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Abstract
We show that any symplectically aspherical/Calabi–Yau filling of Y := ∂(V ×D) has
vanishing symplectic cohomology for any Liouville domain V . In particular, we make
no topological requirement on the filling and c1(V ) can be nonzero. Moreover, we
show that for any symplectically aspherical/Calabi–Yau filling W of Y , the interior W̊
is diffeomorphic to the interior of V × D if π1(Y ) is abelian and dim V ≥ 4. And W
is diffeomorphic to V × D if moreover the Whitehead group of π1(Y ) is trivial.

1 Introduction

It was shown byGromov in his seminal paper [9] that symplectically aspherical fillings
of (S3, ξstd) are unique symplectically. Roughly speaking, there exist two orthogo-
nal foliations of holomorphic planes of any symplectically aspherical filling, which
recover the diffeomorphism type as well as the symplectic structure. In higher dimen-
sions, Eliashberg–Floer–McDuff [12] proved that symplectically aspherical fillings
of (S2n−1, ξstd) are diffeomorphic to a ball for n ≥ 3. The method can be described
as considering a moduli space of holomorphic spheres in a partial compactification
of the filling, which foliates the filling in a homological sense (some evaluation map
has degree 1). The homological information turned out to be sufficient to determine
the diffeomorphism type by an h-cobordism argument. More generally, by a result of
Cieliebak [6], any subcritical Weinstein domain W splits into V × D for a Weinstein
domain V and D is the unit disk in C. Hinted by the natural foliation by the splitting,
the “homological foliation" method was developed by Oancea-Viterbo [18] to show
that any symplectically aspherical filling W of a simply connected subcritically fill-
able contact manifold Y satisfies that H∗(Y ) → H∗(W ) is surjective. The homological
argument as well as the h-cobordism argument were further refined by Barth-Geiges-
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Zehmisch [2] to obtain that the diffeomorphism type of symplectically aspherical
filling of a simply connected subcritically fillable contact manifold is unique.

In this paper, we study the filling of ∂(V × D) for any Liouville domain V from a
Floer theoretic point of view instead of using closed holomorphic curves. The splitting
provides with nice Reeb dynamics on the contact boundary. Then the rich algebraic
structures on symplectic cohomology allow us to prove the following.

Theorem 1.1 Let V be any Liouville domain, then for any symplectically aspherical/
Calabi–Yau (i.e. strong filling with c1(W ) torsion) filling W of Y := ∂(V × D), we
have the following (all cohomology below is defined over Z).

(1) H∗(W ) → H∗(Y ) is independent of the filling. In particular, W is necessarily a
Liouville filling.

(2) SH∗(W ) = 0 and SH∗+(W ) is independent of the filling.
(3) W is diffeomorphic to V × D glued with a homology cobordism from Y to Y .

Note that the symplectically aspherical or the Calabi–Yau condition is necessary, since
we can always blow up a symplectic filling to change the topology of W . The gen-
eral Liouville case was also discussed in [2], where surjectivity on homology was
obtained, which is a corollary of (1) above by the universal coefficient theorem. The-
orem 1.1 puts many restrictions on the diffeomorphism type of the filling. Regarding
the diffeomorphism type of the filling W , one can ask the following three questions.

(1) Is the diffeomorphism type of the open manifold W̊ unique?
(2) Is the diffeomorphism type of the manifold with boundary W unique?
(3) Is the diffeomorphism type of the manifold with boundary W unique relative to the

boundary? i.e. is there a diffeomorphism φ : W → V × D such that φ|∂W = id.

As we shall see, (1) is related to that whether the homology cobordism in (3) of
Theorem 1.1 is an h-cobordism. (2) is related to that whether it is an s-cobordism.
While (3) is beyond the reach of the method in this paper. It turns out that we can
tackle question (1) under the assumption that π1(Y ) is abelian, as we can study the
Floer theory of covering spaces. In particular, we have the following.

Theorem 1.2 Under the same assumption in Theorem 1.1, if in addition π1(Y ) is
abelian, then W̊ is diffeomorphic to V̊ × D̊. If moreover the Whitehead group of π1(Y )

is trivial, then W is diffeomorphic to V × D.

Roughly speaking, the proof ofTheorem1.1 considers the sameholomorphic curves
in [2, 12, 18]. In some sense the only symplectic information used in [2, 12, 18] was
the holomorphic curve with a point constraint, which corresponds to the fact that the
evaluation map has degree 1. In order to get homological information about the filling
through duality, one needs to assume that V is Weinstein. In our approach, such curve
is again essential as it is responsible for the vanishing of symplectic cohomology.
However, we will consider other holomorphic curves with various constraints from Y
packaged in Floer theory. Then the ring structure along with the quantitative nature of
Floer theory implies Theorem 1.1. In addition, the symplectic cohomology framework
is flexible enough to work with strong fillings, hence the theorem also applies to
Calabi–Yau fillings. By a result of Eliashberg [8] and McDuff [12], any strong filling
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of (S3, ξstd) is a blow-up of the standard ball. Hence Calabi–Yau fillings of (S3, ξstd)

are also unique. Our result can be viewed as a generalization of that.
Theorem 1.1 also has certain overlap to the results in [24], i.e. those V with vanish-

ing first Chern class, in particular, boundary of subcritically fillable contact manifolds
with vanishing first Chern class. The main difference is the following, [24] uses the
fact those contact manifolds has only the trivial Z-graded augmentation by degree
reasons, hence can be applied to a very different class of contact manifolds called
asymptotically dynamically convex manifolds, which includes boundaries of flexible
Weinstein domains with vanishing first Chern class [11] and links of isolated terminal
singularities [14]. Moreover, similar phenomena extend to many other structures on
symplectic cohomology [22]. However, the index consideration brings a major draw-
back that we need to require the filling to have mild topology properties (c1 = 0 and
π1 injective) in order to obtain a Z-grading. On the other hand, we will not need any
grading requirement for Theorem 1.1. In fact, when we drop the grading requirement,
there are always different augmentations (coming from blow-ups). Unlike the strategy
of exploiting the uniqueness of augmentations in [22, 24], we will make use of the
nice Reeb dynamics induced from the splitting setup and explore structures that are
independent of augmentations. Such changes of perspectives result in many differ-
ences compared to [24]. In addition to dropping the topological assumptions in [24],
the invariance of SH∗+(W ) is not a priori fact but rather a posteriori consequence of
SH∗(W ) = 0. The upshot is that the topology is seen by all the Reeb orbits wrapping
around V once and a certain map from the (filtered) positive symplectic cohomology
does not depend on augmentations.

In fact, our proof shows that 1 is in the image of SH∗+(W ) → H∗+1(Y ) → H0(Y )

for any strong filling W , assuming symplectic cohomology and its positive version
is well-defined for general strong fillings. Such phenomena, studied in [22, 24], has
gone beyond the situation of having only the trivial (Z-graded) augmentation. Then
the symplectically asphericality is used to show 1 + A is a unit in the quantum coho-
mology Q H∗(W ;�) for A ∈ ⊕i≥1H2i (W ;�), which is crucial for the vanishing
of symplectic cohomology. As by [19], when the filling is not symplectically aspher-
ical, we do have zero divisors in the form of 1 + A even for the standard contact
sphere (S2n−1, ξstd). On the other hand, it seems that SH∗+(W ) → H∗+1(Y ) is also
independent of strong fillings, at least it holds for the standard ball and its blow-up
O(−1) as fillings of (S2n−1, ξstd). In the Calabi–Yau case, A is necesarrily zero by
degree reasons and 1 is always a unit in Q H∗(W ;�). In general, Theorem 1.1 holds
as long as we know that there is no zero divisor of Q H∗(W ;�) in the form of 1+ A
for A ∈ ⊕i>0H2i (W ;�), where � is the Novikov field. In particular, we have the
following.

Corollary 1.3 Let W be a (semi-positive) strong filling of Y := ∂(V ×D) for dim V =
2n. If there is no embedded symplectic sphere S with 2 − n ≤ c1(S) ≤ 2n − 1, then
W is a Liouville filling.

The semi-positive assumption is only for the definition of symplectic cohomology
without using any virtual technique, and should be irrelevant once one constructs
(positive) symplectic cohomology for general strong fillings. Note that when n = 1,
the assumption is equivalent to that W is minimal, i.e. there is no exceptional sphere
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in W . In such case, Corollary 1.3 is also implied by a result of Wendl [21], since
V × D is subcritical and ∂(V × D) is supported by a planar open book. In dimensions
higher than 4, there are many other operations to modify a filling other than blowing
up a point. Corollary 1.3 implies that any birational surgery that we can apply on W
to destroy symplectically asphericality will create symplectic spheres with small first
Chern class.

2 Symplectic cohomology

2.1 Contact forms on Y

Let λ denote the Liouville form on the Liouville domain V . In the following, we
describe a special contact form on Y := ∂(V × D), which allows us to single out the
Reeb orbits corresponding to critical points for a Morse function on V . Let r denote
the collar coordinate on ∂V , such that the completed Liouville manifold (̂V ,̂λ) is
given by V ∪∂V × (1,∞)r witĥλ = λ on V and̂λ = r(λ|∂V ) on ∂V × (1,∞)r . Note
that by following the negative flow of the Liouville vector field r∂r , the r coordinate
continues to exist in the interior of V for r ∈ (0, 1). We first fix a Morse function f
on V , such that the following holds.

(1) min f = 0 and max f = 1 which is attained at ∂V .
(2) For r ∈ ( 12 , 1), f only depends on r and 1 ≥ ∂r f > 0 and ∂r f |r=1 = 1.
(3) f is self-indexing in the sense that f (p) = 1

2n+1−ind p for a critical point p with
Morse index ind p > 0 and f has a unique local minimum 0 (hence the global
minimum). We may assume ind p ≤ 2n − 1, since V is an open manifold.

Then we can find a smooth family of decreasing functions gε : [0, 1+ε

1+ε f ( 12 )
] → [ 12 , 3

4 ]
such that the following holds.

(1) gε(x) = f −1( 1+ε
εx − 1

ε
) for x near 1+ε

1+ε f ( 12 )
, hence gε(

1+ε

1+ε f ( 12 )
) = 1

2 .

(2) gε(x) = 3
4 when x ≤ 1

4 .

Let ρ denote the radical coordinate in C and D(r) denote the disk of radius r .
In this paper, we fix 1

2π ρ2dθ as the Liouville form on C. With the data above, for
ε > 0, we have a contact type hypersurface Yε in the completed Liouville manifold
(̂V × C,̂λ ⊕ 1

2π ρ2dθ) given as follows:

(1) in the region V × C, Yε is given by ρ2 = 1+ε
1+ε f ,

(2) in the region ̂V × D(

√

1+ε

1+ε f ( 12 )
), Yε is given by r = gε(ρ

2).

Then our conditions on gε guarantee that Yε closes up to a smooth closed hypersurface,
which can be described pictorially as below. In particular, Yε is a smooth family of
hypersurfaces for ε ≥ 0 (Fig. 1).

Proposition 2.1 For ε sufficiently small, Yε is a contact type hypersurface, i.e. the
restriction of the Liouville form̂λ ⊕ 1

2π ρ2dθ gives a contact form on Yε 
 Y .
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Fig. 1 The contact hypersurface Yε

Proof In view of [24,Remark 6.5], it is sufficient to prove that 1+ε
1+ε f − Xλ(

1+ε
1+ε f ) > 0

on V for the Liouville vector Xλ and gε(ρ
2) − 1

2ρ∂ρgε(ρ
2) = gε(x) − ∂x gε(x) > 0

for x = ρ2 on D(

√

1+ε

1+ε f ( 12 )
). Note that

1 + ε

1 + ε f
− Xλ(

1 + ε

1 + ε f
) = 1 + ε

1 + ε f
+ (1 + ε)εXλ( f )

(1 + ε f )2
= 1 + ε

(1 + ε f )2
(1 + ε f + εXλ( f )),

which is positive when ε is small enough. Since gε(x) > 0 and ∂x gε(x) < 0, we also
have gε(x) − ∂x gε(x) > 0. ��
In the following, we assume that the Reeb dynamics on ∂V are non-degenerate and
the shortest Reeb orbit on ∂V has period at least 5, this can always be achieved by
perturbing and scaling the Liouville form. Then we have the following.

Proposition 2.2 For ε small enough and positive, any Reeb orbit on Yε with period
< 2 must be the circle γp over a critical point p of f and is non-degenerate. Moreover,
the period is given by 1+ε

1+ε f (p)
. When ε = 0, any Reeb orbit on Y0 with period < 2 is

a circle over a point in V \ (

∂V × ( 12 , 1]
)

.

Proof It follows from the same argument as in [24,Proposition 6.7], any Reeb orbit

touches the region

(

̂V × D(

√

1+ε

1+ε f ( 12 )
)

)

∩Yε must be the in formof (γ (At), ρei Bt+θ0)

for Reeb orbit γ on ∂V , where

A = 1

gε(ρ2) − ρ2g′
ε(ρ

2)
≤ 2.

In particular, the period of such orbits must be greater than 2. For the rest of Yε ,
following the same argument as in [24,Theorem 6.3], for ε small enough, all periodic
orbits of period smaller than 2 on (V × C) ∩ Yε must be the simple circle over some
critical point p of f with the prescribed period. When ε = 0, the situation on Y0 ∩
(

̂V × D̊

)

is the same as before that all Reeb orbits have period greater than 2. On the

remaining portion, the Reeb vector field is 2π∂θ , where θ is the angular coordinate on
C. Hence the claim follows. ��
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Remark 2.3 A more general discussion of the contact properties (Reeb flow, Conley-
Zehnder indices) of suchhypersurfaces canbe found in [24,§6]. The specificproperties,
e.g. the self-indexing property of f , are for the computations in Proposition 2.9.

2.2 Symplectic cohomology

In the following, we recall models of symplectic cohomology that will be used in this
paper. We will follow the autonomous setting in [5], see also [23,§2] for the exactly
same setup and [23,Remark 2.5] for comparisons and relations with other models. Let
W be a(n exact) filling of Y and S(∂W ) be the set of periods of the Reeb flow on Y ,
which is a discrete set, when the Reeb dynamics are non-degenerate, which we shall
assume. We will consider admissible Hamiltonians of one of the following two forms.

(I) H = 0 on W , H = h(r) on ∂W × (1,∞) and h′(r) = a /∈ S(∂W ) for r ≥ 1+ w

and h′′(r) > 0 for 1 < r < 1 + w, here w is called the width of the Hamiltonian.
(II) Or H ≤ 0 and is C2 small on W and has the same property on ∂W × (1,∞) as in

(I), such that all periodic orbits of X H are either non-degenerate critical points of
H on W or non-constant orbits in ∂W × (1,∞).

In particular, any non-constant orbit of X H corresponds to some Reeb orbit on ∂W
shifted in the r -direction. Our symplectic action uese the cohomological convention

A(γ ) = −
∫

γ

̂λ +
∫

γ

H , (2.1)

Our convention for X H is ω̂(·, X H ) = dH . Herêλ, ω̂ are the completed Liouville,
symplectic forms of the completed Liouvillemanifold ̂W .We choose a time dependent
ω̂ compatible almost complex structure J , such that the restriction on W is time
independent. Moreover, J is cylindrical convex1 near every r , such that h′(r) is the
period of a Reeb orbit, which guarantees the validity of the integrated maximum
principle [7]. Then we pick two different generic points γ̂ and γ̌ on im γ , where γ is
the S1-family of the non-constant orbits of X H corresponding to the Reeb orbit γ . This
is equivalent to choosing a Morse function gγ with one maximum and one minimum
on im γ in [5,§3]. By [5,Lemma 3.4], theMorse function gγ can be used to perturb the
Hamiltonian H to get two non-degenerate orbits from γ , which are often denoted by
γ̂ and γ̌ in literatures withμC Z (γ̂ ) = μC Z (γ )+1 andμC Z (γ̌ ) = μC Z (γ ), where the
former μC Z is the Conley-Zehnder index of Hamiltonian orbits γ̂ and γ̌ and the latter
μC Z is the Conley-Zehnder index of the Reeb orbit γ . In the case of (II), the cochain
complex is the free Z-module generated by Crit(H) and γ̌p, γ̂p for p ∈ Crit( f ). The
differential is computed by counting rigid cascades, which can be described pictorially
as follows (Fig. 2),

(1) The horizontal arrow is flowing in im γ towards γ̌ .
(2) u is a solution to the Floer equation ∂su + Jt (∂t u − X H ) = 0 modulo the R

translation.

1 i.e. J is d̂λ compatible and̂λ ◦ J = dr .
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Fig. 2 d+ and d+,0 from 2 level
cascades in case (II)

u1

u2
p ∈ Crit(H)

u1

u2

Fig. 3 d+ and d+,0 from 2 level
cascades in case (I)

u1

u2

∇h

u1

u2

(3) Every intersection point of the line with the surface satisfies the obvious matching
condition.

In the case of (I), the constant periodic orbits of X H are parameterized by W , which
are Morse-Bott non-degenerate except for points on ∂W 2. To break the Morse-Bott
symmetry,wefix ametric and aMorse function h onW such that ∂r h > 0 on ∂W . Then
the cochain complex is the free Z-module generated by p ∈ Crit(h) and γ̌p, γ̂p. The
differential is computed by counting rigid cascades, which can be described pictorially
as follows, with the only difference of extra gradient flow of h (Fig. 3).

More formally, the differential is defined by counting the following compactified
moduli spaces.

(1) For p, q ∈ Crit(h),

Mp,q := {γ : Rs → W |γ ′ + ∇h = 0, lim
s→∞ γ = p, lim

s→−∞ γ = q}/R.

(2) For γ+, γ− ∈ {γ̌ , γ̂ |∀S1 family of orbits γ }, a k-cascade from γ+ to γ− is a tuple
(u1, l1, . . . , lk−1, uk), such that

(a) li are positive real numbers.
(b) nontrivial ui ∈ {u : Rs × S1

t → ̂W |∂su + Jt (∂t u − X H ) = 0, lims→∞ u ∈
γ i−1, lims→−∞ u ∈ γ i }/R such that γ+ ∈ γ 0 and γ− ∈ γ k , where the R

action is the translation on s.
(c) φ

li−∇gγ i
(lims→−∞ ui (s, 0)) = lims→∞ ui+1(s, 0) for 1 ≤ i ≤ k −

1, γ+ = limt→∞ φ−t
−∇gγ 0

(lims→∞ u1(s, 0)), and γ− = limt→∞ φt−∇gγ k

(lims→−∞ uk(s, 0)), where φt−∇gγ
is the time t flow of −∇gγ on im γ .

2 How such failure of Morse-Bott non-degeneracy will not be seen by the moduli spaces for symplectic
cohomology as explained in [24,Proposition 2.6].
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Thenwe defineMγ+,γ− to be the compactification of the space of all cascades from
γ+ to γ−. The compactification involves the usual Hamiltonian-Floer breaking of
ui as well as degeneration corresponding to li = 0,∞. The li = 0 degeneration
is equivalent to a Hamiltonian-Floer breaking lims→−∞ ui = lims→∞ ui+1. In
particular, they can be glued or paired, hence do not contribute (algebraically)
to the boundary of Mγ+,γ− . The li = ∞ degeneration is equivalent to a Morse
breaking for gγ i

, which will contribute to the boundary ofMγ+,γ− .
(3) For γ+ ∈ {γ̌ , γ̂ |∀S1 family of orbits γ } and q ∈ Crit(h), a k-cascades from γ+ to

q is a tuple (l0, u1, l1, . . . , uk, lk) as before, except

(a) uk ∈ {u : C → ̂W |∂su + Jt (∂t u − X H ) = 0, lims→∞ u ∈ γ k−1, u(0) ∈
W̊ }/R, where we use the identification R × S1 → C

∗, (s, t) �→ e2π(s+i t). W̊
is the interior of W , where the Floer equation is ∂ J u = 0, hence the removal
of singularity implies that u(0) is a well-defined notation.

(b) q = limt→∞ φt∇h(uk(0)).

ThenMγ+,q is defined to be the compactification of the space of all cascades from
γ+ to q.

All of the moduli spaces above can be equipped with coherent orientations.
The type (II) Hamiltonians were used in [5], while the a type (I) Hamiltonian

is a hybrid of [5, 24] and was used in [23]. We use (C(H), d) to denote the total
cochain complex in both cases. The cochain complex generated by p ∈ Crit(h) or
p ∈ Crit(H |W ) is a subcomplex (C0, d0), which computes the cohomology of W . The
cochain complex generated by γ̌ , γ̂ for all Reeb orbits γ with period smaller than a
is quotient complex (C+(H), d+). The connecting map C+(H) → C0 is denoted by
d+,0. In view of the notation above, the differentials are defined as follows.

d0(p) =
∑

q,dimMp,q=0

#Mp,qq,

d+(γ+) =
∑

γ−,dimMγ+,γ−=0

#Mγ+,γ−γ−,

d+,0(γ+) =
∑

q,dimMγ+,q=0

#Mγ+,qq,

where #M denotes the signed count of the zero-dimensional compact moduli space
M.

Since a /∈ S(∂W ), a continuationmap argument ( [23,Proposition 2.8]) implies that
the cohomology is independent of the choice of H , and the associated cohomology
is called the filtered (positive) symplectic cohomology SH≤a(W )(and SH≤a

+ (W )),
which can also be defined using the action filtration as in [16]. Moreover, we have the
following tautological long exact sequence (withZ/2 grading in general by n−μC Z ),

. . . → H∗(W ) → SH∗,≤a(W ) → SH∗,≤a
+ (W ) → H∗+1(W ) → . . . .
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For a < b /∈ S(Y ), there is a continuation map ιa,b : SH∗,≤a(W ) → SH∗,≤b(W )

as well as on the positive symplectic cohomology, which are isomorphisms given
that [a, b] ∩ S(∂W ) = ∅. The continuation maps are compatible with the long exact
sequence above, and the direct limit of the filtered (positive) symplectic cohomology
is the (positive) symplectic cohomology SH∗(W )(and SH∗+(W )).

Remark 2.4 Both type (I) and (II) Hamiltonians give rise to isomorphic (positive)
symplectic cohomology by a continuation map argument [24,Proposition 2.10]. The
type (I) Hamilotnian is better suited for neck-stretching as it is zero along any contact
hypersurface in W but a type (II) Hamiltonian provides an easier setup for the Künneth
formula below.

2.3 The Künneth formula

It was shown by Oancea [16] that the Künneth formula holds for symplectic coho-
mology. In particular, we have that SH∗(V × D) = 0, which is crucial for this
paper. However, in order to obtain the Künneth formula for V × W , one does not
use those Hamiltonians in § 2.2. Instead, one uses Hamiltonians in the form of
H ⊕ K := π∗

1 H + π∗
2 K , where H , K are admissible type (II) Hamiltonians on

V , W respectively and π1, π2 are two natural projections on V × W . Note that H ⊕ K
is not admissible on V × W . When using a splitting almost complex structure J1 ⊕ J2
for admissible almost complex structures J1, J2 on V , W respectively, we have that
C(H ⊕ K ) = C(H) ⊗ C(K ). Note that J1 ⊕ J2 is also not admissible. The key step
in the proof of the Künneth formula is relating the splitting model with the admissible
model by a continuation map. Computation is much easier in the splitting model, in
particular, we will compute the standard case V × D using such splitting model. For
this purpose, we first introduce some notations and properties that will be used in this
paper.

Let V , W be two Liouville domains with the induced contact forms on the bound-
ary non-degenerate. We fix a > 0 /∈ S(∂V ), b > 0 /∈ S(∂W ) and two admissible
Hamiltonians H , K with slope a and b of type (II) on V , W respectively. We fix
generic admissible almost complex structures J1, J2 on V , W respectively. Then the
Hamiltonian-Floer cochain complex C(H ⊕ K ) of H ⊕ K using J1 ⊕ J2 is the tensor
C(H) ⊗ C(K ).3 The subcomplex C0(H) ⊗ C0(K ) is a Morse complex on V × W
and the corresponding quotient complex denoted by C+(H ⊕ K ) has a decomposition
as (C0(H) ⊗ C+(K )) ⊕ (C+(H) ⊗ C+(K )) ⊕ (C+(H) ⊗ C0(K )). The cohomol-
ogy of C(H ⊕ K ), C+(H ⊕ K ) do not depend on the choice of H , K , J1, J2
as before ([23,Proposition 2.8]), and will be denoted by SH∗,≤a,≤b(V × W ) and
SH∗,≤a,≤b

+ (V × W ) respectively. The product version of the continuation map
ιa1,a2 : SH∗,≤a1(V ) → SH∗,≤a2(V ) induces a continuation map ιa1,a2;b1,b2 :
SH∗,≤a1,≤b1(V × W ) → SH∗,≤a2,≤b2(V × W ), whenever a1 ≤ a2 /∈ ∂(V ) and
b1 ≤ b2 /∈ S(∂W ). The main theorem of [16] is that

3 The periodic orbits of X H+K are isolated, in S1 family or S1 × S1 family. Since the degenerate orbits
are Morse-Bott non-degenerate, the cascades construction in [5] can be adapted to such case.
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lim−→
a,b

SH∗,≤a,≤b(V , W ) 
 SH∗(V × W ). (2.2)

Similarly, we have the product version of the pair of pants product using the splitting
data. In the filtered case, the product is from SH∗,≤a1,≤b1(V ×W )⊗SH∗,≤a2,≤b2(V ×
W ) to SH∗,≤a1+a2,b1+b2(V × W ) and is compatible with the product continuation
maps. Using the identification in (2.2), the limit of the product is the usual product
structure on SH∗(V × W ). Then the same argument as in [23,Proposition 2.10] yields
the following, as 1 + A is a unit in H∗(V × W ).

Proposition 2.5 If 1 + A ∈ H∗(V × W ) is mapped to zero in ι0,a,0,b : H∗(V ×
W ) → SH∗,≤a,≤b(V × W ) for A ∈ ⊕i>0H2i (V × W ), then SH∗(V × W ) = 0 and
SH∗,≤a,≤b

+ (V × W ) → H∗+1(V × W ) is surjective.

Finally, when defining SH∗,≤a,≤b(V ×W ), we only require the almost complex struc-
ture splits into J1⊕J2 outside a compact set to guarantee amaximal principle.Although
the cochain complex will no longer be a tensor product, but is quasi-isomorphic to
the tensor product by a standard continuation map. Moreover, it makes sense to define
SH∗,≤a,≤b(X), SH∗,≤a,≤b

+ (X) for any other (symplectically aspherical) filling X of
∂(V × W ) as long as we use Hamiltonians that are in the form of H ⊕ K outside
∂(V × W ) and is C2 small non-positive inside X of type (II) or vanishes on X (i.e.
of type (I), which requires another Morse function on X for the construction of the
cochain complex), and the analogue of Proposition 2.5 holds for X .

2.4 The standard filling V× D

Here we consider the situation for the standard filling V × D. Let δ � 1 be a fixed
positive number, then there exists an admissible Hamiltonian K1+δ on C = ̂D of type
(II) with slope 1+δ, such that there is only one critical point e at 0 and there is only one
S1 family of non-constant periodic orbits γ 0 corresponding to the shortest Reeb orbit
on ∂D. The symplectic actionAK1+δ (γ 0) is smaller than −1 but can be arranged to be
arbitrarily close to −1. Then the Hamiltonian-Floer cochain complex is generated by
e, γ̌0, γ̂0 with grading |e| = 0, |γ̌0| = −1, |γ̂0| = −2. The only nontrivial differential
is that dγ̌0 = e.

Proposition 2.6 For any sufficiently small ε > 0, we have SH∗,≤1+δ,≤ε
+ (V × D) 


H∗(V )[1] ⊕ H∗(V )[2], and SH∗,≤1+δ,≤ε
+ (V × D) → H∗+1(V × D) is given by the

projection to the first component.

Proof For a sufficient small ε, ε( f −1) can be completed to an admissibleHamiltonian
of type (II) on V with slope ε, where f is the Morse function on V used in §2.1. The
Hamiltonian-Floer cochain complex of ε( f −1) is just theMorse complex of f . Since
there is noReeb orbit on ∂V of period smaller than ε, theMorse cohomology computes
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SH∗,≤ε(V ). Then we can use K1+δ ⊕ ε( f − 1) to compute SH∗,≤1+δ,≤ε(V × D).
The differentials on the tensor product are given by

〈 dp ⊗ γ̌0, q ⊗ γ̌0 〉 = 〈 d0 p, q 〉, 〈 dp ⊗ γ̌0, q ⊗ γ̂0 〉 = 0, 〈 dp ⊗ γ̌0, q ⊗ e 〉 = δp,q ,

〈 dp ⊗ γ̂0, q ⊗ γ̌0 〉 = 0, 〈 dp ⊗ γ̂0, q ⊗ γ̂0 〉 = 〈 d0 p, q 〉, 〈 dp ⊗ γ̂0, q ⊗ e 〉 = 0,
〈 dp ⊗ e, q ⊗ γ̌0 〉 = 0, 〈 dp ⊗ e, q ⊗ γ̂0 〉 = 0, 〈 dp ⊗ e, q ⊗ e 〉 = 〈 d0 p, q 〉

where d0 is the Morse differential of f on V . This verifies the proposition. Moreover,
the H(V )[1] component is generated by check orbits and the H(V )[2] component is
generated by hat orbits. ��
Moreover, the filtered positive symplectic cohomology SH∗,≤1+δ,≤ε

+ (W ) does not
depend on the filling W of Y . As the related cochain complex degenerate to two
copies of Morse cochain complexes of V for any filling when we push ε → 0 to a
“Morse-Bott” case4 where all Reeb orbits have the same period. We will not prove
this degeneration, but use a neck-stretching argument to prove this fact.

2.5 Neck-stretching

Wefirst recall some basics of the neck-stretching procedure in [3].We also recommend
[7,§2.3, 9.5] for applications of neck-stretching in Floer theories.

We recall the setup of neck-stretching for general case following [24,§3.2]. Let
(W , λ) be an exact domain and (Y , α := λ|Y ) be a contact type hypersurface inside
W .5 The hypersurface dividesW into a cobordism X unionwith a domainW ′. Thenwe
can find a small slice (Y ×[1−η, 1+η]r , d(rα)) symplectomorphic to a neighborhood
of Y in W . Assume J |Y×[1−η,1+η]r = J0, where J0 is independent of S1 and r and
J0(r∂r ) = Rα, J0ξ = ξ for ξ := ker α. Then we pick a family of diffeomorphism

φR : [(1 − η)e1− 1
R , (1 + η)e

1
R −1] → [1 − η, 1 + η] for R ∈ (0, 1] such that φ1 = id

and φR near the boundary is linear with slope 1. Then the stretched almost complex
structure N SR(J ) is defined to be J outside Y ×[1−η, 1+η] and is (φR × id)∗ J0 on
Y1 × [1− η, 1+ η]. Then N S1(J ) = J and N S0(J ) gives almost complex structures
on the completions ̂X , ̂W ′ and Y × R+, which we will refer as the fully stretched
almost complex structure.

We will consider the degeneration of curves solving the Floer equation with one
positive cylindrical end asymptotic to a non-constant Hamiltonian orbit of X H . Here
we require that H = 0 near the contact hypersurface Y . Since either the orbit is simple
or J depends on the S1 coordinate near non-simple orbits, the topmost curve in the
SFT building, i.e. the curve in ̂X , has the somewhere injectivity property. In particular,
we can find regular J on ̂X such that all relevant moduli spaces, i.e. those with point
constraint from ̂X (used in §3), or with negative cylindrical ends asymptotic to non-
constant Hamiltonian orbits of X H , possibly with negative punctures asymptotic to
Reeborbits ofY andmultiple cascades levels, are cut out transversely.We say an almost

4 The Reeb dynamics on Y0 are only Morse-Bott non-degenerate along (V \∂V × [ 12 , 1]) × S1, but not

Morse-Bott non-degenerate along ∂V × { 12 } × S1.
5 The process works for strong filling W as long as Y is contact hypersurface.

123



Z. Zhou

u1

u2

u1

u2

u∞
1

u∞
2

X

Y × R+

W

Fig. 4 Neck-stretching

complex structure on W is generic iff the fully stretched almost complex structure
N S0(J ) is regular on ̂X . The set of generic almost complex structures form an open
dense subset6 in the set of compatible almost complex structures that are cylindrical
convex and S1, r independent on Y × [1 − η, 1 + η]r .

For the compactification of curves in the topmost SFT level, in addition to the
usual SFT building in the symplectization Y × R+ stacked from below [3], we also
need to include Hamiltonian-Floer breakings near the cylindrical ends. In our context,
since we use autonomous Hamiltonians and cascades, we need to include curves with
multiple cascades levels and their degeneration, e.g. li = 0,∞ in the cascades for
some horizontal level i . A generic configuration is described in the top-right of the
figure above (Fig. 4.), but we could also havemore cascades levels with the connecting
Morse trajectories degenerate to 0 length or broken Morse trajectories.

In the figure, we use © to indicate the puncture that is asymptotic to a Reeb orbit.
The neck-stretching procedure allows us to understand the effect of fillings on Floer
cohomology.

A useful fact from the non-negativity of energy is the following action constraint.
Let u be a Floer cylinder in ̂X with negative punctures asymptotic to a multiset � of
Reeb orbits (i.e. a set of Reeb orbits with possible duplications). Assume lim

s→∞ u = x

and lim
s→−∞ u = y, then we have

AH (y) − AH (x) −
∑

γ∈�

∫

γ ∗λ ≥ 0 (2.3)

6 This is because there are only finitely many moduli spaces that can have positive energy.
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In § 3, we need to consider Floer cylinders in ̂X such that lim
s→−∞ u converges to a point

(where H = 0), then we have

− AH (x) −
∑

γ∈�

∫

γ ∗λ ≥ 0 (2.4)

Proposition 2.7 Let W be a symplectically aspherical filling of ∂(V × D), then
SH∗,≤1+δ,≤ε

+ (W ) 
 H∗(V )[1] ⊕ H∗(V )[2] for any sufficiently small ε.

Proof The action difference between any two generators in SH≤1+δ,≤ε
+ (W ) is very

small for sufficient small ε when we use Hamiltonian K1+δ ⊕ ε( f − 1) outside
∂W = ∂(V × D). W.O.L.G., i.e. up to rescaling, we can assume Y0 is contained in
the exact neighborhood (i.e. where the Liouville vector field exists) of ∂W . We can
apply neck-stretching along Y0. Since all Reeb orbits have period at least 1, there is
no breaking for a fully stretched almost complex structure by the action constraint
(2.3). Therefore all relevant moduli spaces are contained outside Y0 for a sufficiently
stretched almost complex structure, i.e. SH∗,≤1+δ,≤ε

+ (W ) is independent of the filling.
��

In Proposition 2.6, the splitting SH∗,≤1+δ,≤ε
+ (V × D) = H∗(V )[1] ⊕ H∗(V )[2] is

given by check and hat orbits. Next, we explain that we have the same splitting for any
filling. Since in our situation, only simple Reeb orbits are considered. Therefore we
can require our almost complex structure to be time-independent and still have all the
transversality properties [5,Proposition 3.5]. Then themoduli spaces of Floer cylinders
considered in the positive cochain complex will have a free S1 action. Therefore, there
is no rigid cascade from a hat orbit to a check orbit because of the free S1 action
on Floer cylinders, as rotating any Floer cylinder a bit is still a cascade from the hat
orbit to the check orbit. Let Č+ and Ĉ+ denote the complexes generated by check
orbits and hat orbits respectively, then there is a short exact sequence of complexes
0 → Ĉ+ → C+ → Č+ → 0. The S1 equivariant transversality argument holds for
continuation maps when using an S1-independent almost complex structure. Hence
the continuation map induces an morphism between the short exact sequences. We

define ˇSH
∗,≤1+δ,≤ε := H∗(Č+) and ˆSH

∗,≤1+δ,≤ε := H∗(Ĉ+). Therefore we have
the following.

Proposition 2.8 Let W be a symplectically aspherical filling of ∂(V × D). For any

sufficiently small ε, we have a short exact sequence 0 → ˆSH
∗,≤1+δ,≤ε

+ (W ) →
SH∗,≤1+δ,≤ε

+ (W ) → ˇSH
∗,≤1+δ,≤ε

+ (W ) → 0, which is isomorphic to 0 →
H∗(V )[2] → H∗(V )[1] ⊕ H∗(V )[2] → H∗(V )[1] → 0. Moreover, the con-
necting map SH∗,≤1+δ,≤ε

+ (W ) → H∗+1(W ) factors through SH∗,≤1+δ,≤ε
+ (W ) →

ˇSH
∗,≤1+δ,≤ε

+ (W ).

Proof For a sufficiently stretched S1-independent almost complex structure, the short
exact sequence 0 → Ĉ+ → C+ → Č+ → 0 is the same for V × D and W by
the action argument in Proposition 2.7. For V × D, it is important to note that a
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stretched almost complex structure does not split. However, the continuation map
from a splitting almost complex structure to a sufficiently stretched almost complex
structure induces amorphism between the short exact sequences using S1-independent
almost complex structures. It is clear by action reasons, the induced continuation maps
are isomorphisms (upper triangular w.r.t. to the filtration from the values of f , i.e. the
filtration from the symplectic action/contact action, and are identity on the diagonal)
on Č+ and Ĉ+. As a consequence, the induced long exact sequence is isomorphic to
the one from the splitted J in Proposition 2.6, whose long exact sequence splits, i.e.
gives rise to the short exact sequence in the claim. The last claim follows from the
S1-equivariant transversality, as there is no differential (no rigid cascades) from hat
orbits to constant orbits by the free S1 action. ��

2.6 A continuationmap

In § 3, we need to stretch along the contact hypersurface Yε to prove certain indepen-
dence of fillings. Since we do not have c1(Y ) = 0, the Fredholm index of a curve also
depends on the relative homology class. We need to show that the relative homology
class is always trivial and for this we will use the contact energy (see Proposition 3.1),
hence we had better use the symplectic cohomology with admissible Hamiltonians
in § 2.2. Therefore we need a continuation map relating SH∗,≤a,≤b

+ (V × W ) and
SH∗≤c

+ (V × W ). This was constructed in [16] for the proof of the Künneth formula,
we recall an adapted version for the case in this paper. Let H1+ε+2δ be an admissible
Hamiltonian on ̂V ×C of type (I) of the contact hypersurface Yε with slope 1+ε +2δ.

Proposition 2.9 For any sufficiently small ε, we can arrange that K1+δ ⊕ ε( f − 1) is
pointwise no greater than H1+ε+2δ on ̂V × C. Moreover, when ε is sufficiently small,
for any critical points p, q of f , such that f (p) > f (q), we have

AH1+ε+2δ (γ p) > AK1+δ⊕ε( f −1)(p ⊗ γ 0) > AH1+ε+2δ (γ q) > AK1+δ⊕ε( f −1)(q ⊗ γ 0)

Proof We first prove the claim for the extreme case, then we will argue that we can
perturb the extreme case to get admissible choices of K1+δ and H1+ε+2δ . The extreme
case is that K1+δ = 0 on D and is linear of slope 1 w.r.t. ρ2 outside D, then picks up
the slope 1+ δ outside a very large compact set. The Hamiltonian orbit is considered
as placed at ∂D. H1+ε+2δ is 0 inside Yε and has slope 1 + ε + 2δ outside Yε , the
Hamiltonian orbit γ p is considered as on Yε . Then we have

AH1+ε+2δ (γ p) = − 1 + ε

1 + ε f (p)
, AK1+δ⊕ε( f −1)(p ⊗ γ 0) = −1 + ε( f (p) − 1).

Note that

− 1 + ε

1 + ε f (p)
− (−1 + ε( f (p) − 1)) = ε(1 − f (p))(1 − 1

1 + ε f (p)
)
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which is non-negative as 0 ≤ f (p) < 1 and is zero if and only if when p is the
minimum of f . Hence we have

AH1+ε+2δ (γ p) ≥ AK1+δ⊕ε( f −1)(p ⊗ γ 0)

for all critical points p and the only case when the equality holds is when p is the
minimumpoint.Moreover, recall from§2.1, if ind(q) = 2n−k > 0, then f (q) = 1

k+1 .

Now let p be another critical point of f with f (p) = 1
k , i.e. ind(p) = 2n + 1 − k.

Then we have

AK1+δ⊕ε( f −1)(p ⊗ γ 0) − AH1+ε+2δ (γ q ) = −1 + ε(
1

k
− 1) + 1 + ε

1 + ε 1
k+1

= ε
1 − 1

k+1

1 + ε 1
k+1

+ ε(
1

k
− 1)

= ε

1 + ε 1
k+1

(

1 − 1

k + 1
+ (

1

k
− 1)(1 + ε

1

k + 1
)

)

= ε

1 + ε 1
k+1

1 − (k − 1)ε

k(k + 1)

Therefore when ε < 1
k−1 , we have

AH1+ε+2δ (γ q) < AK1+δ⊕ε( f −1)(p ⊗ γ 0).

When q is the minimum point, hence AH1+ε+2δ (γ q) = −1 − ε = AK1+δ⊕ε( f −1)(q ⊗
γ 0), which is smaller thanAK1+δ⊕ε( f −1)(p ⊗ γ 0) for any p that is not the minimum.
Therefore we have proven for the extreme case and ε sufficiently small (< 1

2n ) that

AH1+ε+2δ (γ p) > AK1+δ⊕ε( f −1)(p ⊗ γ 0) > AH1+ε+2δ (γ q ) ≥ AK1+δ⊕ε( f −1)(q ⊗ γ 0) (2.5)

for any critical points p, q with f (p) > f (q), with equality holds only for q is the
minimum point.

We claim if ε is small enough, then K1+δ ⊕ ε( f − 1) ≤ H1+ε+2δ pointwise.
We first claim that inside Yε , we have K1+δ ⊕ ε( f − 1) ≤ H1+ε+2δ . Since on the

sub-domain of V × D that is bounded by Yε , we have that H1+ε+2δ = 0, K1+δ = 0
and ε( f − 1) ≤ 0, hence the claim holds on that sub-domain. Then on the domain
outside V ×D and inside Yε , we have that H1+ε+2δ = 0, K1+δ ≤ 1+ε

1+ε f −1 = ε(1− f )
1+ε f .

Since ε(1− f )
1+ε f + ε( f − 1) = −ε2 f 1− f

1+ε f ≤ 0, the claim holds on that sub-domian.
Then we will show that for any point on Yε , the inequality holds along the (positive)

flow of the Liouville vector field Xλ + 1
2ρ∂ρ . Since the angular coordinate on C does

not matter, we choose (x, ρ2) for x ∈ V , ρ ∈ R
+ to represent the point. Then after

time t flow of Xλ + 1
2ρ∂ρ , the point is (φt (x), ρ2et ), where φt is the flow of Xλ. We

separate Yε into the graph of ρ2 = 1+ε
1+ε f and the graph of r = gε(ρ

2) as in § 2.1.
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On the first graph, we have ρ2 = 1+ε
1+ε f (x)

, then we have

H1+ε+2δ(φt (x),
1 + ε

1 + ε f (x)
et ) = (1 + ε + 2δ)(et − 1),

and

(K1+δ ⊕ ε( f − 1))

(

φt (x),
1 + ε

1 + ε f (x)
et

)

= 1 + ε

1 + ε f (x)
et − 1 + ε( f ◦ φt (x) − 1),

while the point is still on the domain where the slope of K1+δ is 1. Therefore we
compute

d

dt

(

H1+ε+2δ(φt (x),
1 + ε

1 + ε f (x)
et ) − (K1+δ ⊕ ε( f − 1)) (φt (x),

1 + ε

1 + ε f (x)
et )

)

≥ 2δet − εXλ( f ◦ φt (x)) (2.6)

If φt (x) /∈ V , assume φt0(x) ∈ ∂V . Since (x, ρ2), by assumption, is on the graph of
ρ2 = 1+ε

1+ε f , we have x is contained in V . As a consequence, we have t0 > 0. Since

∂r f = 1 outside V , where r = et−t0 , then Xλ( f ◦ φt (x)) = et−t0 ≤ et . Then for ε

small enough (< 2δ), we have (2.6) is positive. When K1+δ starts to pick up the slope
of 1 + δ for t very big. The (2.6) decrease at most δ(1+ε)

1+ε f (x)
et , which will not change

the sign for ε � 1.
On the graph of r = gε(ρ

2), we use the (r , ρ2) = (gε(ρ
2), ρ2) coordinate. After

time t , the new coordinate is (gε(ρ
2)et , ρ2et ). Then we can compute

d

dt

(

H1+ε+2δ(gε(ρ
2)et , ρ2et ) − (K1+δ ⊕ ε( f − 1)) (gε(ρ

2)et , ρ2et )
)

≥ (1 + ε + 2δ − ρ2)et − ε
d

dt

(

f (gε(ρ
2)et )

)

, (2.7)

while the point is on the domain where the slope of K1+δ is still 1. Since ρ2 ≤
1+ε

1+ε f ( 12 )
< 1 + ε, 1

2 ≤ gε(ρ
2) ≤ 3

4 and ∂r f ≤ 1, we have (2.7) ≥ 2δet − εet .

Therefore for ε small enough, (2.7) is positive. When K1+δ starts to pick up the slope
1 + δ, (2.7) decreases at most ρ2δet ≤ (1 + ε)δet , which will not change the sign.

To sum up, in the extreme case, we have that K1+δ ⊕ ε( f − 1) is not greater than
H1+ε+2δ , with the equality holds only on the sub-domain of V × D bounded by Yε .
Then we modify K1+δ to a smooth function, such that it picks up the first Reeb orbit
shortly after ρ2 = 1, then maintains a slope slightly bigger than 1 for a very long
time, then gradually picks up the slope till it is 1 + δ. Then the modified K1+δ is
strictly smaller than the extreme K1+δ outside D. Such modification will decrease the
symplectic action by an arbitrarily small amount, then (2.5) becomes strict. Then we
can perturb H1+ε+2δ to a smooth one, which is pointwise no less than K1+δ ⊕ε( f −1).
The strict order in (2.5) can be preserved under such a small change. ��
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Following [16], we can build a continuation map from C∗(K1+δ ⊕ ε( f − 1)) →
C∗(H1+ε+2δ) using a decreasing homotopy of Hamiltonians, which also induces a
continuation map for the positive cochain complexes.

Remark 2.10 Strictly speaking, one needs to modify K1+δ ⊕ ε( f − 1) outside a large
compact set before interpolating the geometric data to guarantee that amaximal princi-
ple holds. This procedurewill createmany periodic orbitswith arbitrarily large positive
symplectic action, hence C∗(K1+δ ⊕ ε( f − 1)) is a quotient complex and the contin-
uation map does not see those extra generators, since the continuation map increases
symplectic actions and the symplectic action of orbits of H1+ε+2δ are bounded above.
See [16] for details of the construction of this continuation map, but note that our
convention of symplectic action is different from [16] by a sign.

For C+(K1+δ ⊕ ε( f − 1)) and C+(H1+ε+2δ), we have a filtration induced by the
symplectic action. Since our choice of f is self-indexing, the filtration Fk ⊃ Fk+1 is
the following,

Fk := 〈 p ⊗ γ̌0, p ⊗ γ̂0| ind(p) ≥ k 〉, or 〈 γ̌p, γ̂p| ind(p) ≥ k 〉

for C+(K1+δ ⊕ ε( f − 1)) and C+(H1+ε+2δ) respectively. We also have filtrations
F̌k, F̂k on Č+ and Ĉ+ compatible with the short exact sequence. The significance of
Proposition 2.9 is that the continuation map will preserve the filtration. The purpose
of such filtration is to substitute the Z grading on symplectic cohomology, which may
not exist if the first Chern class of the filling does not vanish. The following result
follows from Proposition 2.9 and neck-stretching as in Proposition 2.7.

Proposition 2.11 For any sufficient small ε, the continuation map H∗(C+(K1+δ ⊕
ε( f − 1))) → H∗(C+(H1+ε+2δ)) is independent of the filling W of Y . Moreover, the
continuation map preserves the filtration and the short exact sequences of check and
hat orbits.

However, there is an unsatisfying fact about Proposition 2.9, i.e. when ε → 0,
H1+ε+2δ is forced to be only C0 convergent to the “ideal" Hamiltonian, which is zero
on Y0 and is linear with slope 1 + ε + 2δ outside Y0. This poses analytical problems
later (§ 3.1) in the compactness argument for ε → 0. The following proposition
remedies the issue. Recall that in SFT, we have the notion of contact energy

∫

u∗α for
curves in the symplectization (Y ×R+, d(rα)) and the energy is non-negative and it is
zero if and only if u a trivial solution over some Reeb trajectory [3]. In the context of
Hamiltonian-Floer theory, if we useHamiltonians of type (I) or (II), then X H is parallel
to the Reeb vector field outside Y . Assume we pick the almost complex structure to
be cylindrical convex outside Y , i.e.̂λ ◦ J = dr and compatible with d̂λ. In this case,
we can still control the contact energy for the portion outside Y ,

∫

u−1( ̂W\W )
u∗(λ|Y ),

which is again non-negative.When the contact energy is zero, u|u−1( ̂W\W ) is contained
in γ × [1,∞), where γ is a Reeb trajectory on Y .

Proposition 2.12 Let H1
1+ε+2δ, H2

1+ε+2δ be two admissible Hamiltonian of type (I)
with slope 1+ ε +2δ and H1

1+ε+2δ ≤ H2
1+ε+2δ , then there is a continuation map from

C∗+(H1
1+ε+2δ) to C∗+(H2

1+ε+2δ), which is an isomorphism and preserves the filtration
and does not depend on the filling.
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Proof Let Hs be the obvious decreasing homotopy from H2
1+ε+2δ to H1

1+ε+2δ such
that for each s, Hs only depends on r and X Hs is parallel to the Reeb vector field. Then
we can pick a regular almost complex structure such that it is cylindrical outside Yε ,
such that all relevant moduli spaces stay outside Yε . This is again by neck-stretching as
in Proposition 2.7 and the regularity is possible since we only consider simple orbits.
Then in such a special case, X Hs is parallel to the Reeb vector field everywhere, the
contact energy

∫

R×S1 u∗(π∗(λ|Yε )) is non-negative for any Floer solution u, where
π is the projection from the positive symplectization Yε × [1,∞) (this is exactly
symplectomorphic to the sub-domain of ̂W outside Yε) to Yε . As a consequence, the
continuation preserves the contact action filtration, which is just the filtration from
the period of Reeb orbits, or equivalently the Morse index filtration Fk . The contact
energy is zero iff it is a reparameterization of a trivial cylinder, which is transverse.
Therefore the continuation map is identity on the diagonal. This finishes proof. ��
In other words, although H1+ε+2δ from Proposition 2.9 does not converge as smooth
functions for ε → 0, the associated cochain complexes do “converge". More pre-
cisely, as a consequence of Proposition 2.12, we can find a smooth family of functions
˜H1+ε+2δ for ε ≥ 0, such that each ˜H1+ε+2δ is admissible of type (I) of slope 1+ε+2δ
and is pointwise no larger than the H1+ε+2δ constructed in Proposition 2.9.7 Then for
ε > 0 small, the following map preserves the filtration, is compatible with the short
exact sequence and is independent of the filling,

C∗+(K1+δ ⊕ ε( f − 1)) → C∗+(H1+ε+2δ) → C∗+( ˜H1+ε+2δ), (2.8)

where the second map is the inverse of the continuation map in Proposition 2.12.

3 Homology cobordism

In this sectionweprove that the composition SH∗,≤1+δ,≤ε
+ (W ) → SH∗,≤1+ε+2δ

+ (W ) →
H∗+1(W ) �→ H∗+1(Y ) is independent of symplectically aspherical/Calabi–Yau fill-
ings, which, combined with the case for the standard filling V ×D, will yield the proof
of Theorem 1.1. Here the first is map is the continuation map (2.8). We separate the
proof into the symplectically aspherical case and the Calabi–Yau case. The symplec-
tically aspherical case is more involved due to the missing of a global Z grading. But
the action filtration Fk will serve as a substitute of the grading.

3.1 The symplectically aspherical case

Let Ŵ\Yε denote the completion in the negative direction of the domain in ̂W outside
Yε , i.e. ̂X in § 2.5. Then ˜H1+ε+2δ is well-defined on Ŵ\Yε . We consider the moduli
space Mγ p,γq (

˜H1+ε+2δ), which is the compactification of the following

{

u : C\{∗} → Ŵ\Yε |∂su + J (∂t u − X
˜H1+ε+2δ

) = 0, lim
s→∞ u(t) = γ p(t + θ), lim→∗ u = (γq ,−∞)

}

/R

7 As the “ideal" limit lim
ε→0

H1+ε+2δ is greater than or equal to any admissible Hamiltonian of type (I) with

slope 1 + ε + 2δ.
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Fig. 5 δ∂ from 2 level cascades

∇h

u1

u2

where γq is a Reeb orbit on Yε which is the asymptotic of the free negative puncture ∗
and R is the translation (which moves the puncture) action on C. Note that γ p, γq are
both contractible in Yε with a standard bounding disk in the standard filling V × D,
which can be pushed into the boundary. For u ∈ Mγ p,γq (

˜H1+ε+2δ), we use [u] to
denote the class in H2(Y ) given by capping off u with the two standard disks. u is
called homologically trivial iff [u] = 0. The following is based on the compactness
results in [4, 5].

Proposition 3.1 For ε sufficiently small, all curves in Mγ p,γq (
˜H1+ε+2δ) for any p, q

must be homologically trivial.

Proof Assume otherwise, we have uε ∈ Mγ p,γq (
˜H1+ε+2δ) which are not homolog-

ically trivial for ε → 0. Then uε converges to a cascade as a hybrid of [4] (for the
symplectization end) and [5] (for the Hamiltonian end). The only place which can con-
tribute nontrivial homology is the middle Floer cylinder. But in the case when ε = 0,
the contact energy

∫

u∗ ◦ π∗(λ|Y0) must be zero, where π is the projection from the

positive symplectization Ŵ\Y0Y0 × [1,∞) to Y0. Hence the middle Floer cylinder is
a reparametrization of a trivial cylinder, which is homologically trivial, contradiction.

��
Although c1(Y ) is not zero as long as c1(V ) �= 0, as we will see below, Proposi-

tion 3.1 implies that the relevant moduli spaces of holomorphic curves do not pick up
nontrivial first Chern classes from V , which allows us to compute the dimension after
neck-stretching. We are interested in the cochain map δ∂ : C∗+( ˜H1+ε+2δ) → C0(Y ),

which computes the map SH∗,≤1+ε+2δ
+ (W ) → H∗+1(W ) → H∗+1(Y ). For this, we

pick aMorse function h on Yε with a generic metric. Then following [24,§3], we know
that cochain map is define by counting the configuration in Fig. 5.

By the same S1 equivariant transversality argument as before, any solution from a
hat orbit is never rigid. For p ∈ Crit( f ), q ∈ Crit(h), we use M∂

γ̌p,q to denote the
compactified moduli space.

Proposition 3.2 Assume ε is sufficiently small. Let W be a symplectic aspherical filling
of Yε , then the cochain morphism δ∂ : C∗+( ˜H1+ε+2δ) → C0(h) has the following
property for some choice of J .

(1) δ∂(γ̂p) = 0.
(2) δ∂(γ̌p) = a + b with ind(a) = ind(p) and ind(b) > ind(a) = ind(p)8, moreover

a does not depend on the filling,

8 Here b may not have pure degree, then that ind(b) > ind(a) means that any component of b has larger
Morse index compared to a.
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Proof The first property follows from S1-equivariant transversality. In order to prove
the second claim, we need to prove the following two properties.

(1) 〈 δ∂ γ̌p, q 〉 = 0 if ind(p) > ind(q).
(2) 〈 δ∂ γ̌p, q 〉 is independent of the filling if ind(p) = ind(q).

Note that the first property holds for the standard filling V × D. For both claims,
it is equivalent to prove that 〈 δ∂ γ̌p, q 〉 is independent of the filling if ind(p) ≥
ind(q). Note that 〈 δ∂ γ̌p, q 〉 = #M∂

γ̌p,q , we claim M∂
γ̌p,q is contained outside Yε for

sufficiently stretched almost complex structure as long as ind(p) ≥ ind(q). Assume
otherwise, in the fully stretched situation, the top curve will have multiple negative
punctures asymptotic to Reeb orbits on Yε . Then by the action constraint (2.4), there
is exactly one negative puncture with the asymptotic Reeb orbit γw for a critical point
w of f . The Conley-Zehnder index of γw using the obvious disk is n − ind(w) + 2
following [24,Theorem 6.3]. Therefore the Floer part is a curve inMγ p,γw ( ˜H1+ε+2δ)

in Proposition 3.1, which has trivial homology class. Then by Proposition 3.1, the
virtual dimension of such configuration is

ind(q) − ind(p) − (2n − ind(w)) < 0, when ind(p) ≥ ind(q).

As a consequence, there is no such curve. We reach at a contradiction. ��
Remark 3.3 In the case when V is Weinstein and c1(V ) = 0, the SFT degree (μC Z +
n − 3) of γp is bounded below by n. However, for general V with H2n−1(V ) �= 0
and c1(V ) = 0, the SFT degree of γp is bounded below by 1. From the proof of
Proposition 3.2,we see that H2n(V ) �= 0 is exactly the borderline case for the argument
fails. The proof of Proposition 3.2 shows that even though there might be interesting
augmentations, the augmentation does not affect the part we are interested in. The
situation changes dramatically when V becomes closed, i.e. if we consider negative
line bundles over a symplectically aspherical manifold V . Then by [17], the symplectic
cohomology is zero. But now the augmentation to the Reeb orbit corresponding to
H2n(V ) plays an essential role. And the elimination pattern is completely different,
in particular, 1 is only killed after we include the nth-multiple covers of the simple
Reeb orbits, see [19].

Proof of Theorem 1.1 for the symplectically apherical case.
We first assume W is exact for simplicity. Combining Proposition 2.11, 2.12

and 3.2 together, we know that � : C∗+(K1+δ ⊕ ε( f − 1)) → C∗+(H1+ε+2δ) →
C∗+( ˜H1+ε+2δ) → C∗+1(Y ) preserves the index filtration, and the map on the asso-
ciated graded group is independent of fillings. Then on the associated graded group
of cohomology, the induced map ⊕�k is also independent of fillings. Since for the
standard filling V × D, ⊕�k is injective on the check component (the quotient of hat
component). This implies that � must be injective for any filling on the check com-
ponent. On the other hand, note that 1 ∈ im�0 for V × D, therefore 1 + A ∈ im�

for some A ∈ ⊕i>0H2i (Y ) by the Z/2 grading. By Proposition 2.5, we have that δ :
SH∗,≤1+δ,≤ε

+ (W ) → H∗+1(W ) is surjective and SH∗(W ) = 0. Moreover, by Propo-
sition 2.8, δ factors through the projection to the check component. Then the injectivity
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of�on the check component implies that δ is an isomorphismon the check component.
Hence H∗(W ) → H∗(Y ) is also injective. Therefore, to finish the proof, it is sufficient
to show that the image of H∗(W ) → H∗(Y ) is also independent of filling. The injec-
tivity of⊕�k implies that im⊕�k = ⊕ ((im� ∩ Fk H∗(Y ))/(im� ∩ Fk+1H∗(Y ))).
On the other hand, the filtration on H∗(Y ) is the natural filtration by grading and im�

is the image of H∗(W ) → H∗(Y ), where the associated graded groups are naturally
isomorphic to the original groups. Hence im⊕�k is naturally isomorphic to im�.
The invariance of the former implies that im� is independent of the filling, the claim
follows. The claim on homology cobordism is from Proposition 3.7 below.

When W is only symplectically spherical, the symplectic action is well-defined for
contractible orbits but not necessarily in the form on (2.1). But since all the relevant
orbits γ p are contractible inside the cylindrical end of the boundary, the symplectic
actions of those orbits are indeed given by (2.1). Therefore the same argument above
goes through for symplectically spherical fillings. Note that V ×D is built fromhandles
with indices at most 2n −1. As a consequence, we have that H1(V ×D) → H1(Y ) is
an isomorphism. Combining with the fact that H2(V × D) → H2(Y ) is injective, we
know that the symplectic formω on a symplectically aspherical filling W is necessarily
exact and has a primitivewhose restriction on the boundary is the original contact form.
This proves that W is an exact filling. ��

3.2 The Calabi–Yau case

First of all, the symplectic cohomology and positive symplectic cohomology are
defined for Calabi–Yau fillings using the Novikov coefficient � over Q, see [24,§8].
In particular, the reason that positive symplectic cohomology is defined is no longer
for action restrictions but because of the asymptotic behavior lemma [7,Lemma 2.3].
Similar to Proposition 2.5, we have the following analogue for Calabi–Yau fillings
(i.e. a strong filling W such that c1(W ) is torsion) due to the fact that 1 is a unit in
Q H∗(W ;�), which is H∗(W ;�) as a group.

Proposition 3.4 Let W be a Calabi–Yau filling and if 1 is in the image of
SH∗,≤a,≤b

+ (W ;�) → Q H∗+1(W ) is zero. Then SH∗(W ;�) = 0 and SH∗,≤a,≤b
+

(W ;�) → Q H∗+1(W ;�) is surjective.

Proposition 3.5 Let W be a Calabi–Yau filling of Y , then W is symplectically aspher-
ical.

Proof In the Calabi–Yau case, we have aZ grading on symplectic cohomology. In par-
ticular, we do not need Proposition 3.1 to control the homology class and all generators
ofC∗(K1+δ ⊕ε( f −1)) have awell-defined grading, since all of them are contractible.
More explicitly, the grading is givenby |p⊗γ̌0| = ind(p)−1, |p⊗γ̂0| = ind(p)−2 and
theConley-Zehnder index of γp is given by n+2−ind(p), in particular, the SFTdegree
μC Z (γp) + (n + 1) − 3 is positive. There is also no need to use H1+ε+2δ or ˜H1+ε+2δ .
We can apply the same argument in Proposition 3.2 to K1+δ ⊕ ε( f − 1) directly,
which shows that δ∂ : H∗(C+(K1+δ ⊕ ε( f −1))) → H∗(Y ;�) is independent of the
Calabi–Yau filling. Then by Proposition 3.4, we have H∗(W ;�) → H∗(Y ;�) is iso-
morphic to H∗(V ×D;�) → H∗(Y ;�) similar to the symplectically aspherical case.
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In particular, we have that H∗(W ; Q) → H∗(Y ; Q) is injective. As a consequence, ω
is an exact form, i.e. W is symplectically aspherical. ��
Proof of Theorem 1.1 for the Calabi–Yau case. It follows from Proposition 3.5 and the
symplectically aspherical case of Theorem 1.1. ��
Remark 3.6 When c1(V ) = 0, it was shown in [24] that ∂(V × D) is asymptotically
dynamically convex. For Calabi–Yau fillings of ∂(V × D), the index neck-stretching
argument in [24] requires that ∂V has a Reeb dynamics with Conley-Zehnder indices
bounded from below. But the index neck-stretching argument is still applicable if we
attach additional flexible handles, while the action neck-stretching in this paper breaks
down.

3.3 Homology cobordism

A cobordism W from ∂0W to ∂1W is called a homology cobordism iff ∂0W → W
and ∂1W → W both induce isomorphism on homology.

Proposition 3.7 Under the assumption in Theorem 1.1, the filling W can be obtained
from V × D by attaching a homology cobordism from Y to Y .

Proof Let W0 be a copy of V ×D(ε) ⊂ V ×D placed near Y = ∂(V ×D) for ε small.
Then for any symplectically aspherical/Calabi–Yau filling W , we can assume W0 is
also contained in W . Let X denote the cobordism from ∂W0 to ∂W .We can assume W0
is inside the stripY ×(1−3ε, 1)near the boundary. In particular, H∗(Y ×(1−3ε, 1)) →
H∗(W0) is an isomorphism when restricted to the image of H∗(V × D) ↪→ H∗(Y ).
Since H∗(W ) → H∗(Y ) is independent of filling, we have that H∗(W ) → H∗(W0)

is an isomorphism. Therefore H∗(X , ∂W0) = 0 by excision. By Lefschetz duality and
the universal coefficient theorem, we have that H∗(X , ∂W0) and H∗(X , ∂W ) are both
zero. Hence X is a homology cobordism. ��

3.4 General strong fillings

The obstruction of applying Proposition 2.5 for general strong fillings is that we
may have a zero divisor 1 + A in Q H∗(W ;�) for A ∈ ⊕i>0H2i (W ;�), since
(1+ A)∪· : Q H∗(W ;�) → Q H∗(W ;�) is a linear map between finite dimensional
�-spaces. For general strong fillings, symplectic cohomology and positive symplectic
cohomology can be defined as usual if one applies a suitable virtual technique to
overcome the transversality issue. For simplicity, we assume the strong filling is semi-
positive as in [13,Definition 6.4.1], so that the theory can be defined using generic
almost complex structures.

Proposition 3.8 Assume W 2n+2 is a strong (semi-positive) filling, such that there is
no embedded symplectic sphere S, with 2− n ≤ c1(S) ≤ 2n − 1, then there is no zero
divisor of Q H∗(W ;�) in the form of 1 + A for A ∈ ⊕i>0H2i (W ;�).

Proof If there is a such zero divisor, we claim there exists B ∈ ⊕i>0H2i (W ;�)

such that (1 + A) ∪ B = 0. First of all, there is a Z/2 grading, hence there exist
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B ∈ ⊕i>0H2i (W ;�) and b ∈ Q such that (1 + A) ∪ (b + B) = 0. Note that
〈C ∪ D, 1〉 = 0 for any C, D ∈ ⊕i>0H2i (W ;�), since the corresponding moduli
space counts curves with a point constraint. However, such a moduli space must
be empty as we can choose the point constraint near the boundary, and the maximal
principle will obstruct such curve. Since 0 = (1+ A)∪(b+ B) = b+bA+ B + A∪ B,
we must have b = 0, i.e. the claim holds. Then to have (1 + A) ∪ B = 0, the
quantum product ⊕i>0H2i (W ;�) ⊗ ⊕i>0H2i (W ;�) → ⊕i>0H2i (W ;�) must be
deformed, hence there must be some holomorphic sphere (possibly nodal) S, such that
6 ≤ 2c1(S) + 2n + 2 ≤ 6n, i.e. 2 − n ≤ c1(S) ≤ 2n − 1. When n ≥ 2, a (nodal)
holomorphic sphere can be perturbed into an embedded symplectic sphere with the
same first Chern class, hence a contradiction. When n = 1, it is always semi-positive,
and the curve contributing to the deformation of the product is necessarily somewhere
injective by [13,§6.6], hence the curve can be assumed to an embedded symplectic
sphere, which is a contradiction. ��
Proof of Corollary 1.3 The proof follows from the same argument for Theorem 1.1.
Although we do not have a well-defined symplectic action for strong fillings, but
the continuation maps used in the proof of Theorem 1.1 can be described by moduli
spaces contained outside the boundary by neck-stretching,where the symplectic action
is well-defined and can be used to restrict Floer trajectories. Then by Proposition 3.8,
we still have SH∗(W ) = 0 and H∗(W ;�) → H∗(Y ;�) is always injective. Hence
the symplectic form is exact. ��

4 h-cobordisms

In this section, we will upgrade the homology cobordism X in Proposition 3.7 to an
h-cobordism assuming π1(Y ) is abelian. Unlike the cohomology information, we can
not quite get the full information on the fundamental group or more generally higher
homotopy groups. But in the case of π1(Y ) abelian, we do have enough ingredients
to get some information on π1 and conclude an h-cobordism.

4.1 Symplectic cohomology of covering spaces

Recall from [24,§3.3], for every covering space ˜W → W , we can define the symplectic
cohomology of the covering space. A cochain is a sum of formal sums of different
lifts of periodic orbits on W . The differential is defined by lifting the differential on W
according to the (unique) parallel transportation. In particular, we have the following
commutative long exact sequences,

. . . �� H∗(W ) ��

��

SH∗(W ) ��

��

SH∗+(W ) ��

��

H∗+1(W ) ��

��

. . .

. . . �� H∗( ˜W ) �� SH∗( ˜W ) �� SH∗+( ˜W ) �� H∗+1( ˜W ) �� . . .

(4.1)
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Similarly for the filtered version. Note that we use only contractible orbits to define
SH∗(W ).Amap from the thrice punctured sphere (i.e. a pair of pants) canbe completed
(as a topological map) to a map from sphere, as all asymptotics are contractible orbits.
As a consequence, we can lift the map to the universal cover and gives SH∗( ˜W ) a
unital ring structure. Then the first square in (4.1) is a commutative square of unital
rings.

Remark 4.1 One can also define a symplectic cohomology with local coefficients,
i.e. the underlying cochain complex is the free Z[π1] module generated by periodic
orbits. The differential is again the lifting of the ordinary differential and it respects the
Z[π1]module structure. The corresponding cohomology is the same as the symplectic
cohomology of the universal cover if π1 is finite. If π1 is infinite, the symplectic
cohomology of the universal cover allows generators which can be viewed as an
infinite sum in the group ring. On the regular cohomology level, i.e. the Morse theory
level, the cohomologywith local coefficient H∗(W ; Z[π1]) is the compactly supported
cohomology of the universal cover H∗

c ( ˜W ) �= H∗( ˜W ), see [10,Proposition 3H.5]. It
still carries a product structure (the pair of pants construction holds), but it is not unital
(1 ∈ H∗( ˜W ) is represented by an infinite sum in the group ring).

Proposition 4.2 If π1(Y ) is abelian, then we have π1(V ) is abelian and π1(Y ) →
π1(V × D) is an isomorphism. Then for any exact/symplectically aspherical filling
W , we have π1(Y ) → π1(W ) is an isomorphism. Moreover, H∗( ˜W ) → H∗(˜Y ) is
injective and independent of fillings for the universal covers.

Proof Since V × D can be built from handles with indices at most 2n − 1 (i.e. co-
indices at least 3), we have π1(Y ) → π1(V × D) is an isomorphism. In particular,
H1(Y ) → H1(V × D) is an isomorphism. Then by universal coefficient theorem, we
have H1(V × D) → H1(Y ) and Tor H2(V × D) → Tor H2(Y ) are isomorphisms.
As a consequence, (1) of Theorem 1.1 implies that H1(Y ) → H1(W ) is an isomor-
phism. Therefore π1(Y ) → π1(W ) is at least injective. Then π1(Y ) → π1(W ) is
surjective by the same argument in [24,Theorem 3.16] by considering the symplectic
cohomology of the universal cover. The only difference is replacing the grading in
[24] with the associated graded group from the filtration. Hence π1(Y ) → π1(W ) is
an isomorphism. The independence of H∗( ˜W ) → H∗(˜Y ) then follows from the same
proof of Theorem 1.1. ��
Lemma 4.3 For a Z-module A, if Hom(A, Z) = Ext(A, Z) = 0, then A = 0.9

Proof Since Ext(·, Z) turns injective maps into surjective maps by Ext2(·, Z) = 0, we
have Ext(B, Z) = 0 for any B ⊂ A. Therefore any finitely generated subgroup of A
is free. Hence A is torsion free. Next we fix a prime p. Since A is torsion free, we have

short exact sequence 0 → A
p×→ A → A/p A → 0, which induces exact sequence

Hom(A, Z) → Ext(A/p A, Z) → Ext(A, Z).

9 This is from Eric Wofsey’s solution to https://math.stackexchange.com/questions/1734222/does-trivial-
cohomology-imply-trivial-homology-does-operatornamehoma-math.
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Hence Ext(A/p A, Z) = 0. But A/p A is a direct sum of copies of Z/p. Therefore
A/p A = 0 for any p. Then A is a divisible torsion free group, hence aQ-vector space.
Since Ext(Q, Z) �= 0, we have A = 0. ��

We also need the following form of the universal coefficient theorem.

Lemma 4.4 Let R be a ring and (C∗, ∂) be a cochain complex of R modules such that
H∗(C∗) = 0, then H∗(homR(C∗, R)) = 0.

Proof We use Bn ⊂ Cn to denote the image of ∂ and Zn ⊂ Cn to denote the kernel
of ∂ . By assumption, we have Bn = Zn . Note that we have a tautological short exact
sequence,

0 → Zn → Cn → Bn−1 → 0.

Then the tautological short exact sequence

0 → Zn/Bn → Cn/Bn → Cn/Zn → 0

is

0 → 0 → Cn/Bn → Bn−1 → 0.

If we use M∗ to denote homR(M, R) for a R-module M , then we have the following

0

B∗
n C∗

n
��

(

Cn

Bn

)∗
��

��

0�� 0

B∗
n−1

��

Z∗
n−1
��

��

0

��

C∗
n−1

�����������������

��

where all vertical and horizontal lines are exact.
Since the coboundary ∂∗ onC∗ is defined as themap fromC∗

n−1 toC∗
n in the diagram

above. As a consequence, we have ker ∂∗ is ker[C∗
n−1 → B∗

n−1]. On the other hand, we
have im ∂∗ = im(Z∗

n−2 → C∗
n−1). Since B∗

n−2 
 Z∗
n−2 and (Cn−1/Bn−1)

∗ 
 B∗
n−2,

we have im ∂∗ = im((Cn−1/Bn−1)
∗ → C∗

n−1) = ker[C∗
n−1 → B∗

n−1] = ker ∂∗ by
the exactness of the topmost row. That is H∗(homR(C∗, R)) = 0. ��
Remark 4.5 The general universal coefficient theorem (which computes cohomology
from homology) needs some assumptions on R or C∗, see [20,§3.6.5]. The above
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version without any assumption works because C∗ is acyclic, which is sufficient for
our purpose in Proposition 4.6.

Proposition 4.6 If π1(Y ) is abelian, then any exact/symplectically aspherical filling
W is V × D glued with an h-cobordism from Y to Y .

Proof Let X be the homology cobordism from ∂W0 to ∂W in the proof of Propo-
sition 3.7. By Proposition 4.2, we know that ∂W0 ↪→ W0 ↪→ W both induce
isomorphisms on π1. Then the van Kampen theorem implies that the following push-
out diagram consists of isomorphisms,

π1(∂W0) ��

��

π1(W0)

��
π1(X) �� π1(W )

Then we have π1(∂W ) → π1(X) is an isomorphism since π1(∂W ) → π1(W ) is
an isomorphism. Applying the argument in Theorem 1.1 to the universal cover, we
have H∗( ˜W ) → H∗(˜W0) is an isomorphism by Proposition 4.2. Hence by excision,
we have H∗(˜X , ∂̃W0) = 0. Then by universal coefficient and Lemma 4.3, we have
H∗(˜X , ∂̃W0) = H∗(X , ∂W0; Z[π1]) = 0. Then by Lemma 4.4 for R = Z[π1], we
have H∗(X , ∂W0; Z[π1]) = 0. Then by the Lefschetz duality with twisted coeffi-
cients, H∗(X , ∂W ; Z[π1]) = H∗(˜X , ˜∂W ) = 0. Therefore X is an h-cobordism by
Whitehead’s theorem. ��
Proof of Theorem 1.2 If the Whitehead group of Y is trivial, then the h-cobordism
is a trivial cobordism by the s-cobordism theorem [15]. Hence W is diffeomorphic
to V × D. In general, we can apply the Mazur trick, see [15]. That is there is an
h-cobordism X ′ from Y to itself such that the concatenations X ◦ X ′ and X ′ ◦ X
are trivial cobordisms. Note that W̊ is diffeomorphic to ̂W , which is diffeomorphic
to . . . ◦ X ◦ X ′ ◦ W , i.e. attaching infinite X ◦ X ′ to W . On the other hand, it is
. . . ◦ X ◦ X ′ ◦ X ◦ V × D, which is diffeomorphic to ̂V × C or the interior of V × D. ��
Remark 4.7 The Whitehead torsion can be put into the framework of Floer theories
[1]. One can prove that the Whitehead torsion of the cochain map underlying the
isomorphism SH∗+(W ) → H∗+1(Y ) → H∗+1(V × {1}) has zero Whitehead tor-
sion assuming π1(Y ) is abelian. What we still need is that the Whitehead torsion of
SH∗+(W ) → H∗+1(W ) is zero.

It is very likely that the diffeomorphism type of the filling is unique for anyLiouville
domain V , or at least the homotopy type is unique. However, this requires better ways
to probe homotopy groups of the filling, hencewe end the paper by asking the following
question.

Question 4.8 Is there a Floer theoretic interpretation of homotopy groups? In partic-
ular, is it true that πk(W ) → πk(Y ) are independent of exact fillings for any Liouville
domain V and k ≥ 1? What can we say about the Whitehead product on πk(W ).
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