(∂W ), we define a map

Δ∂ : ker Δ+ → coker δ∂ . (4.13)

And this is the second structure map we are interested in.

4.3. Shrinking the gradient flow

In this subsection, we will apply the same idea in § 3 to Δ∂ and rewrite it without using
the Morse function f . As in § 3, we choose a Morse function h on ∂W × {1 − ε} along
with a metric g∂ , so that Proposition 3.1 holds. On the complex level, the composition
of ker Δ+ → coker δ → coker δ∂ is represented by counting the moduli space Rp,q ×MΔ

q,x

and Rp,q ×M−
q,b for x ∈ P∗(H+), b ∈ P∗(H−), q ∈ C(f), p ∈ C(h). In particular, if we define
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Δ+,0,∂(x) by counting Rp,q ×MΔ
q,x and d+,0,∂ by counting Rp,q ×M−

q,b, then we define a map
Δ−1

+ (im d+) ∩ ker d+ → coker δ∂ representing Δ∂ by

x �→ Δ+,0,∂(x) − d+,0,∂(b), (4.14)

for d+(b) = Δ+(x). To bypass the middle C∗−1(f), we define PΔ
p,x to be the compactification

of the following moduli space⎧⎪⎨⎪⎩
u : C → Ŵ ,

θ ∈ S1,

γ : (−∞, 0] → ∂W × {1 − ε}.

∣∣∣∣∣∂su + Jθ
s,t(∂tu−XHθ

s,t
) = 0, d

dsγ + ∇g∂h = 0,
lim

s→−∞ γ = p, u(0) = γ(0), lim
s→∞u = x

⎫⎪⎬⎪⎭,

for p ∈ C(h), x ∈ P∗(H+). The space makes sense, since we push ∂W into interior, where
Hθ

s,t = 0. Then PΔ
p,x defines a map from PΔ : C∗

+(H+, J+)) → C∗−1(h). To show it defines
the same thing as (4.14), we define HΔ

p,x to be the compactification of the following moduli
space for p ∈ C(h), x ∈ P∗(H+),⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u : C → Ŵ ,

θ ∈ S1,

l ∈ R+,

γ1 : (−∞, 0] → ∂W × {1 − ε},
γ2 : [0, l] → W.

∣∣∣∣∣∣∣∣∣∣∣∣

∂su + Jθ
s,t(∂tu−XHθ

s,t
) = 0,

d
dsγ1 + ∇g∂h = 0, d

dsγ2 + ∇gf = 0,
lim

s→−∞ γ1 = p, γ1(0) = γ2(0),

γ2(l) = u(0), lims→∞ u = x.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

Then we have the following regularity property.

Proposition 4.11. For generic choices of J−, J+ and Jθ
s,t, for any x, p with |p| − |x| � 0,

HΔ
p,x is a manifold with boundary of dimension |p| − |x| + 1 and

∂HΔ
p,x = −PΔ

p,x +
∑

q∈C(f)

Rp,q ×MΔ
q,x +

∑
y∈P∗(H−)

Hp,y ×MΔ
y,x

+
∑

q∈C(h)

Mp,q ×HΔ
q,x −

∑
y∈P∗(H+)

HΔ
p,y ×My,x.

Proposition 4.12. For generic choices of J−, J+ and Jθ
s,t as in Proposition 4.11, let x ∈

ker d+ ⊂ C∗
+(H+, J+) such that Δ+(x) = d+(b), then PΔ(x) − P (b) represents the same class

in coker(H∗−2(C+(H−, J−)) → H∗−1(∂W )) as (4.14). Hence on cohomology, Δ∂ in (4.14)
equals to the difference of counting PΔ

x,q, Pb,q.

Proof. By Proposition 3.2 and 4.11, we have PΔ(x) − P (b) − Δ+,0,∂(x) + d+,0,∂(b) as the
following: ∑(∑

#Hp,y#MΔ
y,x+

∑
#Mp,q#HΔ

q,x −
∑

#HΔ
p,y#My,x

−
∑

#Hp,y#My,b −
∑

#Mp,q#Hq,b

)
p.

It is H ◦ Δ+(x) + d∂W ◦HΔ(x) −HΔ ◦ d+(x) −H ◦ d+(b) − d∂W ◦H(b), where H,HΔ are
defined by counting H and HΔ and d∂W is the Morse differential on ∂W . Since d+(x) = 0
and Δ+(x) = d+(b), the above term is d∂W ◦HΔ(x) − d∂W ◦H(b), which is exact. Hence the
claim is proven. �
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4.4. Naturality

To keep track of the regularity of almost complex structures, we introduce the following.

(1) J�1
reg,Δ(f, g, J−, J+) ⊂ Js,θ,J−,J+(W ) with ends J− ∈ Jreg(H−, f, g), J+ ∈

Jreg(H+, f, g) is the set of regular almost complex structures for moduli spaces MΔ of

dimension up to 1. JD+
i

reg,Δ,J−,J+
(f, g) ⊂ Js,θ,J−,J+(W ) with ends J− ∈ JD−

i
reg (H−f, g), J+ ∈

JD+
i

reg (H+, f, g) is the set of regular almost complex structures for MΔ
∗,x of dimension up to 0

and action of x down to −D+
i . Similarly for ΔDi

+ .
(2) J�1

reg,PΔ(h, g∂ , J−, J+) with ends J− ∈ Jreg,+(H−) ∩ Jreg,P (H−, h, g∂) and J+ ∈
Jreg,+(H+) for moduli space PΔ

p,x of dimension up to 1. JD+
i

reg,PΔ(h, g∂ , J−, J+) is the set

of regular admissible homotopy Jθ
s,t with ends J− ∈ JD−

i
reg,+(H−) ∩ JD−

i

reg,P (H−, h, g∂), J+ ∈
JD+

i
reg,+(H+) for moduli spaces PΔ

p,x of dimension up to 0 and action of x down to −D+
i .

(3) J�1
reg,HΔ(f, g, h, g∂ , J−, J+) ⊂ Js,θ,J−,J+(W ) with ends J− in the intersection

Jreg,+(H−) ∩ Jreg,H(H−, f, g, h, g∂) ∩ Jreg,P (H−, h, g∂), J+ ∈ Jreg,+(H+) is the set of
regular Jθ

s,t for moduli spaces HΔ
p,x of dimension up to 1.

(4) J�1
reg,N,+(J−, J+) ⊂ Js,θ,J−,J+(W ) with ends J− ∈ Jreg,+(H−), J+ ∈ Jreg,+(H+) is the

set of regular Js for moduli spaces Nx,y in § 4.2.1 of dimension up to 1. JD+
i

reg,N,+(J−, J+) ⊂
Js,θ,J−,J+(W ) with ends J− ∈ JD−

i
reg,+(H−), J+ ∈ JD+

i
reg,+(H+) is the set of regular Js for moduli

spaces Nx,y up to dimension 0 with action of y down to −D+
i .

As usual, Jreg is of second category, and JD
reg is open dense.

Proposition 4.13. We summarize naturality properties in the following.

(i) For Jθ
s,t ∈ JD+

i

reg,Δ(f, g, J−, J+) with J− ∈ JD−
i

reg (H−, f, g), J+ ∈ JD+
i

reg (H+, f, g), ΔD+
i is

a well-defined cochain map. Similarly for ΔD+
i

+ .

(ii) For Jθ
s,t ∈ JD+

i

reg,Δ,+(J−, J+) with J− ∈ JD−
i

reg,+(H−), J+ ∈ JD+
i

reg,+(H+), φ is well defined

on ker ΔD+
i

+ .

(iii) For Jθ
s,t ∈ JD+

i

reg,Δ,+(J−, J+) ∩ JD+
i

reg,PΔ(h, g∂ , J−, J+) for J− ∈ JD−
i

reg,+(H−) ∩
JD−

i

reg,P (H−, h, g∂), J+ ∈ JD+
i

reg,+(H+), Δ∂ is same as counting the difference between

PΔ and P, when restricted to C
D+

i
+ .

Proof. For (i), there exists a neighborhood U of Jθ
s,t ∈ Js,θ,J−,J+(W ) contained in

JD+
i

reg,Δ,J−,J+
(f, g). Then ΔD+

i
+ is locally constant by the proof of Proposition 2.12. The claim

follows from that ΔD+
i

+ is a cochain map for more regular Jθ
s,t nearby.

For (ii), we have Δ+ and d+ are locally constant with respect to the almost complex

structures. Since d+,0 is defined using two nearby J ′′, J ′ ∈ JD−
i

reg (H−, f, g) of J−, then there are
two homotopy Jθ,′′

s,t ∈ J�1
reg,Δ(f, g, J ′′, J+), Jθ,′

s,t ∈ J�1
reg,Δ(f, g, J ′, J+) close to Jθ

s,t in Js,θ(W ). It

is sufficient to prove for x ∈ C
D+

i
+ (H+) that d+(x) = 0,Δ+(x) = d+(b) for b ∈ C

D−
i

+ (H−), we
have Δ+,0,J ′,J+(x) − d+,0,J ′(b) and Δ+,0,J ′′,J+(x) − d+,0,J ′′(b) are differed by exact form. Since
we have a continuation map Φ = Φ+ + Φ+,0 + idC0(f) : CD−

i (H−, J ′, f) → CD−
i (H−, J ′′, f),
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such that Φ+ is identity by the proof of Lemma 2.15, then we have

d+,0,J ′′(b) − d+,0,J ′(b) = d0 ◦ Φ+,0(b) − Φ+,0 ◦ d+(b) = d0 ◦ Φ+,0(b) − Φ+,0 ◦ Δ+(x).

On the other hand, by § 4.2.2, we have

Δ+,0,J ′′,J+(x) + Φ+,0 ◦ Δ+(x) − Δ+,0,J ′,J+(x) = d0 ◦ η+,0(x) + d+,0 ◦ η+(x).

We claim η+ could be chosen to be zero. By assumption, the almost complex structure Jθ,r
s,t

in the construction of η can be chosen such that for every r, Jθ,r
s,t ∈ JD+

i

reg,Δ,+(J−, J+). As a
consequence, η+ = 0. Combining them together proves the claim.

For (iii), P, PΔ,Δ+, d+ are all locally constant, for a nearby Jθ
s,t, we have (the perturbed) φ

defines the same thing as counting P,PΔ by Proposition 4.12. By claim (ii), φ is independent
of the perturbation. This finish the proof. �

Combining Propositions 4.7, 4.9 and 4.13 and the compatibility of continuation maps with
Δ in § 4.2.2, we have the following.

Proposition 4.14. Let J i
− ∈ JD−

i
reg,+(H−) ∩ JD−

i

reg,P (H−, h, g∂), J i
+ ∈ JD+

+
reg,+(H+), Jθ,i

s,t ∈
JD+

i

reg,Δ,+(J i
−, J

i
+) ∩ J

D+
i

reg,PΔ(h, f∂ , J i
−.J

i
+) and J i

s,t ∈ JD+
i

reg,N,+(J i
−, J

i
+), then we have the follow-

ing:

and lim−→H∗(CD+
i

+ (H+, J
i
+))

lim−→Δ+

−−−−→ lim−→H∗(CD−
i

+ (H−, J−i))
(lim−→Θ+)−1

−−−−−−−→ lim−→H∗(CD+
i

+ (H+,

J i
+)) computes Δ+ : SH∗

+(W ) → SH∗−1
+ (W ). Similarly for Δ∂ , which can either be computed

using Δ+,0, d+,0 or PΔ, P .

4.5. Independence

The following statement follows from the same proof of Proposition 3.12.

Proposition 4.15. With the same setup in Proposition 3.12, there exist admis-
sible J1

±,1, J
2
±,1, . . ., J1

±,2, J
2
±,2, . . . on Ŵ1 and Ŵ2, respectively, and admissible homo-

topies J1
s,1, J

2
s,1, . . . , J

1
s,2, J

2
s,2, . . . with ends J i

±,∗ and admissible S1 families of homotopies

Jθ,1
s,t,1, J

θ,2
s,t,1, . . . , J

θ,1
s,t,2, J

θ,2
s,t,2, . . . with ends J i

±,∗ and positive real number ε1, ε2, . . . such that
the following holds.

(i) For R < εi and any R′, we have

NSi,R(J i
±,∗), NSi+1,R′(NSi,R(J i

±.∗)) ∈ JD±
i

reg,+(H±) ∩ JD±
i

reg,P (H±, h, g∂),

NSi,R(Jθ,i
s,t,∗), NSi+1,R′(NSi,R(Jθ,i

s,t,∗)) ∈ JD+
i

reg,PΔ(h, g∂) ∩ J
D+

i

reg,Δ,+,

NSi,R(J i
s,∗), NSi+1,R′(NSi,R(J i

s,∗)) ∈ JD+
i

reg,N,+,

such that all zero-dimensional Mx,y,Pp,x,MΔ
x,y and PΔ

p,x, Nx,y are the same for both W1,W2

and contained outside Yi for x, y ∈ C
D±

i
+ , p ∈ C(h).
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(ii) J i+1
s,∗ = NSi,

εi
2
(J i

s,∗) on W i
∗. J

θ,i+1
s,t,∗ = NSi,

εi
2
(Jθ,i

s,t,∗) on W i
∗. Note that they imply that

J i+1
±.∗ = NSi,

εi
2
(J i

±,∗) on W i
∗.

Now, we are ready to prove Theorem G.

Proof of Theorem G. By Proposition 4.15, we have the following two diagrams for both
W1,W2.

where Θ+ is continuation defined using NSi,
εi
2
(J i

s,∗) and Δ+ is the positive BV operator

defined by NSi,
εi
2
(Jθ,i

s,∗). In particular, they are identified on W 1,W 2. The horizontal arrows
are continuation maps. As proved in A, they are represented by inclusions and hence are
also independent of fillings. Moreover, P, PΔ on them are independent of the filling. That is,
the diagrams can be identified for W1,W2. Proposition 4.14 implies the claim. Note that the
diagram contains the part used in the proof of Theorem A. Hence the proof gives a (nonconical)
isomorphism Γ, identifying δ∂ ,Δ+ and Δ∂ . �

Remark 4.16. It is a more delicate question to give a ‘natural’ isomorphism in Theorems A
and G. Nevertheless, the isomorphism can be chosen so that it matches up all the structures.

The following corollary will imply Corollary H in the introduction.

Corollary 4.17. Let Y be an ADC manifold with a topologically simple filling admitting
a symplectic dilation, then for any other topologically simple filling W ′ such that H2(W ′) →
H2(Y ) is injective, we have W ′ also admits a dilation. In particular, it holds for W ′ being
Weinstein of dimension at least 6.

Proof. We assume SH∗(W ) �= 0, for otherwise, it is proven by Corollary B. By Propo-
sition 4.10, W admits a dilation that implies there exists x ∈ ker δ ∩ ker Δ+ ⊂ SH∗

+(W ),
such that φ(x) = 1. In particular, Δ∂(x) = 1. By Theorem G, we have an identification and
Δ∂(x) = 1 for W ′. In particular, φ(x) = 1 on W ′, because in degree 0, we have both coker δ∂
and coker δ spanned by 1 for both W and W ′. We only need to prove x is from SH∗(W ′). Since
δ∂(x) = 0 on W , we have δ∂(x) = 0 on W ′. Since H2(W ′) → H2(Y ) is injective, then δ(x) = 0
on W ′. Then by Proposition 4.10, we have that W ′ admits a dilation. �

The existence of symplectic dilations puts strong restrictions on the symplectic topology.
Let W 2n be a Liouville domain with c1(W ) = 0 and n > 1, and assume W admits a dilation.
Seidel [56] showed that there are at most finitely many Lagrangian spheres in W 2n that are
pairwise disjoint. Given Corollary 4.17, we can ask the following natural question.
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Question 4.18. Let W be an ADC manifold with a symplectic dilation. Is there a
universal upper bound for the maximal collections of pairwise disjoint Lagrangian spheres
for all Weinstein fillings of ∂W?

Similar to Corollary 3.14, we have following obstruction to Weinstein fillings.

Corollary 4.19. Let Y be a 2n− 1 dimensional ADC contact manifold and n � 3. If Y
admits a topologically simple exact filling W and im Δ∂ contains an element of grading greater
than n, then Y does not admit Weinstein filling.

Proof. Since Δ∂ factors through coker δ = coker(SH∗
+(W ) → H∗+1(W )), im Δ∂ cannot

contain an element of grading greater than n if W is Weinstein. By Theorem G, since Δ∂

is independent of topologically simple exact fillings, in particular Weinstein fillings, the claim
follows. �

We apply Corollaries 3.14 and 4.19 in § 6 to construct many exactly fillable, but not Weinstein
fillable manifolds. Although Corollaries 3.14 and 4.19 use the topology of W , those obstructions
as contact invariants of the ADC boundary are not topological. In particular, we will show that
they are very different from the topological criterion in [13] by proving Theorem I.

4.6. Δ+, φ, Δ∂ as invariants

In this subsection, we will explain that Δ+ and φ are invariants of the exact domains up exact
symplectomorphisms. It is clear that Δ+, φ can be defined on Hamiltonians with finite slope
and C2-small on W . Using Proposition 4.6, they commute with continuation maps, hence
the direct limit of them define Δ+ : SH∗

+(W ) → SH∗−1
+ (W ) and φ : ker Δ+ → coker δ. The

following proposition implies that Δ+, φ are invariants of the exact domains.

Proposition 4.20. Let V ⊂ W be a subdomain, then Viterbo transfer maps perverse Δ+

and φ. In particular, we have the following commutative diagram,

where coker δW → coker δV is induced by

Since the BV operator is the second term in the differential of the S1-equivariant symplectic
(co)chain complexes [67], this proposition follows from the functoriality of positive S1-
equivariant symplectic cohomology, which was proven in [28]. In fact, it is sufficient to
consider the approximation ES1 by S3 in the S1-equivariant symplectic (co)homology.
Using the fact that Viterbo transfer SH∗

+(W ∪ ∂W × (1, r)) → SH∗
+(W ) is an isomorphism

and exactly symplectomorphic exact domains have nested embeddings into each other [17,
Proposition 11.8], Proposition 4.20 implies that Δ+ and φ are invariants of exact domains up
to exact symplectomorphisms.
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Next we verify that Δ+, φ defined on H∗(C(H+, J+)) match with Δ+, φ on SH∗
+(W ) nat-

urally.

Proof of Proposition 4.7, 4.8, 4.9. We first prove Propositions 4.8 and 4.9. We need to
relate the structure maps defined using H± to those defined as limits of nondegenerate
linear Hamiltonians. Let H± be the nondegenerate perturbation to H± in the proof of
Proposition 2.10. Let H±,s be the decreasing homotopies between them. Then Δ,Δ+,Φ are
defined similarly using H± as the integrated maximum principle holds for the moduli spaces.

We pick two sequences of Hamiltonians with finite slope H
D±

i± such that the following holds.

(i) H
D±

i± = H± on W i.

(ii) H
D±

i± = f ′
±(ci)r for r � ci, where ci ∈ (ai, bi).

(iii) H
D±

i± � H
D±

i+1
± .

(iv) H
D+

i
+ � H

D−
i− .

Then by the continuation maps on finite slope Hamiltonians and the compatibility with Δ
following [1, §2.2.3], we have the following commutative diagram.

The unmarked arrows are continuation maps, and the horizontal arrows on top and bottom
row are inclusions, which are continuation maps induced by the trivial homotopy. By
Proposition˜4.6, the diagram also induces an commutative diagram of φ for different pairs
of Hamiltonians H±, HD±

i . This proves Propositions˜4.8 and 4.9 for H±.
Therefore to prove the claim, it is sufficient to prove commutativity of the following two

diagrams (and the + version).

where the unmarked arrows are continuation maps, and the horizontal ones are those in
Proposition 2.10. They can be shown using a homotopy argument. The only new thing we
need to verify is compactness and regularity for moduli spaces. Since it involves degenerate
Hamiltonians H, the moduli spaces have some cascades part. For the first diagram, let Hs =
ρ(s)H− + (1 − ρ(s))H+, Hs = ρ(s)H− + (1 − ρ(s))H+, they are used to define continuation
maps Θ and H∗(C(H+)) → H∗(C(H−)). Then we define a smooth homotopy of homotopy
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Ha
s,t in the following. Let χ be the increasing function such that χ(a) = a for a 
 0 and

χ(a) = 2 near a = 1.

(i) For a > 1, Ha
s,t = H+,s−χ(a) for s > 0 and Ha

s,t = Hs+χ(a) for s � 0.
(ii) For a < 0, Ha

s,t = Hs−χ(1−a) for s > 0 and Ha
s,t = H−,s+χ(1−a) for s � 0.

(iii) For 0 � a � 1, Ha
s,t = ρ(a)H0

s,t + (1 − ρ(a))H1
s,t.

It is clear that we have ∂sH
a
s,t � 0. Moreover, on (ai, bi), we have the following three cases.

(i) For a > 1, Ha
s,t = f+(r) when s > 0 and Ha

s,t = ρ(s + χ(a))f−(r) + (1 − ρ(s +
χ(a)))f+(r) when s � 0. Then ∂s(r∂rHa

s,t −Ha
s,t) � 0.

(ii) For a < 0, Ha
s,t = f−(r) when s � 0 and Ha

s,t = ρ(s− χ(1 − a))f−(r) + (1 − ρ(s− χ(1 −
a)))f+(r) when s > 0. Then ∂s(r∂rHa

s,t −Ha
s,t) � 0.

(iii) For 0 � a � 1, Ha
s,t = ρ(a)(ρ(s− 2)f−(r) + (1 − ρ(s− 2))f+(r)) + (1 − ρ(a))(ρ(s +

2)f−(r) + (1 − ρ(s + 2))f+(r)), then ∂s(r∂rHa
s,t −Ha

s,t) = (ρ(a)ρ′(s− 2) + (1 − ρ(a))ρ′(s +
2))(rf ′

−(r) − f−(r) − rf ′
+(r) − f+(r)) � 0.

In particular, Lemma 2.5 can be applied to get compactness. The regularity is standard, except
when a 
 0 and breaks at W . In principle, it is a Morse–Bott breaking at W . However, in our
special case, for a 
 0, solutions near such breaking is isomorphic to solutions to the equation
using H+,s shifted by χ(a). Hence such type of breaking is again a boundary corresponding
to composing with Θ on C0(H+), which is identity. The proof for compatibility with Δ is the
same. Since all the maps respect the 0,+ splitting, the proof above also yields the identification
on Δ+ and φ by Proposition 4.6.

To prove Proposition 4.7, we can view H±,s ≡ H±. Then the above construction yields a
homotopy of Hamiltonians Ha

s,t, such that Lemma 2.5 can be applied. Then Proposition 4.7
follows from the standard homotopy argument. �

5. Uniruledness

A variety is uniruled if and only if it is covered by a family of rational curves. Similarly, an
affine variety is uniruled if it is covered by a family of rational curves possibly with punctures.
In the symplectic setup, one can replace rational curve by pseudo-holomorphic rational curves.
The uniruledness for Liouville domains was introduced in [45].

Definition 5.1 [45, §2]. A dλ-compatible almost complex structure J on W is convex if
and only if there is a function φ such that:

(i) φ attains its maximum on ∂W and ∂W is a regular level set,
(ii) λ ◦ J = dφ near ∂W .

This is more general than the cylindrical convex almost complex structure used in Defi-
nition 2.3, where φ = r near the boundary. A maximal principle still holds for holomorphic
curves near ∂W using the function φ. Proposition 5.3 relates a general convex almost complex
structure with a cylindrical convex almost complex structure.

Definition 5.2 [45, Definition 2.2]. Let k > 0 be an integer and Λ > 0 a real number.
We say that a Liouville domain (W,λ) is (k,Λ)-uniruled if, for every convex almost complex
structure J on W and every point p ∈ W 0 where J is integrable on a neighborhood of p, there is
a proper J-holomorphic map u : S → W 0 to the interior W 0 of W passing through this point.
We require that S is a genus 0 Riemann surface, the rank of H1(S; Q) is at most k − 1 and the
area of u is at most Λ.
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Proposition 5.3. Let Y be a contact manifold with a contact form α, and there is a
function φ on Y × [1, 3]r, such that ∂rφ > 0 and Y × {3} is a level set. Assume J is d(rα)
compatible almost complex structure, such that rα ◦ J = dφ on Y × [1, 2]. Then there exists an

extension of d(rα) compatible almost complex structure J̃ , such that rα ◦ J̃ = dφ on Y × [1, 3].

Proof. The Liouville vector field on Y × [1, 3] is r∂r. Since ∂rφ > 0, every level set of φ is of
contact type. On each level surface φ−1(a), let ξa denote the contact structure kerα ∩ Tφ−1(a)
and Ex be the d(rα) complement of ξa for x ∈ φ−1(a). Then J being compatible with d(rα)
and rα ◦ J = dφ determines a complex structure on Ex and J |ξa is a d(rα) compatible almost
complex structure, and those two descriptions are equivalent. It is clear we can extend J to J̃
maintaining such properties. �

McLean proved that the symplectic uniruledness is equivalent to the algebraic uniruledness
for affine varieties. In particular, the algebraic uniruledness is rather a symplectic property.
In the following, we use the constructions in §§ 3 and 4 to prove that uniruledness is implied
by the existence of symplectic dilation, which is, of course, a symplectic property. Unlike the
results in other sections, we do not assume c1 = 0 in this section. Hence all gradings should be
understood as Z/2 gradings.

Theorem 5.4. Let R be a ring and W a Liouville domain such that SH∗(W ;R) = 0 or
there exists a symplectic dilation in SH1(W ;R), then W is (1,Λ)-uniruled for some Λ.

Remark 5.5. For Liouville domain with vanishing symplectic cohomology, a version
of uniruledness different from Definition 5.2 was obtained, see [5]. However, to obtain
Theorem 5.10, we need to achieve the more refined version of uniruledness in Definition 5.2.

Proof. We write Wδ = W\∂W × (1 − δ, 1]. Then by [45, Theoerem 2.3], there exists a Λ > 0
such that W is (1,Λ) uniruled if and only if Wδ is (1,Λ′) uniruled for some Λ′ > 0. Assume
SH∗(W ;R) = 0, then 1 ∈ im(SH−1

+ (W ;R) → H0(W ;R)). That is, 1 ∈ im(H−1(C+(H, J)) →
H0(C0(f))), in particular this means that for some i > 0, 1 ∈ im(H−1(CDi

+ (H, J)) →
H0(C0(f))). Since 1 is generated by the unique local minimum point m of f , for a generic
almost complex structure J , we have a dimension 0 compact manifold Mm,x �= ∅ for some
x ∈ P∗(H) with grading |x| = −1 and action � −Di. Since m is a minimum, an element of
Mm,x is simply a solution to the following:

u : C → Ŵ , ∂su + J(∂tu−XH) = 0, u(0) = m, lim
s→∞u = x. (5.1)

For any convex almost complex structure Jδ on Wδ, assume that φ is the function in
Definition 5.1, and we may assume φ|∂Wδ

= 1 − δ. Then we can extend φ to φ̂ on Ŵ such that
∂rφ̂ > 0 on ∂W × [1 − δ,∞) and φ̂ = r when r � 1. By Proposition 5.3, Jδ can be extended to
a J ∈ J (W ). We may assume J ∈ J�1

reg (H, f, g), since we perturb J near P∗(H) to achieve
transversality. Therefore we have a curve u solving (5.1) and when restricted to Wδ it is a
Jδ-curve. Such curve has an energy bound by Di. Let S denote the connected component of
0 of u−1(W 0

δ ). We claim H1(S; Q) must be rank 0. We can find a small 0 < ε < δ, such that
S′ ⊂ u−1(W\∂W × (1 − ε, 1]) is the connected compact Riemann surface containing 0 with
boundary and u(∂S′) ⊂ ∂W × {1 − ε} and J is cylindrical convex on ∂W × {1 − ε}. Then S′

is a disk, for otherwise, there is a domain D ⊂ C diffeomorphic to a disk, such that u|D solves
(5.1) and u(∂D) ⊂ ∂W × {1 − ε}, this contradicts Lemma 2.5. Note that S ⊂ S′. If H1(S; Q)
is not rank 0, then there is a loop γ ⊂ S bounding a disk D ⊂ S′ and D is not contained in
S. Since we have φ̂ ◦ u|γ < 1 − δ and max φ̂ ◦ u|D\S � 1 − δ, which contradicts the maximal
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principle for holomorphic curves, u|S is the Jδ-curve we are looking for in Wδ passing through
m.

Next, we need to show such construction can be applied to any m with a universal energy
bound Di. What we need is a universal Di, such that 1 ∈ im(H0(CDi

+ (H, J, f)) → H−1(C0(f)))
for any admissible Morse function f . This can be seen from Proposition 2.10, since there is a Di,
such that 1 ∈ im(H−1(CDi

+ (H)) → H0(C0(H))), where H is the perturbation of H. Therefore
Wδ is (1, Di)-uniruled.

Next, we assume SH∗(W ;R) �= 0 and admits a dilation. Then by Proposition 4.10, we have
1 ∈ imφ. By the same argument as above, there is a D+

i , such that

φD+
i : ker ΔD+

i
+ ⊂ H1(CD+

i
+ (H+, J+)) → H0(C0(f))/ im δD

−
i

contains 1 in the image. Since SH∗(W ;R) �= 0, we have im δD
−
i does not contain 1. Therefore we

have x ∈ C
D+

i
+ (H+, J+), b ∈ C

D−
i

+ (H−, J−), such that Δ+,0(x) + d+,0(b) = m + c for c ∈ C∗
0 (f)

is a cochain representing class in im δD
−
i , where m is the minimum point of f .† Similar to

the argument above, since m is a minimum, for generic J+, J− and Jθ
s,t, either there is a

x ∈ P∗(H+) and θ ∈ S1 and a solution to
∂su + Jθ

s,t(∂tu−XHθ
s,t

) = 0, u(0) = m, lim
s→∞u = x;

or there is a b ∈ P∗(H−) and a solution to
∂su + J−(∂tu−XH−) = 0, u(0) = m, lim

s→∞u = b. (5.2)

We may assume J±, Jθ
s,t restrict to Wδ is Jδ as before. Then in either case, when u restricted

to the preimage of W 0
δ is a Jδ-curve passing through m, with energy bound D−

i , note that
integrated maximal principle can also be applied to r = 1 − ε for Hθ

s,t, since Hθ
s,t ≡ 0 there

and ∂sH
θ
s,t � 0. Hence the component of u−1(W 0

δ ) containing 0 has rank 0 in rational first
homology in either case as before. Then by the functoriality in § 4.6, we can change f as before
to find curves passing through any point with a universal energy bound. �

Remark 5.6. If one considers the holomorphic planes with one marked point in the
completion, then virtual dimension of such space is given by μCZ(γ) + n− 1, when the plane
is asymptotic to a Reeb orbit γ. To hope the evaluation map at the marked point covers every
point in W , we need μCZ(γ) � n + 1. If we expect the evaluation map to behave like a covering
map, then we need μCZ(γ) = n + 1. In many cases, the vanishing of symplectic cohomology is
due to a Reeb orbit of index n + 1. Note that a nondegenerate Reeb orbit of index n + 1 can be
perturbed into two nondegenerate Hamiltonian orbits with indices n + 1, n + 2. In our grading
convention, the index n + 1 Hamiltonian orbits is of grading −1, which is often responsible for
the vanishing. This is the case for the standard symplectic ball. On the other hand, when we
consider dilation x ∈ SH1(W ), the associated Reeb orbit is of index n− 1 or n− 2, hence the
uniruledness should not be provided by such Reeb orbits. However, the b ∈ C−1

+ (H−, J−) in
the proof of Theorem 5.4 provides the Reeb orbit of the right index. This suggests that the
uniruledness should be from a solution to (5.2). In fact, this is the case for T ∗Sn. We will
investigate them in more detail in [69].

Remark 5.7. On the other hand, 1-uniruledness does not imply the existence of symplectic
dilation. For example, we take a smooth cubic hypersurface V in CP6 and W is the complement
of the intersection of V with a generic hyperplane. Then W is an affine variety and W does
not admit a symplectic dilation by degree reasons, see [56, Example 2.7]. However, by [33,
Corollary 5.4], W is 1-uniruled.

†When c1(W ) = 0, we have c = 0 by degree reasons.
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Remark 5.8. In fact, the vanishing of symplectic cohomology and existence of symplectic
dilation are the first two simplest conditions implying uniruledness in a whole family. The
next one is whether 1 is in the image of the map Δ2 : ker Δ → coker Δ, which is defined using
Δ and the homotopy operator in the (Δ)2 = 0 relation and is with a degree shift by 3. One
way of packaging all the homotopic relations is using the S1-equivariant theory as in [67],
then the spectral sequence from the u-filtration (on any S1-cochain complex) inducing maps
Δi+1 : ker Δi → coker Δi with Δ1 is the BV operator considered here. We say W admits a
k-dilation if and only if 1 ∈ im Δk. In fact, the counterexample in Remark 5.7 satisfies that
1 ∈ im Δ2, hence it has a 2-dilation but no 1-dilation. Every such structure has a related map
φi defined on a subspace of SH∗

+(W ) to a quotient space of H∗(W ) generalizing φ in (4.5).
And there is a boundary version for all i in a similar way to Δδ, δ∂ . These structures have
similar property to δ∂ ,Δ∂ in §§ 3 and 4. That is, they are independent of fillings for ADC
manifolds and 1 being in the image of any of them implies uniruledness. They can be used
to develop more obstructions to Weinstein fillability. Moreover, they give an infinity hierarchy
on the complexity of symplectic manifolds, and also an infinity hierarchy on the complexity
of ADC contact manifolds. Details of such construction will appear in the sequel paper [69].
The existence of k-dilation for some k is equivalent to the existence of cyclic dilation for h = 1,
which is defined independently by Li [38], where the open string implication of cyclic dilations
is studied.

Remark 5.9. From the proof of Theorem 5.4, it is clear that 1 ∈ im Δ∂ would also
imply uniruledness. By Proposition 4.10, 1 ∈ im Δ∂ is potentially weaker than existence of
dilation.

Using Theorem 5.4, nonuniruledness is an implication of nonexistence of symplectic dilation
in any coefficient. Since log Kodaira dimension provides an obstruction to uniruledness, we
have the following.

Theorem 5.10. Let W be an affine variety. In either of the following cases, we have
SH∗(W ;R) �= 0 and there is no symplectic dilation using any coefficient ring R.

(i) The log Kodaira dimension is not −∞.
(ii) W admits a projective variety V compactification, such that V is not uniruled, for

example, the Kodaira dimension of V is not −∞.

Proof. By [45, Theorem 2.5, Lemma 7.1], if W does not have log Kodaira dimension −∞,
W cannot be (1,Λ)-uniruled for any Λ. Then by Theorem 5.4, we have SH∗(W,R) �= 0 and
there is no symplectic dilation for any coefficient ring R.

Let V be projective compactification of W . If we have SH∗(W,R) = 0 or there is a symplectic
dilation, then W is (1,Λ)-uniruled. By [45, Theorem 2.5], W is 1-algebraically uniruled.
Hence V is algebraically uniruled and the Kodaira dimension of V is −∞, hence it is a
contradiction. �

Now, Corollary M follows from Theorem 5.10 directly. Symplectic exotic Cn was constructed
in [2, 44, 57] for all n � 3. The proofs of exoticity were based on nonvanishing of symplectic
cohomology for some coefficient, but the mechanisms for nonvanishing were very different. In
view of Corollary M, the exoticity can also be explained by the failure of uniruledness.

Example 5.11. Seidel–Smith [57] proved that product Mm,m � 2, is an exotic C2m

for Ramanujam surface M [51] by showing that M contains an essential Lagrangian, hence
SH∗(M) �= 0 and Mm is exotic. Since M has log Kodaira dimension 2, we have Mm has log
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Kodaira dimension 2m. Therefore by Theorem 5.10, SH∗(Mm) �= 0 and SH∗(Mm) does not
admit symplectic dilations. This reproves Seidel–Smith’s result.

Remark 5.12. There are many algebraic exotic Cn with log Kodaira dimension −∞, for
example, M × C for Ramanujam surface M . However, M × C is symplectically standard by
h-principle, since it is subcritical and diffeomorphic to C3. The atomic exotic C4 considered by
McLean [44] from Kaliman modification also has negative log Kodaira dimension. Therefore
log-Kodaira dimension being nonnegative is not the criterion of being symplectic exotic.

By Corollary M, one can look for symplectic exotic Cn in complex exotic Cn. They exist in
abundance when n � 3, see [66].

Nonvanishing of symplectic cohomology also implies nondisplaceablity [32]. Hence we have
the following.

Example 5.13. Let V be a projective variety with nonnegative Kodaira dimension.
Let W = V \D be an affine variety for a divisor D. Then SH∗(W ) �= 0, and W is not
displaceable. That is, when we view W as a Liouville domain, there is no Hamiltonian
F ∈ C∞

c (S1 × Ŵ ) such that the generated time one Hamiltonian diffeomorphism φF displaces
W , that is, φF (W ) ∩W = ∅. This holds, in particular, if V is Calabi–Yau, since the Kodaira
dimension is 0.

As showed in §§ 3 and 4, the vanishing of symplectic cohomology and the existence of
symplectic dilations are properties independent of fillings for ADC contact manifolds. A natural
question is whether uniruledness shares the similar property.

Question 5.14. Is uniruledness independent of the (topologically simply) filling for ADC
contact manifold?

6. Constructions of ADC manifolds

As explained in Example 3.7, ADC contact manifolds exist in abundance. Moreover, a flexible
handle attachment does not change the ADC property [37]. In this section, we provide two other
simple constructions of ADC manifolds, which provides many examples, where Corollaries 3.14
and 4.19 can be applied. In particular, we will prove Theorem I.

6.1. Product with the complex plane

In this subsection, we show that the boundary of V × C is 0-ADC for any Liouville domain
V such that c1(V ) = 0 and dimV > 0. Moreover by [48], V × C has vanishing symplectic
cohomology. Since there are examples of V × C such that it cannot be a Weinstein domain,
such construction proves many nonflexible examples where results from § 3 can be applied. In
the following, we fix the symplectic form on C by d(r2dθ).

Definition 6.1. Let V be a connected manifold with nonempty boundary, the Morse
dimension dimM V is defined to be the minimum of the max index of an admissible Morse
function on V , then dimM V � dimV − 1.

We also introduce the notion of tamed asymptotically dynamically convex contact manifold,
which is ADC and αi does not collapse to 0. This will be important for our discussion on
nonexact fillings.
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Definition 6.2. (Y, ξ) is k-TADC if there exist contact forms α1 > α2 > . . ., positive
numbers D1 < D2 < . . . → ∞ and a contact form α, such that αi > α and all elements of
P<Di(αi) are nondegenerate and have degree greater than k. We have similar definition for
exact domains.

Basic examples of (0-)TADC manifolds are index-positive contact manifolds, for example,
cotangent bundles when dimension of the base is at least 4. The other case is index-positive in
the Morse–Bott sense, for example, Example 4.3. That they are TADC follows from that up
to action D, there exist small perturbations into nondegenerate contact forms with prescribed
Conley–Zehnder indexes [8, Lemmas 2.3 and 2.4], and the perturbation can be made arbitrarily
small so that the perturbed contact form does no collapse to 0. The following result will provide
some more examples of TADC manifolds.

Theorem 6.3. Let V be a 2n-dimensional Liouville domain such that c1(V ) = 0 and n > 0.
We define Y to be the contact boundary of V × C, then we have the following.

(i) Y is 0-ADC.
(ii) If ∂V supports a nondegenerate contact form such that all Reeb orbits are contractible

in V , then Y is strongly 0-ADC.

In fact, Y is (strongly) (2n− dimM V − 1)-ADC. If V is k-TADC for some k, then Y is TADC.

We will prove the theorem by setting up the following propositions.

Proposition 6.4. Assume Y is a contact manifold with a contact form α and V is a
Liouville domain with a Liouville form λV . Let f be a strictly positive function on V , then
αf := fα + λV is a contact form on Y × V if and only if d( 1

f λV ) is a symplectic form on V .

The Reeb vector field is given by Rf := 1
fRα + X̃ 1

f
. Here X̃ 1

f
−X 1

f
∈ 〈Rα 〉 and αf (X̃ 1

f
) = 0

and X 1
f

is the Hamiltonian vector field for 1
f using the symplectic form d( 1

f λV ).

Proof. Assume dimY = 2m + 1 and dimV = 2n. To show αf is a contact form, it is sufficient
to show 1

f αf is a contact form. Note that we have

1
f
αf ∧

(
d(

1
f
αf )

)m+n

=
(
α +

1
f
λV

)
∧
(

dα + d
(

1
f
λV

))m+n

=
(
m + n

m

)(
α +

1
f
λV

)
∧ (dα)m ∧ (d

(
1
f
λV

)n

=
(
m + n

m

)
α ∧ (dα)m ∧

(
d
(

1
f
λV

))n

.

Hence αf is a contact form if and only if d( 1
f λ) is nondegenerate. Note that by construction,

we have αf (Rf ) = 1. Moreover, we have

ιRf
d(αf ) = ιRf

d
(
f

(
α +

1
f
λV

))

= ιRf
df ∧

(
α +

1
f
λV

)
+ ιRf

fd
(
α +

1
f
λV

)
.
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Since αf (X̃ 1
f
) = 0, we have ιRf

(α + 1
f λV ) = 1

f . Since ιRf
df = 0, ιRf

dα = 0 and ιRf
d( 1

f λV ) =

−d 1
f by definition, we have ιRf

d(αf ) = −df
f − fd 1

f = 0. Hence Rf is the associated Reeb
vector. �

Remark 6.5. Note that Y × V can be viewed as a hypersurface r = f in the Liouville
cobordism Y × R+ × V with Liouville form rα + λV . Then this hypersurface is of contact
type if the Liouville vector r∂r + XλV

is transverse to the surface and pointing out, that is
(r∂r + XλV

)(r − f) = f −XλV
f > 0.

Remark 6.6. Proposition 6.4 can be viewed as a generalization of the computation carried
out for prequantization bundles. Let γ be a Reeb trajectory on Y , then over γ × V we have
a connection given by α + 1

f λV such that the curvature is the symplectic form d( 1
f λV ). The

contact structure is given by the horizontal subspace direct sum with the contact structure of
Y , the splitting holds in the symplectic sense.

We will divide the boundary of V × C into two parts, one of them is diffeomorphic to ∂V × D
and the other is diffeomorphic to V × S1, where D ⊂ C is a disk. In the following, we discuss
the Reeb dynamics on the ∂V × D part.

Proposition 6.7. Let (Y, ξ) be a contact manifold with a contact form α. We fix a small
ε > 0. Assume g is a smooth function on [0,1] such that the following holds.

(i) g(x) = x for x near 0, g(1 − ε) = 1.
(ii) g(x) is increasing and g′′(x) > 0 unless g(x) = x.

Then for ρ ∈ R+, (2 − g(ρr2))α + r2dθ is a contact form on Y × D√
1−ε/ρ

. And Reeb orbits of

it are of the form (γ(At), reBit+θ0), where γ is a Reeb orbit of Rα on Y and

A =
1

2 − g(ρr2) + ρr2g′(ρr2)
, B =

ρg′(ρr2)
2 − g(ρr2) + ρr2g′(ρr2)

.

If γ is nondegenerate of period D, then we have the following.

(i) When r = 0, then the Reeb orbit (γ(1
2 t), 0, 0) is nondegenerate if and only if Dρ

2π /∈ N

and the Conley–Zehnder index is given by μCZ(γ) + 2�Dρ
2π � + 1.

(ii) When ρr2 is in the domain where g(x) �= x, then (γ(At), reBit+θ0) is an orbit if and only
if Dρg′(ρr2) ∈ 2πN. It is a Morse–Bott S1-family of orbits with period D

A , and the generalized

Conley–Zehnder index is given by μCZ(γ) + Dρg′(ρr2)
π + 1

2 .

Proof. Note that (2 − g(ρr2)) − r
2∂r(2 − g(ρr2)) = 2 − g(ρr2) + ρr2g′(ρr2) > 0 on Y ×

D√
1−ε/ρ

. Then by Remark 6.5, αg := (2 − g(ρr2))α + r2dθ is a contact form. By Proposi-
tion 6.4, the Reeb vector field is given by

R :=
1

2 − g(ρr2)
Rα + X̃1/(2−g(ρr2)).

By a direct computation, we have

X̃1/(2−g(ρr2)) =
ρg′(ρr2)

2 − g(ρr2) + ρr2g′(ρr2)
∂θ +

−ρr2g′(ρr2)
(2 − g(ρr2) + ρr2g′(ρr2))(2 − g(ρr2))

Rα.
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Therefore the Reeb vector is

R =
1

2 − g(ρr2) + ρr2g′(ρr2)
Rα +

ρg′(ρr2)
2 − g(ρr2) + ρr2g′(ρr2)

∂θ = ARα + B∂θ.

Hence all Reeb orbits are in the form prescribed in the proposition.
As explained in Remark 6.6, the contact structure on Y × D√

1−ε/ρ
is the direct sum of ξ

with kernel of α + r2

2−g(ρr2)dθ in the space 〈Rα 〉 ⊕ TD√
1−ε/ρ

. Since the Reeb vector is tangent

to Y × S1
r and the Rα component is a constant, we know that Reeb flow of R preserves ξ and

the splitting. Therefore when computing Conley–Zehnder index, it is sufficient to figure out the
Conley–Zehnder index of the horizontal direction. In the r = 0 case, the linearized return map
is given by the linearized return map of γ direct sum with the rotation by eDρi in the horizontal
direction. Therefore it is nondegenerate if and only if Dρ

2π /∈ N and the Conley–Zehnder index
in the horizontal direction is 1 + 2�Dρ

2π �.
When ρr2 is in the domain where g(x) �= x, then periodic orbits are in the form of

(γ(At), reBit+θ0), hence they always come in an S1 family for θ0 ∈ S1. To verify that it is
a Morse–Bott in the sense of [8, Definition 1.7], note that the linearized return map φ is the
direct sum of the linearized return map of γ and the return map on the horizontal direction is
given by

φT =

⎡⎢⎣ 1 0

T
d
dr

ρg′(ρr2)
2 − g(ρr2) + ρr2g′(ρr2)

1

⎤⎥⎦,
where we use ∂r, ∂θ as the basis and T is the period Dρg′(ρr2). Note that we have

d
dr

ρg′(ρr2)
2 − g(ρr2) + ρr2g′(ρr2)

=
2ρrg′′(ρr2)(2 − g(ρr2)) + 2ρ2r(g′(ρr2))2

(2 − g(ρr2) + ρr2g′(ρr2))2
> 0.

Therefore ker(φT − id) is spanned by ∂θ. Hence the 1-eigenspace of the total linearized return
map is spanned by ∂θ and Rα, which is the tangent space of im γ × S1

r . Moreover, dαg =
(2 − g(ρr2))dα− 2ρrg′(ρr2)dr ∧ α + 2rdr ∧ dθ is rank 0 on im γ × S1

r . Therefore such Reeb
orbits are of Morse–Bott type. To compute the generalized Maslov index, it is enough to
compute the generalized Maslov index in the horizontal direction. Note that the linearized
map is given by

φt :=

[
cos t − sin t

sin t cos t

]
·
[

1 0
Ct 1

]
, 0 � t � T =

Dρg′(ρr2)
2π

,

where C = 2ρrg′′(ρr2)(2−g(ρr2))+2ρ2r(g′(ρr2))2

(2−g(ρr2)+ρr2g′(ρr2))2 > 0. Therefore the generalized Conley–Zehnder

index [54] is given by Dρg′(ρr2)
π from the rotation plus the generalized Conley–Zehnder index

of [
1 0
Ct 1

]
, 0 � t � T.

The latter is a symplectic sheer. Since C > 0, the index is given by 1
2 . Then the total generalized

Conley–Zehnder index is given by μCZ(γ) + Dρg′(ρr2)
π + 1

2 . �

On the complement V × S1, we will use the following lemma to guarantee all Reeb orbits
are either over critical points or have very large period.
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Lemma 6.8. Let (V, ω) be a compact symplectic manifold possibly with boundary. For all
C > 0, there exists ε ∈ R+, such that for all functions H with |dH|C0 < ε and all symplectic
forms ω′ such that |ω′ − ω|C1 < ε, we have all nonconstant periodic orbits of Hamiltonian
vector field XH using symplectic form ω′ have period at least C.

Proof. Let g be a Riemannian metric on V . We can find a cover of V by finitely many
Darboux charts {Ui}, such that there exists δ > 0 so that every δ-ball is contained in one of
the Darboux charts. Moreover, for smaller enough ε′, we can assume that each Ui is a Darboux
chart of ω′ for |ω′ − ω|C1 < ε′. Using the standard metric on each Ui ⊂ R2n by viewing Ui as
a ω Darboux chart, we have a C0 norm on Ω1(V ). Since ω′ is C1 close to ω, we know that
the induced C0 norm on Ω1(V ) are uniformly equivalent for any ω′ nearby and is equivalent
to the C0 norm we use to state the lemma. If |dH|C0 < δ

C , then any trajectory φ(t) of XH

has the property that d(φ(0), φ(C)) < δ. By [6, Proposition 6.1.5], on each Darboux chart, if
|dH|C0 < 2π

C , then any C-periodic orbit in the chart is a constant. Therefore the claim holds
for ε = min( δ

C , 2π
C , ε′). �

Proof of Theorem 6.3. Since we have c1(V ) = 0, then c1(V × C) = 0. Hence c1(Y ) = 0, that
is, the Conley–Zehnder index is well defined in Z for contractible orbits on Y . Now we pick a
Liouville form λ on V such that the associated Reeb dynamic on ∂V is nondegenerate. Then
there exist positive real numbers converging to infinity D1 < D2 < . . . and integers N1, N2, . . .,
such that all periodic orbits of Rλ contractible in V with period smaller than Di have Conley–
Zehnder index greater than Ni. We consider orbits contractible in V , since (γ, p) for γ ∈
L∂V, p ∈ C is homotopically trivial on Y := ∂(V × C) if γ is contractible in V .

We view Y as the hypersurface Yρ,f,g in V̂ × C such that Y 1
ρ,f,g := Yρ,f,g ∩ (∂V × [1,∞)t × C)

is given by t = 2 − g(ρr2) for big ρ ∈ R+ and function g as in Proposition 6.7, and Y 2
ρ,f,g :=

Yρ,f,g ∩ (V × C) is given by r2 = f
ρ for a Morse function f on V such that near the boundary

f = g−1(2 − t), where t is the collar coordinate smaller than 1. To see Yρ,f,g is of contact type,
it is sufficient to prove that the Liouville vector field Xλ + 1

2r∂r is transverse to Yρ and points
out. On Y 1

ρ,f,g, this is verified in Proposition 6.7. On Y 2
ρ,f,g, we have (Xλ + 1

2r∂r)(r
2 − f

ρ ) =
r2 − 1

ρXλf = 1
ρ (f −Xλf). Note that if g′(1 − ε) is very big, f ′(1) = − 1

g′(1−ε) is very small,
hence we can choose f such that Xλf is very small and f � 1 − ε. Hence Yρ,f,g is of contact
type. And for ρ1 > ρ2, there exists such f1, g1, f2, g2 so that the domain between Yρ1,f1,g1 and
Yρ2,f2,g2 is a Liouville cobordism. Using the Liouville vector field, we have the induced contact
form on Yρ1,f1,g1 is smaller than the induced contact form on Yρ2,f2,g2 .

On Y 1
ρ,f,g, by Proposition 6.7, the Reeb orbits of type (i) of action bounded by Di have

Conley–Zehnder indices greater than Ni + 2�Diρ
2π � + 1. Since A < 1 in Proposition 6.7, Reeb

orbits of type (ii) of action bounded by Di is of Morse–Bott type in S1-families with generalized
Conley–Zehnder indices greater than Ni + �Diρ

π � + 1
2 , since g′ � 1. On Y 1

ρ,f,g, it is possible that
there are periodic orbits not described by (i) and (ii) in Proposition 6.7. That is, those orbits
with ρr2 in the domain where g(x) = x. Then we have A = 1

2 and B = ρ
2 . Then if we pick ρ

such that |γ|ρ /∈ 2πN for all Reeb orbits γ on (∂V, λV ) with period smaller than Di, then there
are no Reeb orbits with period smaller than 2Di on this domain.

Y 2
ρ,f,g is contactomorphic to V × S1 with contact form λ + ρ

f dθ. Then by Proposition 6.4, the

Reeb vector is given by ρ
f ∂θ + X̃ ρ

f
. Therefore there are two types of Reeb orbits. One is of form

(p, φk(t)) where p is a critical point of ρ
f and φk(t) is a reparametrization of eikt, t ∈ [0, 2π]. The

other type is γ such that π ◦ γ is a nonconstant periodic orbit of X ρ
f

for the projection π : V ×
S1 → V . When p is a nondegenerate critical point of ρ

f , we have μCZ(p, φk(t)) = n− ind p + 2k.
If we choose f such that critical points of 1

f have max index dimM V , then we have the degree
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of (p, φk(t)) is at least n− dimM V + 2k + n + 1 − 3 = 2n− dimM V + 2k − 2 � 2n− dimM V .
Since dimM V � 2n− 1, those orbits have positive degree. For the other type of periodic orbits,
periodic orbits of X ρ

f
using symplectic form d( ρ

f λ) is the same as periodic orbits of X 1
f

using

symplectic form d( 1
f λ). Since we can choose g and f such that 1

f − 1
1−ε is C2 small, therefore

d( 1
f λ) is C1 close to 1

1−εdλ. This can be achieved by choosing g such that g′(1 − ε) is very large
and g′′(1 − ε) is very small. Therefore by Lemma 6.8, we can assume all nonconstant periodic
orbits of X ρ

f
are of periods greater than Di.

Therefore we can pick big enough ρi and fi, gi, such that all contractible Reeb orbits on
Yρi,fi,gi with action smaller than Di are either nondegenerate with positive degrees or Morse–
Bott in S1-families with generalized Conley–Zehnder indices greater than 4 − n (or any fixed
large number). By [8, Lemma 2.3,2.4], there exist a very small perturbation of the contact
form on Yρi,fi,gi , such that all contractible Reeb orbits with periods smaller than Di have
positive degree. For all j > i, we have a similar construction by choosing ρj > ρi, such that the
contact form on Yρj ,fj ,gj is smaller than that on Yρi,fi,gi . This finishes the proof of Theorem
for ADC case.

In the TADC case, since we do not need to use arbitrarily large ρ to lift the Conley–Zehnder
index on Y 1

ρ,f,g, Yρ,f,g can be chosen without shrinking to V × {0}. �

Remark 6.9. By [16], every subcritical domain splits into the product of a Weinstein
domain with C. Theorem 6.3 implies that all 2n-dimensional subcritical domains are (n−
2)-ADC, which is a special case of [37, Corollary 4.1].

Corollary 6.10. Let V be a Liouville domain, such that c1(V ) = 0. Let Y = ∂(V × C).
Then for any topologically simple exact filling W of Y , we have a ring isomorphism φ :
H∗(W ) → H∗(V × C), such that the following commutes

Proof. First note that Y is always connected and c1(Y ) = 0. Then by Corollary B and
Theorem 6.3 and that SH∗(V × C) = 0, we have a group morphism φ : H∗(W ) → H∗(V × C)
such that the diagram commutes. Since the composition H∗(V × C) → H∗(Y ) → H∗(V × S1)
is injective, H∗(V × C) → H∗(Y ) is injective and is a ring map, and H∗(W ) → H∗(Y ) is a
ring map. They force φ to be a ring isomorphism. �

If V is k-TADC for some k, then ∂(V × C) is TADC. Hence by Remark 8.13, the exactness
assumption in Corollary 6.10 can be dropped. As another instant application of Corollary 6.10,
we have the following.

Corollary 6.11. If V 2n is a Liouville domain, such that n � 2 and c1(V ) = 0, then ∂(V ×
C) is not Weinstein fillable if one of the following conditions hold.

(i) There exists k > n + 1, such that Hk(V ) �= 0.
(ii) There exists k < n, such that Hk(V × C) → Hk(∂(V × C)) is not isomorphism.

Corollary 6.12. If Y is constructed by attaching subcritical (for 2-handles, conditions
in [37, Theorem 3.17] need to hold) or flexible handles onto ∂(V × C) in Corollary 6.11, such
that c1(Y ) = 0, then Y cannot be filled by a Weinstein domain.
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Proof. In other words, Y is the boundary of (V × C) ∪W , where W is a flexible Weinstein
cobordism from ∂(V × C) to Y . Since dimW = 2n + 2 � 6, c1(Y ) = 0 implies c1(W ) = 0.
Hence c1(∂(V × C)) = 0. Since H∗(V × C) → H∗(∂(V × C)) is injective, we have c1(V × C) =
c1(V ) = 0. Therefore by Theorem 6.3, ∂(V × C) is ADC. Then by [37, Theorem 3.15, 3.17
and 3.18], Y is ADC and SH∗((V × C) ∪W ) = 0 by [9]. Therefore SH∗

+((V × C) ∪W ) →
H∗+1((V × C) ∪W ) is an isomorphism. If Hk(V ) �= 0 for k > n + 1, then Hk((V × C) ∪W ) �=
0. Hence Y is not Weinstein fillable by Corollary B. If Hk(V × C) → Hk(∂(V × C)) is not
isomorphism for k < n, then it is not surjective since it is always injective. Assume k is the
smallest among all such integers. Then we have the following exact sequence

. . . → Hk(V × C, ∂(V × C)) → Hk(V × C) ↪→ Hk(∂(V × C))

→ Hk+1(V × C, ∂(V × C)) → . . . .

Since k is the first failure of subjectivity, we have Hk(V × C, ∂(V × C)) = 0 and Hk+1(V ×
C, ∂(V × C)) �= 0. Since we have H∗((V × C) ∪W,W ) = H∗(V × C, ∂(V × C)), there is
another long exact sequence

. . . → Hk(V × C, ∂(V × C)) → Hk((V × C) ∪W ) → Hk(W ) →

Hk+1(V × C, ∂(V × C)) → Hk+1((V × C) ∪W ) → Hk+1(W ) → . . .

Therefore either Hk((V × C) ∪W ) → Hk(W ) is not surjective or Hk+1((V × C) ∪W ) →
Hk+1(W ) is not injective. Since Hk(W ) → Hk(Y ) is isomorphism and Hk+1(W ) → Hk+1(Y )
is injective, by k < n and W being Weinstein, either δ∂ : SHk−1

+ ((V × C) ∪W ) → Hk(Y ) is
not surjective or δ∂ : SHk

+((V × C) ∪W ) → Hk+1(Y ) is not injective. Then by Corollary B and
Theorem A, Y cannot be filled by a Weinstein domain, otherwise δ∂ should be an isomorphism
on SHk−1

+ and injective on SHk
+. �

Corollary 6.12 provides many exactly fillable but not Weinstein fillable manifolds. Exactly
fillable but not Weinstein fillable manifolds were found in [12] for dimension 3 and in [13]
for higher dimensions. Our construction makes very few topological requirements and roughly
shows that most Liouville but not Weinstein manifolds give rise to exactly fillable but not
Weinstein fillable contact manifolds after a product with C and attaching subcritical or flexible
handles.

Remark 6.13. In case (i) of Corollaries 6.11 and 6.12, the obstruction in Corollary 3.14
does not vanish. Using Proposition 3.15, we have many examples of not Weinstein fillable
manifolds, whose symplectic cohomology is nonzero for a filling.

Example 6.14. Liouville but not Weinstein domains were first constructed in [42] for
dimension 4, and higher dimensional examples were constructed in [26, 40]. All such examples
are of a diffeomorphism type M × [0, 1], where the diffeomorphism type of M is the following.

(i) ST ∗Σg, where Σg is a genus g � 2 surface [42].
(ii) Tn bundle over Tn−1 for any n � 1 [26, 40]. In fact, such examples are ADC, as the

contact boundaries are hypertight, meaning that there is a contact form with all Reeb orbits
noncontractible.

Those Liouville domains have vanishing first Chern class. Then by attaching Weinstein handles
to them without changing the first Chern class, or taking products among them yield many
Liouville domains V 2n such that c1(V ) = 0 and Hk(V ) �= 0 for some k > n + 1. Therefore the
boundary of V × C admits no Weinstein filling by Corollary 6.11. One may keep attaching
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subcritical or flexible handles to it preserving the ADC property, then the boundary is not
Weinstein fillable by Corollary 6.12.

Given an almost contact manifold, the existence of an almost Weinstein filling is purely
homotopy theoretical, this was solved by Bowden–Crowley–Stipsicz in [13]. The obstruction
was phrased using bordism theory. Bowden–Crowley–Stipsicz used them to construct exactly
fillable but not almost Weinstein fillable contact manifolds in all dimensions � 5. In the
following, we show that in dimension 4k + 3, k � 1, our construction yields examples where
the homotopy obstruction vanishes, while the obstruction in Corollary 3.14 does not vanish.
Hence the obstruction is symplectic in nature.

We first recall the criterion of almost Weinstein fillability from [13]. An almost contact
structure on a closed oriented 2n + 1 manifold Y is a reduction of the structure group of TY
to U(n). Then an almost contact structure defines a map ζ : Y → BU(n) → BU . The nth
Postnikov factorization of ζ consists of a space Bn−1

ζ and maps

Y
ζ→ Bn−1

ζ

ηn−1
ζ→ BU,

such that ηn−1
ζ is a fibration, ζ = ηn−1

ζ ◦ ζ, the map ζ is an n-equivalence, that is, ζ induces
isomorphism on πj for j < n and surjective map on πn, and the map ηn−1

ζ is a coequivalence,
that is, it induces isomorphism on πj for j > n and injective map on πn. Then the pair (Y, ζ)
defines a bordism class [Y, ζ] in Ω2n+1(Bn−1

ζ ; ηn−1
ζ ). For the definition of this bordism group,

see [13, §2.1].

Theorem 6.15 [13, Theorem 1.2]. A closed almost contact manifold Y of dimension 2n +
1 � 5 is almost Weinstein fillable if and only if [Y, ζ] = 0 ∈ Ω2n+1(Bn−1

ζ ; ηn−1
ζ ).

Proof of Theorem I. By [40], there exists an exact domain V diffeomorphic to M × [0, 1],
such that M is a Tn+2 bundle over Tn+1 for n � 0. Moreover, the contact structure on each
component of ∂V is a trivial complex bundle, since the contact structure is an invariant
distribution on a Lie group. Hence the complex structure of TV on ∂V is trivial. Since
M × {0} → V is a homotopy equivalence, we have the complex structure on TV is trivial.
Let Y ′ denote the contact boundary of V × Cn. Then by Theorem 6.3, Y ′ is ADC and Y ′

is diffeomorphic to M × S2n. Assume now n � 1. Let S = {∗} × S2n be a sphere on Y ′. The
T (V × Cn)|S is a trivial complex bundle, that is, the structure map S → BU(2n + 2) is trivial.
Let ξ be the contact structure on Y ′. Since BU(2n + 1) → BU(2n + 2) induces isomorphism on
π2n, we have ξ|S is trivial C2n+1 bundle. Therefore there exists a homotopy of monomorphisms
Fs : TS → TY ′, such that F0 is the inclusion and F1 is an inclusion to ξ and isotropic. Hence
by the h-principle of isotropic embedding [17, Theorem 7.11], S is homotopic to an isotropy
sphere S′ with trivial (TS′)⊥/TS′. Then we can attach a 2n + 1 subcritical handle to S′. The
resulted contact manifold is Y with filling W := V × Cn ∪H2n+1.

By [37, Theorem 3.15], Y is 0-ADC. By [15], we have SH∗(W ) = 0. Since H2n+3(V ) = Z,
we have Y does not admit Weinstein filling by Corollary 6.12. We claim Y admits almost
Weinstein fillings. Since the structure map V × Cn → BU is trivial, the structure map W →
BU is represented by a class π2n+1(BU) = 0. Therefore the structure map W → BU is trivial.
Assume that the 2n + 1th Postnikov factorization of the trivial structure map ζ : W → BU is
given by

W
ζ→ B2n η2n

→ BU.

We claim that Y ↪→ W
ζ→ B2n η2n

→ BU gives the 2n + 1th of Postnikov factorization of the
trivial structure map Y → BU . Then Y is almost Weinstein fillable by Theorem 6.15 once the
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claim is proven, as the [W, ζ] is a bordism to ∅. By definition, it is sufficient to prove Y ↪→ W
ζ→

B2n is a 2n + 1 equivalence. Since W → BU is trivial, we know that π2n+1(B2n) = 0. Therefore

Y ↪→ W
ζ→ B2n induces epimorphism on π2n+1. Since ζ is a 2n + 1 equivalence, it suffices to

show that π∗(Y ) → π∗(W ) is an isomorphism for ∗ � 2n. We consider the universal cover W̃ of
W . Since V is a K(π, 1), we have W̃ is constructed by attaching |π| copies 2n + 1-handles to the
boundary of R2n+3 ×B2n+1, where B2n+1 ⊂ R2n+1 is the unit ball. Then the boundary Ỹ :=
∂W̃ is connected. Since W̃ can be viewed as attaching |π| copies 2n + 3 handles and one 2n + 1-
handle to Ỹ , then π∗(Ỹ ) → π∗(W̃ ) is isomorphism for ∗ � 2n− 1. In particular, π1(Ỹ ) = 0, that
is, Ỹ is the universal cover of Y . Therefore it is sufficient to prove that π2n(Ỹ ) → π2n(W̃ ) is
an isomorphism. We will use the relative Hurewicz theorem to prove the claim. First, we have
the following commutative diagram,

By excision, we have H2n+1(W̃ , W̃\(R2n+3 ×B2n+1)) = H2n+1(R2n+3 ×B2n+1,R2n+3 ×
S2n) = Z, and the map from H2n+1(W̃ , Ỹ ) is an isomorphism. Note that H2n+1(W̃ ) →
H2n+1(W̃ , W̃\(R2n+3 ×B2n+1)) is surjective, since any 2n + 1 handle in W̃ attached to
R2n+3 × S2n along with {∗} ×B2n+1 gives a chain that is mapped to the generator of
H2n+1(W̃ , W̃\(R2n+3 ×B2n+1)). Hence H2n+1(W̃ ) → H2n+1(W̃ , Ỹ ) is surjective. By the
homology long exact sequence for W̃ , Ỹ , we have H2n(Ỹ ) → H2n(W̃ ) is an isomorphism. Note
that (W̃ , Ỹ ) is 2n− 1 connected and Ỹ is simply connected, then by the relative Hurewicz
theorem, π2n(W̃ , Ỹ ) = 0. That is, (W̃ , Ỹ ) is 2n connected. Then the relative Hurewicz theorem
implies that π2n+1(W̃ , Ỹ ) → H2n+1(W̃ , Ỹ ) = Z is an isomorphism. As we have seen, there
is an S2n+1 ∈ W̃ that is mapped to the generator in H2n+1(W̃ , Ỹ ). Therefore π2n+1(W̃ ) →
π2n+1(W̃ , Ỹ ) is surjective, hence π2n(W̃ ) → π2n(Ỹ ) is an isomorphism. Since the obstruction
in Corollary 3.14 does not vanish for Y , then by Proposition 3.15, there are infinity many
exactly fillable, almost Weinstein fillable but not Weinstein fillable manifolds. �

Remark 6.16. In dimension 4n + 1 for n � 2, one may consider V1, V2 from Example 6.14,
such that dimV1 + dimV2 = 2n + 4. In particular, V1 × V2 � M1 ×M2 × [0, 1]2. Then we
consider Y to the boundary of W , which is constructed by attaching a 2n-handle to
V1 × V2 × Cn−1. Most of the arguments in Theorem I that go through, in particular, Y is
exactly fillable but not Weinstein fillable. The only issue is showing that the 2nth Postnikov
factorization of W gives a bordism to ∅. In fact, one can show that everything boils down to
whether the class in π2n(BU) classifying the structure map W → BU is trivial.

Remark 6.17. In dimension 5, manifold V × C always admits Morse function of index at
most 3, hence Corollary 6.11 cannot give obstructions to Weinstein fillings. In dimension 3,
V × C is always a subcritical Weinstein domain.

6.2. Product of ADC manifolds

In the following, we will show the product of two ADC domains is again ADC. In particular,
such construction provides many examples where Corollary 4.19 can be applied. Before stating
the precise theorem, we first prove a proposition on the Reeb orbits on the boundary of general
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products. In the following, we define a function for a fixed N ∈ N.

gN (x) = 2 − 1
N(2 − x)

, x ∈
[
1, 2 − 1

N

]
.

Then gN takes values in [1, 2 − 1
N ] and g−1

N = gN . Let V and W be two Liouville domains with
Liouville forms λV , λW that are nondegenerate as contact forms, such that c1(V ) = c1(W ) = 0.
Then we define V ×N W to be the following subset of V̂ × Ŵ ,

V ×W ∪ (∂V × {rV < fW }) ×W ∪ V × (∂W × {rW < fV }) ∪ ∂V

×∂W × {(rV , rW )|rV < gN (rW )},

where we have:

(1) fV , fW are Morse functions on V and W , such that near the collar of V and W they are
gN and 1

fV
, 1
fW

realize the Morse dimensions of V,W , respectively.
(2) 2 − 1

N � |fV |, |fW | � 2 and |dfV |C1 , |dfW |C1 � 1
N .

Proposition 6.18. Assume V,W as above and dimV,dimW � 4. For D > 0, for N ∈ N
big enough, the contractible Reeb orbits of V ×N W of period at most D are of the following
three types.

(i) Nondegenerate orbit (p, γ) for p ∈ C( 1
fV

) and γ ∈ P<D(W ) with index 1
2 dimV −

ind p + μCZ(γ).
(ii) Nondegenerate orbit (γ, p) for p ∈ C( 1

fW
) and γ ∈ P<D(V ) with index 1

2 dimW −
ind p + μCZ(γ).

(iii) Morse–Bott orbits (γ1(t), γ2(t + t0)) in an S1 family for γ1, γ2 in P<D(V ),P<D(W ),
respectively, up to reparametrization. The generalized Conley–Zehnder index is μCZ(γ1) +
μCZ(γ2) + 1

2 .

Proof. The boundary of V ×N W is given by three components (∂V × {rV = fW }) ×W ∪
V × (∂W × {rW = fV }) ∪ ∂V × ∂W × {(rV , rW )|rV = gN (rW )}. Using Remark 6.5, we have
the Liouville vector of V̂ × Ŵ is transverse to the boundary. Hence ∂(V ×N W ) is indeed
of contact type. By Proposition 6.4 and Lemma 6.8, for N big enough, the Reeb orbits on
V × (∂W × {rW = fV }) and (∂V × {rV = fW }) ×W are those described in (i) and (ii).

It remains to study the Reeb orbits on ∂V × ∂W × {(rV , rW )|rV = gN (rW )}. It can be
either viewed as graph of function on Ŵ or V̂ . We choose to view it as graph on Ŵ . Then by
Proposition 6.4, the Reeb vector field is given by

1
gN (rW ) − g′N (rW )rW

RV +
−g′N (rW )

gN (rW ) − g′N (rW )rW
RW .

Note that g′N (rW ) = rV −2
2−rW

, we write the Reeb orbit in a more symmetric way as below:

rW − 2
2rV rW − 2rV − 2rW

RV +
rV − 2

2rV rW − 2rV − 2rW
RW . (6.1)

Here the coefficient varies in [ 1
2N , 1

2 ]. Therefore the Reeb orbit of (6.1) are in the form of(
γ1

(
rW − 2

2rV rW − 2rV − 2rW
t

)
, γ2

(
rV − 2

2rV rW − 2rV − 2rW
t

))
,

where γ1, γ2 are Reeb orbits of ∂V and ∂W with periods D1 and D2 such that T :=
D1/

rW−2
2rV rW−2rV −2rW

= D2/
rV −2

2rV rW−2rV −2rW
� 2D1, 2D2 is the period. By Remark 6.6, the

contact restructure is given by ξV ⊕ ξW ⊕ 〈 ∂rW ,−rWRV + rV RW 〉. The linearized return map
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preserves the decomposition. Therefore the linearized return maps on ξV and ξW do not have
1 as eigenvalue by nondegenerate assumptions on V and W . By taking derivative of (6.1), the
linearized return map on the remaining part is given by⎡⎢⎣ 1, 0

4 − 2rV
(2rV rW − 2rV − 2rW )2

T, 1

⎤⎥⎦. (6.2)

Let φT denote the linearized return map on the whole tangent space, then ker(φT − id) is
spanned by the Reeb vector field (6.1) and −rWRV + rV RW , which is the 1-eigenspace of (6.2).
Equivalently, ker(φT − id) is spanned by RV and RW , which is the tangent of im γ1 × im γ2.
Moreover, d(rV λV + rWλW ) is rank 0 on the tangent of im γ1 × im γ2. Hence such Reeb orbits
are of Morse–Bott type. To compute the generalized Conley–Zehnder index, since we have
the decomposition of contact structure, it is sufficient to compute the contribution in the
〈 ∂rW ,−rWRV + rV RW 〉 direction. Since dimV,dimW � 4, here the complex trivialization
of the tangent bundles over the Reeb orbits splits into trivializations of ξV and ξW used
in defining Conley–Zehnder index for V and W and a trivial complex bundle spanned by
∂rW and −rWRV + rV RW . The total generalized Conley–Zehnder index is the generalized
Conley–Zehnder index of ⎡⎢⎣ 1, 0

4 − 2rV
(2rV rW − 2rV − 2rW )2

t, 1

⎤⎥⎦,
which is 1

2 plus μCZ(γ1) + μCZ(γ2). �

Theorem 6.19. Let V,W be two Liouville domains of dimension � 4, respectively, such that
c1(V ) = c1(W ) = 0. Assume V is p-ADC and W is q-ADC, then we have V ×W is min{p +
q + 4, p + dimW − dimM W, q + dimV − dimM V }-ADC. In particular, if V,W are both ADC,
then V ×W is ADC. If V,W are both TADC, then V ×W is TADC.

Proof. Assume the dimensions of V and W are 2n, 2m, respectively. Since V,W are
ADC, there exist positive functions f1 > f2 > . . . > fk > . . ., g1 > g2 > . . . > gk > . . . and real
numbers D1 < D2 < . . . < . . .Dk < . . . converge to ∞, such that all orbits in P<Di(fiλV |∂V )
are nondegenerate and have Conley–Zehnder indices at least p− n + 4 and all orbits in
P<Di(giλW |∂W ) are nondegenerate and have Conley–Zehnder indices at least q −m + 4.
Let Vi := {rV � fi} and Wi := {rW � gi}, then for N ∈ N big enough Vi ×N Wi ⊂ V̂ × Ŵ
is close to {rV � 2fi} × {rW � 2gi} and the Reeb orbits of period smaller than Di are
decried by Proposition 6.18. Using [8, Lemma 2.3,2.4], there exist a very small perturbation
(V ×W )i of Vi ×N Wi, such that all Reeb orbits in (iii) of Proposition 6.18 are perturbed
into nondegenerate orbits with index μCZ(γ1) + μCZ(γ2), μCZ(γ1) + μCZ(γ2) + 1. Then we
have all elements in P<Di((V ×W )i) are nondegenerate with Conley–Zehnder indices at
least min{p + q − n−m + 8, p− n + 4 − dimM W + m, q −m + 4 − dimM V + n}. Hence the
degree is at least min{p + q + 5, p + 2m− dimM W + 1, q + 2n− dimM V + 1}. Since for j > i,
we can choose N in the construction big enough such that (V ×W )j ⊂ (V ×W )i, which implies
that the contact form on (V ×W )j is smaller than that on (V ×W )i, hence ∂(V ×W ) is
min{p + q + 4, p + dimW − dimM W, q + dimV − dimM V }-ADC. The TADC case is similar.
(V ×W )i will not collapse, because Vi,Wi do not collapse. �

The following theorem provides more examples of exactly fillable, but not Weinstein fillable
contact manifolds using the obstruction in Corollary 4.19.
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Corollary 6.20. Let V 2n be the Liouville manifold in (ii) of Example 6.14, W 2m be any
ADC Liouville domain with dilations, see Example 4.3. If n− 1 > m, then ∂(V ×W ) cannot
be filled by Weinstein domains.

Proof. By [48, 56], Δ(a⊗ b) = ±Δ(a) ⊗ b± a⊗ Δ(b) on SH∗(V ×W ) = SH∗(V ) ⊗
SH∗(W ). Since those V are hypertight, that is, they allow a Reeb flow without contractible
Reeb orbits, then V is automatically ADC. Since we only use contractible orbits to generate
symplectic cohomology, we have SH∗(V ) = H∗(V ). We may assume SH∗(W ) �= 0, otherwise
Corollary 3.14 can be applied to obtain the conclusion. Let α ∈ SH2n−1(V ) be a generator of
H2n−1(V ) and β ∈ SH1(W ) a dilation. Then we have Δ(α⊗ β) = ±α⊗ 1 ∈ im(H2n−1(V ×
W ) → SH2n−1(V ×W )). Similar to the proof of Proposition 4.10, if we view α⊗ 1 ∈
H2n−1(V ×W ), then it represents a class in the image of φ : im(SH∗(V ×W ) → SH∗

+(V ×
W )) ∩ ker Δ+ → coker δ. H∗(V ×W ) → H∗(∂(V ×W )) is injective and 2n− 1 > n + m. To
show im Δ∂ contains a class in grading 2n− 1, it is enough to show that α⊗ 1 is not in im δ.
Since V is hypertight, the Künneth formula implies that SH∗

+(V ×W ) = H∗(V ) ⊗ SH∗
+(W ),

and δ(α⊗ β) = ±α⊗ δW (β). Hence if α⊗ 1 is in the image of δ, then 1 ∈ im δW , which implies
SH∗(W ) = 0, contradicting the assumption. �

7. Obstructions to exact cobordisms

A natural question in symplectic geometry is understanding the ‘size’ or ‘complexity’ of exact
domains. One simple way of comparing complexity is by asking if one exact domain can
be embedded into another. Due to the Viterbo transfer map, the vanishing of symplectic
cohomology and existence of symplectic dilation are two levels of complexity, which are in fact
the first two of the infinity many structures in [69]. For example, one cannot embed an exact
domain W with SH∗(W ) �= 0 to a flexible Weinstein domain. In particular, flexible Weinstein
domain does not contain closed exact Lagrangians. On the other hand, one can always embed
the standard ball into any domain. Moreover, one cannot embed an exact domain W with no
dilation into T ∗Sn. In particular, T ∗Sn contains no exact tori.

The same question can be asked for contact manifolds, and the comparison is based on
existence of symplectic cobordism. By putting different adjectives in front of the symplectic
cobordism, we get several comparisons in different flavors. In this section, we will restrict
to exact cobordisms. Similar to the discussion above, one can use the functoriality of
contact invariants like contact homology and symplectic field theory [22] to study this
problem. For example, an overtwisted contact manifold has vanishing contact homology
[65], hence there is no exact cobordism from a contact manifold with nonvanishing contact
homology to an overtwisted one. In particular, there is no cobordism from ∅. A more general
obstruction in a similar spirit using the full SFT was constructed in [36]. However, unlike
symplectic cohomology, such invariants are difficult to define [?,50] and notoriously hard to
compute.

Since we have shown that for ADC manifolds, the vanishing of symplectic cohomology
and existence of symplectic dilation is independent of the filling, hence can be understood
as contact invariants. In particular, we can use them to define obstructions to the existence of
exact cobordisms to some ADC manifolds. Such obstructions using symplectic cohomology are
relatively easy to define and compute.

Theorem 7.1. Let Y be an ADC contact manifold with a topologically simple exact
filling W . Let V be an exact domain with c1(V ) = 0. If one of the following holds, then
there is no exact cobordism U from ∂V to Y , such that c1(U) = 0 and H1(V ) ⊕H1(U) �→
H1(∂V ), (a, b) �→ a|∂V − b|∂V is surjective and π1(Y ) → π1(U ∪ V ) is injective.
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(i) If 1 ∈ im δ∂ for W , and 1 /∈ im δ∂ for V .
(ii) If 1 ∈ im Δ∂ for W , and 1 /∈ im Δ∂ for V .

Proof. If there is a such cobordism, since H1(V ) ⊕H1(U) → H1(∂V ) is surjective, we have
H2(U ∪ V ) → H2(U) ⊕H2(V ) is injective. Since c1(V ) = c1(U) = 0, we have c1(U ∪ V ) = 0.
Therefore U ∪ V is a topologically simple filling. Since 1 ∈ im δ∂ for W , then SH∗(W ) = 0.
In particular, by Corollary B, we have SH∗(U ∪ V ) = 0. As 1 /∈ im δ∂ for V implies that
SH∗(V ) �= 0, we have a contradiction by that the Viterbo transfer map preserves the unit,
hence there is no such U .

When 1 ∈ im Δ∂ for W , we know that φ : ker Δ+ → coker δ contains 1 in the image for W .
Assume there is such a cobordism U . By Theorem G, we have that 1 ∈ im Δ∂ , imφ for U ∪ V . If
1 /∈ im Δ∂ for V , we know that 1 /∈ imφ for V . The Viterbo transfer map commutes with Δ+, δ
and φ by Proposition 4.20, hence the Viterbo transfer map induces the following commutative
diagram

Hence we have a contradiction. �

Proof of Corollary J. Assume otherwise, there is a Weinstein cobordism U , then U ∪ V is
another Weinstein filling of Y . In particular, π1(Y ) → π1(U ∪ V ) is an isomorphism and c1(U ∪
V ) = 0. Then we reach a contradiction by the same argument in the proof of Theorem 7.1 for
the first two conditions. The third one follows from Corollary H. �

As a direct application of Corollary J, if an ADC Weinstein domain V of dimension � 6
admits a dilation and c1(V ) = 0, then not only V does not contain K(π, 1) as closed exact
Lagrangian, there is no Weinstein cobordism form S∗K(π, 1) to ∂V , since T ∗K(π, 1) has
no dilation.

On the other hand, the existence of almost Weinstein cobordism is purely homotopical
and was studied in [14]. In particular, Bowden–Crowley–Stipsicz [14, Theorem 1.2] showed
that for dimension 2n− 1 � 5, there exists an almost contact manifold (Mmax, φmax) such
that for any almost contact manifold (M,φ) there is an almost Weinstein cobordism from
(M,φ) to (Mmax, φmax). The maximal element also exists when restricted to the class of
almost contact manifolds with vanishing first Chern class. In the latter case, when dimension
is 5 or 7, the maximal element can be chosen as the standard (S2n−1, φstd). If we take the
maximal element (Mmax, φφ) for the class of contact manifolds with vanishing Chern class,
since there is a Weinstein cobordism from ∅ to (Mmax, φmax), in particular, in the homotopy
class of (Mmax, φmax), there is a contact manifold (M, ξ) admitting a flexible filling. Then for
any contact manifold Y with vanishing first Chern class and a Weinstein filling V such that
SH∗(V ) �= 0, there is an almost Weinstein cobordism from Y to M , but there is no Weinstein
cobordism by Corollary J.

There are also many examples with nonvanishing symplectic cohomology. For example, one
takes the Milnor fiber W of the singularity z9

1 + z2
2 + z2

3 + z2
4 = 0, then ∂W as an almost

contact manifold is (S5, φstd). By [56, Example 2.13], we have SH∗(W ) �= 0 and admits
a dilation and ∂W is ADC by [61, Lemma 4.2]. Hence by Corollary J, for any Weinstein
domain V with c1(V ) = 0 and no dilation, there is an almost Weinstein cobordism from ∂V
to ∂W , but there is no Weinstein cobordism from ∂V to ∂W . In higher dimensions, let W
be an ADC Weinstein domain with nonvanishing symplectic cohomology and a symplectic
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dilation. Let V be an exotic Cn with nonnegative log Kodaira dimension, in particular V
has no symplectic dilations and the almost contact structure on ∂V is the standard almost
contact structure on S2n−1. Then there is no Weinstein cobordism from ∂V to ∂W , but there
is an almost Weinstein cobordism from ∂V = (S2n−1, φstd) to ∂W as W is almost Weinstein
fillable.

8. Nonexact fillings

In this section, we consider a strong filling W of a contact manifold Y , such that c1(W ) = 0.
Floer cohomology is still well defined using the Novikov field Λ = {

∑∞
i=1 qiT

λi | qi ∈ Q, λi ∈
R, limλi = ∞} with a Z-grading, cf. [30], similarly for symplectic cohomology [53]. In
particular, sphere bubbles can be avoided by dimension reasons. In this section, we show that
positive symplectic cohomology is still defined to the extent that constructions in §§ 2 and 3
can be generalized to strong fillings to finish the proof of Theorem F.

8.1. Positive symplectic cohomology

In the nonexact case, the action functional (2.1) is not well defined. In particular, there is no
action separation of the symplectic cohomology into zero length part and positive length part.
However, positive symplectic cohomology can still be defined due to the following lemma by
Bourgeois–Oancea [10, proof of Proposition 5]. We first recall it from [18]. In this section, by
strong filling of a contact manifold (Y, α), we mean a symplectic manifold (W,ω) with collar
neighborhood of the boundary symplectomorphic to (Y × [1 − δ, 1],d(rα)) for some δ > 0. The
completion Ŵ is defined to be W ∪ Y × (1,∞), with a symplectic form ω̂ such that ω̂|W =
ω, ω̂|Y×(1,∞) = d(rα).

Lemma 8.1 [18, Lemma 2.3]. Let H = h(r) be a Hamiltonian on the symplectiza-
tion (Y × R+, d(rα)). Let u : R− × S1 → Y × R+ be a finite energy solution to the Floer
equation and r0 := lims→−∞ r ◦ u(s, t). Assume h′′(r0) > 0, J is cylindrical convex on a
neighborhood of u(R− × S1), then either there exists (s0, t0) such that r ◦ u(s0, t0) > r0
or r ◦ u ≡ r0.

The combination of Lemmas 2.5 and 8.1 yields the following.

Proposition 8.2. Consider a Hamiltonian H : Ŵ → R, such that H = 0 on r � r0 > 1 and
H = h(r) for r � r0 such that when h′(r) ∈ S we have h′′(r) > 0, and assume J is cylindrical
convex near all nonconstant periodic orbits of XH , then there is no Floer solution u, such that
lims→−∞ u ∈ P∗(H) and lims→∞ u ∈ W ∪ Y × (1, r0).

Motivated by Proposition 8.2, instead of using the perturbed Hamiltonian H in § 2, we will
use the autonomous Hamiltonian before perturbation, denote the Hamiltonian by F . Then it
has the following property.

(1) F = 0 on W .
(2) F = h(r) on ∂W × (1,∞) with h′′(r) > 0.
(3) The nonconstant periodic orbits of F are contained in levels 1 < r1 < r2 < . . . we will

use W i to denote the domain inside r = ri.

Then by Proposition 8.2, there are no Floer cylinders with negative end asymptotic to
a nonconstant orbit and positive end asymptotic to a point in W . In fact, the following
holds.
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Proposition 8.3. Using F as the Hamiltonian, if there is a nontrivial Floer cylinder u with
the negative end asymptotic to an orbit inside r = ri and with the positive end asymptotic to
an orbit inside r = rj , then i < j.

Proof. If i > j, then the combination of Lemmas 2.5 and 8.1 yields a contradiction. If i = j,
then by Lemmas 2.5 and 8.1, we have u is contained in r = ri. Then the energy of u must be
zero, contradicting that u is nontrivial. �

Using F to define symplectic cohomology will result in a more Morse–Bott situation than H.
We will use cascades to deal with degenerate S1-family obits, such construction was studied
in [10, 11] and more degenerate Morse–Bott cases were studied in [8, 19]. We will follow
their constructions.

8.1.1. Notations and setups. We first fix the following notations.

(1) First note that every Reeb orbit of Rα corresponds to an S1-family of periodic orbits
of XF . The set of nonconstant (contractible) periodic orbits of F has a decomposition into
the union ∪x∈P(α)Sx, each Sx can be viewed as an embedded circle in Ŵ . For each Sx, we
fix a metric gx and a Morse function fx with a unique local maximum x̂ and a unique local
minimum x̌. With a little abuse of language, we denote P∗(F ) := ∪x{x̂, x̌}.

(2) For each x ∈ P(α), we fix a disk ux : D → Y extending one γ ∈ Sx up to homotopy,
which gives extension to any element in Sx by rotation.

(3) Λ := {
∑∞

i=1 qiT
λi | qi ∈ Q, λi ∈ R, limλi = ∞} is the Novikov field and we define the

Novikov ring Λ0 := {
∑∞

i=1 qiT
λi | qi ∈ Q, λi � 0, limλi = ∞}. Note that Λ is the fraction field

of the integral domain Λ0. In particular, Λ is a flat Λ0-module.
(4) We formally define AF (T ax̂) = AF (T ax̌) = a−

∫
S1 γ

∗λ̂ +
∫
S1 F ◦ γdt, for γ ∈ Sx. And

AF (T ap) = a for p ∈ C(f), where f is an admissible Morse function on W .

8.1.2. Moduli spaces and cochain complexes. In view of Proposition 8.2, we need to modify
the definition of admissible almost complex structures to the following. We first fix εi > 0 such
that ri + εi < ri+1 − εi+1 and ε0 > 0 such that 1 + ε0 < r1 − ε1.

Definition 8.4. A time-dependent almost complex structure J : S1 → End(TŴ ) is
admissible if and only if the following holds.

(i) J is compatible with ω̂ on Ŵ .
(ii) J is cylindrical convex on ∂W × (ri − εi, ri + εi) and on (1 − ε0, 1 + ε0).
(iii) J is S1-independent on W .

The class of admissible almost complex structure is again denoted by J (W )

Let J be an admissible almost complex structure. First note that for any t ∈ S1, any
nontrivial closed Jt-holomorphic curve must be contained in W 0, where in particular Jt does
not depend t. This is because the curve cannot be contained outside W by exactness there and
then we apply Lemma 2.5 to r = 1 − ε0. We will be interested in the following uncompactified
moduli spaces.

(1) SA(J) := {u : CP1 → Ŵ |∂Ju = 0, [u] = A, u is simple} for A ∈ H2(W ). It has an evalu-
ation map ev0(u) = u(0).
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(2)

Mn,A(J) :=

⎧⎪⎨⎪⎩(u1, . . . , un)

∣∣∣∣∣∣∣
ui : CP1 → W,∂Jui = 0,

∑
[ui] = A,

ui is simple, and ui(CP1) �= uj(CP1),
ui(∞) = ui+1(0)

⎫⎪⎬⎪⎭.

It is equipped with two evaluation maps ev0((ui)) = u1(0) and ev∞((ui)) = un(∞).
(3)

MSx,Sy,A(J) :=

{
u : R × S1 → Ŵ

∣∣∣∣∣∂su + J(∂t −XF ) = 0,
lim

s→−∞u ∈ Sx, lim
s→+∞u ∈ Sy, [u#(−uy)#ux] = A

}
.

It is equipped with evaluation maps ev−, ev+ to Sx, Sy, respectively
(4) BSx,A(J) := {u : C → Ŵ |∂su + J(∂t −XF ) = 0, u(0) ∈ W 0, lims→+∞ u ∈

Sx, [u#(−ux)] = A}. It is equipped with evaluations maps ev+, ev0 to Sx,W , respectively.

The energy E(u) := 1
2

∫
R×S1 ||du−XF dt||2ds ∧ dt of u ∈ MSx,Sy,A is given by ω(A) +

AF (Sx) −AF (Sy). The energy for u ∈ Bsx,A is given by ω(A) −AF (Sx).
To study the regularization of (1)–(4), we need to consider the following universal moduli

spaces.

(1) Let x := (x1, . . . , xn+1 ∈ P(α)),A := (A1, A2, . . . , An ∈ H2(W )) and B ∈ H2(W ), we
define U l

x,A,B to be the set of (u1, . . . , un, u, p, J) such that:

(i) J is a Cl admissible almost complex structure;
(ii) ui ∈ MSxi

,Sxi+1 ,Ai
(J);

(iii) u ∈ SB(J);
(iv) p is a point on domains of ui.

Then U l
x,A,B is equipped with an evaluation map

EV := evp × ev0(u) ×
∏
i

ev−(ui) × ev+(ui) ∈ Ŵ × Ŵ × Sx1 × (Sx2)
2 × . . .× (Sxn

)2 × Sxn+1 .

(2) x := (x1, . . . , xn ∈ P(α)),A := (A1, A2, . . . , An ∈ H2(W )) and B ∈ H2(W ), we define
U l
x,A,B,k be the set of (u1, . . . , un, u, J) such that:

(i) J is a Cl admissible almost complex structure;
(ii) ui ∈ MSxi−1 ,Sxi

,Ai
(J) if i > 1;

(iii) u1 ∈ BSx1 ,A1(J);
(iv) u ∈ Mk,B(J);

Then we define EV on U l
x,A,B,k by

ev0(u) × ev∞(u) × ev0(u1) × ev+(u1) ×
∏
i>1

(ev−(ui) × ev+(ui))

∈ Ŵ × Ŵ × Ŵ × (Sx1)
2 × . . .× (Sxn−1)

2 × Sxn
.

(3) Let x := (x1, . . . , xn ∈ P(α)),A = (A1, A2, . . . , An ∈ H2(W )) and B ∈ H2(W ), we
define V l

x,A,B be the set of (u1, . . . , un, u, p, J) such that:

(i) J is a Cl admissible almost complex structure;
(ii) ui ∈ MSxi−1 ,Sxi

,Ai
(J) for i > 1;

(iii) u1 ∈ BSx1 ,A1(J);
(iv) u ∈ SB(J);
(v) p is a point on domains of ui.
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Then we define EV on V l
x,A,B by

evp × ev0(u) × ev0(u1) × ev+(u1) ×
∏
i>1

(ev−(ui) × ev+(ui))

∈ Ŵ × Ŵ × Ŵ × (Sx1)
2 × . . .× (Sxn−1)

2 × Sxn
.

The point of considering such moduli spaces is that they are cut out transversely, moreover
the evaluation map is a submersion. This will allow us to perturb J only without changing
(f, g) and (fx, gx). The following proposition is derived from the same argument in [43, §3.4].

Proposition 8.5. The three universal moduli spaces considered above are cut out
transversely as Banach manifolds and EV are submersive.

Proof (Sketch). Note that by Proposition 8.3, for x = (x1, . . . , xn) in the universal moduli
spaces, the r-coordinate must be strictly decreasing. Therefore the objects we consider in the
universal moduli spaces are somewhere invective (not just component-wise, but as a whole
object). Then the claim follows from the proof of [43, Proposition 3.4.2] and the proof of [11,
Proposition 3.5]†. �

The cochain complex model we will use is the cascades construction [10, 11], in particular
the cochain complex will be generated by C(f) and P∗(F ) as before using the Novikov field Λ.
We recall the cascades moduli spaces first. Let x denote an element in {x̂, x̌}.

(1) Mx,y,A,m denotes the set of m-cascades, that is, tuples

(u1, l1,2, u2, . . . , lm−1,m, um),

where:
(i) ui ∈ MSxi

,Sxi+1 ,Ai
/R with x1 = x, xm+1 = y, and

∑
Ai = A;

(ii) li,i+1 > 0 and φxi+1,li,i+1ev+(ui) = ev−(ui+1), where φxi+1,t is the negative gradient
flow on Sxi+1 ;
(iii) limt→−∞ φx1,tev−(u1) = x and limt→∞ φxm+1,tev+(um) = y.

(2) For p ∈ C(f), Mp,x,A,m is defined similarly, except the first curve u1 is in BSx1 ,A1 with
u1(0) in the stable manifold of p.

For every x ∈ P(α), we can assign the gradings |x̂| := n− μCZ(x) and |x̌| := n− 1 − μCZ(x).
As in § 2, we fix a Morse–Smale pair (f, g) and Mp,q is a Morse moduli spaces for p, q ∈ C(f).
Let us denote Mx,y,A = ∪m�0Mx,y,A,m and Mp,x,A = ∪m�0Mp,x,A,m. From Proposition 8.5,
we have the following transversality and compactness result.

Proposition 8.6. There exists a second category set Jreg(f, g) such that Mx/p,y,A is
compact smooth manifold of dimension |x/q| − |y| − 1 whenever it is � 0.

Proof. On every Sx, there is submanifold Hx := {(x, φt(x))|t > 0} ⊂ Sx × Sx, where φt is
the negative gradient flow on Sx. Let Sp, Up be the stable manifold and unstable manifold of
p ∈ C(f), C(fx). Since EV on universal moduli spaces are submersive, then the following space
are Banach manifolds.

(i) EV −1
Ul

x,A,B

(Δ
̂W

× Sx1 ×
∏

i>1 Hxi
( or ΔSxi

) × Uxn+1).

†Reference [11] did not claim the evaluation maps to Sx are submersive, but the proof of [11, Proposition
3.5] implies the fact. In the universal moduli space, the surjectivity of the linearized operator holds without
using the tangent of Sx.
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(ii) EV −1
Ul

x,A,B,k

(Sp × Δ
̂W

×
∏

i<n Hxi
( or ΔSxi

) × Uxn
), for p ∈ C(f).

(iii) EV −1
Vl

x,A,B

(Δ
̂W

× Sp ×
∏

i<n Hxi
( or ΔSxi

) × Uxn
), for p ∈ C(f).

Then we can pick any J in the regular value of the projections of above spaces to the space of Cl

admissible almost complex structure. Then transversality on M∗,∗,A is verified. It is sufficient
to prove compactness. First by a dimension argument, it cannot have a Morse breaking, or
a fiber product breaking at Sx when |x/p| − |y| � 1, by the transversality of the preimage of
ΔSxi

in (i)–(iii) above. For the general case in the compactification, we still need to consider
the following.

Figure 5. The general curves, the arrows stand for gradient flow.

Note that for the figure in the left, the link of spheres connecting Morse trajectory and Floer
cylinder should be understood as Floer cylinders, hence they are J-curves without quotienting
S1. We will not emphasize the difference, since we will rule out such configuration altogether.
Note that the existence of curves above in the compactification of M∗,∗,A will lead to existence
of one of the following configurations.

The single sphere bubble above is simple and the link of spheres in the left is in Mn,A(J). To
see that we can reduce to the above three case, if we have a curve in left of Figure 5, then the
bubble tree in the left can be reduced to a simple stable map by [43, Proposition 6.1.2]. We
can pick out the link of spheres containing the two marked points and stabilize it by collapse
unstable constant spheres. If the two marked points are on nonconstant sphere(s), then we get
the first case in Figure 6. If the two marked points are on a constant sphere, then we get the
third case in Figure 6. The other cases in Figure 5 are similar.

By construction, the moduli space in Figure 6 are cut out transversely. The expected
dimensions after module the reparametrization action are |p| − |y| − 3 − 2(k − 1), |x| − |y| −
3, |p| − |y| − 3, respectively, where k is the number of spheres. All of them are negative. Hence
M∗,∗,A is compact when expected dimension � 0 (also holds for dimension � 1 when adding

Figure 6. Special components.
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Morse breaking and fiber product breaking). The proof of boosting Cl almost complex structure
to C∞ follows from the same argument in [30, Theorem 5.1]. �

Then for J ∈ J reg(f, g), we can define cochain complexes C(F , J, f), C+(F , J), C0(f) as free
Λ-module generated by both P∗(F ) and C(f), only P∗(F ), or only C0(f), respectively. And
the differential is defined to be

dy :=
∑

dimMx,y,A=0

#Mx,y,AT
ω(A)x.

Proposition 8.7. d is a differential.

Proof. Since the differential increases action AF and preserve the length filtration from ri
by Proposition 8.3, it is sufficient to verify d2 = 0 on orbits inside W i within a bounded action
window. In such case, we have compactness and [11, Theorem 3.7] can be applied to verify
d2 = 0. �

As usual, C(F , J, f), C+(F , J), C0(f) form a short exact sequence, which induces a long exact
sequence. We also have subcomplexes Cri , Cri

+ generated by orbits inside W i. By definition,
C, C+ are direct limits of them. On the other hand, we have cochain complexes by action
truncation. In particular, we will consider Cri,�0 and Cri,�0

+ , that is, the complex only with
elements of nonnegative action inside W i. Cri,�0 and Cri,�0

+ are Λ0 modules, and we have
Cri,�0 ⊗Λ0 Λ = Cri and Cri,�0

+ ⊗Λ0 Λ = Cri
+ . Since Λ is a flat Λ0-module, the relation pass

to cohomology. We may consider even smaller cochain complex C
ri,[0,j]
+ of elements with

action in [0, j]. On such complex, we have an energy control, hence neck-stretching can be
applied.

On the other hand, like the exact case, symplectic cohomology can also be defined as a direct
limit using nondegenerate Hamiltonian with finite slope when sphere bubbles can be avoided
(for example, c1 = 0), see [53].

Proposition 8.8. There is an isomorphism SH∗(W ; Λ) → H∗(C(H , J, f)) such that the
following diagram commutes

Proof (Sketch). Similar to Proposition 2.10, we first perturb F to F , such that on W , F
is a C2-small time-independent Hamiltonian but F = F on the cylindrical end. Then there is
a cascade continuation map [10, §2] from the cochain complex of F to the cochain complex
of F preserving the ri filtration. As in Proposition 2.10, it is quasi-isomorphism as it induces
isomorphism on the first page of the spectral sequence (which is convergent). Then similar to
the discussion in § 4.6, we first get Fi with finite slope, which is the same as F on W i but linear
afterward. Then cohomology of C(F ) can be written as direct limit of H∗(C(Fi)). The last
step is perturbing Fi into nondegenerate Hamiltonians, then using the cascade continuation
map, we have that the direct limit using nondegenerate Hamiltonians with finite slop is the
same as lim−→i

H∗(C(Fi)). Since the inclusion from C0(f) → C(F , J, f) can also be viewed as
continuation map from a homotopy of zero slope truncation of F to F by Lemma 2.5, then all
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of the construction above is compatible with continuation maps from the 0-length part†. This
finishes the proof. �

From here, we give an ad hoc definition of SH∗
+(W ; Λ) motivated from Proposition 8.8,

SH∗
+(W ) = coker(QH∗(W ) → SH∗(W ; Λ)) ⊕ ker(QH∗+1(W ) → SH∗+1(W ; Λ)).

Since Λ is field, Proposition 8.8 implies that there is a (noncanonical) isomorphism SH∗
+(W ) →

H∗(C+(F , J)). We do not claim this definition is good in a functorial way, but it is sufficient
for our application.

8.2. Proof of the independence

Similarly, we can define moduli spaces Pp,x,A and Hp,x,A as in § 3.1. Combining with the proofs
in Propositions 8.5 and 8.7, § 3.1 can be generalized to strong fillings with vanishing first Chern
class with the same statements. Hence we will use the same terminology, in particular we have
various regular sets of almost complex structures. The following Proposition follows from the
same proof of Proposition 3.4.

Proposition 8.9. Let J i,j ∈ J ri,[0,j]
reg,+ (F ) ∩ J ri,[0,j]

reg,P (F , h, g∂), then we have a commutative
diagram

where vertical and horizontal arrows are continuation maps except those mapped to the last
column and Λ[0,j] consists of elements in Λ with action in [0, j]. The arrow to the last column

is defined by counting P∗,∗. Then lim−→i→∞ lim←−j→∞ of the diagram computes SH�0
+ (W ) →

H∗+1(∂W ; Λ0).

Now let Y be a TADC contact manifold with two strong fillings W1,W2, we assume αi in
Definition 6.2 is represented by a nested sequences Yi ∈ Y × [1, R]. Then we view W∗ ∪ Y ×
[1, R] as the new W∗, in particular F is zero on this new W∗. Then we can stretch Yi in the
same way as in § 3.2.

Proposition 8.10. With the set-up above, there exist admissible J1
1 , J

2
1 , . . . and J1

2 , J
2
2 , . . .

on Ŵ1 and Ŵ2, respectively, and positive real numbers εi,j , i, j ∈ N+ such that the following
holds.

(i) We have εi,j > εi,j+1. For R < εi,j and any R′, NSi,R(J i
∗), NSi+1,R′(NSi,R(J i

∗)) ∈
J ri,[0,j]
reg,+ ∩ J ri,[0,j]

reg,P (h, g∂), such that all zero-dimensional Mx,y,A and Pp,x,A are the same for
both W1,W2 and contained outside Yi for x, y ∈ Cri

+ , p ∈ C(h) with action change at most j.
(ii) For every i, there exists ij ∈ N+ such that J i+1

∗ = NS
i,

εi,ij
2

(J i
∗) on W i

∗.

†Note that for a general nondegenerate Hamiltonian H with finite slope, Proposition 8.2 may not apply and
the 0-length part may not be a subcomplex.
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Proof. The proof is exactly the same as Proposition 3.12. We start with J1 such that
NS1,0(J1) ∈ J r1

reg,SFT (F , h, g∂). The threshold εi,j will be dependent on j, because we need

compactness to apply neck-stretching. εi,j+1 is smaller than εi,j , as J ri,[0,j+1]
reg ⊂ J ri,[0,j]

reg . To
prove the second property, note that all curves in Figure 3 for x, y ∈ Cri

+ have a universal
bound depending only on i. Therefore there exists ij , such that NSi+1,0(NS

i,
εi,ij

2
)(J i) ∈

J ri
reg,SFT (F , h, g∂), since the related moduli spaces are contained outside Yi by the first

property. Hence we can choose J i+1 such that NSi+1,0(J i+1) ∈ J ri+1
reg,SFT (F , h, g∂) and J i+1 =

NS
i,

εi,ij
2

(J i) on W i as in Proposition 3.12. �

Theorem 8.11. Let Y be a TADC manifold, then SH∗
+(W ; Λ) → H∗+1(Y ; Λ) is indepen-

dent of the filling.

Proof. Using the almost complex structures in Proposition 8.10, by Proposition 8.9, we have
that the part where j � ij of the following diagram computes SH�0

+ (W ) → H∗+1(Y ; Λ0),

By the same argument in the proof of Theorem A, the horizontal continuation maps
are inclusions for j � ij . The vertical continuation map can be decomposed into contin-
uation maps C

ri,[0,j+1]
+ (NS

i,
εi,j+1

2
J i
∗) → C

ri,[0,j]
+ (NS

i,
εi,j+1

2
J i
∗) and C

ri,[0,j]
+ (NS

i,
εi,j+1

2
J i
∗) →

C
ri,[0,j]
+ (NS

i,
εi,j
2
J i
∗). The former map from the trivial homotopy of almost complex structure is

the obvious quotient, the latter map is homotopic to identity by Lemma 2.15. Therefore the part
where j � ij of the diagram is identified for both W1,W2. Hence SH�0

+ (W ) → H∗+1(Y ; Λ0) is
independent of the filling. Since Λ is a flat Λ0 module, the claim follows from tensoring Λ. �

Corollary 8.12. If Y is a TADC contact manifold, then SH∗(W ; Λ) = 0 is a property
independent of topologically simple strong fillings.

Proof. Since SH∗(W ; Λ) = 0 is equivalent to QH0(W ) → SH0(W ; Λ) maps 1 to 0 since it a
unital ring map [53, Corollary 14], which is equivalent to 1 ∈ im(SH−1

+ (W ; Λ) → H0(W ; Λ) →
H0(Y ; Λ)), which by Theorem 8.11 is independent of such fillings. �

Proof of Theorem F. By Theorem 8.11 and Corollary 8.12, the map H∗(W ; Λ) → H∗(Y ; Λ)
is independent of the filling. Hence for any other topologically simple strong filling W ′, we have
H2(W ′; Q) → H2(Y ; Q) is injective and H1(W ′; Q) → H1(Y ; Q) is surjective. They imply that
there exists one form β on W ′, such that ω = dβ and β = α near Y . That is W ′ is exact. �

Remark 8.13. Another similar case is for a TADC Y := ∂(V × C). Then by the same
argument for any topologically simple strong filling W , we have H2(W ; Q) → H2(Y ; Q) is
surjective. Therefore the symplectic form ω must be exact. It may not be true that there is
a primitive restricted to a contact form. But such exactness is enough to rule out all sphere
bubbles, hence the invariance can be lifted to Z coefficient by Corollary B.
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Theorem 8.11 also holds for symplectic cohomology with local systems (using Novikov field
over C). As a combination of twisted version of Theorems 8.11 and D, we have the following.

Theorem 8.14. Assume Q is in Theorem D and dimQ � 4. Then any strong filling W of
ST ∗Q with vanishing first Chern class that satisfies other topological conditions in Theorem D
is exact.

Remark 8.15. For general ADC manifolds, Yi may collapse to zero. Since nonexact
filling W does not contain Y × (0, 1), we can only seek room in Y × (1,∞). In particular,
we need to accommodate the increasing of suppF . However, in addition to the problem in
Remark 2.11, it seems to be very difficult to arrange homotopies of Hamiltonians, so that
integrated maximum principle can be applied to exclude contributions from the 0-length
generators to the positive length generators. Requiring suppF converges to ∞ indicates that it
might be better to define the theory on the SFT level, as in SFT, the vanishing of contributions
of the zero length generators to the positive length generators is automatic. In particular,
Theorem 8.11 should generalize to ADC manifolds by considering the theory defined using SFT,
see Remark 1.7.

Remark 8.16. For ADC but not TADC contact manifolds, it is still possible to get some
information about the strong filling. For example, if we know that 1 is killed by Hamiltonian
orbits with action at least −D in the exact filling, then possibly after rescaling, we have a
contact hypersurface Y ′ inside the strong filling such that Reeb orbits with period smaller than
D are nondegenerate and have positive degree. Then the argument in Theorem 8.11 implies that
the symplectic cohomology of the strong filling with vanishing first Chern class is zero as we have
found the primitive of 1. In general, our argument proves that im(SH∗

+(W ; Λ) → H∗+1(Y ; Λ))
is an invariant, while the invariance of the map cannot be obtained.

Appendix A. Orientations

A.1. Coherent orientations in §§ 2, 3 and 8

Following [1, §1.4], for every nonconstant periodic orbit x ∈ P∗(H), one can associate an
orientation line ox, which is the determinant line bundle of the following operator

Dx : W 1,p(C,Cn) → Lp(C,Cn), X �→ ∂sX + I(∂tX −B ·X), (A.1)

where C is equipped with the negative cylindrical end R × S1 → C, (s, t) �→ e−2π(s+it), I is the
complex structure on Cn and B = Ψ′(t) · Ψ(t)−1 when s � 0, here Ψ(t) is the path in Sp(2n)
determined by the linearization of the Hamiltonian flow of XH around x and a trivialization
of x∗(TW ). By [1, Proposition 1.4.10], determinant bundles of Dx using different choices of
trivializations are conically isomorphic. Hence ox is well defined. Moreover, we have indDx =
|x|.

On the other hand, if we equip C with the positive cylindrical end [1, §1.4.3], then (A.1)
induces another determinant line o+

x . Note that in this case, (A.1) is the linearization of
the equation of Bx (2.5), therefore we have a conical isomorphism 〈 ∂s 〉 ⊗ detBx = o+

x . By
the gluing property of such determination bundles [58, Lemma 1.4.5], we have a canonical
isomorphism o+

x ⊗ ox = det Cn.
Let u be a solution to the Floer equation with negative end asymptotic to x ∈ P∗(H) and

positive end asymptotic to y ∈ P∗(H). After choosing a trivialization of u∗TM , the linearized
operator of the Floer equation is in the form of

Du : W 1,p(R × S1,Cn) → Lp(R × S1,Cn), X �→ ∂sX + I(∂tX −B ·X), (A.2)
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where asymptotics of B are determined by the linearization of the Hamiltonian flow of XH

near two ends as before. Let ou denote the determinant line. When Mx,y is a manifold, they
form a continuous bundle ox,y. Then with a regular J in Proposition 2.8, the gluing property
of such bundles [58, Lemma 1.4.5] yields the following structures.

(1) Canonical isomorphisms ρx,y : ox,y ⊗ oy → ox, ρx,y,z : ox,y ⊗ oy,z → ox,z on Mx,y ×
My,z ⊂ Mx,z such that ρx,z ◦ ρx,y,z = ρx,y ◦ ρy,z on ox,y ⊗ oy,z ⊗ oz.

(2) ox,y = det(〈∂s〉 ⊕ TMx,y) and the ρx,y,z is induced by a map (〈∂s1〉 ⊕ TMx,y) ⊕ (〈∂s2〉 ⊕
TMy,z) → (〈∂s〉 ⊕ TMx,z) with the property that ∂s1 + ∂s2 is mapped to ∂s and ∂s2 − ∂s1 is
mapped to the out normal vector of TMx,z, cf. [1, Lemma 1.5.7].

(3) Canonical isomorphism ρ+
x,y : o+

x ⊗ ox,y → o+
y over Bx ×Mx,y ⊂ By, which is induced

by a map 〈 ∂s1 〉 ⊕ TBx ⊕ 〈 ∂s2 〉 ⊕ TMx,y → 〈 ∂s 〉 ⊕ TBy with ∂s1 + ∂s2 mapped to ∂s and
∂s2 − ∂s1 mapped the out normal vector.

If we fix orientations on ox, then there are induced orientations on ox,y and o+
x , which determine

orientations of Mx,y and Bx by quotienting out the R factor from the left.
Next we orient the Morse theory part. For a Morse function f , let Sp, Up denote the stable and

unstable manifold of ∇gf . Then there is a conical isomorphism TpUp ⊕ TpSp = TpW . Moreover,
we have 〈 ∂s 〉 ⊕ TMp,q = T (Sp ∩ Uq), the latter at p has a natural isomorphism to TSp/TSq.
Therefore if we fix orientations for every Sp, then there is an induced orientation on Mp,q. When
m is the unique local minimum, we orient Sm such that the induced orientation Um coincides
with orientation of W , this guarantees the identity is generated by m. Since Mp,y is the fiber
product Sp ×W By, we orient Mp,y, such that the isomorphism TΔW ⊕ TMp,y → TSp ⊕ TBy

preserves the orientation (it is actually twisted by (−1)dimSp×dimW for general fiber product).

Remark A.1. Our convention is from the following consideration: if we view f as
a Hamiltonian, we can assign two line bundles op, o

+
p as before. Then there are conical

isomorphism op = detSp and o+
p = detUp, because Dp is the linearization of an equation

whose solution corresponds to the stable manifold Sp. Similarly for o+
p . Then the gluing of

determinant bundle gives an isomorphism o+
p ⊗ op = det Cn corresponding to TpUp ⊕ TpSp =

TpW . Moreover, op,q = det(TSp/TSq) and the gluing map ρp,q : op,q ⊗ oq → op is induced from
the obvious map. As for the orientation convention for fiber products, it is different from the one
used in [19] by a sign twisting for general fiber products, but they coincide in the special case
considered here since dimW = 2n. Our fiber product orientation rule also satisfies associativity.

Therefore we have oriented all M∗,∗, the following proposition shows that orientations are
coherent in the sense that they imply d2 = 0.

Proposition A.2. For 1-dimensional M∗,∗, with orientations above, we have ∂M∗,∗ =∑
M∗,∗ ×M∗,∗.

Proof. For x, y, z ∈ P∗(H), by property (3), we have an orientation-preserving map
(〈∂s1〉 ⊕ TMx,y) ⊕ (〈∂s2〉 ⊕ TMy,z) → (〈∂s〉 ⊕ TMx,z) over Mx,y ×My,z with the property
that ∂s1 + ∂s2 is mapped to ∂s and ∂s2 − ∂s1 is mapped to the out normal vector of TMx,z.
Hence the product orientation Mx,y ×My,z is the boundary orientation. The situation for
Mp,q ×Mq,r for p, q, r ∈ C(f) is similar. Next we consider Mp,x ×Mx,y for p ∈ C(f), x, y ∈
P∗(H). Then by property (3), we have an orientation-preserving map 〈 ∂s1 〉 ⊕ TBx ⊕ 〈 ∂s2 〉 ⊕
TMx,y → 〈 ∂s 〉 ⊕ TBy with ∂s1 + ∂s2 mapped to ∂s and ∂s2 − ∂s1 mapped the out normal
vector. Then by our fiber product orientation rule, the product orientation Mp,x ×Mx,y is
the boundary orientation. The situation for Mp,q ×Mq,x for p, q ∈ C(f), x ∈ P∗(H) is the
same. �
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To orient other moduli spaces in §§ 2 and 3, we need to assign orientation to Sp for every p ∈
C(h). Then for Rp,q, we have an isomorphism TRp,q = TSp/TSq at the intersection point on Y .
Therefore orientations of Sp for p ∈ C(f) ∪ C(h) determines orientation of Rp,q. The orientation
of Pp,y is determined by the fiber product rule. For Hp,y, the orientation is determined by fiber
product rule and the orientation on the Morse part is given by 〈 ∂l 〉 ⊕ Sp for p ∈ C(h). Then
by the same argument in Proposition A.2, we have the following.

Proposition A.3. For moduli spaces up to dimension 1, we have the induced orientations
above satisfying the following.

(i) ∂R∗,∗ =
∑

M∗,∗ ×R∗,∗ −
∑

R∗,∗ ×M∗,∗.
(ii) ∂P∗,∗ =

∑
M∗,∗ × P∗,∗ +

∑
P∗,∗ ×M∗,∗.

(iii) ∂H∗,∗ =
∑

M∗,∗ ×H∗,∗ +
∑

H∗,∗ ×M∗,∗ +
∑

R∗,∗ ×M∗,∗ −
∑

P∗,∗.

The orientations for the continuation map moduli spaces in Proposition 2.10 and § 2.2 is
done similarly, but there is no R factor needed to be quotiented.

For the orientation in § 8, by [11, Theorem 3.7], the moduli space encountered in § 8 has
a one-to-one correspondence to the moduli space using nondegenerate Hamiltonians nearby.
Hence we can use the orientation from a perturbed Hamiltonian, and then we have coherent
orientations from Propositions A.2 and A.3. Alternative approaches to orient the cascades
moduli space directly can be found in [11, §4.4], but they require a twisting depending on the
number of cascades [11, Proposition 3.9].

A.2. Coherent orientations in § 4

We follow the orientation convention for the BV operator in [58]. We consider a solution (u, θ)
to equation (4.2), that is,

∂su + Jθ
s,t(∂tu−XHθ

s,t
) = 0, lim

s→−∞u = x(· + θ), lim
s→∞u = y, x ∈ P∗(H−), y ∈ P∗(H+).

If transversality for MΔ
x,y holds, let Du denote the linearization of the equation above at u,

then we have a short exact sequence

0 → T(u,θ)MΔ
x,y → kerDu ⊕ TS1 → cokerDu → 0.

Since detDu = ox,y, the short exact sequence induces an isomorphism detTMΔ
x,y = ox,y ⊗ TS1.

Hence given orientations of ox, oy and S1, we have induced orientation on MΔ
x,y. Then we can

similarly orient for MΔ
p,y, p ∈ C(f), y ∈ P∗(H+), PΔ

∗,∗ and HΔ
∗,∗ by tensoring TS1 from the right.

One last type is T∗,∗ in the construction of homotopy in § 4.2.2, similar to the BV operator
case, for every solution (u, θ, r) to (4.12), there is a short exact sequence

0 → T(u,θ,r)Tx,y → kerDu ⊕ TS1 ⊕ TR → cokerDu → 0,

which yields an isomorphism detTTx,y = ox,y ⊗ detS1 ⊗ det R for x ∈ P∗(H−) and y ∈
P∗(H+). Hence Tx,y is oriented, and the orientation for Tp,y is similar. Then we have the
following result with the same proof of Proposition A.2.

Proposition A.4. For moduli spaces up to dimension 1, the orientations above satisfy the
following.

(i) ∂MΔ
∗,∗ = −

∑
MΔ

∗,∗ ×M∗,∗ −
∑

M∗,∗ ×MΔ
∗,∗.

(ii) ∂T∗,∗ = −
∑

M∗,∗ × T∗,∗ +
∑

T∗,∗ ×M∗,∗ +
∑

N∗,∗ ×MΔ
∗,∗ −

∑
MΔ

∗,∗ ×N∗,∗.
(iii) ∂PΔ

∗,∗ = −
∑

M∗,∗ × PΔ
∗,∗ −

∑
PΔ
∗,∗ ×M∗,∗ −

∑
P∗,∗ ×MΔ

∗,∗.
(iv) ∂HΔ

∗,∗ =
∑

R∗,∗ ×MΔ
∗,∗ − PΔ

∗,∗ +
∑

H∗,∗ ×MΔ
∗,∗ +

∑
M∗,∗ ×HΔ

∗,∗ −
∑

HΔ
∗,∗ ×M∗,∗.



180 ZHENGYI ZHOU

Acknowledgements. It is a great pleasure to acknowledge the Institute for Advanced Study
for its warm hospitality. The author would like to thank Katrin Wehrheim and Kai Zehmisch
for helpful comments and is grateful to Oleg Lazarev and Mark McLean for answering many
questions. The author also thanks referees’ helpful comments and suggestions.

References

1. M. Abouzaid, ‘Symplectic cohomology and Viterbo’s theorem’, Free loop spaces in geometry and topology,
IRMA Lectures in Mathematics and Theoretical Physics 24 (eds J. Latschev and A. Oancea; American
Mathematical Society, Providence, RI, 2015) 271–485.

2. M. Abouzaid and P. Seidel, ‘Altering symplectic manifolds by homologous recombination’, Preprint,
2010, arXiv:1007.3281.

3. M. Abouzaid and P. Seidel, ‘An open string analogue of Viterbo functoriality’, Geom. Topol. 14 (2010)
627–718.

4. M. Abreu and L. Macarini, ‘Dynamical convexity and elliptic periodic orbits for Reeb flows’, Math. Ann.
369 (2017) 331–386.

5. P. Albers, U. Frauenfelder and A. Oancea, ‘Local systems on the free loop space and finiteness of
the Hofer-Zehnder capacity’, Math. Ann. 367 (2017) 1403–1428.

6. M. Audin and M. Damian, Morse theory and Floer homology (Springer, Berlin, 2014).
7. K. Barth, H. Geiges and K. Zehmisch, ‘The diffeomorphism type of symplectic fillings’, J. Symplectic

Geom. 17 (2019) 929–971.
8. F. Bourgeois, ‘A Morse-Bott approach to contact homology’, PhD Thesis, Stanford University, Stanford,

2002.
9. F. Bourgeois, T. Ekholm and Y. Eliashberg, ‘Effect of Legendrian surgery’, Geom. Topol. 16 (2012)

301–389.
10. F. Bourgeois and A. Oancea, ‘An exact sequence for contact-and symplectic homology’, Invent. Math.

175 (2009) 611–680.
11. F. Bourgeois and A. Oancea, ‘Symplectic homology, autonomous Hamiltonians, and Morse-Bott moduli

spaces’, Duke Math. J. 146 (2009) 71–174.
12. J. Bowden, ‘Exactly fillable contact structures without Stein fillings’, Algebr. Geom. Topol. 12 (2012)

1803–1810.
13. J. Bowden, D. Crowley and A. Stipsicz, ‘The topology of Stein fillable manifolds in high dimensions

I’, Proc. Lond. Math. Soc. 109 (2014) 1363–1401.
14. J. Bowden, D. Crowley and A. Stipsicz, ‘The topology of Stein fillable manifolds in high dimensions

II’, Geom. Topol. 109 (2014) 1363–1401.
15. K. Cieliebak, ‘Handle attaching in symplectic homology and the chord conjecture’, J. Eur. Math. Soc. 4

(2002) 115–142.
16. K. Cieliebak, ‘Subcritical Stein manifolds are split’, Preprint, 2002, arXiv:math/0204351 [math.DG].
17. K. Cieliebak, Y. Eliashberg, L. Evans, Y. Manin and P. Sarnak, From Stein to Weinstein and back:

symplectic geometry of affine complex manifolds (American Mathematical Society, Providence, RI, 2012).
18. K. Cieliebak and A. Oancea, ‘Symplectic homology and the Eilenberg–Steenrod axioms’, Algebr. Geom.

Topol. 18 (2002) 1953–2130.
19. L. Diogo and S. Lisi, ‘Symplectic homology of complements of smooth divisors’, J. Topol. 12 (2019)

966–1029.
20. Y. Eliashberg, ‘Filling by holomorphic discs and its applications’, Geometry of low-dimensional

manifolds: 2. Symplectic manifolds and Jones-Witten theory 2 (eds S. K. Donaldson and C. B. Thomas;
Cambridge University Press, Cambridge, 1990) 45–68.

21. Y. Eliashberg, ‘On symplectic manifolds with some contact properties’, J. Differential Geom. 33 (1991)
233-238.

22. Y. Eliashberg, A. Givental and H. Hofer, ‘Introduction to symplectic field theory’, Visions in
mathematics (eds N. Alon, J. Bourgain, A. Connes, M. Gromov and V. Milman; Birkhäuser, Basel, 2000)
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SYMPLECTIC FILLINGS OF ADC MANIFOLDS 181

31. H. Hofer, K. Wysocki and E. Zehnder, ‘The dynamics on three-dimensional strictly convex energy
surfaces’, Ann. of Math. (2) 148 (1998) 197–289.

32. J. Kang, ‘Symplectic homology of displaceable Liouville domains and leafwise intersection points’, Geom.
Dedicata 170 (2014) 135–142.

33. S. Keel and J. McKernan, ‘Rational curves on quasi-projective surfaces’, Mem. Amer. Math. Soc. 140
(1999), https://doi.org/10.1090/memo/0669.

34. P. Kronheimer and T. Mrowka, Monopoles and three-manifolds (Cambridge University Press,
Cambridge, 2007).

35. M. Kwon and O. van Koert, ‘Brieskorn manifolds in contact topology’, Bull. Lond. Math. Soc. 48 (2016)
173–241.

36. J. Latschev, C. Wendl and M. Hutchings, ‘Algebraic torsion in contact manifolds’, Geom. Funct. Anal.
21 (2011) 1144.

37. O. Lazarev, ‘Contact manifolds with flexible fillings’, Geom. Funct. Anal. (2020) 1–67.
38. Y. Li, ‘Exact Calabi-Yau categories and q-intersection numbers’, Preprint, 2019, arXiv:1907.09257.
39. P. Lisca, ‘On symplectic fillings of lens spaces’, Trans. Amer. Math. Soc. 360 (2008) 765–799.
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