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Abstract

We show that any symplectically aspherical/Calabi—Yau filling of Y := d(V x D) has
vanishing symplectic cohomology for any Liouville domain V. In particular, we make
no topological requirement on the filling and c¢; (V) can be nonzero. Moreover, we
show that for any symplectically aspherical/Calabi—Yau filling W of Y, the interior W
is diffeomorphic to the interior of V x D if 71 (Y) is abelian and dim V > 4. And W
is diffeomorphic to V x D if moreover the Whitehead group of 1 (Y) is trivial.

1 Introduction

It was shown by Gromov in his seminal paper [9] that symplectically aspherical fillings
of (S3, &5:4) are unique symplectically. Roughly speaking, there exist two orthogo-
nal foliations of holomorphic planes of any symplectically aspherical filling, which
recover the diffeomorphism type as well as the symplectic structure. In higher dimen-
sions, Eliashberg—Floer—McDuff [12] proved that symplectically aspherical fillings
of (§2"~1, &,4) are diffeomorphic to a ball for n > 3. The method can be described
as considering a moduli space of holomorphic spheres in a partial compactification
of the filling, which foliates the filling in a homological sense (some evaluation map
has degree 1). The homological information turned out to be sufficient to determine
the diffeomorphism type by an s-cobordism argument. More generally, by a result of
Cieliebak [6], any subcritical Weinstein domain W splits into V' x ID for a Weinstein
domain V and D is the unit disk in C. Hinted by the natural foliation by the splitting,
the “homological foliation" method was developed by Oancea-Viterbo [18] to show
that any symplectically aspherical filling W of a simply connected subcritically fill-
able contact manifold Y satisfies that H,(Y) — H,(W) is surjective. The homological
argument as well as the h-cobordism argument were further refined by Barth-Geiges-
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Zehmisch [2] to obtain that the diffeomorphism type of symplectically aspherical
filling of a simply connected subcritically fillable contact manifold is unique.

In this paper, we study the filling of 9(V x D) for any Liouville domain V from a
Floer theoretic point of view instead of using closed holomorphic curves. The splitting
provides with nice Reeb dynamics on the contact boundary. Then the rich algebraic
structures on symplectic cohomology allow us to prove the following.

Theorem 1.1 Let V be any Liouville domain, then for any symplectically aspherical/
Calabi-Yau (i.e. strong filling with c1(W) torsion) filling W of Y := 9(V x D), we
have the following (all cohomology below is defined over 7).

(1) H*(W) — H*(Y) is independent of the filling. In particular, W is necessarily a
Liowville filling.

(2) SH*(W) =0 and SH (W) is independent of the filling.

(3) W isdiffeomorphic to V- x D glued with a homology cobordism from Y to Y.

Note that the symplectically aspherical or the Calabi—Yau condition is necessary, since
we can always blow up a symplectic filling to change the topology of W. The gen-
eral Liouville case was also discussed in [2], where surjectivity on homology was
obtained, which is a corollary of (1) above by the universal coefficient theorem. The-
orem 1.1 puts many restrictions on the diffeomorphism type of the filling. Regarding
the diffeomorphism type of the filling W, one can ask the following three questions.

(1) Is the diffeomorphism type of the open manifold 14 unique?

(2) Is the diffeomorphism type of the manifold with boundary W unique?

(3) Isthe diffeomorphism type of the manifold with boundary W unique relative to the
boundary? i.e. is there a diffeomorphism ¢ : W — V x D such that ¢|yw = id.

As we shall see, (1) is related to that whether the homology cobordism in (3) of
Theorem 1.1 is an A-cobordism. (2) is related to that whether it is an s-cobordism.
While (3) is beyond the reach of the method in this paper. It turns out that we can
tackle question (1) under the assumption that 71 (Y) is abelian, as we can study the
Floer theory of covering spaces. In particular, we have the following.

Theorem 1.2 Under the same assumption in Theorem 1.1, if in addition 7w\ (Y) is
abelian, then W is diffeomorphic to V x D. If moreover the Whitehead group of w1 (Y)
is trivial, then W is diffeomorphic to V- x D.

Roughly speaking, the proof of Theorem 1.1 considers the same holomorphic curves
in [2, 12, 18]. In some sense the only symplectic information used in [2, 12, 18] was
the holomorphic curve with a point constraint, which corresponds to the fact that the
evaluation map has degree 1. In order to get homological information about the filling
through duality, one needs to assume that V' is Weinstein. In our approach, such curve
is again essential as it is responsible for the vanishing of symplectic cohomology.
However, we will consider other holomorphic curves with various constraints from ¥
packaged in Floer theory. Then the ring structure along with the quantitative nature of
Floer theory implies Theorem 1.1. In addition, the symplectic cohomology framework
is flexible enough to work with strong fillings, hence the theorem also applies to
Calabi—Yau fillings. By a result of Eliashberg [8] and McDuff [12], any strong filling
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of (83, &) is @ blow-up of the standard ball. Hence Calabi—Yau fillings of (S3, &)
are also unique. Our result can be viewed as a generalization of that.

Theorem 1.1 also has certain overlap to the results in [24], i.e. those V with vanish-
ing first Chern class, in particular, boundary of subcritically fillable contact manifolds
with vanishing first Chern class. The main difference is the following, [24] uses the
fact those contact manifolds has only the trivial Z-graded augmentation by degree
reasons, hence can be applied to a very different class of contact manifolds called
asymptotically dynamically convex manifolds, which includes boundaries of flexible
Weinstein domains with vanishing first Chern class [11] and links of isolated terminal
singularities [14]. Moreover, similar phenomena extend to many other structures on
symplectic cohomology [22]. However, the index consideration brings a major draw-
back that we need to require the filling to have mild topology properties (c; = 0 and
71 injective) in order to obtain a Z-grading. On the other hand, we will not need any
grading requirement for Theorem 1.1. In fact, when we drop the grading requirement,
there are always different augmentations (coming from blow-ups). Unlike the strategy
of exploiting the uniqueness of augmentations in [22, 24], we will make use of the
nice Reeb dynamics induced from the splitting setup and explore structures that are
independent of augmentations. Such changes of perspectives result in many differ-
ences compared to [24]. In addition to dropping the topological assumptions in [24],
the invariance of SHY (W) is not a priori fact but rather a posteriori consequence of
SH*(W) = 0. The upshot is that the topology is seen by all the Reeb orbits wrapping
around V once and a certain map from the (filtered) positive symplectic cohomology
does not depend on augmentations.

In fact, our proof shows that 1 is in the image of SHY (W) — H**!(Y) — H(Y)
for any strong filling W, assuming symplectic cohomology and its positive version
is well-defined for general strong fillings. Such phenomena, studied in [22, 24], has
gone beyond the situation of having only the trivial (Z-graded) augmentation. Then
the symplectically asphericality is used to show 1 4 A is a unit in the quantum coho-
mology QH*(W; A) for A € ea,-leZi(W; A), which is crucial for the vanishing
of symplectic cohomology. As by [19], when the filling is not symplectically aspher-
ical, we do have zero divisors in the form of 1 4+ A even for the standard contact
sphere (S2"~!, £4q). On the other hand, it seems that SHY (W) — H*T1(Y) is also
independent of strong fillings, at least it holds for the standard ball and its blow-up
O(—1) as fillings of ($2-1 &sd). In the Calabi—Yau case, A is necesarrily zero by
degree reasons and 1 is always a unit in Q H*(W; A). In general, Theorem 1.1 holds
as long as we know that there is no zero divisor of Q H*(W; A) in the form of 1 + A
for A € ®i-0H¥(W; A), where A is the Novikov field. In particular, we have the
following.

Corollary 1.3 Let W be a (semi-positive) strong filling of Y := 9(V x D) fordimV =
2n. If there is no embedded symplectic sphere S with2 —n < ¢1(S) < 2n — 1, then
W is a Liouville filling.

The semi-positive assumption is only for the definition of symplectic cohomology
without using any virtual technique, and should be irrelevant once one constructs
(positive) symplectic cohomology for general strong fillings. Note that whenn = 1,
the assumption is equivalent to that W is minimal, i.e. there is no exceptional sphere
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in W. In such case, Corollary 1.3 is also implied by a result of Wendl [21], since
V x D is subcritical and 9(V x D) is supported by a planar open book. In dimensions
higher than 4, there are many other operations to modify a filling other than blowing
up a point. Corollary 1.3 implies that any birational surgery that we can apply on W
to destroy symplectically asphericality will create symplectic spheres with small first
Chern class.

2 Symplectic cohomology
2.1 Contact formsonY

Let A denote the Liouville form on the Liouville domain V. In the following, we
describe a special contact form on Y := d(V x D), which allows us to single out the
Reeb orbits corresponding to critical points for a Morse function on V. Let r denote
the collar coordinate on 9V, such that the completed Liouville manifold (V,X) is
givenby VUAIV x (1, 00), withh = AonV and A = r(Alagy)ondV x (1, 00),. Note
that by following the negative flow of the Liouville vector field r9d,, the r coordinate
continues to exist in the interior of V for » € (0, 1). We first fix a Morse function f
on V, such that the following holds.

(1) min f = 0 and max f = 1 which is attained at 9 V.
(2) Forr € (%, 1), f only dependsonr and 1 > 9, f > Oand 9, f|,=1 = 1.
(3) f is self-indexing in the sense that f(p) = m for a critical point p with

Morse index ind p > 0 and f has a unique local minimum O (hence the global
minimum). We may assume ind p < 2n — 1, since V is an open manifold.

Then we can find a smooth family of decreasing functions g : [0, —X<—] — [%, %]

I+ef(h)
such that the following holds.
_ p—lgl4+e 1 I+e 1+e _ 1
(1) gex) = f( o o) for x near 1Jref(%),hence ge(1+€f(%)) = 5.

(2) ge(x) = 3 whenx < 1.

Let p denote the radical coordinate in C and ID(r) denote the disk of radius r.
In this paper, we fix % 0>d6 as the Liouville form on C. With the data above, for

€ > 0, we have a contact type hypersurface Y, in the completed Liouville manifold
(VxCro® %/ﬂd@) given as follows:

I+e
I+ef>

(1) in the region V x C, Y, is given by p2 =

(2) in the region V x D( 1+El ), Ye is given by r = g (p?).
I+ef(3)

Then our conditions on g, guarantee that Y, closes up to a smooth closed hypersurface,
which can be described pictorially as below. In particular, Y, is a smooth family of
hypersurfaces for e > 0 (Fig. 1).

Proposition 2.1 For € sufficiently small, Y is a contact type hypersurface, i.e. the
restriction of the Liouville form A & %pzde gives a contact formon Y >~ Y.
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Fig.1 The contact hypersurface Y

Proof In view of [24,Remark 6.5], it is sufficient to prove that % -X A(ll%:f) >0

on V for the Liouville vector X; and ge(0?) — $08,8¢(0?) = ge(x) — dxge(x) > 0

for x = p% on I( 1:,5, ). Note that
3

I+€f(5)
1+¢ I+e  I+e (I+e)eXo(f)  1+e€
Trer T T T Ut T Ugeppl T TN

which is positive when e is small enough. Since g.(x) > 0 and 9, g.(x) < 0, we also
have ge(x) — 0xge(x) > 0. O

In the following, we assume that the Reeb dynamics on dV are non-degenerate and
the shortest Reeb orbit on 9V has period at least 5, this can always be achieved by
perturbing and scaling the Liouville form. Then we have the following.

Proposition 2.2 For € small enough and positive, any Reeb orbit on Y with period
< 2 must be the circle y, over a critical point p of f and is non-degenerate. Moreover,
the period is given by Hle;}f(p) When € = 0, any Reeb orbit on Yo with period < 2 is

a circle over a point in V\ (BV X (%, 1]).

Proof 1t follows from the same argument as in [24,Proposition 6.7], any Reeb orbit

T+ef(3)
for Reeb orbit y on 0V, where

touches the region [ V x D( | —1%e ))ﬁY6 must be the in form of (y (At), pe! B1 )

1
A= <2
8e(p?) — p?gL(p?)

In particular, the period of such orbits must be greater than 2. For the rest of Y,
following the same argument as in [24,Theorem 6.3], for € small enough, all periodic
orbits of period smaller than 2 on (V x C) N Y, must be the simple circle over some
critical point p of f with the prescribed period. When ¢ = 0, the situation on Yy N
(V X ]D)) is the same as before that all Reeb orbits have period greater than 2. On the

remaining portion, the Reeb vector field is 277 dg, where 0 is the angular coordinate on
C. Hence the claim follows. O
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Remark 2.3 A more general discussion of the contact properties (Reeb flow, Conley-
Zehnder indices) of such hypersurfaces can be found in [24,§6]. The specific properties,
e.g. the self-indexing property of f, are for the computations in Proposition 2.9.

2.2 Symplectic cohomology

In the following, we recall models of symplectic cohomology that will be used in this
paper. We will follow the autonomous setting in [5], see also [23,§2] for the exactly
same setup and [23,Remark 2.5] for comparisons and relations with other models. Let
W be a(n exact) filling of ¥ and S(d W) be the set of periods of the Reeb flow on Y,
which is a discrete set, when the Reeb dynamics are non-degenerate, which we shall
assume. We will consider admissible Hamiltonians of one of the following two forms.

IO H=0onW,H =h(r)ondW x (1,c0)and h'(r) =a ¢ S(OW) forr > 1 +w
and h”’(r) > Ofor1 <r < 1+ w, here w is called the width of the Hamiltonian.

(I) Or H < 0 and is C? small on W and has the same property on dW x (1, co) as in
(I), such that all periodic orbits of X g are either non-degenerate critical points of
H on W or non-constant orbits in dW x (1, 00).

In particular, any non-constant orbit of Xy corresponds to some Reeb orbit on 9 W
shifted in the r-direction. Our symplectic action uese the cohomological convention

Ay) =—f§+/ H, Q2.1
Y Y

Our convention for Xy is @(-, Xy) = dH. Here /):, @ are the completed Liouville,
symplectic forms of the completed Liouville manifold W. We choose a time dependent
@ compatible almost complex structure J, such that the restriction on W is time
independent. Moreover, J is cylindrical convex! near every r, such that 4’(r) is the
period of a Reeb orbit, which guarantees the validity of the integrated maximum
principle [7]. Then we pick two different generic points y and y on im ¥, where ¥ is
the S'-family of the non-constant orbits of X 57 corresponding to the Reeb orbit y . This
is equivalent to choosing a Morse function g3 with one maximum and one minimum
onimYy in [5,§3]. By [5,Lemma 3.4], the Morse function g5 can be used to perturb the
Hamiltonian H to get two non-degenerate orbits from 3/, which are often denoted by
y and y in literatures with ez () = ncz(y)+1and wez(y) = ucz(y), where the
former wcz is the Conley-Zehnder index of Hamiltonian orbits 7 and y and the latter
ez is the Conley-Zehnder index of the Reeb orbit y. In the case of (I), the cochain
complex is the free Z-module generated by Crit(H) and y,, p, for p € Crit(f). The
differential is computed by counting rigid cascades, which can be described pictorially
as follows (Fig. 2),

(1) The horizontal arrow is flowing in im J towards y.
(2) u is a solution to the Floer equation dsu + J;(0;u — Xp) = 0 modulo the R
translation.

Vie Jisdx compatible andZ o J =dr.
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Fig.2 dy and dy ( from 2 level
cascades in case (II)

p € Crit(H

Fig.3 dy and dy ( from 2 level
cascades in case (I) ﬁ
' ’ Vh

(3) Every intersection point of the line with the surface satisfies the obvious matching
condition.

In the case of (I), the constant periodic orbits of X i are parameterized by W, which
are Morse-Bott non-degenerate except for points on dW?2. To break the Morse-Bott
symmetry, we fix ametric and a Morse function # on W suchthat 9,7 > Oon oW . Then
the cochain complex is the free Z-module generated by p € Crit(h) and y,, ¥,. The
differential is computed by counting rigid cascades, which can be described pictorially
as follows, with the only difference of extra gradient flow of & (Fig. 3).

More formally, the differential is defined by counting the following compactified
moduli spaces.

(1) For p, g € Crit(h),

Mpgi={y : Ry > Wy’ +Vh=0, lim y = p, lim y =gq}/R.
§—>00 §—>—00

(2) For y4, y— € {y, p|V¥S! family of orbits 7}, a k-cascade from y, to y_ is a tuple
(ur, 01, ...,lk_1, ur), such that

(a) [; are positive real numbers.

(b) nontrivial u; € {u : Ry x Sl1 — W|8Su + J;(u — Xg) = 0,limg_,oou €
Vi_1,limg, _cou € ¥;}/R such that y, € y, and y_ € ¥y, where the R
action is the translation on s.

() </>livg7i (lims—, oo ui(s,0)) = limgoouiti(s,0) for 1 < i < k —

L, yp = 1imHoo¢:fvg70(limHooul(s,0)), and y_ = 1im,%o¢1vg7k

(limg_, oo ug (s, 0)), where ¢I—Vg7 is the time ¢ flow of —Vg5 onim¥y.

2 How such failure of Morse-Bott non-degeneracy will not be seen by the moduli spaces for symplectic
cohomology as explained in [24,Proposition 2.6].
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Then we define M, ,,_ to be the compactification of the space of all cascades from
y+ to y—. The compactification involves the usual Hamiltonian-Floer breaking of
u; as well as degeneration corresponding to /; = 0, co. The [; = 0 degeneration
is equivalent to a Hamiltonian-Floer breaking lims_, oo #; = limg_ oo #4j+1. In
particular, they can be glued or paired, hence do not contribute (algebraically)
to the boundary of M,,, ,_. The /; = oo degeneration is equivalent to a Morse
breaking for g5,, which will contribute to the boundary of M, ,._.

(3) For y, € {y, p|VS! family of orbits ¥} and ¢ € Crit(h), a k-cascades from y, to
q is atuple (lo, uy,ly, ..., ux, ly) as before, except

@ up € {u: C— Wogu+ J,(u — Xgg) = 0,limg_oou € ¥4y, u0) €
W}/R, where we use the identification R x S! - C*, (s, 1) > 27+, W
is the interior of W, where the Floer equation is d ju = 0, hence the removal
of singularity implies that #(0) is a well-defined notation.

(b) g =lim;— ¢tv}, (ur(0)).

Then M, , is defined to be the compactification of the space of all cascades from
y+10gq.

All of the moduli spaces above can be equipped with coherent orientations.

The type (II) Hamiltonians were used in [5], while the a type (I) Hamiltonian
is a hybrid of [5, 24] and was used in [23]. We use (C(H), d) to denote the total
cochain complex in both cases. The cochain complex generated by p € Crit(h) or
p € Crit(H|w) is a subcomplex (Co, dy), which computes the cohomology of W. The
cochain complex generated by y, y for all Reeb orbits y with period smaller than a
is quotient complex (C4(H), dy+). The connecting map C(H) — Cy is denoted by
d+ o. In view of the notation above, the differentials are defined as follows.

do(p)= Y. #M,gq.
q,dim M, ;=0
dy(y4) = Z #My yv-
y_,dim MV+~V— =0
dyo(ys) = Z #M,y, 44,

q,dim M, ;=0

where #M denotes the signed count of the zero-dimensional compact moduli space
M.

Sincea ¢ S(dW), a continuation map argument ( [23,Proposition 2.8]) implies that
the cohomology is independent of the choice of H, and the associated cohomology
is called the filtered (positive) symplectic cohomology SH=%(W)(and SH f“(W)),
which can also be defined using the action filtration as in [16]. Moreover, we have the
following tautological long exact sequence (with Z/2 grading in general by n — ¢ z),

o= HY(W) — SH*=“(W) — SH=“(W) — H*T'(W) — ...

@ Springer



Onfillings of 3(V x D)

Fora < b ¢ S(Y), there is a continuation map ¢, 5 : SH*=4(W) — SH*=bw)
as well as on the positive symplectic cohomology, which are isomorphisms given
that [a, b] N S(0W) = @. The continuation maps are compatible with the long exact
sequence above, and the direct limit of the filtered (positive) symplectic cohomology
is the (positive) symplectic cohomology SH*(W)(and SH} (W)).

Remark 2.4 Both type (I) and (II) Hamiltonians give rise to isomorphic (positive)
symplectic cohomology by a continuation map argument [24,Proposition 2.10]. The
type (I) Hamilotnian is better suited for neck-stretching as it is zero along any contact
hypersurface in W but a type (II) Hamiltonian provides an easier setup for the Kiinneth
formula below.

2.3 The Kiinneth formula

It was shown by Oancea [16] that the Kiinneth formula holds for symplectic coho-
mology. In particular, we have that SH*(V x D) = 0, which is crucial for this
paper. However, in order to obtain the Kiinneth formula for V' x W, one does not
use those Hamiltonians in § 2.2. Instead, one uses Hamiltonians in the form of
Ho K = ni“H + nz*l(, where H, K are admissible type (II) Hamiltonians on
V', W respectively and 71, 5 are two natural projections on V x W. Note that H & K
is not admissible on V x W. When using a splitting almost complex structure J; & Jo
for admissible almost complex structures Ji, J> on V, W respectively, we have that
C(H® K)=C(H) ® C(K). Note that J; @ J, is also not admissible. The key step
in the proof of the Kiinneth formula is relating the splitting model with the admissible
model by a continuation map. Computation is much easier in the splitting model, in
particular, we will compute the standard case V x D using such splitting model. For
this purpose, we first introduce some notations and properties that will be used in this
paper.

Let V, W be two Liouville domains with the induced contact forms on the bound-
ary non-degenerate. We fixa > 0 ¢ S(@V),b > 0 ¢ S(AW) and two admissible
Hamiltonians H, K with slope a and b of type (I) on V, W respectively. We fix
generic admissible almost complex structures Ji, Jo on V., W respectively. Then the
Hamiltonian-Floer cochain complex C(H @ K) of H @ K using J1 @ J> is the tensor
C(H) ® C(K).? The subcomplex Co(H) ® Co(K) is a Morse complex on V x W
and the corresponding quotient complex denoted by C (H @ K) has a decomposition
as (Co(H)® C4+(K)) & (CL(H)® C(K)) & (C+(H) ® Cy(K)). The cohomol-
ogy of C(H & K),C+(H & K) do not depend on the choice of H, K, Ji, J»
as before ([23,Proposition 2.8]), and will be denoted by SH*=%=t(V x W) and
SHi’S“’Sh(V x W) respectively. The product version of the continuation map
lajay @ SH*="(V) — SH*=%(V) induces a continuation map (s, ay:p;.by °
SH*==bi(y x W) — SH*=2=b1(y x W), whenever a; < a» ¢ (V) and
by < by ¢ S(OW). The main theorem of [16] is that

3 The periodic orbits of X 7 k are isolated, in S 1 family or st x st family. Since the degenerate orbits
are Morse-Bott non-degenerate, the cascades construction in [5] can be adapted to such case.
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h_r)nSH*’S“*Sb(V, W)~ SH*(V x W). (2.2)
a,b

Similarly, we have the product version of the pair of pants product using the splitting
data. In the filtered case, the product is from S H*=4-=P1(V x W) ® S H*=%2=b2(V x
W) to SH*=atazbith(y » W) and is compatible with the product continuation
maps. Using the identification in (2.2), the limit of the product is the usual product
structure on SH*(V x W). Then the same argument as in [23,Proposition 2.10] yields
the following, as 1 + A is a unitin H*(V x W).

Proposition2.5 If 1 + A € H*(V x W) is mapped 10 zero in 10,4,0,p H*(V x
W) — SH*=a.=by » W) for A € ®;-oH*(V x W), then SH*(V x W) = 0 and
SHi’Sa’Sb(V x W) — H*tL(V x W) is surjective.

Finally, when defining S H*=%=F(V x W), we only require the almost complex struc-
ture splits into J; @ J> outside a compact set to guarantee a maximal principle. Although
the cochain complex will no longer be a tensor product, but is quasi-isomorphic to
the tensor product by a standard continuation map. Moreover, it makes sense to define
SH*»=%=b(x),§ H_”;’Sa’sb (X) for any other (symplectically aspherical) filling X of
d(V x W) as long as we use Hamiltonians that are in the form of H @& K outside
3(V x W) and is C? small non-positive inside X of type (II) or vanishes on X (i.e.
of type (I), which requires another Morse function on X for the construction of the
cochain complex), and the analogue of Proposition 2.5 holds for X.

2.4 The standard filling V x D

Here we consider the situation for the standard filling V x . Let § < 1 be a fixed
positive number, then there exists an admissible Hamiltonian K15 on C = D of type
(IT) with slope 14§, such that there is only one critical point e at 0 and there is only one
S! family of non-constant periodic orbits v corresponding to the shortest Reeb orbit
on dID. The symplectic action Ak, (V) is smaller than —1 but can be arranged to be
arbitrarily close to —1. Then the Hamiltonian-Floer cochain complex is generated by
e, 0, Yo with grading |e| = 0, |yo| = —1, |yo| = —2. The only nontrivial differential
is that dyg = e.

Proposition 2.6 For any sufficiently small € > 0, we have SHj:SH‘S’Sé(V x D) ~

H*(V)[1]1® H*(V)[2], and SH_’;’SH'B’SE(V x D) > H*(V x D) is given by the
projection to the first component.

Proof For asufficient small €, € (f — 1) can be completed to an admissible Hamiltonian
of type (II) on V with slope €, where f is the Morse function on V used in §2.1. The
Hamiltonian-Floer cochain complex of € (f — 1) is just the Morse complex of f. Since
there is no Reeb orbiton d V of period smaller than €, the Morse cohomology computes
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SH*=¢(V). Then we can use K145 ® €(f — 1) to compute SH*=11%=¢(y x D).
The differentials on the tensor product are given by

(dp® 70,4 ®0) = (dop,q), (dp ® 0.9 @ ) =0, (dp®70,q®e) =6pq,
(dp® 70,9 ® W) =0, (dp® 70,9 ®0) = (dop,q), (dp® 0,9 ®e) =0,
(dp®e,q®v0) =0, (dp®e,q®p) =0, (dp®e,q®e) = (dop,q)

where d is the Morse differential of f on V. This verifies the proposition. Moreover,
the H(V)[1] component is generated by check orbits and the H (V)[2] component is
generated by hat orbits. O

Moreover, the filtered positive symplectic cohomology SHj’;’fH‘S’SG(W) does not
depend on the filling W of Y. As the related cochain complex degenerate to two
copies of Morse cochain complexes of V for any filling when we pushe — Oto a
“Morse-Bott” case* where all Reeb orbits have the same period. We will not prove
this degeneration, but use a neck-stretching argument to prove this fact.

2.5 Neck-stretching

We first recall some basics of the neck-stretching procedure in [3]. We also recommend
[7,§2.3, 9.5] for applications of neck-stretching in Floer theories.

We recall the setup of neck-stretching for general case following [24,§3.2]. Let
(W, A) be an exact domain and (Y, @ := A|y) be a contact type hypersurface inside
W > The hypersurface divides W into a cobordism X union with adomain W’. Then we
can find a small slice (Y x [1—n, 14+7];, d(ra)) symplectomorphic to a neighborhood
of Y in W. Assume J|yx[1—n, 145}, = Jo, where Jy is independent of S! and r and
Jo(rdy) = Ry, Jo& = & for & := ker «w. Then we pick a family of diffeomorphism
dr : [(1—me' "%, (1 +n)ex~1] = [1 =7, 1+ n] for R € (0, 1] such that ¢; = id
and ¢ near the boundary is linear with slope 1. Then the stretched almost complex
structure N Sg(J) is defined to be J outside Y x [1 —#, 1 +n] and is (¢ x id),Jp on
Y1 x [1=mn, 1+n]. Then NS;(J) = J and N So(J) gives almost complex structures
on the completions X, W and Y x R4, which we will refer as the fully stretched
almost complex structure.

We will consider the degeneration of curves solving the Floer equation with one
positive cylindrical end asymptotic to a non-constant Hamiltonian orbit of X z. Here
we require that H = 0 near the contact hypersurface Y. Since either the orbit is simple
or J depends on the S!' coordinate near non-simple orbits, the topmost curve in the
SFT building, i.e. the curve in X, has the somewhere injectivity property. In particular,
we can find regular J on X such that all relevant moduli spaces, i.e. those with point
constraint from X (used in §3), or with negative cylindrical ends asymptotic to non-
constant Hamiltonian orbits of X g, possibly with negative punctures asymptotic to
Reeb orbits of Y and multiple cascades levels, are cut out transversely. We say an almost

4 The Reeb dynamics on Yy are only Morse-Bott non-degenerate along (V\aV x [%, 1)) x Sl, but not
Morse-Bott non-degenerate along 9V x {%} x St
5 The process works for strong filling W as long as Y is contact hypersurface.
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Fig.4 Neck-stretching

complex structure on W is generic iff the fully stretched almost complex structure
N So(J) is regular on X. The set of generic almost complex structures form an open
dense subset® in the set of compatible almost complex structures that are cylindrical
convex and S', r independenton Y x [1 —n, 1 + n],.

For the compactification of curves in the topmost SFT level, in addition to the
usual SFT building in the symplectization ¥ x R stacked from below [3], we also
need to include Hamiltonian-Floer breakings near the cylindrical ends. In our context,
since we use autonomous Hamiltonians and cascades, we need to include curves with
multiple cascades levels and their degeneration, e.g. /; = 0, oo in the cascades for
some horizontal level i. A generic configuration is described in the top-right of the
figure above (Fig. 4.), but we could also have more cascades levels with the connecting
Morse trajectories degenerate to 0 length or broken Morse trajectories.

In the figure, we use O to indicate the puncture that is asymptotic to a Reeb orbit.
The neck-stretching procedure allows us to understand the effect of fillings on Floer
cohomology.

A useful fact from the non-negativity of energy is the following action constraint.
Let u be a Floer cylinder in X with negative punctures asymptotic to a multiset I" of
Reeb orbits (i.e. a set of Reeb orbits with possible duplications). Assume Yli)rgo u=x

and lim u =y, then we have
s—>—00

An(y) = Ag@) =Y / y 20 2.3)

yell

6 This is because there are only finitely many moduli spaces that can have positive energy.
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In § 3, we need to consider Floer cylinders in X suchthat lim u converges to a point

§—>—00
(where H = 0), then we have

— Ap(x) — Zf A >0 (2.4)

yel

Proposition 2.7 Let W be a symplectically aspherical filling of d(V x D), then
SHI’SH‘S’SE(W) ~ H*(V)[1] @ H*(V)[2] for any sufficiently small €.
Proof The action difference between any two generators in SHy S+, =€(W) is very
small for sufficient small ¢ when we use Hamiltonian Kj4s 69 e(f — 1) outside
oW = a(V x D). W.O.L.G,, i.e. up to rescaling, we can assume Y is contained in
the exact neighborhood (i.e. where the Liouville vector field exists) of dW. We can
apply neck-stretching along Y. Since all Reeb orbits have period at least 1, there is
no breaking for a fully stretched almost complex structure by the action constraint
(2.3). Therefore all relevant moduli spaces are contained outside Yy for a sufficiently
stretched almost complex structure, i.e. SH =144, ze (W) is independent of the filling.
O

In Proposition 2.6, the splitting SH='T"=¢(vV x D) = H*(V)[1]® H*(V)[2] is
given by check and hat orbits. Next, we explain that we have the same splitting for any
filling. Since in our situation, only simple Reeb orbits are considered. Therefore we
can require our almost complex structure to be time-independent and still have all the
transversality properties [5,Proposition 3.5]. Then the moduli spaces of Floer cylinders
considered in the positive cochain complex will have a free S' action. Therefore, there
is no rigid cascade from a hat orbit to a check orbit because of the free S! action
on Floer cylinders, as rotating any Floer cylinder a bit is still a cascade from the hat
orbit to the check orbit. Let Cv'+ and CA‘+ denote the complexes generated by check
orbits and hat orbits respectively, then there is a short exact sequence of complexes
0— C+ —- Cy — C+ — 0. The S' equivariant transversality argument holds for
continuation maps when using an §'-independent almost complex structure. Hence

the continuation map induces an morphism between the short exact sequences. We

vk, <I4+4§,< %, <146,< N
define SH™= o= H*(C+) and SH"™ * = H*(Cy). Therefore we have

the following.

Proposition 2.8 Let W be a symplectically aspherical filling of 9(V x D). For any
1435,
sufficiently small €, we have a short exact sequence 0 — SH w= <E(W) —

<I+4,<
SHY SlHhseyy SH == ‘(W) — 0, which is isomorphic to 0 —

H*(V)[Z] — H*(V)[1] ea H*(V)[2] — H*(V)[1] — 0. Moreover, the con-
necting map SHi’SlH'fE(W) — H*YY (W) factors through SHj:,glJra,se(W) R

*,<14+4,<€

SHY, (W).
Proof For a sufficiently stretched S'-independent almost complex structure, the short

exact sequence 0 — C’+ - Cy — é+ — 0 is the same for V x D and W by
the action argument in Proposition 2.7. For V x D, it is important to note that a
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stretched almost complex structure does not split. However, the continuation map
from a splitting almost complex structure to a sufficiently stretched almost complex
structure induces a morphism between the short exact sequences using S'-independent
almost complex structures. It is clear by action reasons, the induced continuation maps
are isomorphisms (upper triangular w.r.t. to the filtration from the values of f,i.e. the
filtration from the symplectic action/contact action, and are identity on the diagonal)
on C+ and C+ As a consequence, the induced long exact sequence is isomorphic to
the one from the splitted J in Proposition 2.6, whose long exact sequence splits, i.e.
gives rise to the short exact sequence in the claim. The last claim follows from the
S'-equivariant transversality, as there is no differential (no rigid cascades) from hat
orbits to constant orbits by the free S! action. O

2.6 A continuation map

In § 3, we need to stretch along the contact hypersurface Y, to prove certain indepen-
dence of fillings. Since we do not have ¢ (Y) = 0, the Fredholm index of a curve also
depends on the relative homology class. We need to show that the relative homology
class is always trivial and for this we will use the contact energy (see Proposition 3.1),
hence we had better use the symplectic cohomology with admissible Hamiltonians
in § 2.2. Therefore we need a continuation map relating S ij”’fb(v x W) and
S HiSC(V x W). This was constructed in [16] for the proof of the Kiinneth formula,
we recall an adapted version for the case in this paper. Let Hyy.42s be an admissible
Hamiltonian on V x C of type (I) of the contact hypersurface Y, with slope 1+ € +26.

Proposition 2.9 For any sufficiently small €, we can arrange that K15 ® €(f — 1) is
pointwise no greater than Hyycy25 on V x C. Moreover, when € is sufficiently small,
for any critical points p, q of f, such that f(p) > f(q), we have

Aty 05V p) > Ak see(r-1) (P ® Vo) > Al s (V) > Ak see(r—1)(q ® Vo)

Proof We first prove the claim for the extreme case, then we will argue that we can
perturb the extreme case to get admissible choices of K145 and Hjyc+25. The extreme
case is that K145 = 0 on I and is linear of slope 1 w.r.t. p? outside ID, then picks up
the slope 1 + 6 outside a very large compact set. The Hamiltonian orbit is considered
as placed at 9D. Hj4eyps is O inside Y, and has slope 1 + € + 26 outside Y, the
Hamiltonian orbit ¥, is considered as on Y.. Then we have

1+
Aty 7 ) = —T]f(p), Akysee—1(p ®T) = =1 +e(f(p) — 1.
Note that
e Cite(f( =) = = fpN = ————)
1+ef(p) P - P L+ef(p)
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which is non-negative as 0 < f(p) < 1 and is zero if and only if when p is the
minimum of f. Hence we have

Aty 05V p) = Ak see(r—1) (P ® V)

for all critical points p and the only case when the equality holds is when p is the
minimum point. Moreover, recall from § 2.1, ifind(q) = 2n—k > 0,then f(q) = klﬁ
Now let p be another critical point of f with f(p) = %, ie.ind(p) =2n+1—k.
Then we have

_ _ 1 1+€
-AK1+5&Be(ffl)(P ® 7/0) - AH1+6+25(V,1) =-1+ E(E - 1)+ -1
I +e
_ 1 1
k+1
=€ +e(=—1)
I+ e g k

- (1— LoD e— ))

Tedy U k+1 0k k+1
€ 1—(k—De

I+ery kk+D)

Therefore when € < ﬁ, we have

AH|+5+25 (7:1) < AK1+6®E(f—1)(p ®7Yo)-

When g is the minimum point, hence A, »; (V) = —1 — € = Ak s0e(/-1)(q @
¥0)» which is smaller than Ak, ;@e(r—1)(p ® ¥) for any p that is not the minimum.
Therefore we have proven for the extreme case and € sufficiently small (< %) that

AH1+5+25 (?p) > AK1+5®€(.f—l)(l’ ®7Vo) > AH1+5+25 (?q) = AK1+a€Be(f—l)(q ® Vo) (2.5)

for any critical points p, g with f(p) > f(g), with equality holds only for g is the
minimum point.

We claim if € is small enough, then K115 @ €(f — 1) < Hjtc42s pointwise.

We first claim that inside Y, we have K145 @ €(f — 1) < Hjte425. Since on the
sub-domain of V x D that is bounded by Y., we have that Hj 425 = 0, K145 =0
and €e(f — 1) < 0, hence the claim holds on that sub-domain. Then on the domain

outside V x ID and inside Y., we have that Hi4¢425 = 0, K145 < 11++:f —1= 61(1;;).

Since gﬂ;? +e(f—1)=—€f ll;ff < 0, the claim holds on that sub-domian.

Then we will show that for any point on Y, the inequality holds along the (positive)
flow of the Liouville vector field X, + % p0,. Since the angular coordinate on C does
not matter, we choose (x, p2) for x € V, p € R* to represent the point. Then after

time ¢ flow of X, + %pap, the point is (¢; (x), pzet), where ¢y is the flow of X;. We

separate Y, into the graph of p? = 11-::]‘ and the graph of r = g.(p?) asin § 2.1.
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On the first graph, we have ,02 = 1;%, then we have

1
Hipesas (@ (x). H%Jf(x)eﬁ —(tet28)( — 1),

and

e —1+e(fop(x)—1),

1 1
(Kiss ® e(f — 1)) (qsz(x), e ’) e

Ttefm ) " 1+ef)

while the point is still on the domain where the slope of K45 is 1. Therefore we
compute

d 1
*<H1+e+28(¢t(x)’ie,)—(KHs@E(f D) (6 (x), —— ’))

dr 14+ef(x) T+ef(x)
> 28¢" — eX,.(f o ¢y (x)) (2.6)
If ¢, (x) ¢ V, assume ¢, (x) € V. Since (x, p2) by assumption, is on the graph of
,0 = 11+th we have x is contained in V. As a consequence, we have 7y > 0. Since

9, f = 1 outside V, where r = ¢!, then X, (f o ¢,(x)) = '~ < ¢’. Then for €
small enough (< 26), we have (2.6) is positive. When K s starts to pick up the slope
of 1 4 § for ¢ very big. The (2.6) decrease at most 1%;;8)8’ , which will not change
the sign for e < 1.

On the graph of r = g, (p?), we use the (r, p?) = (ge(p?), p?) coordinate. After
time 7, the new coordinate is (g (p>)e, p2e’). Then we can compute

d
= (Hiseran(ae(o))e! 0% = (Kips @ €(f = D) e (0’ %)

d
> (l+e+20—phe’ —e (f(getoDen)., @7

while the point is on the domain where the slope of Kj.s is still 1. Since p* <

1+1f,f(1) < l+4+e 1 <g(p?) < 2anddf < 1, we have (2.7) > 28e’ — ee'.
A
Therefore for € small enough, (2.7) is positive. When K5 starts to pick up the slope

146, (2.7) decreases at most p26e’ < (1 + €)8e', which will not change the sign.
To sum up, in the extreme case, we have that Kj1s @ €(f — 1) is not greater than
Hi4e42s, with the equality holds only on the sub-domain of V x D bounded by Y.
Then we modify K145 to a smooth function, such that it picks up the first Reeb orbit
shortly after p> = 1, then maintains a slope slightly bigger than 1 for a very long
time, then gradually picks up the slope till it is 1 4 §. Then the modified Kj4s is
strictly smaller than the extreme K45 outside D. Such modification will decrease the
symplectic action by an arbitrarily small amount, then (2.5) becomes strict. Then we
can perturb Hj 425 to a smooth one, which is pointwise no less than K11s®e(f —1).
The strict order in (2.5) can be preserved under such a small change. O
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Following [16], we can build a continuation map from C*(Kys @ e(f — 1)) —
C*(H|+e42s) using a decreasing homotopy of Hamiltonians, which also induces a
continuation map for the positive cochain complexes.

Remark 2.10 Strictly speaking, one needs to modify K45 @ €(f — 1) outside a large
compact set before interpolating the geometric data to guarantee that a maximal princi-
ple holds. This procedure will create many periodic orbits with arbitrarily large positive
symplectic action, hence C* (K45 @ €(f — 1)) is a quotient complex and the contin-
uation map does not see those extra generators, since the continuation map increases
symplectic actions and the symplectic action of orbits of Hj.42s are bounded above.
See [16] for details of the construction of this continuation map, but note that our
convention of symplectic action is different from [16] by a sign.

For C+ (K145 @ €(f — 1)) and C4(Hj+e425), we have a filtration induced by the
symplectic action. Since our choice of f is self-indexing, the filtration Fy D Fj4 is
the following,

Fi:==(p ® 0, p® yolind(p) = k), or (¥, yplind(p) = k)

for C4 (K145 @ €(f — 1)) and C(Hj4e42s) respectively. We also have filtrations
Fy, Fr on C‘+ and é+ compatible with the short exact sequence. The significance of
Proposition 2.9 is that the continuation map will preserve the filtration. The purpose
of such filtration is to substitute the Z grading on symplectic cohomology, which may
not exist if the first Chern class of the filling does not vanish. The following result
follows from Proposition 2.9 and neck-stretching as in Proposition 2.7.

Proposition 2.11 For any sufficient small €, the continuation map H*(C (K5 D
€(f — 1)) > H*(Cy(Hityet2s)) is independent of the filling W of Y. Moreover, the
continuation map preserves the filtration and the short exact sequences of check and
hat orbits.

However, there is an unsatisfying fact about Proposition 2.9, i.e. when € — 0,
Hj 425 is forced to be only C° convergent to the “ideal" Hamiltonian, which is zero
on Y and is linear with slope 1 4 € 4 24 outside Y. This poses analytical problems
later (§ 3.1) in the compactness argument for ¢ — 0. The following proposition
remedies the issue. Recall that in SFT, we have the notion of contact energy | u*o for
curves in the symplectization (¥ x R, d(r«)) and the energy is non-negative and it is
zero if and only if u a trivial solution over some Reeb trajectory [3]. In the context of
Hamiltonian-Floer theory, if we use Hamiltonians of type (I) or (I), then X  is parallel
to the Reeb vector field outside Y. Assume we pick the almost complex structure to
be cylindrical convex outside Y, i.e. AoJ =drand compatible with dx. In this case,
we can still control the contact energy for the portion outside Y, fu‘l (W) u*(Aly),
which is again non-negative. When the contact energy is zero, u|,, -1\ ) 1s contained
in y x [1, o), where y is a Reeb trajectory on Y.

Proposition 2.12 Let H|, _ s, Hi, 5

with slope 1 + € + 26 and H11+€+2(3 < H]2+E+25, then there is a continuation map from

be two admissible Hamiltonian of type (I)

Cj(H11+€+25) to Ci(H12+€+26), which is an isomorphism and preserves the filtration
and does not depend on the filling.
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Proof Let H; be the obvious decreasing homotopy from H12 etns O Hl1 teqns Such
that for each s, H only depends on r and X, is parallel to the Reeb vector field. Then
we can pick a regular almost complex structure such that it is cylindrical outside Ye,
such that all relevant moduli spaces stay outside Y. This is again by neck-stretching as
in Proposition 2.7 and the regularity is possible since we only consider simple orbits.
Then in such a special case, X, is parallel to the Reeb vector field everywhere, the
contact energy fRX g1 u*(*(Aly,)) is non-negative for any Floer solution u, where
7 is the projection from the positive symplectization Y. x [1, co) (this is exactly
symplectomorphic to the sub-domain of W outside Y¢) to Yc. As a consequence, the
continuation preserves the contact action filtration, which is just the filtration from
the period of Reeb orbits, or equivalently the Morse index filtration F;. The contact
energy is zero iff it is a reparameterization of a trivial cylinder, which is transverse.
Therefore the continuation map is identity on the diagonal. This finishes proof. O

In other words, although Hj¢7s from Proposition 2.9 does not converge as smooth
functions for ¢ — 0, the associated cochain complexes do “converge". More pre-
cisely, as a consequence of Proposition 2.12, we can find a smooth family of functions
H 1+e42s for e > 0, such that each Hj 475 is admissible of type (I) of slope 1 +€ +26
and is pointwise no larger than the Hj.42s5 constructed in Proposition 2.9.7 Then for
€ > 0 small, the following map preserves the filtration, is compatible with the short
exact sequence and is independent of the filling,

Ci(Kiys ®€(f — 1) > Ch(Higesns) = Ch(Hijets), (2.8)
where the second map is the inverse of the continuation map in Proposition 2.12.

3 Homology cobordism

In this section we prove that the composition S H " shHeseyy SH_T_’SI"FG'FZ‘S W) —
H*tY(W) — H*t1(Y) is independent of symplectically aspherical/Calabi—Yau fill-
ings, which, combined with the case for the standard filling V x D, will yield the proof
of Theorem 1.1. Here the first is map is the continuation map (2.8). We separate the
proof into the symplectically aspherical case and the Calabi—Yau case. The symplec-
tically aspherical case is more involved due to the missing of a global Z grading. But
the action filtration Fy will serve as a substitute of the grading.

3.1 The symplectically aspherical case

Let W\?6 denote the completion in the negative direction of the domain in W outside
Ye,ie. X in § 2;;5. Then Hj4eq2s is well-defined on W\ Y,. We consider the moduli
space Myp,yq (H1+4e+2s), which is the compactification of the following

{u :C\{x} — mlasu + JOru — X

ﬁ]+s+25) =0, sl_1)ngou(t) =7pt+0), l_1)m*u =g —oo)} /R

7 As the “ideal” limit limo Hj4e42s is greater than or equal to any admissible Hamiltonian of type (I) with
€—>
slope 1 + € + 24.
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Fig.5 &3 from 2 level cascades

where y, is a Reeb orbit on Y, which is the asymptotic of the free negative puncture *
and R is the translation (which moves the puncture) action on C. Note thaty ,,, y, are
both contractible in Y, with a standard bounding disk in the standard filling V x D,
which can be pushed into the boundary. For u € Mypyyq (ﬁ 14+€+28), We use [u] to
denote the class in H>(Y) given by capping off u with the two standard disks. u is
called homologically trivial iff [u] = 0. The following is based on the compactness
results in [4, 5].

Proposition 3.1 For € sufficiently small, all curves in M;p,,/q (ﬁ1+6+25)f0r any p, q
must be homologically trivial.

Proof Assume otherwise, we have u, € M?p,yq (ﬁ 1+e+25) Which are not homolog-
ically trivial for ¢ — 0. Then u. converges to a cascade as a hybrid of [4] (for the
symplectization end) and [5] (for the Hamiltonian end). The only place which can con-
tribute nontrivial homology is the middle Floer cylinder. But in the case when € = 0,
the contact energy f u* o w*(Aly,) must be zero, where 7 is the projection from the

positive symplectization W\TOYO x [1, 00) to Y. Hence the middle Floer cylinder is
a reparametrization of a trivial cylinder, which is homologically trivial, contradiction.
O

Although ¢1(Y) is not zero as long as ¢ (V) # 0, as we will see below, Proposi-
tion 3.1 implies that the relevant moduli spaces of holomorphic curves do not pick up
nontrivial first Chern classes from V', which allows us to compute the dimension after
neck-stretching. We are interested in the cochain map §j : Ci(ﬁ 1+e+28) — Co(Y),
which computes the map SHI’SHHZ‘S(W) — H**\ (W) - H*1(Y). For this, we
pick a Morse function & on Y, with a generic metric. Then following [24,§3], we know
that cochain map is define by counting the configuration in Fig. 5.

By the same S! equivariant transversality argument as before, any solution from a
hat orbit is never rigid. For p € Crit(f), g € Crit(h), we use M?;,,,q to denote the

compactified moduli space.

Proposition 3.2 Assume € is sufficiently small. Let W be a symplectic aspherical filling

of Ye, then the cochain morphism 8y : Cj‘_(ﬁl+5+25) — Co(h) has the following

property for some choice of J.

(1) 8 (yp) =0.

(2) & ()71,) = a + b with ind(a) = ind(p) and ind(b) > ind(a) = ind(p)g, moreover
a does not depend on the filling,

8 Here b may not have pure degree, then that ind(b) > ind(a) means that any component of b has larger
Morse index compared to a.
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Proof The first property follows from S'-equivariant transversality. In order to prove
the second claim, we need to prove the following two properties.

(1) (8s¥p.q) =0ifind(p) > ind(q).
(2) (85¥p, q ) is independent of the filling if ind(p) = ind(g).

Note that the first property holds for the standard filling V x D. For both claims,
it is equivalent to prove that {83y yp, q ) is independent of the filling if ind(p) >
ind(g). Note that (83y,,¢q) = #M , we claim M3 . is contained outside Y, for
sufficiently stretched almost complex structure as long as ind(p) > ind(g). Assume
otherwise, in the fully stretched situation, the top curve will have multiple negative
punctures asymptotic to Reeb orbits on Y. Then by the action constraint (2.4), there
is exactly one negative puncture with the asymptotic Reeb orbit y,, for a critical point
w of f. The Conley-Zehnder index of y,, using the obvious disk is n — ind(w) + 2
following [24,Theorem 6.3]. Therefore the Floer part is a curve in M7p,yw (ﬁ 14+e+25)
in Proposition 3.1, which has trivial homology class. Then by Proposition 3.1, the
virtual dimension of such configuration is

ind(g) — ind(p) — 2n — ind(w)) < 0, when ind(p) > ind(g).

As a consequence, there is no such curve. We reach at a contradiction. O

Remark 3.3 In the case when V is Weinstein and ¢; (V) = 0, the SFT degree (1cz +
n — 3) of y, is bounded below by n. However, for general V with H n=l(yy £ 0
and ¢ (V) = 0, the SFT degree of y, is bounded below by 1. From the proof of
Proposition 3.2, we see that H>" (V) # 0is exactly the borderline case for the argument
fails. The proof of Proposition 3.2 shows that even though there might be interesting
augmentations, the augmentation does not affect the part we are interested in. The
situation changes dramatically when V becomes closed, i.e. if we consider negative
line bundles over a symplectically aspherical manifold V. Then by [17], the symplectic
cohomology is zero. But now the augmentation to the Reeb orbit corresponding to
H?"(V) plays an essential role. And the elimination pattern is completely different,
in particular, 1 is only killed after we include the nth-multiple covers of the simple
Reeb orbits, see [19].

Proof of Theorem 1.1 for the symplectically apherical case.

We first assume W is exact for simplicity. Combining Proposition 2.11, 2.12
and 3.2 together, we know that ® : CY (K145 @ €(f — 1)) — Cl(Hitet25) —
Ci(ﬁ I4es2s) — C*T1(Y) preserves the index filtration, and the map on the asso-
ciated graded group is independent of fillings. Then on the associated graded group
of cohomology, the induced map &Py is also independent of fillings. Since for the
standard filling V x D, @®y is injective on the check component (the quotient of hat
component). This implies that ® must be injective for any filling on the check com-
ponent. On the other hand, note that 1 € im ®¢ for V x D, therefore 1 + A € im
for some A € @;~oH?> (Y) by the Z/2 grading. By Proposition 2.5, we have that 8 :
SHY SIHSewy s gL (W) s surjective and SH* (W) = 0. Moreover, by Propo-
sition 2.8, § factors through the projection to the check component. Then the injectivity
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of @ on the check component implies that § is an isomorphism on the check component.
Hence H*(W) — H™*(Y) is also injective. Therefore, to finish the proof, it is sufficient
to show that the image of H*(W) — H™*(Y) is also independent of filling. The injec-
tivity of @®y implies that im @®; = & ((im & N FH*(Y))/(im ® N Fi1 H*(Y))).
On the other hand, the filtration on H*(Y) is the natural filtration by grading and im &
is the image of H*(W) — H*(Y), where the associated graded groups are naturally
isomorphic to the original groups. Hence im @®y is naturally isomorphic to im .
The invariance of the former implies that im ® is independent of the filling, the claim
follows. The claim on homology cobordism is from Proposition 3.7 below.

When W is only symplectically spherical, the symplectic action is well-defined for
contractible orbits but not necessarily in the form on (2.1). But since all the relevant
orbits ,, are contractible inside the cylindrical end of the boundary, the symplectic
actions of those orbits are indeed given by (2.1). Therefore the same argument above
goes through for symplectically spherical fillings. Note that V x ID is built from handles
with indices at most 2n — 1. As a consequence, we have that H Llv xD) - HY(Y) is
an isomorphism. Combining with the fact that H 2(Vv xD) — H2(Y) is injective, we
know that the symplectic form w on a symplectically aspherical filling W is necessarily
exact and has a primitive whose restriction on the boundary is the original contact form.
This proves that W is an exact filling. O

3.2 The Calabi-Yau case

First of all, the symplectic cohomology and positive symplectic cohomology are
defined for Calabi—Yau fillings using the Novikov coefficient A over Q, see [24,§8].
In particular, the reason that positive symplectic cohomology is defined is no longer
for action restrictions but because of the asymptotic behavior lemma [7,Lemma 2.3].
Similar to Proposition 2.5, we have the following analogue for Calabi—Yau fillings
(i.e. a strong filling W such that ¢ (W) is torsion) due to the fact that 1 is a unit in
QH*(W; A), which is H*(W; A) as a group.

Proposition3.4 Let W be a Calabi-Yau filling and if 1 is in the image o
SHP="=P (W A) — QH*T'(W) is zero. Then SH*(W; A) = 0 and SH} ="~
(W; A) — QH*TV(W; A) is surjective.

Proposition 3.5 Let W be a Calabi-Yau filling of Y, then W is symplectically aspher-
ical.

Proof In the Calabi—Yau case, we have a Z grading on symplectic cohomology. In par-
ticular, we do not need Proposition 3.1 to control the homology class and all generators
of C*(K14+5De(f —1)) have a well-defined grading, since all of them are contractible.
More explicitly, the grading is given by | p®yy| = ind(p)—1, | p®yp| = ind(p)—2 and
the Conley-Zehnder index of y, is given by n+2—ind(p), in particular, the SFT degree
ncz(yp) + (n+1) — 3 is positive. There is also no need to use Hiye12s or Hijeq2s.
We can apply the same argument in Proposition 3.2 to K45 @ €(f — 1) directly,
which shows that §3 : H*(C+(K1+s®€e(f —1))) = H*(Y; A) is independent of the
Calabi—Yau filling. Then by Proposition 3.4, we have H*(W; A) — H*(Y; A) is iso-
morphic to H*(V xD; A) — H*(Y; A) similar to the symplectically aspherical case.
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In particular, we have that H*(W; Q) — H*(Y; Q) is injective. As a consequence, @
is an exact form, i.e. W is symplectically aspherical. O

Proof of Theorem 1.1 for the Calabi—Yau case. It follows from Proposition 3.5 and the
symplectically aspherical case of Theorem 1.1. O

Remark 3.6 When c1(V) = 0, it was shown in [24] that 9(V x D) is asymptotically
dynamically convex. For Calabi—Yau fillings of d(V x D), the index neck-stretching
argument in [24] requires that V' has a Reeb dynamics with Conley-Zehnder indices
bounded from below. But the index neck-stretching argument is still applicable if we
attach additional flexible handles, while the action neck-stretching in this paper breaks
down.

3.3 Homology cobordism

A cobordism W from dpW to 91 W is called a homology cobordism iff dgW — W
and 9 W — W both induce isomorphism on homology.

Proposition 3.7 Under the assumption in Theorem 1.1, the filling W can be obtained
from V x D by attaching a homology cobordism fromY to Y.

Proof Let Wy be acopyof V xD(e) C V x D placednear Y = 9(V x D) for € small.
Then for any symplectically aspherical/Calabi—Yau filling W, we can assume Wy is
also contained in W. Let X denote the cobordism from 0 W to 9 W. We can assume W)
isinside the strip Y x (1—3e¢, 1) near the boundary. In particular, H*(Y x (1—3¢, 1)) —
H*(W)p) is an isomorphism when restricted to the image of H*(V x D) — H*(Y).
Since H*(W) — H*(Y) is independent of filling, we have that H*(W) — H*(Wy)
is an isomorphism. Therefore H*(X, dWy) = 0 by excision. By Lefschetz duality and
the universal coefficient theorem, we have that H, (X, d Wy) and H, (X, d W) are both
zero. Hence X is a homology cobordism. O

3.4 General strong fillings

The obstruction of applying Proposition 2.5 for general strong fillings is that we
may have a zero divisor 1 + A in QH*(W; A) for A € ®i>oH2i(W; A), since
(14+A)U-: QH*(W; A) — QH*(W; A)isalinear map between finite dimensional
A-spaces. For general strong fillings, symplectic cohomology and positive symplectic
cohomology can be defined as usual if one applies a suitable virtual technique to
overcome the transversality issue. For simplicity, we assume the strong filling is semi-
positive as in [13,Definition 6.4.1], so that the theory can be defined using generic
almost complex structures.

Proposition 3.8 Assume W2"*2 is a strong (semi-positive) filling, such that there is
no embedded symplectic sphere S, with2 —n < c1(S) < 2n —‘1, then there is no zero
divisor of QH*(W; A) in the form of 1 + A for A € ®;-oH* (W; A).

Proof If there is a such zero divisor, we claim there exists B € @®;-oH> (W; A)
such that (1 + A) U B = 0. First of all, there is a Z/2 grading, hence there exist
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B € @®i-oH*(W;A) and b € Q such that (1 + A) U (b + B) = 0. Note that
(CUD,1) =0forany C,D € ®;-0H? (W: A), since the corresponding moduli
space counts curves with a point constraint. However, such a moduli space must
be empty as we can choose the point constraint near the boundary, and the maximal
principle will obstruct such curve. Since 0 = (1+A)U(b+B) =b+bA+B+AUB,
we must have b = 0, i.e. the claim holds. Then to have (1 + A) U B = 0, the
quantum product @;~0H> (W; A) @ ®;=0H* (W; A) = ®;i-oH* (W; A) must be
deformed, hence there must be some holomorphic sphere (possibly nodal) S, such that
6 <2c1(S)+2n+2<6bn,ie.2—n < c1(S) <2n — 1. When n > 2, a (nodal)
holomorphic sphere can be perturbed into an embedded symplectic sphere with the
same first Chern class, hence a contradiction. When n = 1, it is always semi-positive,
and the curve contributing to the deformation of the product is necessarily somewhere
injective by [13,§6.6], hence the curve can be assumed to an embedded symplectic
sphere, which is a contradiction. O

Proof of Corollary 1.3 The proof follows from the same argument for Theorem 1.1.
Although we do not have a well-defined symplectic action for strong fillings, but
the continuation maps used in the proof of Theorem 1.1 can be described by moduli
spaces contained outside the boundary by neck-stretching, where the symplectic action
is well-defined and can be used to restrict Floer trajectories. Then by Proposition 3.8,
we still have SH*(W) = 0 and H*(W; A) — H*(Y; A) is always injective. Hence
the symplectic form is exact. O

4 h-cobordisms

In this section, we will upgrade the homology cobordism X in Proposition 3.7 to an
h-cobordism assuming 1 (Y) is abelian. Unlike the cohomology information, we can
not quite get the full information on the fundamental group or more generally higher
homotopy groups. But in the case of w1 (Y) abelian, we do have enough ingredients
to get some information on 7r; and conclude an /-cobordism.

4.1 Symplectic cohomology of covering spaces

Recall from [24,§3.3], for every covering space W — W, we can define the symplectic
cohomology of the covering space. A cochain is a sum of formal sums of different
lifts of periodic orbits on W. The differential is defined by lifting the differential on W
according to the (unique) parallel transportation. In particular, we have the following
commutative long exact sequences,

.. —— H*(W) — SH*(W) — SH*(W) —— H*T}(W) — ...

T

o= H*(W) —= SH*(W) — SH*(W) — H*t} (W) — ...
4.1)
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Similarly for the filtered version. Note that we use only contractible orbits to define
S H*(W). A map from the thrice punctured sphere (i.e. a pair of pants) can be completed
(as a topological map) to a map from sphere, as all asymptotics are contractible orbits.
As a consequence, we can lift the map to the universal cover and gives SH *(W) a
unital ring structure. Then the first square in (4.1) is a commutative square of unital
rings.

Remark 4.1 One can also define a symplectic cohomology with local coefficients,
i.e. the underlying cochain complex is the free Z[;] module generated by periodic
orbits. The differential is again the lifting of the ordinary differential and it respects the
Z|m1] module structure. The corresponding cohomology is the same as the symplectic
cohomology of the universal cover if 7y is finite. If 77 is infinite, the symplectic
cohomology of the universal cover allows generators which can be viewed as an
infinite sum in the group ring. On the regular cohomology level, i.e. the Morse theory
level, the cohomology with local coefficient H*(W; Z[1]) is the compactly supported
cohomology of the universal cover H, *(W) # H *(W), see [10, Proposition 3H.5]. It
still carries a product structure (the pair of pants construction holds), but it is not unital
(1 € H*(W) is represented by an infinite sum in the group ring).

Proposition 4.2 [f w1 (Y) is abelian, then we have w1(V) is abelian and w1(Y) —
w1 (V x D) is an isomorphism. Then for any exact/symplectically aspherical filling
W, we have m1(Y) — m1(W) is an isomorphism. Moreover, H*(W) — H*(Y) is
injective and independent of fillings for the universal covers.

Proof Since V x DD can be built from handles with indices at most 2n — 1 (i.e. co-
indices at least 3), we have m1(Y) — m1(V x D) is an isomorphism. In particular,
H{(Y) — Hi(V x D) is an isomorphism. Then by universal coefficient theorem, we
have HY(V x D) — H(Y) and Tor H2(V x D) — Tor H2(Y) are isomorphisms.
As a consequence, (1) of Theorem 1.1 implies that H;(Y) — Hj(W) is an isomor-
phism. Therefore 71(Y) — w1 (W) is at least injective. Then w1 (Y) — w1 (W) is
surjective by the same argument in [24,Theorem 3.16] by considering the symplectic
cohomology of the universal cover. The only difference is replacing the grading in
[24] with the associated graded group from the filtration. Hence 71 (Y) — m1(W) is
an isomorphism. The independence of H*( VT/) — H* (? ) then follows from the same
proof of Theorem 1.1. O

Lemma 4.3 For a Z-module A, if Hom(A, Z) = Ext(A, Z) = 0, then A = 0.°

Proof Since Ext(-, Z) turns injective maps into surjective maps by Ext?(-, Z) = 0, we
have Ext(B, Z) = 0 for any B C A. Therefore any finitely generated subgroup of A
is free. Hence A is torsion free. Next we fix a prime p. Since A is torsion free, we have

X . .
short exact sequence 0 — A Ba-sa /pA — 0, which induces exact sequence

Hom(A, Z) — Ext(A/pA, Z) — Ext(A, Z).

9 This is from Eric Wofsey’s solution to https://math.stackexchange.com/questions/1734222/does-trivial-
cohomology-imply-trivial-homology-does-operatornamehoma-math.
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Hence Ext(A/pA,Z) = 0. But A/pA is a direct sum of copies of Z/p. Therefore
A/pA = 0forany p. Then A is a divisible torsion free group, hence a Q-vector space.
Since Ext(Q, Z) # 0, we have A = 0. O

We also need the following form of the universal coefficient theorem.

Lemma4.4 Let R be a ring and (Cy, 3) be a cochain complex of R modules such that
H,(Cy) =0, then H*(homg(Cy, R)) = 0.

Proof We use B, C C, to denote the image of d and Z, C C, to denote the kernel
of 0. By assumption, we have B,, = Z,.. Note that we have a tautological short exact
sequence,
0—-Z272,—-C,— B,_1 — 0.
Then the tautological short exact sequence
0— Z,/By - Cu/By — Co/Zy — 0
is
0—-0—C,/B, - B,—1 — 0.

If we use M* to denote homg (M, R) for a R-module M, then we have the following

0
*
Bf<——C;} <%) 0 0
n
By < Z,
0 Ccr,

where all vertical and horizontal lines are exact.

Since the coboundary 0* on C* is defined as the map from C;_, to C;; in the diagram
above. As a consequence, we have ker 9* isker[C;_; — B_,]. On the other hand, we
have im 0* = im(Z}_, — C;_,). Since B , ~ Z* , and (C,_1/B,—1)* =~ B} _,,
we have im 0* = im((Cp,—1/B,-1)* — C;_,) = ker[C;_, — B ;] = kerd* by

the exactness of the topmost row. That is H*(homz(Cy, R)) = 0. m]

Remark 4.5 The general universal coefficient theorem (which computes cohomology
from homology) needs some assumptions on R or C, see [20,§3.6.5]. The above
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version without any assumption works because C is acyclic, which is sufficient for
our purpose in Proposition 4.6.

Proposition 4.6 If 1(Y) is abelian, then any exact/symplectically aspherical filling
W is V x D glued with an h-cobordism fromY to Y.

Proof Let X be the homology cobordism from d Wy to dW in the proof of Propo-
sition 3.7. By Proposition 4.2, we know that Wy < Wy < W both induce
isomorphisms on 1. Then the van Kampen theorem implies that the following push-
out diagram consists of isomorphisms,

w1 (W) —— 11 (Wp)

L

(X)) ———m (W)

Then we have w1 (W) — m1(X) is an isomorphism since w1 (dW) — w1 (W) is
an isomorphism. Applying the argument in Theorem 1.1 to the universal cover, we
have H *(W) — H *(Wo) is an isomorphism by Proposition 4.2. Hence by excision,
we have H *(X BWO) = 0. Then by universal coefficient and Lemma 4.3, we have
H*(X, 8W0) = H.(X,dWy; Z[r1]) = 0. Then by Lemma 4.4 for R = Z[m], w

have H*(X, 0Wy; Z[m1]) = O. Then/_lgy the Lefschetz duality with twisted coefﬁ-
cients, Hy (X, oW; Z[m1]) = H*(}N(, dW) = 0. Therefore X is an h-cobordism by
Whitehead’s theorem. O

Proof of Theorem 1.2 If the Whitehead group of Y is trivial, then the h-cobordism
is a trivial cobordism by the s-cobordism theorem [15]. Hence W is diffeomorphic
to V x D. In general, we can apply the Mazur trick, see [15]. That is there is an
h-cobordism X’ from Y to itself such that the concatenations X o X’ and X' o X
are trivial cobordisms. Note that W is diffeomorphic to W, which is diffeomorphic
to...0 X o X’ o W, i.e. attaching infinite X o X’ to W. On the other hand, it is

..0Xo0X o0XoV xD, which is diffeomorphic to V x C or the interior of V x . 0

Remark 4.7 The Whitehead torsion can be put into the framework of Floer theories
[1]. One can prove that the Whitehead torsion of the cochain map underlying the
isomorphism SH¥(W) — H**1(Y) — H**!'(V x {1}) has zero Whitehead tor-
sion assuming 1 (Y) is abelian. What we still need is that the Whitehead torsion of
SH* (W) — H*T(W) is zero.

Itis very likely that the diffeomorphism type of the filling is unique for any Liouville
domain V, or at least the homotopy type is unique. However, this requires better ways
to probe homotopy groups of the filling, hence we end the paper by asking the following
question.

Question 4.8 Is there a Floer theoretic interpretation of homotopy groups? In partic-
ular, is it true that wp (W) — m (Y) are independent of exact fillings for any Liouville
domain V and k > 1? What can we say about the Whitehead product on wi,(W).
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