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Abstract

Advancement of imaging techniques enables consecutive image sequences to be acquired for quality monitoring of manufactur-
ing production lines. Registration for these image sequences is essential for in-line pattern inspection and metrology, e.g., in the
printing process of flexible electronics. However, conventional image registration algorithms cannot produce accurate results
when the images contain duplicate and deformable patterns in the manufacturing process. Such a failure originates from the fact
that the conventional algorithms only use spatial and pixel intensity information for registration. Considering the nature of
temporal continuity of the product images, in this paper, we propose a closed-loop feedback registration algorithm. The algorithm
leverages the temporal and spatial relationships of the consecutive images for fast, accurate, and robust point matching. The
experimental results show that our algorithm finds about 100% more matching point pairs with a lower root mean squared error
and reduces up to 86.5% of the running time compared to other state-of-the-art outlier removal algorithms.

Keywords feedback registration - image sequence registration - point pattern matching (PPM) - scale-invariant feature transform

(SIFT)

1 Introduction

Image registration is a process of transforming two or more
images into a single coordinate system. It is a fundamental
step in many image processing and computer vision tasks,
such as biomedical image diagnosis [1], super-resolution [2],
3-D reconstruction [3], motion tracking [4], image retrieval
[5], and action recognition [6]. Designing and developing an
accurate, effective, and robust image registration algorithm is
critical for these tasks because the registration results have a
significant impact on the quality of the follow-up data pro-
cessing steps.

Over the past decades, many image registration algorithms
were proposed; these algorithms can be categorized into area-
based methods [7, 8] and feature-based methods [9—12].
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Area-based methods, sometimes called correlation-like
methods, take the pre-defined, fixed-size image patch or even
the entire image as the reference and compare it with the target
image through a specific similarity measurement. After locat-
ing the most similar position on the target image, the corre-
sponding position pair between the reference and the target is
created. However, there are several limitations of the area-
based registration methods. First, the image patch, commonly
defined as the rectangular window, suits the registration of
images that are locally deformed by a translation transforma-
tion. If the images are deformed by more complex transfor-
mations, the image patch cannot capture these complex trans-
formations. Second, if the target images contain too many
similar and deformable patterns, the pre-defined reference
patch cannot locate the most similar position because many
positions of the similar patterns will have indistinguishable
similarities with the reference patch. Third, if the entire image
is the reference, the area-based method will suffer from high
computational complexity.

Compared to the area-based methods, feature-based
methods are more robust to handle complex image distortions.
They also require less computational work than the full image
correlation-like methods. Conventional feature-based registra-
tion algorithms mainly include five steps. First, interest points
are detected at distinctive locations in both the reference and
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the target images. The interest points can be corners [13],
blobs [9], saddles [12], etc. Second, a certain region around
every interest point is represented by a feature descriptor —
typically an n x 1 vector (e.g., SIFT [9], SURF [10],
BRIEF [11]). Third, the feature vectors are matched between
the reference and the target images based on the distance of
the feature vectors (e.g., Mahalanobis distance, spectral angu-
lar distance (SAD), and Euclidean distance). Fourth, a trans-
formation model can be estimated based on the point-to-point
matching result. Finally, the transformation model is imple-
mented on the target image. Moreover, the non-integer coor-
dinates of the transformed target image can be interpolated
appropriately. However, the feature-based methods still suffer
from the lack of accuracy if the reference and the target images
have too many similar and deformable patterns.

In [7], a correlation-based matching algorithm was pro-
posed. The authors demonstrated that the inclusion of period-
icity information in registration and matching can significant-
ly improve the accuracy and robustness of the image registra-
tion. Inspired by the periodicity registration algorithm, we
believe the registration accuracy and speed can be improved
by taking advantage of the continuous spatiotemporal infor-
mation between consecutive images and the speed stability of
the moving target. However, few of the feature-based methods
used the periodicity information.

Therefore, we propose a feature-based closed-loop feed-
back registration algorithm that will include the continuity of
consecutive images and smoothness of the target motion. The
first novelty of the proposed algorithm takes advantage of the
preliminary spatiotemporal information of the consecutive im-
age sequence. We generate a coarse translation model to guide
the feature matching process instead of using the statistical
model-based outlier removal methods. This approach can ex-
pedite the feature matching by reducing the computation com-
plexity from O(n?) to O(n).

The second novelty of the proposed algorithm im-
proves the accuracy of the coarse translation model with
the closed-loop feedback process. Consequently, this
coarse-to-fine closed-loop feedback registration method
expedites the matching computation and improves the
matching accuracy and robustness in the whole registra-
tion process.

Our proposed algorithm consists of three steps. First, we
implement a feature detector and descriptor (both convention-
al and deep-learning-based feature detectors and descriptors
are included in the experiments) to locate and represent the
interest points in all images. Second, we implement the
closed-loop feedback algorithm to match the interest points
between each pair of the reference and the target images in a
consecutive image sequence. Third, we stitch the series of the
consecutive images using both direct linear transformation
(DLT) and As-Projective-As-Possible (APAP) [14]
transformation.
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2 Related work

The related work of feature-based methods is reviewed ac-
cording to the five steps of the image registration process.
Researchers have optimized interest point detection methods
for various situations. In [13], a gradient-based method was
adopted to find corners. The corners, named Harris corners,
are detected by the second-moment matrix or second-order
auto-correlation matrix. However, Harris corners are very sen-
sitive to the variation of image scales. In addition to corners,
blob feature detectors are also adopted in many applications.
In [9], Lowe introduced the SIFT detector to find blob features
by the difference of Gaussian (DoG). Similar to SIFT, in [10],
the SURF detector was introduced to find both corner and
blob features.

Researchers designed various descriptors to keep the fea-
ture vectors distinctive and robust to many irregularities in-
cluding, noise, detection errors, and geometric and photomet-
ric deformations. SIFT [9] is one of the most widely used
gradient-based feature descriptors. SIFT descriptor constructs
a gradient histogram in a local region to account for each
feature. A 128-dimension vector is then created by assigning
a Gaussian weighting function to each detected point. SURF
[10] is another popular gradient-based local feature descriptor
that uses the Haar Wavelet response for assigning an orienta-
tion histogram to represent features. SURF also improves the
speed of the feature detection and description in SIFT.
Moreover, the faster hamming distance, rather than
Euclidean distance, was used for feature matching. BRIEF
[11] uses binary strings as the descriptors with the hamming
distance metric. It is a binary string descriptor that obtains
individual bits by comparing the intensities of paired points
in the feature patch. ORB [15] descriptor is an extension of
BRIEF that created the oriented BRIEF features and expedited
their computation. Recently, researchers have deployed a
deep-learning method for end-to-end feature detection and
description. SuperPoint [16] is a self-supervised interest point
detector and descriptor. The authors have presented a fully-
convolutional neural network architecture for interest point
detection and description trained using a self-supervised do-
main adaptation framework called Homographic Adaptation.
They claimed SuperPoint [16] performs similarly to SIFT de-
tector and descriptor.

Researchers have optimized other distance measurement
metrics. The m,,-dissimilarity measure had been recently pro-
posed in [17] which is suitable to measure the data dependen-
cy similarity. Unlike /,-norm distance (Euclidean being /»-
norm), m,-dissimilarity considers the relative positions of
the two vectors with respect to the remaining data.

Unfortunately, these feature matching methods produce
many incorrect matches when the pair of images contain a
large number of similar features, such as the repeated regular
printed patterns (grid-based images) in manufacturing [7]. To
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eliminate the incorrect matching points in the third step of the
registration task, statistical model-based methods using geo-
metric constraints are commonly used. The most popular
method is random sample consensus (RANSAC) [18], which
has several extensions, such as MAGSAC++ [19]. These
methods adopt a hypothesize-and-verify approach that at-
tempts to find the best parametric model under their defined
regulations. Nevertheless, these statistical model-based
methods increase running time and perform unstably due to
random sampling. In [20], an Iterative Scale-Invariant Feature
Transform (ISIFT)-based registration algorithm was pro-
posed. The authors continuously updated the matched point
pairs between the sensed image and the reference image until
an optimized transformation model was found. However, this
method is time-consuming because of the large iterative opti-
mization involved. Alternatively, end-to-end matching algo-
rithms using deep-learning were proposed by some re-
searchers. SuperGlue [21] deployed a neural network that
matches two sets of local features by jointly finding corre-
spondences and rejecting non-matchable points. Compared
to traditional, hand-designed heuristics, the technique learns
priors over geometric transformations and regularities of the
3D world through end-to-end training from image pairs.
LoFTR [22] is another end-to-end deep-learning-based image
feature matching algorithm. The authors used self and cross
attention layers in Transformer [23] to obtain feature descrip-
tors that are conditioned on both images.

Furthermore, some researchers attempted to take advantage
of'the prior information in their specific situations for accurate
registration. In [7], a constellation matching algorithm was
proposed using the Normalized Cross-correlation (NCC).
The author used the preliminary spatial and pattern informa-
tion of the images to achieve an accurate matching result.
However, the templates for detecting interest points are need-
ed and the initial reference point should be accurately paired at
the beginning of the matching algorithm.

Finally, given the optimized matching point pairs, an
image stitching algorithm is commonly adopted. The most
straightforward method is to align images by estimating
the 2-D projective warps. Parameterized by the 3 x 3
homography, the 2-D projective warps are justified in
[24] if the scene is planar or if the views differ only by
rotation. In practice, these viewing conditions may not be
fully satisfied as the projective model can wrongly char-
acterize the warp and thus cause misalignments or ghost-
ing effects. To solve this problem, the APAP stitching
method was proposed in [14] by constructing better align-
ment functions. The strategy of this method is to utilize
the local projective models based on the locations of the
images rather than using the global projective transforma-
tion model. This method can significantly reduce align-
ment errors while maintaining the overall geometric
plausibility.

3 Proposed algorithm

Given the initial speed v, of the moving target (e.g., the
moving web in Fig. 1) with insignificant image deformation,
for any image frame at time ¢, t > 0, the moving distance
between two consecutive frames can provide an approximate
translation model of the image sequence as a prior registration
at time ¢. Furthermore, the moving distance between the first
frame and the second frame (¢ = 0 and 1 = Af) can be obtained
by d; = voAt, where At represents the time interval of two
consecutive frames, and the moving distances d;, i > 1, can
be estimated by the previous moving distances, d; — 1. Then,
the feature vectors could be matched by the guidance through
the prior registration, which differs from the global search for
all vectors spanning the entirety of the image. Next, based on
the matching result at time ¢, a revised translation model can
be fed into the next matching task at time ¢ + At. Figure 2
shows the workflow of the system. Taking a series of frames
as input, a constellation prediction model is created first; given
the prior registration result, the point pattern matching (PPM)
module can optimize the local registration and feed the regis-
tration result to the next matching task. In the following sec-
tions, we will detail each step of our registration algorithm.

3.1 2-D translation estimation

Assume there is a global 2-D transformation between every
two consecutive images [24]. Given any two consecutive im-
ages image; — | and imagey, in a sequence of n images, for 1
< k < n, we can transform all the pixels in image; from its
coordinate system into the coordinate system of image; — ;.
The image transformation can be represented as:

1271 = Tproj(k) ']ka (1)

Fig. 1 Experimental setup
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Fig. 2 Workflow of Closed-loop
Feedback Registration System

Frame(t)

where / i’l and [, represent image,, respectively in the coor-
dinates of image;, — | and imagey. T,,,/k) represents the 2-D
projective transformation matrix between image, - | and
imagey. Therefore, given [, in the coordinate system of
imagey, [ ,1{ can be represented by:

k
I = I Tproj (i) - Lk (2)

For a manufacturing process, like roll-to-roll printing in
Fig. 1, the product target is typically controlled to move uni-
directionally. We define the moving direction as the x axis.
Note that there is insignificant offset or motion variation in the
y and z axes due to the vibration or dynamics of the roll-to-roll
process. Readers can refer to Appendix A for more details of
the vibration analysis of our roll-to-roll printing system. Given
the setting speed of the moving conveyor (v(m/s)), the frame
rate of the camera (f{(1/s)), and the pixel scale of the images
(d(m/pixel)), we can approximately calculate the transforma-
tion between two consecutive images along the x-axis.
Figure 3 shows an example of the image acquisition process.
For any frame at time ¢, > 0, the moving distance (pixels)
between two consecutive images, Ax, can be presented as:

v
Ax = 3
Fa 3)
=
)
[on
3
®]
=
>
= .
o s
g Ax«|}
6’ .................
=)
'l-___'__i Current frame
v {'__.'_-i Previous frame

Fig. 3 An example of the image acquisition process
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Given a sufficiently fast frame rate, we can estimate the
global projective transformation model using a simpler trans-
lation model because the consecutive images in the short time
interval will only have a significant offset in the x axis.
Therefore, 7,,,; in Eq. (2) can be simplified by the translation
transformation matrix 7}, wWhich can be expressed as:

hit hiy hiz 1 0 Ax
Tpraj = h21 hzz h23 —>Thas = |10 1 0 (4)
h3t hyp 1 0 0 1

However, errors will be introduced in the estimated trans-
formation due to the ignorance of offsets in y and z axes in Eq.
(4). Substituting this simplified transformation matrix of Eq.
(4) and its offset errors into Eq. (2), / ,1( can be derived by:

I} = lé[l [T yyans (i) + Error(i)] - Iy, (5)

where T,,,,(i) represents the "™ estimated translation matrix.
Error(i) represents the offset error in the i estimation.
Equation (5) indicates that the errors will be accumulated in
each transformation estimation. We will present the error cor-
rection process using a feedback loop in the next section.

3.2 Closed-loop feedback matching

The calculation in Section 3.1 involves the estimation of the
global 2-D transformation between images. A follow-up algo-
rithm for seeking the 2-D transformation matrices in Egs. (2)
and (5) usually starts with searching for the point correspon-
dences between the reference and the target images.
Conventional feature point matching methods generally
compare the similarity of the feature vectors between the ref-
erence and the target images. Without loss of generality,
image; — | and image;, where 1| < i < n, can be used respec-
tively for the reference and the target images taken from a
consecutive image sequence { image,, "**, image,}.
Assuming that m and »n interest points are respectively detect-
ed in image; — | and image;,, the positions of the interest points
are stored inthe m x 2 matrix P, ~ ;andn x 2matrix P.. V; _
1 represents the matrix of the feature vectors for image; —
where each row of V; _ | corresponds to each point position of
P; _ . Likewise, V; represents the matrix of feature vectors for
image;. The similarity between feature vectorsin V; _ ; and V;
can be computed using a certain distance metric (e.g.,
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Euclidean distance), which indicates whether the reference
feature vectors match the target feature vectors. Take the first
row of V; _ 1, V; _ 1(1) as an example, to find a match for V; _
1(1), the distances between V; _ (1) and all rows of V; must
be calculated. The matching row vector in V; for V; _ (1)
should have the minimum distance and be below a certain
threshold. However, this matching method misses the global
temporal and spatial continuity between the consecutive im-
ages. Moreover, it incurs a high computation complexity of
O(n®), where n represents the number of interest points. To
improve the accuracy and speed of the PPM matching meth-
od, we can take advantage of the translation model in
Section 3.1. Given the translation model 7,.,,(i) in Eq. (4),
we can easily derive the corresponding point position P’; _
for point position P; _ |, (by)

P/ifl = Tﬁltrans(i)Pifl, (6)

where P'; _ | represents the estimated locations of all the
detected interest points in image; — | shown in the coordinate
system of image;, and T~ L ans(i) is the inverse matrix of
Tyans(i). Each position in P'; _ ; is an estimated position of
its matching point in P;. To find the matching points between
image; and image; _ 1, only a small range around the positions
of P'; _ | needs to be considered. In other words, most of the
interest points in image; outside the small range can be excluded.
In summary, the matching point P{k;) in image; for an interest
point P; _ (j;) in image; — | can be found by (note that V; _ 1,V;
respectively represent feature vectors of P; — 1,P)):

Pj(k)EPi(c) :
Pi(kn) = {Vilk) = argmin(|Vi(k)-Via (7)l) ¢ (7)
OIVi(k)~Vis ()| <THR)

L Pi(c) : Py(c)cPin
PI(C){ (Pi(c)eRange(r) of P'i41(j1)) }’ o

where P;(c) represents all candidate points in the range of 7;
THR represents the distance threshold to match two feature
vectors; argmin() represents the feature vector that has the
minimum distance.

Figure 4 illustrates the proposed matching algorithm. P; _
1(1) represents an interest point found in image; — 1; P'; — 1(1)
represents the corresponding position of P; — (1) in the co-
ordinate system of image;; r represents the small searching
range which we will calculate subsequently. In the example
shown in Fig. 4, the P; _ (1) has only two possible matching
point candidates, P{c;) or P{c,), which means only 2 itera-
tions of comparison are needed. Therefore, the computation
complexity is reduced to O(n).

Given the matching point from the algorithm in Fig. 4, the
average Ax and Ay of all the matching pairs can be calculated,
creating a more accurate translation model to feed back to the
constellation prediction module. Furthermore, in a roll-to-roll
manufacturing process, the vibration in the z axis is far more
insignificant (< 387 nm) compared to the main x moving di-
rection (mm scale), and the y moving direction (mm scale),
which is caused by the misalignment of the roller. Readers can
refer to the Appendix A for more details. Therefore, the accu-
mulating errors in Eq. (5) can be resolved by the feedback
process. Meanwhile, a global transformation model could be
easily derived by the direct linear transformation (DLT)
method.

Moreover, when the global transformation model is inade-
quate, usually caused by the local deformation of the images,
the APAP stitching algorithm [14] can be adopted for the
creation of panoramas. We will present both DLT and
APAP experimental results in Section 4. Figure 5 shows the
pseudo-code of the proposed registration algorithm. While the
complexity of the proposed matching algorithm has been re-
duced to O(n), its calculation can be further expedited for real-
time applications. Instead of using loops for matching each
element of P;(K) with P; _ {(j) as shown in Fig. 5,
vectorization of the feature matrices can be adopted for the
sum of squared differences (SSD) calculation. Vectorization
further enhances the SSD calculation from O(#n) to O(1). The
matching speed will be evaluated in Section 4. Readers can
refer to Appendix B for more details of vectorization.

3.3 Setting the small searching range

In Section 3.2, we presented that our matching algorithm only
searches for a small neighborhood range » around P'; — ((j). In

Fig. 4 An example of the
proposed matching process

Pi_1(1)
\

13 — . P C
Py =T ltrans(l)Pi—l l( 1)

P{_ (1)—*Pi(c;

Image;_4

Image;
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Fig. 5 Closed-loop feedback

Algorithm 1: Closed-loop registration

registration algorithm for
consecutive image sequences

Input: a sequence of images to be registered, imageg to imagey, Ax
between the first two images

Output: The sequence of matching points pairs { My, Mo, -+, My},
the stitched panorama

N

Initialization: Ay + 0,7+ 1
while i < k do

3 detect and represent features V;_q1, P;_1 in 2mage;—1 and V;, P;
in 2mage;
4 j+1
5 while j < length(V;—1) do
6 use equation (7) to find Pi’_l(j)
7 use equation (8) to find P;(c)
8 Match each element of P;(c) with P;_1(7)
9 if find a best match P;(k) € P;(c) then
10 ’ add pair [P;—1(j), Pi(k)] into M;
11 end
12 j—j+1
13 end
14 save M;
15 update Az and Ay
16 1+—i+1

17 end

18 create panorama based on {My, My, -+, M}

this section, we define the small range » in our roll-to-roll
printing system, by analyzing the image deformations caused
by the distortion of the flexible web, the web vibration, and the
uncertainty of the web speed. The speed uncertainty in the
moving direction plays the most important role in image de-
formation because our prior study in [25] demonstrated that
the uncertainty of the web moving speed can be £10 % - v
which is much larger compared to the vibration and distortion
of the web. Therefore, » should be defined mainly by the
uncertainties in the moving direction (x direction in Fig. 1).
First, 7 should be easily calculated if the speed range of the
moving web is known. For example, in [25], the linear motion
speed is controlled by PID controllers with variations less than
10%, so our range r, according to Eq. (3), should be defined as,

v(1 £ 10%)—v
J-d

However, this range is calculated based on extremes. This
range could be reduced in non-hypothetical scenarios.
Assume the motion speed v presents with truncated normal
distribution [26] and the corresponding probability density
function (PDF) is shown in:

Ax
- 9)

1/}(/1'7 0—7 a? b? x)

o(p, %)
=\ (w07 6)~®(u,0%;a)
0

ifa<x<b. (10)

otherwise
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In Eq. (10), x is a random variable with mean p, standard
deviation o, and lies within the interval [a, b], with— o < a
< b < . For the application of our roll-to-roll printing sys-
tem, the bounds @ and b are set at 0.9v and 1.1v respectively,
while ;1 and o represent the mean and standard deviation of
the motion speedv. In most engineering applications, covering
95% of the data should be sufficient, which means a smaller
range r could be derived according to certain web speed sta-
tistical parameters p, and o. Second, if the speed range of the
moving target is unknown while the initial movement Ax;
between first and second images is known, » can be estimated
experimentally. Third, if the initial movement Ax; is also un-
known, the first image pair of the image sequence must be
registered using any of the classical registration methods to get
the prior registration result of the image sequence. Then, Ax;
can be calculated from this initial image pair, and r can be
estimated experimentally as the second scenario.

4 Experimental results

In this section, we evaluate the performance of our closed-
loop registration algorithm using real-world data. The detailed
experiments based on the synthetic data are shown in
Appendix C. All these registration algorithms are evaluated
in the MATLAB 2020a and Python 3.7 environment with
Intel(R) Core (TM) i9-10980HK CPU @ 2.4 GHz, RTX
2080 Super with Max-Q Design GPU laptop. VLFeat [27]
library, the source codes from SuperGlue [21], LoFTR [22],
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SuperPoint [16], and MAGSAC++ [19] are comparatively
evaluated in the experiments.

4.1 Experimental setup for real-world moving flexible
targets

To verify our proposed image registration algorithm in a real-
world scenario, we set up experiments on a roll-to-roll print
system (see Fig. 1). The motion of the web along the x-axis
can be controlled. A Pixelink PL-D721 autofocus camera with
a 16 mm autofocus liquid lens was set up to inspect the circuits
printed on the web. The printed patterns on the moving web
are repetitive copper circuits. The motion speed of the web
was set to 0.0127 m/s (0.5 in./s). Since there are only minor
vibrations in the z-axis compared to the motion in the x- axis
(refer to Appendix A), we set a small autofocus range between
38,000—40,000 dB in Pixelink Capture software to speed up
the autofocus processing time [28]. Then, the focused images
were captured at the frame rate of 2 frames per second (fps)
with an image size of 640 x 1024 (pixels)

Two sequences of images are acquired by the Pixelink PL-
D721 autofocus camera for the evaluation of the registration
algorithms in the experiments. We called the datasets
“R2R_Autofocus1” and “R2R_Autofocus2”. R2R_Auto-fo-
cusl contains an entire circuit module. Each image of the
dataset only contains a part of the module. R2R Autofocus2
contains many duplicated circuit modules. Each image of the
dataset can contain more than one module (see Figs. 6 and 8).

4.2 Algorithm comparisons on real-world moving
flexible targets

The performance evaluation experiments include the compar-
ison of SIFT and SuperPoint feature detectors and descriptors;
RANSAC, and MAGSAC++ outlier removal methods; the
state-of-the-art ISIFT, SuperGlue, and LoFTR registration al-
gorithms, and our proposed algorithm.

First, given a pair of images, the VLFeat library [27] is used
to detect and describe SIFT interest points. The pre-trained
SuperPoint model is implemented to detect and describe the
SuperPoint interest points. Then, these two kinds of interest
points are matched in different ways. For SIFT, we deployed
the lowest SSD method, lowest SSD plus outlier removal
methods, ISIFT, and the proposed algorithm respectively.
For SuperPoint, we deployed the lowest SSD method, lowest
SSD plus outlier removal methods, and the proposed algo-
rithm respectively. We also implemented the end-to-end reg-
istration algorithms including LoFTR, LoFTR with outlier
removal methods, and SuperGlue. We used the pre-trained
models provided by their authors for all the deep-learning-
based methods.

Figure 6 shows an example of the matching results of an
image pair in the R2R_Autofocus] dataset using different

methods. More matching examples for the R2R_Autofocus2
dataset are shown in Appendix D. For the SIFT feature detec-
tor and descriptor, Fig. 6a has many false positives because
the image pair has many similar patterns spanning the entirety
of the whole image. Figure 6b, ¢ and d remove the false pos-
itives but also remove some of the true positives. Furthermore,
the results of ISIFT are not consistent in each experiment
because of the iterative RANSAC process. Figure 6e finds
more matching pairs without any false positives. For the
SuperPoint feature detector and descriptor, all the matching
methods perform better than the SIFT feature detector and
descriptor. However, our proposed algorithm finds denser
matching pairs which are beneficial to image stitching when
there exist more local deformations, such as the roll-to-roll
printing process on the flexible substrate. For the end-to-end
matching algorithms, LoFTR finds the greatest quantity of
matching pairs. However, the number of false positives is
greater than the true positives, leading to the failure of both
the RANSAC and MAGSAG++ outlier removal methods.
SuperGlue finds the similar quantity and accurate matching
pairs as our proposed algorithm. Nevertheless, it costs much
more computation time when GPU is unavailable. Readers
can refer to Section 4.3 and Table 4 for the evaluation of
running time. Table 1 shows the numbers of the average
matching point pairs using different registration methods in
the R2R_Autofocus! and R2R _Autofocus2 datasets. We use
SSD to represent the lowest SSD method in Table 1. Our
proposed method finds about twice as many matching point
pairs as other outlier removal methods with a lower root mean
squared error (RMSE) as shown in Table 3. Therefore, the
results in Table 1 are consistent with the results in Fig. 6.

Moreover, in the last two pairs of the consecutive images in
R2R_Autofocusl, we found the matching results from SIFT
with RANSAC and ISIFT are extremely inaccurate, as shown
in (b), (¢), (f), and (g) in Fig. 7. The reason is the same as
LoFTR - there are too many false positive matches in the SIFT
with the lowest SSD registration method in these two image
pairs. RANSAC removes the correct matching point pairs as
outliers because it tends to choose more quantities of the
matching point pairs, which are false-positive matches in the
scenarios in Fig. 7. Furthermore, the ISIFT algorithm itera-
tively refines the RANSAC results based on the maxima of the
mutual information between the image pairs, meaning it en-
counters the same problem as RANSAC. We perform 10 iter-
ations of ISIFT experiments for matching the two image pairs
in Fig. 7 to try to eliminate the random nature of ISIFT as
much as possible. Nevertheless, 9/10 of the experiments fail
to find the correct matching point pairs in Fig. 7. By contrast,
as shown in Fig. 7d and h, our proposed method finds the
correct matching point pairs in both image pairs.

Table 2 shows the initial, average, and standard deviation of
Ax and Ay of the coarse translation models in both datasets.
Using Egs. (3) and (4), we get the initial Ax =—200, Ay=0 pixels
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SIFT detector and descriptor

-

(a) Matching result of SIFT detector and descriptor with lowest
SSD method

(d) Matching result with ISIFT

(e) Matching result of our proposed algorithm using the same SIFT
detector and descriptor

SuperPoint detector and descriptor

(h) Matching result of (f) after MAGSAC++ outlier removal (i) Matching result of our proposed algorithm using the same

SuperPoint detector and descriptor

End-to-end matching methods

(j) Matching results of LoFTR

R =5 i
(1) Matching results of LoFTR after MAGSAC++ outlier removal  (m) Matching results of SuperGlue

Fig. 6 Matching examples in different methods. Dataset: R2R Autofocus]; Methods: SIFT detector and descriptor, SuperPoint detector and descriptor,
End-to-end matching methods
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Closed-loop feedback registration for consecutive images of moving flexible targets

Table 1 Number of matching pairs comparisons of different algorithms
datasets SIFT&SSD SIFT&SSD& SIFT&SSD& ISIFT SIFT&Ours
RANSAC MAGSAC++
R2R_Autofocus1 250.4 126.0 109.3 332 268.9
R2R_Autofocus2 127.9 53.0 43.6 14.9 92.2
SuperPoint&SSD SuperPoint&SSD& RANSAC SuperPoint&SSD& MAGSAC++ SuperPoint&Ours
R2R_Autofocus] 149.2 121.6 72.8 199.0
R2R_Autofocus2 149.8 107.0 73.9 351.1
LoFTR LoFTR&RANSAC LoFTR& MAGSAC++ SuperGlue
R2R_Autofocus1 2390.8 606.1 1970.6 203.7
R2R_Autofocus2 1341.7 261.6 901.1 361.5

in the R2R Autofocus] dataset and Ax =200, Ay=0 pixels in the
R2R_Autofocus2 dataset. Then, the updated Ax and Ay continue
to feed back to the next consecutive registration tasks. Using
Egs. (9), (10), and the standard deviation of the web moving
speed in [25] (refer to Fig. 1), we get the searching range » = 18
pixels as default in the experiments. Then according to Table 2,
we find that the speed of the web is more stable than expected.
Therefore, we further adjusted the small searching range to 10
pixels to accelerate the algorithm for real-time inspection.
Figure 8 shows the panoramas of R2R _Autofocusl. In the
experiments, the SIFT plus lowest SSD with RANSAC and
ISIFT methods have similar matching results, but the SIFT

Second last image pair in R2ZR_Autofocus1

plus lowest SSD with RANSAC method is faster than the
ISIFT method due to the exclusion of the iterative RANSAC
process. Therefore, to evaluate the stitching performance, we
employ both DLT and APARP stitching algorithms based on
the matching results from the SIFT plus lowest SSD with the
RANSAC method and the proposed method. Figure 8a shows
the panorama stitching results using the DLT stitching algo-
rithm. SIFT plus lowest SSD with RANSAC matching results
are shown on the left side of Fig. 8a. The proposed matching
results are shown on the right side of Fig. 8a. Figure 8b shows
the panorama stitching results using the APAP stitching algo-
rithm. SIFT plus lowest SSD with RANSAC matching results

Last image pair in R2R_Autofocusl

(6) The proosed matching algorithn;l

t?h)The prosed matching algoritﬁin

Fig. 7 Tllustration of the matching results of the last two image pairs in R2R _Autofocusl
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Table2  Ax and Ay in closed-loop feedback matching experiments

datasets Initial Ax Ay (pixels) Average Ax Ay (pixels) STD Ax Ay (pixels)

R2R_Autofocusl Ax=-200 Mean(Ax)=—191.07 STD(Ax)=3.42
Ay=0 Mean(Ay)=4.00 STD(Ay)=1.66

R2R_Autofocus2 Ax=200 Mean(Ax)=196.49 STD(Ax)=2.09
Ay=0 Mean(Ay)=—-3.81 STD(Ay)=0.73

are shown on the left side of Fig. 8b. The proposed matching
results are shown on the right side of Fig. 8b. Bundle adjust-
ment [29] is applied during stitching. In each of the matching
results on the left side of both Fig. 8a and b, the matching
correspondences on the bottom section (orange regions in
Fig. 8) have more misalignments and ghosting effects because
of the mismatches in the registration processes as shown in
Fig. 7. Incorrect global projective transformation matrices are
created during DLT stitching, resulting in the ghosting effects
seen on the left side of Fig. 8a and b. Additionally, despite its
attempt to stitch the image pairs both locally and globally, the
APAP stitching still cannot resolve the problem of producing
wildly inaccurate global projective transformation matrices.
Furthermore, in Fig. 8b, the top-left region highlighted in
yellow has an obvious deformation when the APAP stitching
method is implemented. The deformation comes from the lo-
cal transformation matrix that the APAP algorithm finds to
satisfy the matching points around this top-left region. The
reason is that the APAP stitching algorithm tries to find many
local transformation matrices according to the local matching
correspondence results in certain regions. If an arbitrary re-
gion has too many false-positive matching point pairs, the

(a) Panoramas creation by DLT stitching.
Left: SIFT&RANSAC; right: our algorithm.

local transformation matrix of this region will be inaccurate,
causing deformations during stitching.

However, on the right side of both Fig. 8a and b, the
stitching results are much better when compared to the left.
The panoramas on the right side lack any ghosting effects or
obvious deformations. The results prove that the proposed
registration algorithm finds more accurate matching corre-
spondences than the SIFT plus lowest SSD with the
RANSAC method.

To further quantify the matching accuracy, we compute the
RMSE:s of different registration methods. To make a fair com-
parison, we only choose the image pairs that have more than
30 matched points and are not completely inaccurate matches.
In DLT stitching, the global projective homographic transfor-
mation 7},,,(k) is implemented on all the matching points in
image;. Similarly, for the APAP stitching method, the local
projective homographic transformation /4, [14] is implement-
ed. Table 3 shows the RMSE results for the chosen image
pairs in the R2R_Autofocus! dataset. On average, the pro-
posed matching results have 28% less RMSE than the SIFT
plus lowest SSD with the RANSAC method, 9% less RMSE
than SuperPoint with RANSAC method, and 5% less RMSE

(b) Panoramas creation by APAP stitching.
Left: SIFT&RANSAC; right: our algorithm.

Fig. 8 The panoramas of R2R_Autofocusl created by SIFT with RANSAC and the proposed algorithm
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Table 3 RMSE of the matching results

R2R_Autofocusl SIFT + Lowest SSD+ SIFT + SIFT + Lowest SSD+ SIFT + SuperPoint + Lowest SuperPoint +  SuperGlue
RANSAC + DLT Ours + RANSAC + APAP Ours + SSD+RANSAC + DLT Ours+DLT +DLT

DLT APAP

34 3.8358 3.1808 3.8640 3.1045 2.9049 2.8615 3.0416

4-5 3.7027 2.5773 3.6501 2.5767 3.9486 3.8304 3.7857

5-6 2.4984 24012 2.5543 2.5368 4.4701 42202 4.2298

67 2.7962 2.0037 2.8162 2.0343 4.1590 3.8247 3.9592

7-8 4.4075 22133 4.4666 2.1878 3.8258 2.8206 3.4080

than the SuperGlue method, which proves our closed-loop
registration algorithm performs better in these experiments.

4.3 Running time evaluation on real-world moving
flexible targets

In addition to accuracy, the fast speed of the registration meth-
od is essential for the real-time inspection and monitoring of
manufacturing processes. In Section 3.2 and Appendix B, we
propose a vectorization method to expedite the proposed
matching algorithm. To evaluate the efficiency of the pro-
posed algorithm, different methods are implemented for the
registration of both R2R_Autofocusl and R2R Autofocus2
datasets for comparison. Table 4 shows the average process-
ing time per frame in different matching algorithms with the
conventional local feature detectors and descriptors, as well as
the deep-learning-based SuperPoint feature detector and de-
scriptor. To make fair comparisons, we extracted and saved
SuperPoint results as “mat” files of all images from the Python

source code, and matched the image pairs in the same
MATLAB environment as SIFT.

For the conventional local feature detectors and descrip-
tors, the average processing time of the non-vectorization
and the vectorization implementations of each method is dem-
onstrated on the left side and right side of the top part of
Table 4, respectively. The non-vectorization results on the left
side indicate the total floating-point operations (FLOPs) of
each method. Our closed-loop feedback matching algorithm
has the least FLOPs in all three detectors and descriptors.
Particularly in the ORB detector and descriptor, the speed of
our algorithm is five times faster than the lowest SSD
matching method, and six times faster than the lowest SSD
plus the RANSAC outlier removal method. This is because
the ORB detector finds far more interest points than SIFT and
SURF while our proposed algorithm removes many of these
points as outliers efficiently. The vectorization results show
that all the registration methods are expedited from
vectorization. In the SIFT and SURF detectors and

Table 4  Average running time comparisons of different matching algorithms

Running time of conventional detectors and descriptors (seconds)
Without vectorization
R2R_Autofocus1

SIFT + Lowest SSD 1.58
SIFT + Lowest SSD+RANSAC 221
SIFT + Ours 0.77
SURF + Lowest SSD 0.41
SURF + Lowest SSD+RANSAC 1.16
SURF + Ours 0.26
ORB + Lowest SSD 25.82
ORB + Lowest SSD+RANSAC 27.01
ORB + Ours 5.87
ISIFT 143.69

Running time of deep-learning-based detectors and descriptors (seconds)
R2R_Autofocusl

CPU
SuperPoint Extraction 3.05
SuperPoint + Lowest SSD 3.05
SuperPoint + SSD+RANSAC 3.52
SuperPoint + Ours 3.05
LoFTR 12.71
SuperGlue 3.52

R2R_Autofocus2
1.32
1.51
0.50
0.38
0.81
0.22
29.97
34.64
6.82
66.85

GPU
0.10
0.11
0.57
0.11
0.37
0.13

With vectorization

R2R_Autofocusl
0.26
0.58
0.25
0.07
0.52
0.07
0.65
1.57
0.62
143.83

R 2R_Autofocus2
CPU

3.04

3.04

353

3.04

11.38

3.85

R2R_Autofocus2
0.22
0.51
0.22
0.07
0.45
0.07
1.01
2.46
0.88
63.37

GPU
0.10
0.11
0.59
0.11
0.33
0.13
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descriptors, our algorithm is as fast as the lowest SSD
matching method, yet much more accurate. In the ORB detec-
tor and descriptor, our algorithm is even faster than the lowest
SSD matching method due to a large number of interest
points. Furthermore, the time cost of the RANSAC outlier
removal process dominates the total running time in the
vectorization implementation because RANSAC cannot be
expedited with vectorization. The ISIFT results show that
the time cost from ISIFT is lengthy both with vectorization
and without vectorization. The reason for this is that the iter-
ative RANSAC process dominates the total running time in
ISIFT.

For SuperPoint feature detectors and descriptors, the aver-
age processing time using CPU and GPU of each method is
demonstrated in the bottom part of Table 4, respectively. The
SuperPoint extraction time in the first line represents the time
cost of finding all the interest points in each image pair using
the pre-trained SuperPoint model. In the bottom part of
Table 4, all the methods except LoOFTR are based on the in-
terest points found by SuperPoint. Our proposed method still
performs the fastest, as well as the lowest SSD method.
Furthermore, the computation time using CPU is much slower
than using GPU. Therefore, for the deep-learning-based fea-
ture detector and descriptor, parallel computing hardware is
needed for real-time applications. Overall, the experimental
running time results show that the proposed algorithm is more
efficient than the other registration algorithms.

5 Conclusion

In this study, a closed-loop feedback image registration algo-
rithm is proposed. The algorithm involves two modules,
namely the constellation prediction module and the PPM
module. In the first module, a coarse translation transforma-
tion model is created using the spatiotemporal information of
the consecutive image sequence. In the second module, the
coarse translation transformation model is optimized to obtain
an accurate point-to-point matching result. The accurate
matching results keep feeding back into the first module to
fine-tune the next coarse translation transformation model. By
taking advantage of the spatiotemporal information of the
consecutive image sequence, the proposed image registration
algorithm demonstrates higher speed and accuracy when the
conventional local feature detectors and descriptors such as
SIFT, SURF, and ORB are applied. It finds about 100% more
matching point pairs with a lower RMSE, and reduces up to
86.5% of the running time compared to other state-of-the-art
outlier removal algorithms. The proposed image registration
algorithm achieves higher speed when the deep-learning-
based feature detector and descriptor SuperPoint are applied.
It finds similar number of matching point pairs with a lower
RMSE compared to the end-to-end registration algorithm

@ Springer

SuperGlue. The end-to-end registration algorithm LoFTR
finds more matching point pairs than the proposed algorithm,
however, most of them are false positives. The experiments on
both simulation and real-world data show promising results
for the registration of moving flexible targets. Our algorithm
can accurately match more keypoint correspondences and
achieve a better panorama than other registration algorithms.
Additionally, the running complexity of the keypoint
matching process is reduced from O(n*) to O(n) and further
accelerated up to 0.07 seconds per image pair using
vectorization in MATLAB 2020a environment. Overall, our
proposed closed-loop feedback registration algorithm
achieves better accuracy and efficiency compared to other
state-of-the-art algorithms.

The proposed algorithm has the following limitations.
First, the algorithm requires accurate prior knowledge, e.g.,
the coarse movement between each image pair. Any wrong
prior knowledge will badly affect the performance of the al-
gorithm. Second, we only deploy the translation coarse model
for the prior registration. There are different application sce-
narios of the coarse models. We leave it to our future work.

6 Future work

We will extend our prior registration model from the unidirec-
tional transformation model to translation in both x and y
directions, scaling, rotation, and mixed transformation
models. Additionally, the proposed visual inspection system
can be applied to the control of the roll-to-roll flexible elec-
tronics printing system. The speed and position of the moving
web can be adjusted by the feedback data from the registration
results to guarantee the quality of the products on the
manufacturing line.

The Pixelink PL-D721 autofocus camera with a 16 mm
autofocus liquid lens can only get as fast as 2 frames per
second which is the speed bottleneck of the registration pro-
cess. Advanced auto-focus algorithms [30] will be included in
the future for real-time inline inspection.

Appendix 1: The vibration measurement
in the z-direction of the roll-to-roll printing
system

Figure 9 shows the setup of the roll-to-roll printing system in
our lab. The displacement sensor is installed for inspecting the
distance between the sensor and the web. Figure 10 shows the
80-second data acquired by the sensor. The maximum dis-
placement in the z-direction is only 387 nm which can be
neglected compared to the mm-scale displacements in the x
and y directions.
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Fig. 9 Roll-to-roll printing system setup

Appendix 2: Expedition of matching
algorithm for real-time applications

While the complexity of the proposed matching algorithm has
been improved up to O(n) in Section 3.2, its calculation can be
further expedited for real-time applications. Instead of using
loops for matching each element of P{K) with P; _ (j) as
shown in Fig. 11a and b, vectorized feature matrices multipli-
cation can be adopted for the SSD calculation.

The SSD of two vectors, e.g., V; - 1(j) and V,(k) can be
calculated by:

SSDyi = X(Vir (j)-Vilk)), (11)

where )'is the summation operator. However, calculating
SSD;; for all combinational vector pairs in series using loops
will be time-consuming. In the following, we attempt to

2250

parallelize the calculation by vectorization. Mathematically,
Eq. (11) can be expressed as:

SSDj, = >Vi (J)2 + ZVi(k)27

2. Vifl (]) X Vi(k)T, (12)

where Vi(k)" denotes the transpose of Vi(k). Expanding Eq.
(12) from one-to-one SSD into m % n SSDs (meaning there
are m features in V; _ | and n features in V;),we can calculate
all the SSDs between V; _ | and V; (by)

SSD =3 Vi x [L 1], (1 11, T

rows Ixm

x Y (Vvi)2. v x v/, (13)

columns

where the element at the /” row and ™ column of SSD can be
denoted by SSD;;. The total FLOPs of Eqs. (11) and (13) are
similar. However, the SSD calculation time will be signifi-
cantly reduced after applying the vectorization in Eq. (13),
because by taking advantage of the parallel computing capa-
bility of multi-core CPUs or GPUs, matrix multiplication
using Eq. (13) is inherently faster than the computation in
sequential loops using Eq. (11). Such a vectorization calcula-
tion can improve the speed of SSD calculation from O(n) to
O(1). The running speed was evaluated in Section 4. Figure 11
shows the comparison of the two methods. Figure 11a shows
the loop implementation of the feature matching algorithm.
Figure 11b shows the SSD calculation process of (a).
Figure 11c shows the vectorization implementation of the fea-
ture matching algorithm. Figure 11d shows the SSD calcula-
tion process of (c). As an example, the dimensions of all the
feature vectors are set to 1 x 128.

2200 7
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Fig. 10 The measurement of displacement in z-direction in the roll-to-roll printing system
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Algorithm 2: Loop Feature Matching Algorithm

Input:
Output: all the matching pairs M;
1 Initialization: [ < length(V;_1), j + 1 M; + empty
2 while j </ do
// Vi(c) comes from P;(c)

3 calculate Dj, the sum of absolute differences (SSD) between

Vi_1(j) and V;(e)

4 find Dj(k), the minimum SSD of D
5 if D;(k) < threshold then

6 ‘ add pair [P;—1(j). P;(k)] into M;
7 end

8 end

Vi_1, P;_, from image;_, and V;, P; from image;

Vi1 Vi
1x128 1x128
1x128 1x128
1x128 .
m features - . n features
. -
- 1x128

(a) Loop feature matching method

(b) SSD calculation process of loop matching

Vi v,

Algorithm 3: Vectorization Feature Matching Algorithm

Input: V;_;,P;_, in image;_; and V;, P; in image;
Output: all the matching pairs M;
Initialization: [ + length(Vi_q). j + 1 M; + empty
while j </ do

find P;(¢) for each P;—1(j)

save it into /L

I SR L

end

5 implement equation (11) to find SSD

// for 1\",T4" and V;_q x
on each c¢ calculated above, set other values into NaN

find SSDJ'T“'"4 the minimum values in each row of SSD

8 while j </ do

9 if SSD;""‘ < threshold then

VT parts, only calculate related values based

-

10 k = inde ,:'1SSD;"i")

11 add pair [P;_;(j). Pi(k)] into M;
12 end

13 end

128x%n

D Wy

columns
1% n

1 = 1)

m columns

Vig v,
mxn

x[1 1 - 1]

mx1
a1 - 1]
n columns

e

2x |mx128| x 128xn

xn

(c) Vectorization feature matching method

(d) SSD calculation process of vectorization matching

Fig. 11 Comparisons of the loop and the vectorization matching implementations, (a) Loop feature matching method, (b) SSD calculation process of
loop matching, (¢) Vectorization feature matching method, (d) SSD calculation process of vectorization matching

Appendix 3: More experimental results
on simulation data

Simulation data experiments

In this sub-section, we evaluate the performance of our closed-
loop feedback registration algorithm with synthetic images.
Consecutive repetitive and regular printed patterns are com-
monly encountered in real-world flexible electronics
manufacturing due to the nature of printing, e.g., roll-to-roll
printing. To simulate the images in the real-world production
line of such repetitive and regular grid-based patterns, three
synthetic image datasets are created. Each of the three datasets
contains twenty images with a size of 400 x 400 pixels with
their own unique basic grid patterns. The first dataset consists
of squares with a side length of 41 pixels, the second dataset
consists of circles with a radius of 20 pixels, and the last
dataset consists of hexagons with a radius of 20 pixels. All
these patterns are deformed randomly by affine transformation
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locally. Meanwhile, each image is corrupted by Gaussian-
blurring-filtering with a mask size of 7 x 7, salt and pepper
noise of density of 0.05, and white Gaussian noise of variance
0f 0.02. We use a distortion factor to define the level of local
affine deformation, i.e., the greater the distortion factor is, the
broader the random translation, rotation, scaling, and shear
ranges are (readers can check the source code in [31] for more
details). Figure 12 shows an example of the three datasets. For
each image in the three synthetic datasets, the center positions
of all the deformed patterns are saved as the ground truth when
the image is created. To simulate the production lines in the
real-world scenario, we set the movement between every two
consecutive images (see the red arrows in Fig. 14). The mov-
ing speed of each dataset is dx = dy = 60 pixels/frame, i.c.,
the distance between every two undistorted pattern’s centers.

To evaluate the performance of the proposed algorithm,
three feature-based algorithms are implemented. Each of the
SIFT, SURF, and ORB detectors and descriptors are used on a
sequence of grid-based images to detect and describe the
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Fig. 12 An example of the three
synthetic datasets. (a) without
deformation. (b) with
deformation, distortion factor =
3.0

(a) The original grid-based images

(b) The deformed grid-based i

interest points. Then, these interest points are matched through
the four methods described below. In the first matching meth-
od, we implement the lowest SSD method directly. In the
second method, the RANSAC outlier removal algorithm is
applied to optimize the matching results in the first method.
In the third method (if SIFT detector and descriptor are
adopted), a new variant of SIFT, ISIFT [20] is implemented.
ISIFT iteratively optimizes the results of RANSAC based on
mutual information and shows higher registration accuracy
than SIFT in remote sensing images. In the fourth method,
the proposed closed-loop feedback matching method is imple-
mented. An example of the matching results is shown in
Fig. 13. In Fig. 13, all of the results are based on SIFT detector
and descriptor. The results of SURF and ORB detectors and
descriptors are shown in next sub-section. From Fig. 13a-c,
we can see both the traditional and the state-of-the-art feature-
based matching algorithms failed to find the correct corre-
spondences between two grid-based images. The reason is
that these algorithms ignore the smooth motion of the moving
target and continuous spatiotemporal information in the con-
secutive image sequence, and thus cannot discriminate similar
grid patterns. However, as shown in Fig. 13d, taking advan-
tage of the prior registration results, our proposed closed-loop
feedback matching algorithm has better accuracy and
abundancy in the matching correspondences.

To further quantify the matching accuracy of the proposed
algorithm, we first use the average Euclidean distances be-
tween the detected centers (we define the detected centers as
the correspondences located inside the range of 5 pixels of the

mages with distortion fact 3.0

ground-truth centers) and the ground-truth centers to measure
the detected center errors. Then, we also define the detected
center ratio, which is the ratio of the number of the detected
centers to the number of the ground-truth correspondences.
Based on the moving speed (dx = dy = 60 pixels/frame in
our experiment), the ground-truth centers of two consecutive
images can be easily matched which can be defined as the
ground-truth correspondences. Finally, to quantify the accura-
cy of all the detected matching correspondences (centers and
non-centers), we compute the respective RMSE using:

RMSE(R) = 232 Tyes®) - PP, (19

where P, _ (i) and Py (i) represent the coordinates of the i
matching point pair in image; — | and imagey. T,,.,(k) can be
calculated using the ground-truth correspondences and the
DLT method. Using Eq. (14), we can transform the matching
points in image,, into the coordinate system of image;, - | and
then calculate the average L* distance of all the matching pairs
in the coordinates of image; — . Figure 14a shows an exam-
ple of the ground-truth correspondences. Figure 14b shows
the matching result of the same image pair using the SURF
detector and descriptor with our closed-loop feedback
matching algorithm. The small black circles are the detected
pattern centers of this image pair.

Figure 15 shows the quantitative errors from all three syn-
thetic datasets. The horizontal axes are the distortion factors,
the vertical axes on the left (blue color) are the RMSE errors,
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(b) Matching results after RANSAC outlier removal
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(a) Matching results of feature vectors acquired by SIFT detector and descriptor
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(d) Matching results of our proposed algorithm using the same SIFT detector and descriptor

Fig. 13 Comparisons of matching results based on SIFT detector and descriptor (a) Matching with lowest SSD (b) optimizing (a) with RANSAC outlier
removal algorithm (¢) Matching with ISIFT algorithm (d) Matching with the proposed closed-loop feedback matching algorithm

and the vertical axes on the right (red color) are the detected
center ratios. Given different distortion factors, the blue lines
are the average detected center errors, the green lines are the
average RMSE of all the detected correspondences, and the
red lines are the average detected center ratios. Figure 15a

shows the errors using the SIFT detector and descriptor and
our matching algorithm, Fig. 15b shows the errors using
SURF detector and descriptor and our matching algorithm,
and Fig. 15c shows the errors using the ORB detector and
descriptor and our matching algorithm. The detected center
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(a) Ground-truth correspondences

Fig. 14 Matching correspondences comparison, the red arrows represent
the moving direction of the simulated production line (a) Ground-truth
correspondences calculated by the moving speed and the center positions
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(b) correspondences calculated by SURF and our matching
algorithm

of the patterns (b) Matching results calculated by SURF detector and
descriptor and our closed-loop feedback matching algorithm
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Fig. 15 Quantitative errors of our proposed algorithm on deformed grid-based images
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(a) Matching results of feature vectors acquired by ORB detector and descriptor (distortion factor = 0.1)
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(b) Matching results of feature vectors acquired by SURF detector and descriptor (distortion factor = 0.1)

(a) Matching results of feature vectors acquired by ORB detector and descriptor (distortion factor = 0.5)
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Fig. 16 The matching results of our algorithm using ORB and SURF detectors and descriptors (distortion factor = 0.1)

(b) Matching results of feature vectors acquired by SURF detector and descriptor (distortion factor = 0.5)

L& & X X & J
(X = & & X
aoe68e
o000
| & = = & R

(a) Matching results of feature vectors acquired by ORB detector and descriptor (distortion factor = 1.0)
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Fig. 17 The matching results of our algorithm using ORB and SURF detectors and descriptors (distortion factor = 0.5)

(b) Matching results of feature vectors acquired by SURF detector and descriptor (distortion factor = 1.0)
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Fig. 18 The matching results of our algorithm using ORB and SURF detectors and descriptors (distortion factor = 1.0)
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(b) Matching results of feature vectors acquired by SURF detector and descriptor (distortion factor = 2.0)

Fig. 19 The matching results of our algorithm using ORB and SURF detectors and descriptors (distortion factor = 2.0)

errors of all three detectors and descriptors are less than 2
pixels. That proves our matching algorithm can locate the
distorted pattern centers accurately. Meanwhile, the SURF
detector finds the most centers and keeps the detected cen-
ter ratio stable when the distortion factor even increases up
to 2.0. The SIFT detector finds fewer centers than SURF
and the detected center ratio decreases when the distortion
factor increases. The pattern centers on the edges are par-
tially missed which can be seen from Fig. 14b. It is because
that the DoG detector in the SURF and SIFT algorithms is
not stable on the borders of the images due to the zero-
padding for the Gaussian blurring process. The ORB de-
tector finds more centers in the circle pattern dataset, fewer
in the hexagon pattern dataset, and the least in the square
pattern dataset. It is because that the ORB detector is more
sensitive to corners than the centers of the pattern in the
hexagon and square pattern datasets. Furthermore, com-
pared to the other methods mentioned before, our closed-
loop feedback matching algorithm successfully finds

correct correspondences in the highly distorted (distortion
factor up to 2.0) image sequences. Using the SIFT and
SURF detectors and descriptors, the RMSEs are less than
3.5 pixels even though the distortion factor is up to 2.0.
Using the ORB detector and descriptor, the RMSE is a
little higher than SIFT and SURF, which is less than §
pixels. It is because that the SIFT and SURF descriptors
are more robust to noise due to the longer feature vectors.
However, the local distortions cannot be simply represent-
ed by a projective transformation matrix (7,,,,(k), and cal-
culated by the ground-truth centers using Eq. (14)).
Therefore, the RMSEs of the closed-loop feedback
matching algorithm are acceptable.

More experiment results

Figure 16, 17, 18 and 19 show the matching results of our
algorithm using ORB and SURF detectors and descriptors.
They are mostly consistent as SIFT (Fig. 13d).

g e B A2

§ sl

-~ 5.

(a) Matching example of our proposed algorithm using the SURF detector and descriptor
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(b) Matching example of our proposed algorithm using the ORB detector and descriptor

Fig. 20 The matching results of our algorithm using ORB and SURF detectors and descriptors
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(b) Matching example of the end-to-end registration algorithm LoFTR

(a) Matching example of the end-to-end registration algorithm SuperGlue

Fig. 21 The matching results of end-to-end registration algorithms SuperGlue and LoFTR on the R2R_Autofocus2 dataset

Appendix 4: More experiment results
on real-world moving flexible targets

Implementing the proposed algorithm, Fig. 20 shows the
matching examples with ORB and SURF detectors and de-
scriptors in R2R_Autofocus1 and R2R Autofocus2 datasets.
Figure 21 shows the matching results of the two deep-
learning-based end-to-end registration algorithms SuperGlue
and LoFTR on R2R _Autofocus2 dataset.
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