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ABSTRACT. In this paper, we give a necessary and sufficient condition for a graphical
strip in the Heisenberg group H to be area-minimizing in the slab {−1 < x < 1}. We show
that our condition is necessary by introducing a family of deformations of graphical strips
based on varying a vertical curve. We show that it is sufficient by showing that strips
satisfying the condition have monotone epigraphs. We use this condition to show that any
area-minimizing ruled entire intrinsic graph in the Heisenberg group is a vertical plane
and to find a boundary curve that admits uncountably many fillings by area-minimizing
surfaces.

1. INTRODUCTION

Bernstein’s theorem states that an entire area-minimizing codimension–1 graph in Rn

is a plane when n ⩽ 8. Analogues of Bernstein’s theorem hold for many classes of surfaces
in the Heisenberg group H. For example, area-minimizing intrinsic graphs of entire
C 2 functions are vertical planes [BASCV07], as are area-minimizing intrinsic graphs of
entire C 1 functions [GR15] and locally Lipschitz functions [NSC19]. The problem of
determining which classes of graphs satisfy an analogue of Bernstein’s theorem is known
as the Bernstein problem; for a survey of the Bernstein problem in H, see [SCV20]. A key
difficulty in proving analogues of Bernstein’s theorem in H is finding appropriate classes
of variations of surfaces. In this paper, we introduce new variations of ruled surfaces and
use them to solve the Bernstein problem for ruled entire intrinsic graphs.

We briefly recall some terminology. Let H be the three-dimensional Heisenberg group;
we identify H with R3 and give it the multiplication

(x, y, z) · (x ′, y ′, z ′) =
(︃

x +x ′, y + y ′, z + z ′+ x y ′− y x ′

2

)︃
. (1)

Let X = (1,0,0), Y = (0,1,0), and Z = (0,0,1); since a nilpotent Lie group can be identified
with its Lie algebra via the exponential map, we also refer to the corresponding left-
invariant vector fields as X(x,y,z) = (1,0,− y

2 ), Y(x,y,z) = (0,1, x
2 ), and Z(x,y,z) = (0,0,1). These

fields generate 1–parameter subgroups and we denote the elements of these subgroups
by X t = (t ,0,0), Y t = (0, t ,0), and Z t = (0,0, t) for t ∈ R. Let V0 = {(x,0, z) ∈ H} be the
xz–plane. For a subset U ⊂V0 and a function f : U →R, we define the intrinsic graph of
f to be the set

Γ f = {uY f (u) : u ∈U }.

If U =V0, we call f an entire intrinsic graph. There is a corresponding intrinsic projection
Π : H→V0 given by Π(p) = pY −y(p), where y(p) is the y–coordinate of p.
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For any p ∈ H, we call the plane spanned by Xp and Yp at p the horizontal plane
centered at p. Let A= {(x, y,0) : x, y ∈R} be the horizontal plane centered at 0. For any
p ∈H and any v ∈A, let 〈v〉 be the span of v ; this is a one-parameter subgroup of H and
we call the coset p〈v〉 a horizontal line.

One of the main steps in the proofs of the analogues of Bernstein’s theorem for C 2, C 1,
and Lipschitz graphs is to calculate the first variation of the area and show that a graph
that is area-stationary (i.e., a critical point of the area) is a ruled surface. A ruled surface
in H is a surface Σ⊂H that can be written as a union of horizontal line segments (rulings)
with endpoints in ∂Σ. One then calculates the second variation of the area of Σ and
shows that if Σ is a ruled entire intrinsic graph which is area-stable (i.e., a second-order
minimum of area), then Σ is a vertical plane.

This approach works well for surfaces that are smooth or regular with respect to the
Riemannian structure on H, but there are important classes of surfaces in H that are
regular with respect to the sub-Riemannian structure but not the Riemannian structure.
Once such class is defined in terms of the intrinsic gradient. Given a continuous function
f : U →R, we define ∇ f to be the vector field ∇ f = X − f Z on U . This is the push-forward
of X under the intrinsic projection from Γ f to V0, i.e., ∇ f = (Π|Γ f )∗(X ). When f is C 1,

we can define the intrinsic gradient of f as ∇ f f ; when f is merely C 0, one can define
∇ f f distributionally (see Section 2). If ∇ f f can be represented by a continuous function,
we say that f is of class C 1

H
or f ∈ C 1

H
(U ). We call the intrinsic graphs of C 1

H
functions

C 1
H

graphs. These are important examples of regular surfaces; that is, they are the level
sets of functions φ such that the horizontal gradient ∇Hφ= (Xφ,Y φ) is continuous and
nonvanishing.

The C 1
H

condition bounds how quickly f varies in the horizontal direction, but f
can vary very rapidly in non-horizontal directions. For example, Kirchheim and Serra
Cassano constructed C 1

H
graphs that have Hausdorff dimension 2.5 with respect to the

Euclidean metric [KSC04]. This makes it difficult to apply standard variational methods
to such surfaces, because perturbing a C 1

H
graph generally changes the set of horizontal

directions. Indeed, a perturbation of a C 1
H

graph need not be C 1
H

, and may even have
infinite perimeter.

This even affects relatively simple graphs, like the broken plane depicted in Figure 1.
For u ⩾ 0, the broken plane BPu is a surface made up of two vertical half-planes with
slope ±u (the slope of a vertical half-plane is the slope of its projection to the x y–plane)
connected by two wedges in the x y–plane. For any u, there is a function b : V0 →R such
that Γb = BPu and b is intrinsic Lipschitz, that is, ∥∇bb∥∞ ⩽ u. This bounds how quickly
b varies in horizontal directions, but b can still vary rapidly in vertical directions. In
particular, ∂z b goes to infinity near 0, so if f ∈C∞

c (V0) is nonzero at 0, then

∇b+ f [b + f ] = (X − (b + f )Z )b +∇b+ f f =∇bb − f ∂z b +∇b+ f f .

Since ∇bb and ∇b+ f f are bounded, this goes to infinity near 0, which means that b+ f is
not intrinsic Lipschitz. This makes it difficult to decrease the area of BPu by a smooth
deformation. Indeed, Nicolussi Golo and Serra Cassano showed [NSC19] that BPu is area-
stable in the sense that ∂ε[area(Γb+ε f )] = 0 and ∂2

ε[area(Γb+ε f )] ⩾ 0 for any f ∈ C∞
c (V0)

and asked whether BPu is area-minimizing.
One approach to questions like this is to consider variations of surfaces through

intrinsic Lipschitz graphs. For example, [Gol18] and [You20] studied variations through
contact diffeomorphisms. These variations preserve the horizontal distribution on H

and send intrinsic Lipschitz graphs to intrinsic Lipschitz graphs, but there are many
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FIGURE 1. The left figure shows the broken plane BP1 ⊂H, which is
made up of two half-planes connected by two wedges. (See Section 4 for
the definition of BPu .) While the half-planes are foliated by horizontal
lines, the horizontal lines that make up the wedges all intersect at the
origin. The right figures show the projection of the horizontal lines
in BP1 to the abelianization A and the projection along cosets of 〈Y 〉
to the xz–plane V0. Horizontal lines project to parabolas in V0; the
two half planes project to two families of parallel parabolas, while the
wedges project to a family of parabolas through 0.

examples of surfaces that are area-stable with respect to contact variations but not
smooth variations; Nicolussi Golo [Gol18] showed, for instance, that every ruled C 1

H

graph is area-stable with respect to contact variations.
The issue is that there are too few contact variations to recognize area-minimizing

surfaces. Because contact variations preserve the horizontal distribution, they send
horizontal curves to horizontal curves and do not affect the horizontal connectivity of a
surface. That is, if f : H→H is a contact diffeomorphism and p and q are connected by a
horizontal curve in Σ, then f (p) and f (q) are connected by a horizontal curve in f (Σ).
Consequently, a surface that is area-minimizing with respect to contact variations can
still have competitors with smaller area but different horizontal connectivity. Indeed,
Figure 2 shows examples of competitors for BPu with smaller area, but with a different
pattern of horizontal curves. Finding a family of variations of non-smooth surfaces in H

that is rich enough to recognize area-minimizing surfaces would be an important step in
the study of perimeter-minimizers in H.

In this paper, we introduce a family of variations of ruled surfaces and use it to
characterize area-minimizing graphical strips. A graphical strip is an intrinsic graph
that is ruled by horizontal lines through the z–axis (see Section 3). For example, the
broken plane BPu is a graphical strip. Previous work with graphical strips, for instance
[NSC19], [GR15], and [DGNP09], mostly focused on the case of entire graphical strips,
showing that, under some regularity conditions, an entire area-minimizing graphical
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strip is a vertical plane. Here, we will consider the case of graphical strips with boundary,
especially graphical strips that project to a vertical strip in V0.

We prove the following. Let K = {(x,0, z) ∈ V0 : −1 ⩽ x ⩽ 1} and let U = {(x, y, z) ∈
H : −1 < x < 1}. Let Σ be a graphical strip over K . Then Σ is an intrinsic graph, so we
can define its epigraph Σ+ (Section 2.3). We say that Σ is area-minimizing in U if Σ+ is
perimeter-minimizing in U .

Theorem 1.1. Let Σ be a graphical strip over K . Then Σ is area-minimizing in U if and
only if there is a function σ : R→R such that −2 ⩽ σ(t )−σ(s)

t−s < 2 for all s < t and

Σ= ⋃︂
z∈R

[(−1,−σ(z), z), (1,σ(z), z)], (2)

where [p1, p2] denotes the line segment from p1 to p2.
In particular, if Σ is area-minimizing, then there is exactly one ruling of Σ through any

point on the z–axis. Therefore, BPu is not area-minimizing for u > 0.

When there are s < t such that σ(t )−σ(s)
t−s ⩾ 2, the surface Σ is not an intrinsic graph.

When σ′(t ) =−2 for all t , Σ is area-minimizing, but it is one of uncountably many area-
minimizing surfaces with the same boundary.

Theorem 1.2. Let γ= {(−1,2z, z) : z ∈R}∪ {(1,−2z, z) : z ∈R}. Any two points (−1,2z1, z1)
and (1,−2z2, z2) are connected by a horizontal line. Let ρ : R→R be a surjective continuous
increasing function and let

Σρ = ⋃︂
z∈R

[(−1,2z, z), (1,−2ρ(z),ρ(z))].

Then Σρ is an area-minimizing surface with ∂Σρ = γ.

Pauls gave an example of a closed curve that admits two different fillings by ruled
surfaces in [Pau04], showing that the Heisenberg minimal surface equation with Dirichlet
boundary conditions can have multiple solutions, but the ruled surfaces he constructed
are not area-minimizing [CHY07].

The proof of Theorem 1.1 relies on constructing deformations of graphical strips
through piecewise-ruled surfaces and computing the second variation of the area under
such deformations (Proposition 3.5). We construct these deformations as follows. Since
Σ is an intrinsic graph over K which is symmetric around the z–axis, the boundary of
Σ consists of two intrinsic graphs Xγα and X −1γ−α, where α : R→R is continuous and
γα := {(0, y, z) : y =α(z)} is the graph of α in the y z–plane.

Cutting Σ along the z–axis produces two symmetric halves, one bounded by 〈Z 〉 and
Xγα and one bounded by 〈Z 〉 and X −1γ−α. Given a function τ ∈ C∞

c (R), we construct
a surface Sα,τ consisting of two ruled surfaces, one bounded by γτ and Xγα and one
bounded by γτ and X −1γ−α. In Section 3, we prove Theorem 1.1 by expanding areaSα,λτ

to second order in λ.
In Sections 4–5, we apply Theorem 1.1 to show that Bernstein’s theorem holds for the

class of ruled intrinsic graphs.

Theorem 1.3. An entire area-minimizing ruled intrinsic graph in H is a vertical plane.

We prove Theorem 1.3 by showing that if Γ is a ruled intrinsic graph, then its scaling
limit is a plane or a broken plane (Section 4). Scaling limits of perimeter-minimizing sets
are perimeter-minimizing (Section 5), so if Γ satisfies Theorem 1.3, then its scaling limit
is a plane. It then follows that Γ itself is a plane.
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FIGURE 2. Conjectured area-minimizing (top) and energy-minimizing
(bottom) competitors for BP1. (See Section 7 for full definitions.) The
figures on the right are the projections to A and V0. For clarity, the
projections to A only show the top half of each surface. Black lines on
the surfaces correspond to thick lines in the projections; the dots mark
the images of vertical black lines.

Finally, in Section 6, we prove Theorem 1.2, and in Section 7 we construct conjectural
area-minimizing and energy-minimizing competitors for BPu , seen in Figure 2. These
competitors are each made up of two Z –graphs (graphs of an equation z = f (x, y)); one
can show numerically that these surfaces have smaller area than BPu , but we do not
know whether they minimize the area or the energy.
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The question of finding the broadest class of surfaces in H that satisfies Bernstein’s
theorem remains open. It is known that intrinsic Lipschitz graphs do not satisfy Bern-
stein’s theorem; there are many area-minimizing entire intrinsic Lipschitz graphs that are
not vertical planes. These can be highly singular; the first example of such a graph had a
singularity along the x–axis [Pau06], and the examples in [NGR20] can be chosen to have
a characteristic set (the set of points where the tangent plane to the surface is horizontal)
whose closure has positive measure. In these examples, however, the surface fails to be
C 1

H
near the singularities, so the Bernstein problem for C 1

H
graphs is an open question.

Remark 1.4. The 3D models used in the figures in this paper can be found in .obj format
in the supplementary material for this paper. These files can be opened in Preview on
Macs, Paint 3D on Windows, or any 3D modeling program. They can also be found at
https://cims.nyu.edu/~ryoung/ruledBernstein/.

Acknowledgments: This material is based upon work supported by the National Science
Foundation under Grant Nos. 2005609 and 1926686 and research done while the author
was a visiting member at the Institute of Advanced Study. The author would like to thank
Sebastiano Nicolussi Golo, Manuel Ritoré, Richard Schwartz, and the anonymous referee
for their time and advice during the preparation of this paper and to thank the Institute
of Advanced Study for its hospitality.

2. PRELIMINARIES AND NOTATION

2.1. The Heisenberg group. The Heisenberg group H is the 3–dimensional simply con-
nected Lie group with Lie algebra

h := 〈X ,Y , Z : [X ,Y ] = Z , [X , Z ] = [Y , Z ] = 0〉.
We identify H with h via the Baker–Campbell–Hausdorff formula, i.e., H= 〈X ,Y , Z 〉 ∼=R3

and

(x, y, z) · (x ′, y ′, z ′) =
(︃

x +x ′, y + y ′, z + z ′+ x y ′− y x ′

2

)︃
.

We use X , Y , and Z to denote the coordinate vectors of R3 and the corresponding left-
invariant fields X(x,y,z) = (1,0,− y

2 ), Y(x,y,z) = (0,1, x
2 ), and Z(x,y,z) = (0,0,1). Let x, y, z : H→

R be the coordinate functions of H. Every vector v ∈ H generates a one-parameter
subgroup of H; we write 〈v〉 =Rv for this subgroup and define v t = t v for all t ∈R.

We equip H with the Korányi norm ∥(x, y, z)∥Kor = 4
√︁

(x2 + y2)2 + z2 and the corre-
sponding left-invariant distance d(p, q) = ∥p−1q∥Kor. For a,b ∈ R∖ {0}, let sa,b be the
automorphism sa,b(x, y, z) = (ax,by, abz). We call automorphisms of the form st ,t ,
t > 0 scaling automorphisms; these satisfy ∥st ,t (p)∥Kor = t∥p∥Kor and d(st ,t (p), st ,t (q)) =
td(p, q). For p ∈H and r > 0, let B(p,r ) := {q ∈H : d(p, q) < r } be the open ball of radius r
around p. The tangent planes spanned by X and Y are called the horizontal distribution,
and vectors in the horizontal distribution are called horizontal vectors. A curve γ : I →H

whose coordinates are Lipschitz and such that γ′(t ) is a horizontal vector for almost every
t is called a horizontal curve.

2.2. The perimeter measure. The sub-Riemannian perimeter of a measurable subset
E ⊂H on an open set Ω⊂H is given by

PerE (Ω) = sup

{︃ˆ
E

divH(aX +bY )dη : a,b ∈C∞
c (Ω), a2 +b2 ⩽ 1

}︃
,

where the horizontal divergence divH is defined by divH(aX +bY ) = X a +Y b and η is
Lebesgue measure on H. This perimeter was introduced in [FSSC01] as a Heisenberg

https://cims.nyu.edu/~ryoung/ruledBernstein/
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analogue of perimeter in Euclidean space. If PerE (B(0,r )) <∞ for every r > 0, we say that
E has locally finite perimeter. The perimeter is lower semicontinuous, i.e., if E1,E2, . . .
have locally finite perimeter and 1Ei converges locally in L1 to 1E , then E has locally
finite perimeter and PerE (Ω) ⩽ liminfi→∞ PerEi (Ω) [FSSC01, 2.12].

Let E △ F := (E ∖ F )∪ (F ∖ E) be the symmetric difference operator. For E ⊂ H a
measurable set and Ω⊂H an open set, we say that E is a perimeter minimizer in Ω if for
every r > 0 and every measurable F ⊂H such that satisfies E △F ⋐B(0,r )∩Ω, we have
PerE (B(0,r )∩Ω) ⩽ PerF (B(0,r )∩Ω).

2.3. Intrinsic graphs and intrinsic gradient. For any U ⊂V0 and any function f : U →R,
we define Γ f = {uY f (u) : u ∈U } to be the intrinsic graph of f and Γ+

f = {uY t : t > f (u)} to

be the epigraph of f . The intrinsic graph Γ f is parametrized by the function Ψ f : U →H,

Ψ f (u) = uY f (u). In coordinates,

Γ f =
{︃(︃

x, f (x,0, z), z + 1

2
x f (x,0, z)

)︃
: (x,0, z) ∈U

}︃
.

We define Π(p) = pY −y(p),

Π(x, y, z) =
(︂
x,0, z − x y

2

)︂
,

to be the intrinsic projection from H to V0, so that Π◦Ψ f = idU .
Let ∇ f be the vector field ∇ f = X − f Z = (Π|Γ f )∗(X ) on U . We call this the intrinsic

gradient; we are particularly interested in ∇ f f , which determines the tangent plane to Γ f .
The derivative ∇ f f exists when f is C 1, but it can be defined distributionally when f is
merely C 0. If f : V0 →R is continuous, we say that ∇ f f exists in the sense of distributions
if there is a function θ ∈ L∞,loc such that for every ψ ∈C 1

c ,
ˆ

V0

θψdµ=
ˆ

V0

− f ∂xψ+ f 2

2
∂zψdµ,

where µ is Lebesgue measure on V0. If so, we write ∇ f f = θ. When f is C 1, this coincides
with the previous definition. For U an open subset of V0, we define C 1

H
(U ) to be the set of

continuous functions f : U →R such that ∇ f f is represented by a continuous function
on U . This implies that Γ f is a regular surface in the sense of [ASCV06].

One can also define a version of the Lipschitz condition adapted to the Heisenberg
group. For D ⊂ V0, we say that a function f : D → R is intrinsic Lipschitz or that Γ f is
an intrinsic Lipschitz graph if there exists a 0 < λ< 1 such that |y(p)− y(q)| ⩽ λd(p, q)
for all p, q ∈ Γ f . By Theorem 4.29 of [FSSC11], if U is an open set and f : U → R is an
intrinsic Lipschitz function, then f satisfies an intrinsic version of Rademacher’s theorem
in the sense that ∇ f f exists in the sense of distributions and ∥∇ f f ∥∞ is bounded by
a function of λ. Conversely, if f ∈ C 0(U ) and ∇ f f ∈ L∞(U ), then f is locally intrinsic
Lipschitz [BCSC15].

Let D ⊂ V0 and let f : D → R be an intrinsic Lipschitz graph. The area formula
[CMPSC14, Thm. 1.6] states that for any bounded open set U ⊂V0,

PerΓ+f
(Π−1(U )) =

ˆ
U

√︂
1+ (∇ f f )2 dµ.

More generally, we define

areaΨ f (W ) :=
ˆ

W

√︂
1+ (∇ f f )2 dµ. (3)
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for any measurable W ⊂ D. For a continuous function f : V0 → R and an open subset
Ω⊂H, we say that Γ f is area-minimizing in Ω if Γ+

f is perimeter-minimizing in Π−1(Ω).

2.4. Horizontal lines and characteristic curves. Let π : H → A, π(x, y, z) = (x, y,0). A
horizontal line is a coset of the form p〈V 〉, where V ∈A. The slope of a horizontal line L
is the slope of π(L), i.e., slope(p〈aX +bY 〉) = b

a .
Let p = (xp , yp , zp ) ∈ H and m ∈ R, and let L = p〈X +mY 〉 be the line of slope m

through p. Let λ(t ) = p(X +mY )t−xp parametrize L. Then

Π(λ(x)) =Π
(︁
p(X +mY )x−xp

)︁=Π

(︃
x, yp +m(x −xp ), zp + xp m(x −xp )− yp (x −xp )

2

)︃
=

(︂
x,0, zp − xp yp

2
− yp (x −xp )− m

2
(x −xp )2

)︂
=Π(p)+

(︂
x −xp ,0,−yp (x −xp )− m

2
(x −xp )2

)︂
. (4)

That is, Π(L) is a parabola, and any parabola in V0 is the projection of a unique horizontal
line.

Given an open subset U ⊂V0 and a continuous function f : U →R, the characteristic
curves of Γ f are the integral curves of the vector field ∇ f = X − f Z . By the Peano Existence
Theorem, for every p ∈U , there is a characteristic curve through p, but when f is not
Lipschitz, this curve may not be unique. Note, however, that two characteristic curves
that meet at a point p must have the same tangent vector at p.

The characteristic curves of Γ f are projections of horizontal curves contained in Γ f ; if
f : V0 →R is an intrinsic Lipschitz function and λ : I →V0 is a characteristic curve for Γ f ,
then γ=Ψ f ◦λ is a horizontal curve in Γ f ; conversely, if γ : I → Γ f is a horizontal curve
such that x(γ(t )) = t for all t , then Π◦γ is a characteristic curve.

Recall that if Σ ⊂H is a surface, a ruling of Σ is a horizontal line segment (possibly
infinite) that lies in Σ, with endpoints in ∂Σ. We say that Σ is a ruled surface if every point
of Σ is contained in at least one ruling. Ruled surfaces need not be regular in the sense
of [ASCV06]. For example, the broken plane in Figure 1 is a ruled surface but its tangent
cone at the origin is not a plane.

When an intrinsic graph Γ f is a ruled surface, we can say more about its characteristic
curves. By (4), the projection of any ruling of Γ f is a parabola. If R1 and R2 are distinct
rulings of Γ f such that Π(R1) and Π(R2) intersect at a point p ∈V0, then Π(R1) and Π(R2)
must be tangent at p. It follows that Π(R1) and Π(R2) cannot cross. That is, the following
lemma holds.

Lemma 2.1. Let R1 and R2 be distinct rulings of Γ f . Let gRi : Ii →R be such that Π(Ri ) =
{(x,0, gRi (x)) : x ∈ Ii }. Then gR1 (x) ⩽ gR2 (x) for all x ∈ I1 ∩ I2 or gR1 (x) ⩾ gR2 (x) for all
x ∈ I1 ∩ I2.

3. DEFORMATIONS OF GRAPHICAL STRIPS

Let D ⊂V0. A graphical strip over D is an intrinsic graph Γ f of a continuous function
f : D → R such that Γ f is ruled and every ruling intersects the z–axis. (This definition
differs slightly from the definitions found in [NSC19], [GR15], and [DGNP09], which
assume that f is Lipschitz or C 2 with respect to the Euclidean structure on R2.)

A notable example of a graphical strip is the broken plane illustrated in Figure 1.
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Definition 3.1. Let u ⩾ 0. The broken plane BPu consists of two vertical half-planes of
slope ±u connected by two wedges in the x y–plane. (See Figure 1.) That is,

BPu := {(x,−ux, z) : x ∈R, z ⩾ 0}∪ {(x,ux, z) : x ∈R, z ⩽ 0}∪ {(x, y,0) : |y | ⩽ u|x|}. (5)

As u →∞, this converges to the set

BP∞ := 〈Y , Z 〉∪〈X ,Y 〉
We require u ⩾ 0 so that BPu is an intrinsic graph. The upper half-plane P+

u =
{(x,−ux, z) : x ∈R, z > 0} has projection Π(P+

u ) = {(x,0, z) : z > u
2 x2}, while P−

u = {(x,ux, z) :
x ∈R, z < 0} has projection Π(P−

u ) = {(x,0, z) : z < −u
2 x2}. When 0 ⩽ u <∞, these regions

are disjoint and BPu = Γbu , where

bu(x,0, z) =

⎧⎪⎨⎪⎩
ux z <−u

2 x2

−2z
x |z| ⩽ u

2 x2

−ux z > u
2 x2.

When u < 0, Π(P+
u ) and Π(P−

u ) overlap, so (5) defines a ruled surface, but not an intrinsic
graph.

Since BPu is an intrinsic graph, we can define its epigraph BP+
u = Γ+

bu
. This is the union

of two quadrants in H, one bounded by the x y–plane and the upper half-plane with slope
−u and one bounded by the x y–plane and the lower half-plane with slope u. As u →∞,
these epigraphs converge to the set

BP+
∞ := {(x, y, z) ∈H : xz > 0}.

In this paper, we mainly consider graphical strips Γ over K = {(x,0, z) ∈V0 : −1 ⩽ x ⩽ 1},
in which case Γ is symmetric around the z–axis (i.e., s−1,−1(Γ) = Γ) and Γ is determined
by the intersection Γ∩ {x = 1}. That is,

Γ= ⋃︂
p∈Γ∩{x=1}

[p, s−1,−1(p)],

where [p1, p2] denotes the line segment from p1 to p2.
Let Γ f be a graphical strip over K and let α : R→R, α(w) = f (1,0, w). Then

Γ f ∩ {x = 1} = Xγα,

where γα := {(0,α(z), z) : z ∈R} is the graph of α in the y z–plane, and Γ f = Sα, where

Sα := ⋃︂
w∈R

[︁
X −1 · (0,−α(w), w), X · (0,α(w), w)

]︁
= ⋃︂

w∈R

[︃(︃
−1,−α(w), w + α(w)

2

)︃
,

(︃
1,α(w), w + α(w)

2

)︃]︃
.

For w ∈R, let η(w) := w + α(w)
2 .

For example, for any 0 ⩽ u <∞, BPu ∩Π−1(K ) is a graphical strip over K and BPu ∩Π−1(K ) =
Sα, where

α(z) = bu(1,0, z) =

⎧⎪⎨⎪⎩
u z <−u

2

−2z |z| ⩽ u
2

−u z > u
2 .

In general, for any continuous α : R→R, we can define Sα as above. This is a ruled sur-
face bounded by Xγα and X −1γ−α, but it is not always an intrinsic graph. In Section 3.1,
we will show the following lemma.
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Lemma 3.2. Let Sα be as above. Then Sα is a graphical strip over K if and only if
α(w2)−α(w1)

w2−w1
⩾−2 for all w1 < w2 and η(R) =R.

Note in particular that if Sα is a graphical strip, then η is a non-decreasing function; η
is increasing if and only if the rulings of Sα do not intersect.

The main goal of this section is to prove the following characterization of area-
minimizing graphical strips over K . Let U be the interior of Π−1(K ), i.e., U = {(x, y, z) ∈
H : −1 < x < 1}.

Proposition 3.3. Let Sα be a graphical strip over K . Then Sα is area-minimizing on U if
and only if α(w2)−α(w1)

w2−w1
⩾−1 for all w1 < w2.

By the following lemma, this characterization is equivalent to the characterization in
Theorem 1.1.

Lemma 3.4. Let Sα be a graphical strip over K . Then α(w2)−α(w1)
w2−w1

⩾−1 for all w1 < w2 if

and only if there is a function σ : R→R such that −2 ⩽ σ(z2)−σ(z1)
z2−z1

< 2 for all z1 < z2 and

Sα = ⋃︂
z∈R

[︁
(−1,−σ(z), z), (1,σ(z), z)

]︁
. (6)

We will prove Lemma 3.4 in Section 3.1.

Proof of Theorem 1.1. The first part of the theorem follows from Proposition 3.3 and
Lemma 3.4. For the second part, suppose that Sα is area-minimizing on U , so that it can
be written as in (6). For any z0 ∈R, any horizontal line through Z z0 is contained in the
plane P = {z = z0} ⊂H. The intersection P ∩Sα is the segment [(−1,−σ(z), z), (1,σ(z), z)],
and this segment is the unique ruling through Z z0 . If u > 0, then BPu has infinitely many
different rulings through the origin, so BPu is not area-minimizing. □

There are two main ideas to the proof of Proposition 3.3. First, in Section 3.2, we will
show that a perimeter-minimizing graphical strip satisfies α(w2)−α(w1)

w2−w1
⩾−1 for all w1 <

w2 by defining a family Sα,τ of deformations of Sα. These deformations are parametrized
by functions τ ∈ C∞

c (R). Each surface Sα,τ is a union of a ruled graph over the strip
K + = [0,1]× {0}×R and a ruled graph over the strip K − = [−1,0]× {0}×R, with common
boundary γτ. We will show that the area of these deformations satisfies the following
formula.

Proposition 3.5. Let Sα be a graphical strip over K and suppose that α : R→R is Lipschitz.
Let w1 < w2 be such that η−1(η(wi )) = {wi } and let D = {(x, y, z) ∈ H : η(w1) ⩽ z ⩽

η(w2)}. Let τ ∈ C∞
c ([η(w1),η(w2)]). Then there is a C = C (τ) > 0 such that for all λ ∈

(−C−1,C−1), ⃓⃓
area(D ∩Sα,λτ)−area(D ∩Sα)−λ2 II(τ)

⃓⃓⩽C (w2 −w1)|λ|3, (7)

where

II(τ) =
ˆ ∞

−∞
τ(η(w))2

(1+α(w)2)
3
2

(1+α′(w))dw

In Lemma 3.8, we conclude that if Sα is an area-minimizing graphical strip over K ,
then α(w2)−α(w1)

w2−w1
⩾−1 for all w1 < w2.

Second, in Section 3.3, we show that monotone sets are perimeter-minimizing and
conclude that S+

α is perimeter-minimizing when α(w2)−α(w1)
w2−w1

⩾−1 for all w1 < w2. This
is a consequence of the kinematic formula, which expresses the perimeter of a subset
E ⊂H in terms of an integral over the set of horizontal lines that intersect ∂E . When E is
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monotone, then almost every horizontal line intersects ∂E in at most one point. In this
case, deformations of E increase the number of intersections and thus increase perimeter.
Proposition 3.3 follows immediately from the results of Section 3.2 and Section 3.3.

3.1. Graphical strips. In this section, we prove Lemma 3.2 and Lemma 3.4.

Proof of Lemma 3.2. By construction, every point in Sα is contained in a ruling and every
ruling intersects the z–axis. In order for Sα to be a graphical strip, we need it to be an
intrinsic graph over K .

Let Θ : [−1,1]×R→H, Θ(x, w) = (x, xα(w),η(w)) parametrize Sα and let p : [−1,1]×
R→ K be the map

p(x, w) =Π(Θ(x, w)) =Π
(︁
x, xα(w),η(w)

)︁
=

(︃
x,0,η(w)− α(w)

2
x2

)︃
= (︁

x,0,η(w)(1−x2)+w x2)︁ .

Suppose that η is surjective and α(s)−α(t )
s−t ⩾−2 for all s < t . We claim that p|([−1,1]∖{0})×R

is a homeomorphism. Let hx (w) := z(p(x, w)) = η(w)(1− x2)+w x2. Since η is nonde-
creasing, hx is an increasing surjective function when x ̸= 0. It follows that p|([−1,1]∖{0})×R

is a bijection. For any a and b such that −1 ⩽ a < b < 0 or 0 < a < b ⩽ 1 and any c < d ,

p((a,b)× (c,d)) = {(x,0, z) : x ∈ (a,b), z ∈ (hx (c),hx (d))}

is an open set, so p|([−1,1]∖{0})×R is an open map. Therefore, p restricts to a homeomor-
phism from ([−1,1]∖ {0})×R to K ∖〈Z 〉.

Let q = (q1, q2) := (p|([−1,1]∖{0})×R)−1 : K ∖〈Z 〉→ ([−1,1]∖ {0})×R. For (x, z) ∈ K , let

fα(x, z) :=
{︄

xα(q2(x, z)) x ̸= 0

0 x = 0.
.

Then fα(p(x, w)) = xα(w), so

Ψ fα (p(x, w)) =Π(Θ(x, w))Y xα(w) =Θ(x, w),

and Γ fα = Sα.
We claim that fα is continuous. Since q is continuous, fα is continuous on K ∖〈Z 〉.

Let z ∈R and let w1 < w2 be such that η(w1) < z < η(w2) and let C = maxu∈[w1,w2] |α(u)|.
Let

D = p([−1,1]× [w1, w2]) = {(x,0, z) : x ∈ [−1,1], z ∈ [hx (c),hx (d)]};

this contains a neighborhood of (0,0, z), and if v = (x,0, z) ∈ D, then | fα(v)| ⩽ C x. It
follows that fα is continuous at (0,0, z) for any z ∈R.

Conversely, if there are s < t such that α(s)−α(t )
s−t <−2, then η(t ) < η(s), and there is some

x > 0 such that hx (s) = hx (t). Then p(x, s) = p(x, t), but y(Θ(x, s)) = xα(s) ̸= y(Θ(x, t)).
Therefore, Sα is not an intrinsic graph. Likewise, if η is not surjective, then Π(Sα) is a
strict subset of K . □

Proof of Lemma 3.4. Suppose that α(w2)−α(w1)
w2−w1

⩾ −1 for all s < t . Let η(w) := w + α(w)
2 ;

this is invertible and surjective by our hypothesis on α, and we define σ(z) =α(η−1(z)).
When z = η(w),

[(−1,−α(w),η(w)), (1,α(w),η(w))] = [(−1,−σ(z), z), (1,σ(z), z)],

so
Sα = ⋃︂

z∈R
[(−1,−σ(z), z), (1,σ(z), z)].
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Let z1 < z2. We claim that −2 ⩽ σ(z2)−σ(z1)
z2−z1

< 2. Let wi = η−1(zi ) and ai =α(wi ) =σ(zi ).

Then zi = η(wi ) = wi + ai
2 . Since η is monotone, we have w1 < w2, so

w2 −w1 = z2 − z1 − a2 −a1

2
> 0,

i.e., a2 −a1 < 2(z2 − z1). Furthermore,

a2 −a1

w2 −w1
= α(w2)−α(w1)

w2 −w1
⩾−1,

so

a2 −a1 ⩾ w1 −w2 = z1 − z2 + 1

2
(a2 −a1),

so a2 −a1 ⩾−2(z2 − z1). Therefore, −2 ⩽ σ(z2)−σ(z1)
z2−z1

< 2.
Conversely, suppose that

Sα = ⋃︂
z∈R

[(−1,−σ(z), z), (1,σ(z), z)] (8)

for some σ such that

−2 ⩽ σ(z2)−σ(z1)

z2 − z1
< 2 (9)

for all z1 < z2. We claim that α(w2)−α(w1)
w2−w1

⩾−1 for all w1 < w2.
We have

{(x, y, z) ∈ Sα : x = 1} = {(1,σ(z), z) : z ∈R} = {(1,α(w),η(w)) : w ∈R},

so σ(η(w)) =α(w) for all w ∈R. Let w1 < w2. Since η is nondecreasing, we have η(w1) ⩽
η(w2). In fact η(w1) < η(w2); otherwise, Sα would have two rulings with the same z–
coordinate.

By (9) with z1 = η(w1), z2 = η(w2),

σ
(︁
η(w2)

)︁−σ
(︁
η(w1)

)︁⩾−2
(︁
η(w2)−η(w1)

)︁
α(w2)−α(w1) ⩾−2

(︃
w2 + α(w2)

2
−w1 − α(w1)

2

)︃
2(α(w2)−α(w1)) ⩾−2(w2 −w1),

so α(w2)−α(w1)
w2−w1

⩾−1, as desired. □

3.2. Deforming ruled surfaces. Recall that for any function τ : R→R, we define γτ :=
{(0, y, z) : y = τ(z)} to be the graph of τ in the y z–plane, so that Sα has boundary

∂Sα = X −1γα∪Xγ−α.

In this section, for any sufficiently small τ, we construct a ruled graph Στ,α over K + =
[0,1]× {0}×R with boundary ∂Στ,α = γτ∪Xγα. By gluing two such graphs together, we
obtain a surface

Sα,τ :=Στ,α∪ s−1,−1(Σ−τ,α)

which is a deformation of Sα.
First, we construct Στ,α.

Lemma 3.6. Let α,τ : R→R be continuous functions. Let η(w) := w + α(w)
2 , and suppose

that α(s)−α(t )
s−t ⩾ −2 for all s < t and η(R) = R. Suppose that Lip(τ) < 2. Then there is a

unique ruled graph Στ,α with boundary ∂Στ,α = γτ∪Xγα.
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Proof. We first construct a tilted coordinate system on the y z–plane. Let P ⊂H be the
y z–plane and let Q = Y + Z

2 . Then P = 〈Q, Z 〉. Since Lip(τ) < 2, we can write γτ as a
P–graph. That is, any point Z z Y τ(z) ∈ γτ can be written

Z z Y τ(z) = Z z− τ(z)
2 Pτ(z) = Z ζ(z)Pτ(z) (10)

where ζ(z) := z − τ(z)
2 . Then ζ is invertible, so, letting w = ζ(z),

γτ = {Z w Pτ(ζ−1(w)) : w ∈R}.

Let β(w) := τ(ζ−1(w)).
Let w ∈R and let p = X Z w Y α(w) ∈ Xγα. For any m ∈R,

p · (X +mY )−1 = (1,α(w),η(w))(−1,−m,0)

=
(︃
0,α(w)−m,η(w)+ α(w)−m

2

)︃
= Z η(w)Pα(w)−m , (11)

which lies in γτ if and only if m =α(w)−β(η(w)). In this case,

Z η(w)Pα(w)−m = Z η(w)Pβ(η(w)) (10)= Z ζ−1(η(w))Y τ(ζ−1(η(w))) = Z h(w)Y τ(h(w)),

where h(w) := ζ−1(η(w)). Let

Rw :=
[︂

X Z w Y α(w), Z η(w)Pβ(η(w))
]︂
=

[︂
X Z w Y α(w), Z h(w)Y τ(h(w))

]︂
(12)

be the segment connecting p to γτ. Since η is surjective, every point of γτ is the endpoint
of some such segment. We call the union of these segments

Στ,α :=⋃︂
w

Rw .

This is a surface ruled by the Rw and bounded by γτ and Xγα.
Let δ(w) =α(w)−β(η(w)), let

λw (x) := Z h(w)Y τ(h(w))(X +δ(w)Y )x = X Z w Y α(w)(X +δ(w)Y )x−1

parametrize Rw , and let Θ(x, w) := λw (x) parametrize Στ,α. We claim that Στ,α is an
intrinsic graph.

For each w , there is some quadratic gw such that Π(λw (x)) = (x,0, gw (x)). We have

gw (0) = z(Π(λw (0))) = z(Π(Z h(w)Y τ(h(w)))) = h(w),

gw (1) = z(Π(λw (1))) = z(Π(X Z w Y α(w))) = w,

and g ′′
w (x) =−slopeRw =−δ(w), so

gw (x) = (1−x)h(w)+xw + δ(w)

2
x(1−x).

Then Π(Θ(x, w)) = (x,0, gw (x)). We claim that for every x ∈ (0,1], the map w ↦→ gw (x) is
monotone increasing.

Suppose that there are x0 ∈ (0,1] and w1 < w2 such that gw1 (x0) = gw2 (x0). Let p(x) =
gw2 (x)− gw1 (x). Then p(0) = h(w2)−h(w1) ⩾ 0, p(1) = w2 −w1 > 0, and p ′′(x) = 2c for

all x, where c = δ(w1)−δ(w2)
2 . Since p is quadratic, p(0) ⩾ 0, p(1) > 0, and p(x0) = 0, it has

a minimum at some point r ∈ (0,1) and p(r ) ⩽ 0. Therefore, p(x) = p(r )+ c(x − r )2 and
c > 0.

This implies

h(w2)−h(w1) = p(1) = p(r )+ c(1− r )2.
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Since h is nondecreasing, p(r ) < 0, and r ∈ (0,1),

0 ⩽ h(w2)−h(w1) ⩽ c(1− r )2.

By equation (4), since λw is a line of slope δ(w) through (0,τ(h(w)),h(w)), we can
also write

gw (x) = h(w)−τ(h(w))x − δ(w)

2
x2.

Then g ′
w (0) =−τ(h(w)), and

|τ(h(w2))−τ(h(w1))| = |p ′(0)| = 2c|1− r | > 2c(1− r )2 ⩾ 2|h(w2)−h(w1)|,
which contradicts the assumption that Lip(τ) < 2.

Thus, for every x ∈ (0,1], the map w ↦→ gw (x) is increasing, and the map w ↦→ gw (0) =
h(w) is non-decreasing. Suppose that p, q ∈Στ,α satisfy Π(p) =Π(q). There are x1, x2 ∈
[0,1] and w1, w2 ∈ R such that p = Θ(x1, w1) and q = Θ(x2, w2); since Π(p) = Π(q), we
have x1 = x2. By the above, if x1 ∈ (0,1], then p = q . Otherwise, if x1 = x2 = 0, then p and
q lie on γτ, but Π is injective on γτ, so p = q . Therefore, Π is injective on Στ,α, so Στ,α is
an intrinsic graph. □

Next, we calculate the area of Στ,α using the area formula (3).

Lemma 3.7. Suppose that α is Lipschitz and that Sα is a graphical strip over K . Let
η(w) = w + α(w)

2 , ζ(z) = z − τ(z)
2 , β(w) = τ(ζ−1(w)), and δ(w) =α(w)−β(η(w)) as above.

By Lemma 3.2, α′(w) ⩾−2 for almost every w and η is nondecreasing.
Let

Θ(x, w) := X Z w Y α(w)(X +δ(w)Y )x−1

parametrize Στ,α. Let a < b. Then

areaΘ([0,1]× [a,b]) =
ˆ b

a

√︁
1+δ(w)2

(︃
1+ α′(w)

2

)︃
dw − 1

6

ˆ δ(b)

δ(a)

√︁
1+m2 dm. (13)

Proof. By the area formula,

areaΘ([0,1]× [a,b]) =
ˆ b

a

ˆ 1

0

√︁
1+δ(w)2 · ⃓⃓J [Π◦Θ](x, w)

⃓⃓
dx dw

=
ˆ b

a

√︁
1+δ(w)2 j (w)dw,

where j (w) = ´ 1
0

⃓⃓
J [Π◦Θ](x, w)

⃓⃓
dx.

Each ruling Θ([0,1]× {w}) is a line with slope δ(w) going through X Z w Y α(w). Since
Π(X Z w Y α(w)) = (1,0, w), by (4),

Π(Θ(x, w)) =
(︃

x,0, w −α(w)(x −1)− δ(w)

2
(x −1)2

)︃
Since Π◦Θ is injective, for any x ∈ (0,1), w ↦→ z(Π(Θ(x, w))) must be increasing. Then

J [Π◦Θ](x, w) = 1+ (1−x)α′(w)− (1−x)2

2
δ′(w) ⩾ 0,

and

j (w) =
ˆ 1

0
1+ (1−x)α′(w)− (1−x)2

2
δ′(w)dx = 1+ α′(w)

2
− δ′(w)

6
.
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Therefore,

areaΘ([0,1]× [a,b]) =
ˆ b

a

√︁
1+δ(w)2

(︃
1+ α′(w)

2
− δ′(w)

6

)︃
dw

=
ˆ b

a

ˆ 1

0

√︁
1+δ(w)2

(︃
1+ α′(w)

2

)︃
dw −

ˆ δ(b)

δ(a)

√︁
1+m2 dm,

where we substitute m = δ(w) in the last equality. □

For τ such that Lip(τ) < 2, let

Sα,τ :=Στ,α∪ s−1,−1(Σ−τ,α).

This is a deformation of Sα, and we will use Lemma 3.7 to calculate the second variation
of its area.

Proof of Proposition 3.5. Let λ be small enough that Lip(λτ) < 2, so that Σλτ,α exists. Let

ζλ(z) = z − λτ(z)
2 , let

βλ(w) =λτ(ζ−1
λ (w)),

and let δλ(w) =α(w)−βλ(η(w)), so that

Θλτ,α(x, w) = X Z w Y α(w)(X +δλ(w)Y )x−1

parametrizes Σλτ,α and s−1,−1 ◦Θ−λτ,α parametrizes s−1,−1(Σ−λτ,α). Let

Rw,λ :=Θλτ,α([0,1]× {w}) =
[︂

Z ζ−1
λ

(η(w))Y λτ(ζ−1
λ

(η(w))), X Z w Y α(w)
]︂

.

Let w1 < w2 be such that η−1(η(wi )) = {wi } and let D = {(x, y, z) ∈ H : η(w1) ⩽ z ⩽
η(w2)}. Then for z ̸∈ (η(w1),η(w2)), we have ζλ(z) = z, so ζ−1

λ
(z) = z and

ζ−1
λ ((η(w1),η(w2))) ⊂ (η(w1),η(w2)).

We claim that for any |λ| < 1,

Sα,λτ∩D =Θλτ,α([0,1]× [w1, w2])∪ s−1,−1(Θ−λτ,α([0,1]× [w1, w2])). (14)

It suffices to show that Rw,λ ⊂ D when w ∈ [w1, w2] and Rw,λ∩D =∅ otherwise. The
endpoints of Rw,λ have z–coordinates

z
(︂

Z ζ−1
λ

(η(w))Y λτ(ζ−1
λ

(η(w)))
)︂
= ζ−1

λ (η(w))

and z(X Z w Y α(w)) = η(w). When w ∈ [w1, w2], we have ζ−1
λ

(η(w)) ∈ [η(w1),η(w2)] and
η(w) ∈ [η(w1),η(w2)], so Rw,λ ⊂ D. When w ̸∈ [w1, w2], we have ζ−1

λ
(η(w)) = η(w) ̸∈

[η(w1),η(w2)], so Rw,λ is disjoint from D .
On the other hand, when w ∈ [w1, w2], we have η(w) ∈ [η(w1),η(w2)] and ζ−1

λ
(η(w)) ∈

[η(w1),η(w2)], so both endpoints of Θλτ,α([0,1]×{w}) lie in D . It follows that Θλτ,α(x, w) ∈
D if and only if w ∈ [w1, w2], which shows (14).

Therefore, by Lemma 3.7,

area(Sα,λτ∩D) = areaΘλτ,α([0,1]× [w1, w2])+areaΘ−λτ,α([0,1]× [w1, w2])

=
ˆ w2

w1

(︃√︂
1+δλ(w)2 +

√︂
1+δ−λ(w)2

)︃(︃
1+ α′(w)

2

)︃
dw − 1

3

ˆ δ(w2)

δ(w1)

√︁
1+m2 dm.

It remains to differentiate δλ(w). Let zw (λ) := ζ−1
λ

(w). Then

ζλ(zw (λ)) = zw (λ)− λ

2
τ(zw (λ)) = w.
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We differentiate both sides with respect to λ to find

z ′
w (λ)− 1

2
τ(zw (λ))+ λ

2
τ′(zw (λ))z ′

w (λ) = 0.

Setting λ= 0 and noting that zw (0) = ζ−1
0 (w) = w , we find z ′

w (0) = 1
2τ(w). Likewise, let

bw (λ) :=βλ(w) =λτ(zw (λ)). Then

b′
w (λ) = τ(zw (λ))+λτ′(zw (λ))z ′

w (λ),

so b′
w (0) = τ(t ) and b′′

w (0) = 2τ′(zw (0))z ′
w (0) = τ′(w)τ(w), i.e.,

βλ(w) =λτ(w)+ λ2

2
τ′(w)τ(w)+Oτ(λ3)

for sufficiently small λ, where Oτ(λ3) denotes an error term of magnitude at most C (τ)λ3.
Substituting this into the power series√︁

1+ (b −a)2 =
√︁

1+a2 − a⎷
1+a2

b + 1

2(1+a2)
3
2

b2 +O(b3),

and abbreviating α=α(w), z = η(w), τ= τ(z), dτ
dz = τ′(η(w)), we find√︂

1+ (βλ(η(w))−α(w))2 +
√︂

1+ (β−λ(η(w))−α(w))2

=
√︁

1+α2 − α⎷
1+α2

(︃
λτ+ λ2

2

dτ

dz
τ

)︃
+ (λτ)2

2(1+α2)
3
2

+
√︁

1+α2 − α⎷
1+α2

(︃
−λτ+ λ2

2

dτ

dz
τ

)︃
+ (λτ)2

2(1+α2)
3
2

+Oτ(λ3)

= 2
√︁

1+α2 − α⎷
1+α2

dτ

dz
τλ2 + τ2

(1+α2)
3
2

λ2 +Oτ(λ3).

Substituting this into (13), using the fact that dz
dw = dη

dw = 1+ 1
2

dα
dw , and integrating by

parts we find

area(Sα,λτ∩D)−area(Sα,0 ∩D)

=λ2
ˆ w2

w1

(︄
− α⎷

1+α2
τ

dτ

dz
+ τ2

(1+α2)
3
2

)︄(︃
1+ 1

2

dα

dw

)︃
dw +Oτ(λ3|w2 −w1|)

=λ2
ˆ w2

w1

− α⎷
1+α2

·τ dτ

dz

dz

dw
+ τ2

(1+α2)
3
2

(︃
1+ 1

2

dα

dw

)︃
dw +Oτ(λ3|w2 −w1|)

=λ2
ˆ w2

w1

1

(1+α2)
3
2

dα

dw
· τ

2

2
+ τ2

(1+α2)
3
2

(︃
1+ 1

2

dα

dw

)︃
dw +Oτ(λ3|w2 −w1|)

=λ2
ˆ w2

w1

τ2

(1+α2)
3
2

(︃
1+ dα

dw

)︃
dw +Oτ(λ3|w2 −w1|).

This proves the proposition. □

Though the proposition deals with the case that α is Lipschitz, we can use it to find a
necessary condition for Sα to be perimeter-minimizing in the general case.

Lemma 3.8. Suppose that Sα is a graphical strip over K and Sα is area-minimizing in U .
Then α(w2)−α(w1)

w2−w1
⩾−1 for all w1 < w2.
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Proof. Note that S+
α △ S+

α,λτ
is not compactly contained in U , so Sα,λτ is not a valid

competitor for Sα in U . We fix this by scaling Sα slightly. This also lets us replace α by a
Lipschitz function.

Let Sα be a graphical strip over K and suppose that Sα is perimeter-minimizing in U .
Let ε> 0 and let Ŝ := s1+ε,1+ε(Sα). Then Ŝ is a graphical strip over s1+ε,1+ε(K ), so Ŝ ∩U is
a graphical strip over S. Let f : K → R be the function such that Sα = Γ f . Then Ŝ = Γ f̂ ,

where f̂ : s1+ε,1+ε(K ) →R is the function

f̂ ε(p) = (1+ε) f
(︁
s−1

1+ε,1+ε(p)
)︁

.

Let α̂ε(w) = α̂(w) := f̂ ε(1, w). Then Ŝ ∩U = Sα̂, and Ŝ is perimeter-minimizing in Û :=
s1+ε,1+ε(U ).

We claim that α̂ is Lipschitz. For w ∈R, let pw = X Z w Y α̂(w). Then pw ∈ Ŝ and there is
a ruling R̂w through pw with slope α̂(w). By (4),

Π(R̂w ) = {(x,0, gw (x)) : x ∈ [−1−ε,1+ε]},

where

gw (x) = w − α̂(w)(x −1)− α̂(w)

2
(x −1)2.

Let s < t , so that gs (1) = s < t = g t (1). By Lemma 2.1, gs (x) ⩽ g t (x) for all x ∈ [−1−
ε,1+ε]. Then

g t (0)− gs (0) = t + α̂(t )

2
− s − α̂(s)

2
⩾ 0,

so α̂(t )− α̂(s) ⩾−2(t − s) and

g t (1+ε)− gs (1+ε) = t − s −
(︃
ε+ ε2

2

)︃
(α̂(t )− α̂(s)) ⩾ 0,

i.e,

α̂(t )− α̂(s) ⩽
(︃
ε+ ε2

2

)︃−1

(t − s).

That is, α̂ is Lipschitz.
We claim that α̂′(w) ⩾ −1 for almost every w ∈ R. Suppose by contradiction that

{w : α̂′(w) <−1} has positive measure. Let

II(τ) =
ˆ ∞

−∞
τ(w)2

(1+ α̂(w)2)
3
2

(︁
1+ α̂′(w)

)︁
dw ;

we claim that there is a τ ∈C∞
c such that II(τ) < 0.

Let η̂(w) := w + α̂(w)
2 . We consider two cases, depending on whether η̂ is injective. If η̂

is not injective, then there is some z0 ∈ R such that η̂−1(z0) = [a,b] for some a < b. For
any w ∈ (a,b), we have η̂(w) = w + α̂(w)

2 = z0, so α̂(w) = 2z0 −2w and thus α̂′(w) = −2.
Therefore,

II(1{z0}) =
ˆ ∞

−∞

1{z0}(η̂(w))

(1+ α̂(w)2)
3
2

(︁
1+ α̂′(w)

)︁
dw =

ˆ b

a
− 1

(1+ α̂(w)2)
3
2

dw < 0.

If η̂ is injective, we let w0 ∈ R be a Lebesgue point of α̂′ such that α̂′(w0) < −1 and
let Ir = (η̂(w0 − r ), η̂(w0 + r )). Since α̂ is continuous, w0 is also a Lebesgue point of

(1+ α̂′(w))(1+ α̂(w)2)−
3
2 , and

lim
r→0

II(1Ir )

2r
= lim

r→0

1

2r

ˆ w0+r

w0−r

1

(1+ α̂(w)2)
3
2

(︁
1+ α̂′(w)

)︁
dw = 1+ α̂′(w0)

(1+ α̂(w0)2)
3
2

< 0.
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In either case, there is some bounded interval I (possibly I = {z0}) such that II(1I ) < 0.
Let τi ∈C∞

c be a sequence of uniformly bounded functions with uniformly bounded sup-
ports such that τi → 1I pointwise. Then limi→∞ II(τi ) = II(1I ) by dominated convergence,
so there is a τi such that II(τi ) < 0. Let Fλ = (Ŝ ∖U )∪Sα̂,λτi . Then Fλ is a deformation of

F0 = Ŝ, and there is an r > 0 such that F+
λ
△ Ŝ

+
⋐ Û ∩B(0,r ). By Proposition 3.5, there is a

C > 0 such that

area(B(0,r )∩Fλ) ⩽ area(B(0,r )∩ Ŝ)+λ2 II(τi )+Cλ3,

so area(B(0,r )∩Fλ) < area(B(0,r )∩ Ŝ) when λ is sufficiently small. This contradicts the
fact that Ŝ is area-minimizing on Û , so α̂′(w) ⩾−1 for almost every w ∈R.

Thus, if Sα is area-minimizing in U , then α̂ε(w2)−α̂ε(w1)
w2−w1

⩾−1 for all ε> 0 and all w2 >
w1. The continuity of f implies that

lim
ε→0

α̂ε(w) = lim
ε→0

(1+ε) f (s−1
1+ε,1+ε(1,0, w)) = f (1,0, w) =α(w),

so
α(w2)−α(w1)

w2 −w1
= lim

ε→0

α̂ε(w2)− α̂ε(w1)

w2 −w1
⩾−1.

This proves the lemma. □

3.3. Minimality of graphical strips. In this section, we show that monotone subsets of
H are perimeter-minimizing and give a criterion for S+

α to be monotone. We first recall
some definitions and formulas. Let L be the space of horizontal lines in H, and for U ⊂H,
let L (U ) denote the set of horizontal lines that intersect U . Let L be the measure on
N that is invariant under isometries of H (rotations around the z–axis, left-translations,
and maps s±1,±1). This measure is unique up to constants, and we normalize it so that
N (L (B(0,r ))) = r 3 for every r > 0.

The kinematic formula (see [Mon05] or equation (6.1) in [CKN11]) relates perimeter
on lines to perimeter in H as follows. There is a constant c > 0 such that for any set
E ⊂H with locally finite perimeter and any open subset W ⊂H, PerE∩L(W ∩L) <∞ for
N –almost every line L and

PerE (W ) = c

ˆ
L

PerE∩L(W ∩L)dN (L). (15)

Here, PerE∩L is the perimeter of E ∩L as a subset of L. If PerE∩L is finite, then there is a
finite union of intervals S ⊂ L such that (E △S)∩L has measure zero and PerE∩L is the
counting measure on ∂S.

We say that a subset W ⊂H is convex if it is convex as a subset of R3. For any g ∈H,
the map h ↦→ g h is affine, so convexity is preserved by left-translation. Let E ⊂H be a
set with locally finite perimeter and let W ⊂H be a convex open set. We say that E is
monotone on W if for almost every L ∈L , we have PerE∩L(W ∩L) ⩽ 1. That is, up to a
set of measure zero, E ∩W ∩L is one of ∅, W ∩L, or the intersection of W ∩L with a ray.
Monotonicity is preserved by left-translation.

Proposition 3.9. Let E ⊂H be a set with locally finite perimeter and let W ⊂H be a convex
open set such that E is monotone on W . Then E is perimeter-minimizing in W .

Proof. Let F ⊂H be a set with locally finite perimeter such that E △F ⋐W . We claim that

PerE∩L(W ∩L) ⩽ PerF∩L(W ∩L) (16)

for almost every line L ∈L .
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For almost every line L ∈ L , we have PerE∩L(W ∩L) ⩽ 1. If PerE∩L(W ∩L) = 0, then
(16) holds, so we suppose that PerE∩L(W ∩L) = 1. Then W ∩∂H 1 (E ∩L) consists of a
single point, say p, and there is a ray R based at p such that E ∩W ∩L = R ∩W ∩L, up to
a null set.

Since W is convex, the intersection W ∩L is an interval, with (up to null sets) one end
of W ∩L in E and the other end outside of E . Since E△F ⋐W , we likewise have one end of
W ∩L in F and the other end outside of F . Therefore, PerF∩L(W ∩L) ⩾ 1 = PerE∩L(W ∩L).

By (15),

PerE (W ) = c

ˆ
L

PerE∩L(W ∩L)dN (L) ⩽ PerF (W ),

so E is perimeter-minimizing on W . □

Finally, we apply this to Sα.

Lemma 3.10. Let Sα be a graphical strip over K and suppose that α(t )−α(s)
t−s ⩾−1 for all

s < t . Then S+
α is perimeter-minimizing on U = {−1 < x < 1} ⊂H.

Proof. We claim that S+
α is monotone on U . By Lemma 3.4,

Sα = ⋃︂
z∈R

[(−1,−σ(z), z), (1,σ(z), z)]

for some Lipschitz function σ : R→R such that −2 ⩽σ′(z) < 2 for all z.
For x ∈ [−1,1], z ∈R, let Φ(x, z) = (x, xσ(z), z) parametrize Sα. It suffices to show that

any horizontal line that does not contain a ruling of Sα intersects Φ((−1,1)×R) at most
once.

Let x1, x2 ∈ (−1,1) and z1 < z2. The horizontal plane P1 centered at Φ(x1, z1) is the set

P1 =
{︁
(x1, x1σ(z1), z1) · (x −x1, y −x1σ(z1),0) : x, y ∈R

}︁
=

{︃(︃
x, y, z1 + x1 y −xx1σ(z1)

2

)︃
: x, y ∈R

}︃
,

so Φ(x2, z2) ∈ P1 if and only if

z2 = z1 + x1x2σ(z2)−x2x1σ(z1)

2
,

i.e.,

x1x2
σ(z2)−σ(z1)

z2 − z1
= 2.

Since |σ(z2)−σ(z1)|
z2−z1

⩽ 2 and |x1x2| < 1, this is impossible. Therefore, if L intersectsΦ((−1,1)×
R) at two points, then those two points have the same z–coordinate and thus lie on the
same ruling of Sα. Therefore, S+

α is monotone on U and thus perimeter-minimizing on
U . □

Lemma 3.8 and Lemma 3.10 prove the two directions of Proposition 3.3.

4. SCALING LIMITS OF RULED GRAPHS

In the last section, we classified area-minimizing graphical strips. In this section and
the next section, we will use the classification of area-minimizing graphical strips to
classify entire area-minimizing ruled intrinsic graphs. We first show that the scaling
limit of an entire ruled intrinsic graph is a graphical strip; in fact, it is a broken plane
(Definition 3.1).
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Lemma 4.1. Let f : V0 →R be a continuous function such that Γ f is a ruled surface. There
are u ∈ [0,∞] and θ ∈R such that if rotθ : H→H is rotation by θ around the z–axis, then
s−1

t ,t (Γ+
f ) → rotθ(BPu) as t →∞. Furthermore, if u = 0, then Γ f is a vertical plane.

We write Ei → E if Ei converges locally to E , that is, for every compact set K ⊂H, we
have H 4((Ei △E)∩K ) → 0.

We prove Lemma 4.1 by analyzing the characteristic curves of Γ f . As noted in Sec-
tion 2.4, every ruling of Γ f projects to a parabola in V0, and since Γ f is entire, these
parabolas cover V0.

For each ruling R, let m(R) be the slope of R, let w(R) = (0, wy (R), wz (R)) ∈W0 be the
point where R intersects the y z–plane, and let λR (t ) = w(R)(X +m(R)Y )t parametrize R .
Let gR (t ) = z(Π(λR (t ))) so that Π(R) is the graph {(x,0, gR (x)) ∈V0 : x ∈R}; by (4),

gR (x) = wz (R)−wy (R)x − m(R)

2
x2. (17)

We first prove some lemmas describing Γ f .

Lemma 4.2. Let R1 and R2 be distinct rulings of Γ f and suppose that wz (R1) < wz (R2).
Then gR1 (x) ⩽ gR2 (x) for all x ∈R and m(R1) ⩾ m(R2).

Proof. We have gR1 (0) = wz (R1) < wz (R2) = gR2 (t), so by Lemma 2.1, gR1 (t) ⩽ gR2 (t) for
all t . By (17), this implies m(R1) ⩾ m(R2). □

For p ∈H, m ∈R, let Lp,m be the horizontal line of slope m through p.

Lemma 4.3. Let R1 and R2 be distinct rulings of Γ f that intersect at a point p ∈H; suppose
that m(R1) < m(R2). Then for every m ∈ [m(R1),m(R2)], Lp,m is a ruling of Γ f .

Proof. After a translation, we may suppose that p = 0, so that Ri = L0,m(Ri ) and Π(Ri ) is

the graph of the function gi (x) =−m(Ri )
2 x2. Let m ∈ (m(R1),m(R2)), q = (1,0,−m

2 ), and
let M be the ruling through Ψ f (q). By Lemma 2.1, gR2 (x) ⩽ gM (x) ⩽ gR1 (x), and since
the graphs of gR1 and gR1 are tangent to the x–axis at 0, so is the graph of gM . Since
gM (1) =−m

2 , we have gM (x) =−m
2 x2, so M = L0,m . □

Combining these two lemmas, we get the following characterization of the rulings of
Γ f .

Lemma 4.4. Let f : V0 →R be a continuous function such that Γ f is a ruled surface. Let

R = {(z,m) ∈R2 : LΨ f (Z z ),m ⊂ Γ f }

and for z ∈R, let
σ(z) = sup{m : LΨ f (Z z ),m ⊂ Γ f }.

Then σ is nondecreasing and R = {(z,m) ∈R2 : σ(z−) ⩽ m ⩽σ(z)}, where σ(z−) = limt→z− σ(t ).

Proof. Since Γ f is an intrinsic graph, no ruling of Γ f is a coset of 〈Y 〉, i.e., every ruling
of Γ f has finite slope. For p ∈ Γ f , let Mp = {m : Lp,m ⊂ Γ f }. Then Mp is nonempty. Since
Γ f is closed, any sequence of rulings through p has a subsequence that converges to a
ruling through p, so Mp is compact. Therefore, σ(z) = max MΨ f (Z z ) and (z,σ(z)) ∈R for
all z ∈R. Let z1 < z2. Then (z1,σ(z1)), (z2,σ(z2)) ∈R, so by Lemma 4.2, σ(z1) ⩽σ(z2), i.e.,
σ is nondecreasing.

For every z ∈R, the sequence of rulings L
Ψ f (Z z− 1

n ),σ(z− 1
n )

converges to LΨ f (Z z ),σ(z−), so

LΨ f (Z z ),σ(z−) is a ruling of Γ f . By Lemma 4.3, we have (z,m) ∈R for all m ∈ [σ(z−),σ(z)],

so {(z,m) ∈R2 : σ(z−) ⩽ m ⩽σ(z)} ⊂R.
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Conversely, suppose that (z,m) ∈R. On one hand, m ⩽σ(z) by definition. On the other
hand, if (z ′,m′) ∈ R and z ′ < z, then m′ ⩽ m by Lemma 4.2, so σ(z−) ⩽ m. Therefore,
R = {(z,m) ∈R2 : σ(z−) ⩽ m ⩽σ(z)}, as desired. □

Let m∞ = limt→∞σ(t ) and m−∞ = limt→−∞σ(t ). These limits determine the scaling
limit of Γ f .

Lemma 4.5. For t > 0, let ft (p) = t−1 f (st ,t (p)) so that Γ ft = s−1
t ,t (Γ f ). For x ̸= 0, let

F (x,0, z) =

⎧⎪⎨⎪⎩
m−∞x if m−∞ <∞ and z ⩽−m−∞

2 x2

− 2z
x if − m−∞

2 x2 < z <−m∞
2 x2

m∞x if m∞ >−∞ and z ⩾−m∞
2 x2.

Then ft converges to F pointwise almost everywhere on V0 as t →∞.

Proof. Let x0, z0 ∈ R. We first consider the case that x0 ̸= 0 and z0 ∈ (−m−∞
2 x2

0 ,−m∞
2 x2

0).

Let R1, R2 be rulings of Γ f such that −m(R1)
2 x2

0 < z0 <−m(R2)
2 x2

0 . Then

gR1 (t x0) =−m(R1)

2
(t x0)2 +O(t ) < t 2z0

when t is sufficiently large; likewise, gR2 (t x0) > t 2z0 when t is sufficiently large. That
is, there is some t0 > 0 such that st ,t (x0,0, z0) = (t x0,0, t 2z0) is between Π(R1) and Π(R2)
when t > t0.

For each t > 0, let St be a ruling of Γ f such that (t x0,0, t 2z0) ∈ Π(St ). When t > t0,
we have gR1 (t x0) < t 2z0 < gR2 (t x0) and thus gR1 ⩽ gSt ⩽ gR2 on all of R. We will use this
inequality to bound the coefficients of gSt .

Let C > 0 be such that |gR1 (x)| <C and |gR2 (x)| <C for all x ∈ [−1,1]. Then |gSt (x)| <C
for all x ∈ [−1,1]. By (17), this implies |wz (St )| = |gSt (0)| <C and

|wy (St )| =
⃓⃓⃓⃓

gSt (−1)− gSt (1)

2

⃓⃓⃓⃓
<C .

By (17) with x = t x0,

gSt (t x0)+ m(St )

2
(t x0)2 = wz (St )−wy (St )t x0,

so ⃓⃓⃓⃓
t 2z0 + m(St )

2
(t x0)2

⃓⃓⃓⃓
⩽C +C |t x0|,

and ⃓⃓⃓⃓
⃓m(St )

2
+ z0

x2
0

⃓⃓⃓⃓
⃓⩽ C

|t x0|2
+ C

|t x0|
.

That is, limt→∞ m(St ) =− 2z0

x2
0

. Since the graph of gSt is a characteristic curve, gSt satisfies

the differential equation g ′
St

(x) =− f (x,0, gSt (x)). Therefore,

lim
t→∞ ft (x0,0, z0) = lim

t→∞ t−1 f (t x0,0, t 2z0) = lim
t→∞−t−1g ′

St
(t x0)

= lim
t→∞−t−1 (︁−m(St )t x0 −wy (St )

)︁= lim
t→∞m(St )x0 =−2z0

x0
,

as desired.
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Next, we consider the case that m∞ >−∞ and z0

x2
0
>−m∞

2 . Let ε ∈ (0,1) and let R1 be a

ruling of Γ f such that m∞ ⩽ m(R1) < m∞+ε. Then there is a t0 such that

− m∞+ε

2
t 2x2

0 < gR1 (t x0) < t 2z0 (18)

when t > t0.
Let t > t0 and let St be a ruling of Γ f such that (t x0,0, t 2z0) ∈Π(St ). By Lemma 2.1,

gR1 (x) ⩽ gSt (x) for all x ∈R, and by Lemma 4.2, m(R1) ⩾ m(St ) ⩾ m∞. Let h(x) = gSt (x)−
gR1 (x). We have h(x) ⩾ 0 for all x and h′′(x) = m(R1)−m(St ) ∈ [0,ε]. Since h is a quadratic,
for any w ∈R,

0 ⩽ h(t x0 +w) = h(t x0)+h′(t x0)w + 1

2
h′′(t x0)w2 ⩽ h(t x0)+h′(t x0)w + ε

2
w2.

Letting w =−ε−1h′(t x0), this implies

h(t x0)− h′(t x0)2

2ε
⩾ 0

and thus |h′(t x0)| ⩽
√︁

2εh(t x0) =
√︂

2ε(t 2z0 − gR1 (t x0)). By (18),

|h′(t x0)| ⩽
√︃

2εt 2
(︂
z0 + m∞+ε

2
x2

0

)︂
⩽C |t |⎷ε,

where C =
√︂

2z0 + (m∞+1)x2
0 .

Therefore,⃓⃓⃓⃓
⃓ ft (x0,0, z0)−

−g ′
R1

(t x0)

t

⃓⃓⃓⃓
⃓=

⃓⃓⃓⃓
⃓−g ′

St
(t x0)

t
−
−g ′

R1
(t x0)

t

⃓⃓⃓⃓
⃓= |t |−1|h′(t x0)| ⩽C

⎷
ε.

When t > max{t0,ε−1|wy (R1)|},⃓⃓
ft (x0,0, z0)−m∞x0

⃓⃓
⩽

⃓⃓⃓⃓
⃓ ft (x0,0, z0)−

−g ′
R1

(t x0)

t

⃓⃓⃓⃓
⃓+

⃓⃓⃓⃓
⃓−g ′

R1
(t x0)

t
−m(R1)x0

⃓⃓⃓⃓
⃓+|m(R1)−m∞||x0|

⩽C
⎷

ε+ |wy (R1)|
t

+ε|x0|
⩽C

⎷
ε+ε(1+|x0|).

Since ε was arbitrary, limt→∞ ft (x0,0, z0) = m∞x0, as desired. The case that z0 <−m−∞
2 x2

0
is similar. □

Finally, we prove Lemma 4.1.

Proof of Lemma 4.1. For −∞⩽ M ⩽ m ⩽∞, let

Fm,M (x,0, z) =

⎧⎪⎨⎪⎩
mx if m <∞ and z ⩽−m

2 x2

− 2z
x if − m

2 x2 < z <−M
2 x2

M x if M >−∞ and z ⩾−M
2 x2.

By Lemma 4.5, ft converges pointwise almost everywhere to F := Fm−∞,m∞ , so 1Γ+ft

converges weakly to 1Γ+F
. We claim that for any m, M there are θ and u such that, up to a

set of measure zero, Γ+
Fm,M

= rotθ(BP+
u ).

Suppose that m and M are both finite. Then ΓF contains the intrinsic graph of
aM (x,0, z) = M x over the set {z ⩽−M x2}. This is the upper vertical half-plane through 0
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of slope M , bounded by the x y–plane. Likewise, ΓF contains the lower half-plane through
0 of slope m, bounded by the x y–plane. Finally, ΓF contains the graph of h(x,0, z) =− 2z

x
over the set {−m

2 x2 < z <−M
2 x2}; this is the union of the horizontal lines through the ori-

gin with slopes between m and M . It follows that, up to a set of measure 0, Γ+
Fm,M

consists

of two quadrants of H, one above the x y–plane, bounded by the vertical plane through
0 of slope M , and one below the x y–plane, bounded by the vertical plane through 0 of
slope m.

Thus, if m−∞ and m∞ are finite, then Γ+
F is a union of two quadrants. If m−∞ or m∞

are infinite, then F is a limit of Fm,M ’s. As m → m−∞ and M → m∞, Γ+
Fm,M

converges

to a union of two quadrants with slopes m−∞ and m∞, so Γ+
F is again a union of two

quadrants. Any such union can be written as rotθ(BP+
u ) for some u ∈ [0,∞] and θ ∈R, so

Γ+
ft
→ rotθ(BP+

u ) as desired.

Finally, suppose that u = 0, so that rotθ(BPu) is a vertical plane V . In this case, m∞ =
m−∞; let m = m∞. Then, by Lemma 4.4, every ruling of Γ f has slope m. By (4), if L1

and L2 are two horizontal lines with slope m and wy (L1) ̸= wy (L2), then Π(L1) and Π(L2)
intersect transversely, so L1 and L2 cannot both be rulings of the same intrinsic graph. It
follows that any two rulings R1,R2 ⊂ Γ f have the same projection to the x y–plane, i.e.,

π(R1) =π(R2) = {︁
(x, y,0) ∈H : y = mx +wy (R1)

}︁
.

Therefore, Γ f = {(x, y, z) ∈H : y = mx +wy (R1)} is a vertical plane. □

5. PROOF OF THEOREM 1.3

Now we prove Theorem 1.3. We will need the following closure result for perimeter-
minimizing subsets of H. This statement and proof is based on Theorem 21.14 of [Mag12].

Proposition 5.1. Let A ⊂H be an open set and let E1,E2, · · · ⊂H be a sequence of perimeter
minimizers in A such that Ei ∩ A → E ∩ A, where PerE (U ) <∞ for every U ⋐ A. Then E is
a perimeter minimizer in A.

We will need the following metric characterization of perimeter. For a measurable set
E ⊂H, let E (1) be the set of density points of E , i.e,

E (1) :=
{︃

p ∈H : lim
r→0+

H 4(B(p,r )∩E)

H 4(B(p,r ))
= 1

}︃
,

and let E (0) = (H∖E)(1). Let ∂H 4 E be the measure-theoretic boundary of E , i.e.

∂H 4 E :=H∖ (︁
E (1) ∪E (0))︁ .

Franchi, Serapioni, and Serra Cassano [FSSC01] showed that there is a left-invariant
homogeneous metric d∞ and a corresponding spherical Hausdorff measure S 3∞ such
that for any set E ⊂H with locally finite perimeter,

PerE (U ) =S 3
∞(U ∩∂H 4 E).

Proof of Proposition 5.1. Let F ⊂ H be a set such that E △F ⋐ A and PerF (U ) < ∞ for
every U ⋐ A. We claim that PerE (A) ⩽ PerF (A).

Our first goal is to find a set G such that E △F ⋐G ⋐ A and such that

S 3
∞

(︁
∂H 4 F ∩∂G

)︁= 0 (19)

and
liminf

i→∞
S 3

∞
(︂(︁

E (1) △E (1)
i

)︁∩∂G
)︂
= 0. (20)
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By the compactness of E △F , there are finitely many points p j and radii r j such that
E △F ⋐

⋃︁
j B(p j ,r j ) and B(p j ,2r j )⋐ A for all j .

We claim that there is a t ∈ [1,2] such that Gt = ⋃︁
j B(p j , tr j ) satisfies (19) and (20).

Since S 3∞(∂H 4 F ∩G2) <∞, Gt satisfies (19) for all but countably many t ∈ [1,2]. Further-
more, the coarea formula implies that

ˆ 2

1
S 3

∞
(︂(︁

E (1) △E (1)
i

)︁∩∂B(p j , tr j )
)︂

dt ≲ r−1
j H 4

(︂(︁
E (1) △E (1)

i

)︁∩B(p j ,2r j )
)︂

.

By Fatou’s lemma,

ˆ 2

1
liminf

i→∞
S 3

∞
(︂(︁

E (1) △E (1)
i

)︁∩∂Gt

)︂
dt

⩽ liminf
i→∞

ˆ 2

1

∑︂
j

S 3
∞

(︂(︁
E (1) △E (1)

i

)︁∩∂B(p j , tr j )
)︂

dt

≲ liminf
i→∞

∑︂
j

r−1
j H 4

(︂(︁
E (1) △E (1)

i

)︁∩B(p j ,2r j )
)︂
= 0,

so Gt satisfies (20) for almost every t ∈ [1,2]. Let G =Gt for some t such that (19) and (20)
are satisfied.

Let G be the closure of G , and for each i , let Fi = (F ∩G)∪ (Ei ∖G). To bound ∂H 4 Fi ,
note that ∂H 4 Fi ∩G = ∂H 4 F ∩G and ∂H 4 Fi ∖G = ∂H 4 Ei ∖G . If p ∈ ∂H 4 Fi ∩∂G , then
either p ∈ ∂H 4 F , p ∈ ∂H 4 Ei , or p ∈ E (1)

i △F (1). Therefore,

∂H 4 Fi ⊂
(︁
∂H 4 F ∩G

)︁∪ (︁
∂H 4 Ei ∖G

)︁∪ (︂(︁
E (1)

i △F (1))︁∩∂G
)︂

. (21)

Let U be an open set such that G ⋐U ⋐ A. Since Ei is a perimeter minimizer and
Ei △Fi ⋐U ,

PerEi (U ) ⩽ PerFi (U ) =S 3
∞(U ∩∂H 4 Fi ).

By (21),

PerEi (U ) ⩽ PerF (G)+PerEi (U ∖G)+S 3
∞

(︂(︁
E (1) △E (1)

i

)︁∩∂G
)︂

.

Subtracting PerEi (U ∖G) from both sides,

PerEi (G) ⩽ PerF (G)+S 3
∞

(︂(︁
E (1) △E (1)

i

)︁∩∂G
)︂

.

By the lower semicontinuity of perimeter and equations (19)–(20),

PerE (G) ⩽ liminf
i→∞

PerEi (G) ⩽ PerF (G) = PerF (G),

as desired. □

Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. Let Γ be an entire area-minimizing ruled intrinsic graph and let
Γ+ be its epigraph, so that Γ+ is perimeter-minimizing. By Lemma 4.1, there are θ and
u ∈ [0,∞] such that s−1

t ,t (Γ+) → rotθ(BPu) as t → ∞. By Proposition 5.1, rotθ(BP+
u ) is

perimeter-minimizing; we claim that u = 0.
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By Theorem 1.1, BP+
u is not perimeter-minimizing when u ∈ (0,∞). We claim that BP+∞

is not perimeter-minimizing. Recall that BP+∞ = {(x, y, z) ∈H : xz > 0}; one calculates that

Y −t BP+
∞ =

{︃(︃
x, y − t , z + t x

2

)︃
∈H : xz > 0

}︃
=

{︃
(x, y, z) ∈H : x

(︃
z − t x

2

)︃
> 0

}︃
.

That is, ∂(Y −t BP+∞) consists of the plane {x = 0} and the plane {z = t x
2 }. As t →∞, these

planes grow closer together. In fact, H 4(BP+∞∩B(Y t ,1)) → 0, H 3(BP+∞∩∂B(Y t ,1)) → 0,
and PerBP+∞ (B(Y t ,1))≳ 1. Let Ct = BP+∞∖B(Y t ,1); then

PerCt (B(Y t ,2)) = PerBP+∞ (B(Y t ,2)∖B(Y t ,1))+H 3(BP+
∞∩∂B(Y t ,1)),

and PerCt (B(Y t ,2)) < PerBP+∞ (B(Y t ,2)) when t is large. Thus BP+∞ is not area-minimizing.
The only remaining possibility is that st ,t (Γ+) → rotθ(BP+

0 ). By the second part of
Lemma 4.1, this implies that Γ is a vertical plane. □

6. NON-UNIQUENESS OF AREA-MINIMIZERS

In this section, we consider the boundary case of Theorem 1.1, where σ(z) =−2z. By
Theorem 1.1, the surface

Σ= ⋃︂
z∈R

[(−1,2z, z), (1,−2z, z)]

is area-minimizing, but Theorem 1.2 asserts that there are uncountably many area-
minimizing surfaces with the same boundary. In this section, we will prove Theorem 1.2.

First, note that for all z1, z2 ∈R,

(−1,2z1, z1)−1(1,−2z2, z2) = (1,−2z1,−z1)(1,−2z2, z2) = (2,−2z1 −2z2,0), (22)

so any two points (−1,2z1, z1) and (1,−2z2, z2) are connected by a horizontal line. For
any surjective continuous increasing function ρ : R→R, let Σρ be the ruled surface

Σρ = ⋃︂
z∈R

[(−1,2z, z), (1,−2ρ(z),ρ(z))].

Let
Fρ(x, z) = (−1,2z, z) · (1,−z −ρ(z),0)x+1

parametrize Σρ and let U = {(x, y, z) ∈ H : −1 < x < 1}. We claim that Σρ is an intrinsic
graph whose epigraph is monotone in U .

Lemma 6.1. Let a1, a2,b1,b2 be such that b1 < b2 and a1 < a2. For i = 1,2, let Ri =
((−1,2ai , ai ), (1,−2bi ,bi )). There are no horizontal lines from R1 to R2.

Proof. Our argument is based on the hyperboloid lemma proved in [CK10, Lemma 2.4],
but we give a self-contained proof.

Let π : H → R2, π(x, y, z) = (x, y) be the projection to the x y–plane. Then π(Ri ) =
((−1,2ai ), (1,−2bi )), and since b1 < b2 and a1 < a2, the projections π(R1) and π(R2)
intersect at some point p = (x0, y0). Let qi = (x0, y0, zi ) ∈ Ri be the point such that
π(qi ) = p.

Let Vi = (1,−ai −bi ,0), s0 = −1− x0 and t0 = 1− x0 so that Ri = {qi V r
i : r ∈ (s0, t0)}.

Suppose that q1V s
1 is connected to q2V t

2 by a horizontal segment. Recalling that V s
1 is

just alternate notation for sV1, we have q1 · sV1 ·W = q2 · tV2 for some W ∈A. Projecting
to R2, we see that

π(q1 · sV1 ·W ) = p + sV1 +W = p + tV2,
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i.e., W = tV2 − sV1 and

sV1 · (tV2 − sV1) · (−tV2) = (−q1) ·q2 = (z2 − z1)Z .

By the Baker–Campbell–Hausdorff formula, V ·W =V +W + 1
2 [V ,W ], so

sV1 · (tV2 − sV1) · (−tV2) = 1

2
[sV1, tV2 − sV1]+ 1

2
[tV2,−tV2] = st

2
[V1,V2].

We calculate that [V1,V2] = w Z , where w = 1
2 (a1 −a2 +b1 −b2) > 0, so z2 − z1 = w st .

By (22), there is a horizontal line from q1V s0
1 = (−1,2a1, a1) to q2V t0

2 = (1,−2b2,b2), so
z2 − z1 = w s0t0. Therefore, p1V s

1 is connected to p2V t
2 by a horizontal line if and only if

st = s0t0. But there are no s, t ∈ (s0, t0) such that st = s0t0, so there are no horizontal lines
connecting R1 and R2. □

This implies that Σρ is an intrinsic graph, since any coset of 〈Y 〉 intersects Σρ at most
once. We claim that Σρ is an intrinsic graph over K = [−1,1]× {0}×R⊂V0. By (4),

Π([(−1,2z1, z1)(1,−2z2, z2)]) = {(x,0, gz1,z2 (x)) : x ∈R}

where

gz1,z2 (x) = 2z1 −2z1(x +1)+ z1 + z2

2
(x +1)2 = z1

2

(︁
(x +1)2 −4(x +1)+4

)︁+ z2

2
(x +1)2

= z1

2
(x −1)2 + z2

2
(x +1)2. (23)

Therefore, Π(Fρ(x, z)) = (x,0, gz,ρ(z)(x)). Since ρ(z) is surjective, z ↦→ gz,ρ(z)(x) is surjec-
tive for any x ∈ [−1,1]. We conclude that Π(Σρ) = K .

By Lemma 6.1, the epigraph Σ+
ρ is monotone in U . Proposition 3.9 implies that Σρ is

area-minimizing in U . This proves Theorem 1.2.
Finally, we calculate the area of Σρ ; since Σρ is area-minimizing in U , the area of

Fρ([−1,1]× [a,b]) should depend only on a, b, ρ(a) and ρ(b). Suppose that ρ is Lipschitz.
By the area formula (3), for any a < b,

areaFρ([−1,1]× [a,b]) =
ˆ b

a

ˆ 1

−1

√︂
1+ (z +ρ(z))2 · ⃓⃓J [Π◦Fρ](x, z)

⃓⃓
dx dz

=
ˆ b

a

√︂
1+ (z +ρ(z))2 j (z)dz,

where j (z) = ´ 1
−1

⃓⃓
J [Π◦Fρ](x, z)

⃓⃓
dx. By (23), we have

j (z) =
ˆ 1

−1
∂z [gz,ρ(z)(x)]dx =

ˆ 1

−1

1

2
(x −1)2 + ρ′(z)

2
(x +1)2 dx = 4

3
(1+ρ′(z)),

so, by substitution,

areaFρ([−1,1]× [a,b]) = 4

3

ˆ b

a

√︂
1+ (z +ρ(z))2(1+ρ′(z))dz = 4

3

ˆ b+ρ(b)

a+ρ(a)

√︁
1+m2 dm.

7. CONJECTURAL MINIMIZERS

In this section, we construct the surfaces shown in Figure 2, which we conjecture
to be area-minimizing or energy-minimizing competitors for BPu . We first construct
the family of conjectural energy minimizers. Given an intrinsic Lipschitz graph Γ f such
that f is defined on an open subset U ⊂ V0, we define the intrinsic Dirichlet energy of
f on U by EU ( f ) = 1

2

´
U (∇ f f )2 dµ, where µ is Lebesgue measure on V0. We say that f
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γ̃
q1

(1)

(2)

(2)

α1

(3)

(−1,u,0)

(−1,−u,0)

(−1,−u,−u
2 )

q2 = (1,−u, u
2 )

α2

α3

α4 =λ

α5

FIGURE 3. A schematic of Σh
u with important features labeled.

is energy-minimizing on U if, for any r > 0, we have EU∩B(0,r )( f ) ⩽ EU∩B(0,r )(g ) for any
intrinsic Lipschitz function g such that g − f ∈C 0

c (U ∩B(0,r )).
An intrinsic Lipschitz graph is harmonic if it is a critical point of the energy with

respect to contact deformations, which are smooth deformations of H that preserve the
horizontal distribution. These graphs were studied in [You20]. Harmonic graphs can
often be written as unions of horizontal lines which meet along horizontal curves. These
graphs satisfy a slope condition; if two horizontal segments intersect on a horizontal
curve, then the slope of the curve is the average of the slopes of the horizontal segments.

Let Wu := BPu ∩{(x, y, z) : |x| ⩽ 1} and let ∂±Wu = BPu ∩{x = ±1} be the two curves
bounding Wu . We will construct a harmonic intrinsic graph Σh

u which is bounded by ∂Wu

and ruled away from two singular curves; we conjecture that Σh
u is an energy-minimizing

filling of ∂Wu .
The idea behind the construction of Σh

u is that there is a horizontal segment λ =
[(−1,−u,−u

2 ), (1,−u, u
2 )] connecting ∂−Wu to ∂+Wu . This separates ∂Wu into two parts:

one consisting of λ and the upper portions of ∂±Wu and one consisting of λ and the
lower portions of ∂±Wu . We will fill each part by a harmonic intrinsic graph.

Let α=α(u) be the curve marked by a thick line in Figure 3. This is the curve made up
of five segments α1, . . . ,α5,

α = (−1,u,∞) α1— (−1,u,0) α2— (−1,−u,0) α3—
(︂
−1,−u,−u

2

)︂
α4—

(︂
1,−u,

u

2

)︂
α5— (1,−u,∞).

(That is, α = α1 ∪·· ·∪α5, where α1 is the vertical ray pointing upward from (−1,u,0),
α2 = [(−1,u,0), (−1,−u,0)], and so on.) Here, α1, α3, and α5 are vertical, α4 is horizontal,
and α2 is neither.

The formula for the graph filling α is complicated, so we describe it in terms of its
horizontal foliation. Let q1 = (0,−u

2 , u
4 ). For any y ∈ [−u,u], we have q1 · (−1, y + u

2 ,0) =
(−1, y,0), so there is a horizontal line from q1 to any point in α2. Let q2 = (1,−u, u

2 ); then
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γ̃

p2 = (1,−u,b)

p1

(1)

(2)

(2)
(3)

α1

(4)

(−1,u,0)

(−1,−u,0)

(−1,−u,−u
2 )

(1,−u, u
2 )

(−1,−u,b −u)

α2

α3

α4

α5

FIGURE 4. A schematic of Σu , with important features labeled.

q1 · (1,−u
2 ,0) = q2, so q1 and q2 are connected by a horizontal segment. The segment

[q1, q2] will be the characteristic set of Σh
u .

We write Σh
u as a union of three families of horizontal segments, labeled (1), (2), and

(3) in Figure 3.

(1) Segments connecting q1 to the points of α2.
(2) For each point p ∈ [q1, q2], segments connecting p to a point on α1 and a point

on α3.
(3) Segments with slope −u connecting (−1,u, z) to (1,−u, z) for z ∈ [ u

2 ,∞).

For each t ∈ [0,1], the second family contains two horizontal segments connecting
q1 · (1,−u

2 ,0)t to α1 and α3. The projections of these segments to A connect (t ,−u
2 (t +1))

to (−1,±u), so they have slope −u
2 ± u

t+1 , while the characteristic nexus of Σh
u has slope −u

2 .

That is, Σh
u satisfies the slope condition in [You20]. By Remark 3.10 of [You20], Σu is an

intrinsic Lipschitz graph, so Σh
u is a harmonic graph. The full surface in Figure 2 is a union

Σh
u ∪ s−1,1(Σh

u) of two copies of Σh
u , and we conjecture that this is the minimal-energy

surface filling ∂Wu .
Note that for any u > 0, we can write Σh

u = s1,u(Σh
1 ). Stretch automorphisms send

energy minimizers to energy minimizers [You20, 3.2], so proving that Σh
1 minimizes

energy would imply that all of the Σh
u ’s minimize energy.

Now we construct conjectural area-minimizing surfaces Σu filling ∂Wu . These look
similar to the harmonic surfaces constructed above; the main differences are that the
characteristic set is the horizontal lift of a hyperbola rather than a horizontal line segment
and that Σu contains a family of horizontal segments of slope 0, all parallel to α4 (labeled
(3) in Figure 4).

We construct Σu out of area-minimizing Z –graphs and vertical rectangles. As de-
scribed in [CHY07], an area-minimizing Z –graph Σ can be written as a union of hori-
zontal line segments. These segments can meet along horizontal curves in Σ as long as
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(−1,u)

(−1,−u)

γ

(1,−u)

(−1,0)

FIGURE 5. The projections to A of the horizontal segments that make
up Σu .

the tangent line to the horizontal curve bisects the angle between the horizontal line
segments. Such singularities form the characteristic set of the surface.

Figure 5 shows the projection to the x y–plane A of the horizontal segments that make
up Σu . The characteristic set of Σu , marked by one of the thick lines in Figure 5, is a lift
of a segment of the hyperbola in A with foci at (−1,±u) that passes through the point
(1,−u). We call this hyperbola γ; one can calculate that γ satisfies the equation

y2

(
⎷

u2 +1−1)2
− (x +1)2

u2 − (
⎷

u2 +1−1)2
= 1.

Let

a =−
(︂√︁

u2 +1−1
)︂√︄

1

u2 − (
⎷

u2 +1−1)2
+1

so that (0, a) ∈ γ. Let L = [(−1,0), (1,−u)] be the long dashed line in Figure 5. The segment
of γ from (0, a) to (1,−u) lies below L, so a <−u

2 .
We construct Σu by lifting the lines in Figure 5 to H. Let p1 = (0, a, a

2 ). Then for
any y ∈ [−u,u], we have p1 · (−1, y −a,0) = (−1, y,0), so the lines on the left of Figure 5
lift to horizontal lines from the points of α2 to p1. Let γ̃ be the lift of γ that passes
through p1 = (0, a, a

2 ), and let b be such that p2 = (1,−u,b) ∈ γ̃. The concatenation of
[(−1,−u,0), p1], γ̃, and [p2, p2X −2] is a horizontal curve in Σu that connects (−1,−u,0) to
p2X −2 = (−1,−u,b −u) and projects to the thick curve in Figure 5. The area of this curve
is equal to u −b, and the curve is contained in the triangle with vertices (−1,−u), (1,−u),
and (0,−u

2 ) (marked by dashed lines in Figure 5), so 0 < u −b < u
2 and u

2 < b < u. That is,
the endpoint of γ̃ lies in the interior of α3, as illustrated in Figure 4.

The horizontal segments in Σu can be divided into four families, labeled (1), (2), (3),
and (4) in Figure 4:

(1) Segments connecting p1 to the points of α2.
(2) For each point p ∈ γ̃, segments connecting p to a point on α1 and a point on α3.

The projections of these segments to A connect points on the hyperbola γ to its
two foci.
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(3) Segments with slope 0 connecting (−1,−u, z −u) to (1,−u, z) for z ∈ [ u
2 ,b].

(4) Segments with slope −u connecting (−1,u, z) to (1,−u, z) for z ∈ [b,∞).

Since the tangent line to a hyperbola at a point bisects the lines from the point to the foci
of the hyperbola, this surface satisfies the angle condition in Section 7 of [CHY07] and
is thus an area-minimizer. The full surface in Figure 2 is a union Σu ∪ s−1,1(Σu) of two
copies of Σu , and we conjecture that this is the area-minimizing surface filling ∂Wu .
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