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ABSTRACT. In this paper, we give a necessary and sufficient condition for a graphical
strip in the Heisenberg group H to be area-minimizing in the slab {-1 < x <1}. We show
that our condition is necessary by introducing a family of deformations of graphical strips
based on varying a vertical curve. We show that it is sufficient by showing that strips
satisfying the condition have monotone epigraphs. We use this condition to show that any
area-minimizing ruled entire intrinsic graph in the Heisenberg group is a vertical plane
and to find a boundary curve that admits uncountably many fillings by area-minimizing
surfaces.

1. INTRODUCTION

Bernstein’s theorem states that an entire area-minimizing codimension-1 graph in R”
is a plane when 7 < 8. Analogues of Bernstein’s theorem hold for many classes of surfaces
in the Heisenberg group H. For example, area-minimizing intrinsic graphs of entire
C? functions are vertical planes [BASCV07], as are area-minimizing intrinsic graphs of
entire C! functions [GR15] and locally Lipschitz functions [NSC19]. The problem of
determining which classes of graphs satisfy an analogue of Bernstein’s theorem is known
as the Bernstein problem; for a survey of the Bernstein problem in H, see [SCV20]. A key
difficulty in proving analogues of Bernstein’s theorem in H is finding appropriate classes
of variations of surfaces. In this paper, we introduce new variations of ruled surfaces and
use them to solve the Bernstein problem for ruled entire intrinsic graphs.

We briefly recall some terminology. Let H be the three-dimensional Heisenberg group;
we identify H with R® and give it the multiplication

/ /

(x, 32, y,2)= x+x’,y+y’,z+z’+g ) 6))
Let X =(1,0,0), Y =(0,1,0), and Z = (0,0, 1); since a nilpotent Lie group can be identified
with its Lie algebra via the exponential map, we also refer to the corresponding left-
invariant vector fields as Xy, y,z) = (1,0, —%), Yix,y2 = (0,1,%),and Z(y ) = (0,0,1). These
fields generate 1-parameter subgroups and we denote the elements of these subgroups
by X! = (£,0,0), Y! = (0,£,0), and Z! = (0,0,1) for t € R. Let Vp = {(x,0,z) € H} be the
xz-plane. For a subset U c V) and a function f: U — R, we define the intrinsic graph of
f to be the set

Ip={uy/™:ueu.

If U = Vp, we call f an entireintrinsic graph. There is a corresponding intrinsic projection
I1: H — V, given by I1(p) = pY ~¥P), where y(p) is the y-coordinate of p.

NEW YORK UNIVERSITY, COURANT INSTITUTE OF MATHEMATICAL SCIENCES, 251 MERCER STREET, NEW
YORK, NY 10012, USA.
E-mail address: ryoung@cims .nyu.edu.



2 AREA-MINIMIZING RULED GRAPHS AND THE BERNSTEIN PROBLEM IN THE HEISENBERG GROUP

For any p € H, we call the plane spanned by X, and Y, at p the horizontal plane
centered at p. Let A = {(x, y,0) : x, y € R} be the horizontal plane centered at 0. For any
peHand any v € A, let (v) be the span of v; this is a one-parameter subgroup of H and
we call the coset p(v) a horizontal line.

One of the main steps in the proofs of the analogues of Bernstein’s theorem for C?, C?,
and Lipschitz graphs is to calculate the first variation of the area and show that a graph
that is area-stationary (i.e., a critical point of the area) is a ruled surface. A ruled surface
in H is a surface X < H that can be written as a union of horizontal line segments (rulings)
with endpoints in 0X. One then calculates the second variation of the area of £ and
shows that if X is a ruled entire intrinsic graph which is area-stable (i.e., a second-order
minimum of area), then X is a vertical plane.

This approach works well for surfaces that are smooth or regular with respect to the
Riemannian structure on H, but there are important classes of surfaces in H that are
regular with respect to the sub-Riemannian structure but not the Riemannian structure.
Once such class is defined in terms of the intrinsic gradient. Given a continuous function
f: U — R, we define V¢ to be the vector field Vy = X — f Z on U. This is the push-forward
of X under the intrinsic projection from I'y to Vy, i.e., V¢ = (I|r,)« (X). When f is ct,
we can define the intrinsic gradient of f as V¢ f; when f is merely CY, one can define
V f distributionally (see Section 2). If V¢ f can be represented by a continuous function,
we say that f is of class Cj; or f € C},(U). We call the intrinsic graphs of C}; functions
Cu}u graphs. These are important examples of regular surfaces; that is, they are the level
sets of functions ¢ such that the horizontal gradient Viy¢ = (X¢, Y ¢p) is continuous and
nonvanishing.

The C[ﬂﬂ condition bounds how quickly f varies in the horizontal direction, but f
can vary very rapidly in non-horizontal directions. For example, Kirchheim and Serra
Cassano constructed C[%ﬂ graphs that have Hausdorff dimension 2.5 with respect to the
Euclidean metric [KSC04]. This makes it difficult to apply standard variational methods
to such surfaces, because perturbing a Cnlu graph generally changes the set of horizontal
directions. Indeed, a perturbation of a Cu}n graph need not be C},, and may even have
infinite perimeter.

This even affects relatively simple graphs, like the broken plane depicted in Figure 1.
For u = 0, the broken plane BP,, is a surface made up of two vertical half-planes with
slope +u (the slope of a vertical half-plane is the slope of its projection to the xy—plane)
connected by two wedges in the x y—plane. For any u, there is a function b: ¥ — R such
that I', = BP,, and b is intrinsic Lipschitz, that is, |V, bl < ©. This bounds how quickly
b varies in horizontal directions, but b can still vary rapidly in vertical directions. In
particular, b goes to infinity near 0, so if f € CZ°(Vp) is nonzero at 0, then

Vipsplb+ fl=(X =+ )2)b+Vpppf =Vypb—f0.b+ Vs f.

Since Vb and V., ¢ f are bounded, this goes to infinity near 0, which means that b + f is
not intrinsic Lipschitz. This makes it difficult to decrease the area of BP,, by a smooth
deformation. Indeed, Nicolussi Golo and Serra Cassano showed [NSC19] that BP,, is area-
stable in the sense that 0, larea(T'p4ef)] =0 and 65 larea(T'p4ef)] =0 for any f € C°(Vp)
and asked whether BP,, is area-minimizing.

One approach to questions like this is to consider variations of surfaces through
intrinsic Lipschitz graphs. For example, [Gol18] and [You20] studied variations through
contact diffeomorphisms. These variations preserve the horizontal distribution on H
and send intrinsic Lipschitz graphs to intrinsic Lipschitz graphs, but there are many
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FIGURE 1. The left figure shows the broken plane BP; c H, which is
made up of two half-planes connected by two wedges. (See Section 4 for
the definition of BP,,.) While the half-planes are foliated by horizontal
lines, the horizontal lines that make up the wedges all intersect at the
origin. The right figures show the projection of the horizontal lines
in BP; to the abelianization A and the projection along cosets of (Y)
to the xz-plane Vj. Horizontal lines project to parabolas in Vj; the
two half planes project to two families of parallel parabolas, while the
wedges project to a family of parabolas through 0.

examples of surfaces that are area-stable with respect to contact variations but not
smooth variations; Nicolussi Golo [Gol18] showed, for instance, that every ruled C"}ﬂ
graph is area-stable with respect to contact variations.

The issue is that there are too few contact variations to recognize area-minimizing
surfaces. Because contact variations preserve the horizontal distribution, they send
horizontal curves to horizontal curves and do not affect the horizontal connectivity of a
surface. That s, if f: H — H is a contact diffeomorphism and p and g are connected by a
horizontal curve in %, then f(p) and f(g) are connected by a horizontal curve in f(X).
Consequently, a surface that is area-minimizing with respect to contact variations can
still have competitors with smaller area but different horizontal connectivity. Indeed,
Figure 2 shows examples of competitors for BP,, with smaller area, but with a different
pattern of horizontal curves. Finding a family of variations of non-smooth surfaces in H
that is rich enough to recognize area-minimizing surfaces would be an important step in
the study of perimeter-minimizers in H.

In this paper, we introduce a family of variations of ruled surfaces and use it to
characterize area-minimizing graphical strips. A graphical strip is an intrinsic graph
that is ruled by horizontal lines through the z-axis (see Section 3). For example, the
broken plane BP,, is a graphical strip. Previous work with graphical strips, for instance
[NSC19], [GR15], and [DGNPO09], mostly focused on the case of entire graphical strips,
showing that, under some regularity conditions, an entire area-minimizing graphical
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strip is a vertical plane. Here, we will consider the case of graphical strips with boundary,
especially graphical strips that project to a vertical strip in V.

We prove the following. Let K = {(x,0,2) € Vj: -1 < x < 1} and let U = {(x,y,2) €
H: -1 < x < 1}. Let £ be a graphical strip over K. Then X is an intrinsic graph, so we
can define its epigraph =* (Section 2.3). We say that X is area-minimizing in U if £* is
perimeter-minimizing in U.

Theorem 1.1. Let X be a graphical strip over K. Then X is area-minimizing in U if and
only ifthereis a functiono: R — R such that -2 < % <2foralls<tand

2=JIl-1,-0(2),2),(1,0(2),2)], )
zeR
where [p1, p2] denotes the line segment from p to po.
In particular, if T is area-minimizing, then there is exactly one ruling of £ through any
point on the z—axis. Therefore, BP,, is not area-minimizing for u > 0.

When there are s < ¢ such that w = 2, the surface X is not an intrinsic graph.
When ¢’ (f) = -2 for all ¢, £ is area-minimizing, but it is one of uncountably many area-
minimizing surfaces with the same boundary.

Theorem 1.2. Lety ={(-1,2z,2): ze RIU{(1,-27,2) : z€ R}. Any two points (—1,2z;, z1)
and (1,-2zy, z) are connected by a horizontal line. Let p: R — R be a surjective continuous
increasing function and let

2, = J(-1,22,2),(1,-2p(2), p(2))].

zeR

Then X, is an area-minimizing surface with 0z, =y.

Pauls gave an example of a closed curve that admits two different fillings by ruled
surfaces in [Pau04], showing that the Heisenberg minimal surface equation with Dirichlet
boundary conditions can have multiple solutions, but the ruled surfaces he constructed
are not area-minimizing [CHY07].

The proof of Theorem 1.1 relies on constructing deformations of graphical strips
through piecewise-ruled surfaces and computing the second variation of the area under
such deformations (Proposition 3.5). We construct these deformations as follows. Since
Y is an intrinsic graph over K which is symmetric around the z—axis, the boundary of
X consists of two intrinsic graphs Xy, and X 'y_,, where a: R — R is continuous and
Yo :=1{(0,y,2) : y = a(2)} is the graph of a in the yz-plane.

Cutting X along the z—axis produces two symmetric halves, one bounded by (Z) and
X7yq and one bounded by (Z) and X _ly_a. Given a function 7 € C°(R), we construct
a surface S, ; consisting of two ruled surfaces, one bounded by y; and Xy, and one
bounded by y; and X~ 'y_,. In Section 3, we prove Theorem 1.1 by expanding area Sy 1,
to second order in A.

In Sections 4-5, we apply Theorem 1.1 to show that Bernstein’s theorem holds for the
class of ruled intrinsic graphs.

Theorem 1.3. An entire area-minimizing ruled intrinsic graph in H is a vertical plane.

We prove Theorem 1.3 by showing that if I' is a ruled intrinsic graph, then its scaling
limit is a plane or a broken plane (Section 4). Scaling limits of perimeter-minimizing sets
are perimeter-minimizing (Section 5), so if I' satisfies Theorem 1.3, then its scaling limit
is a plane. It then follows that I itself is a plane.
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FIGURE 2. Conjectured area-minimizing (top) and energy-minimizing
(bottom) competitors for BP;. (See Section 7 for full definitions.) The
figures on the right are the projections to A and Vj. For clarity, the
projections to A only show the top half of each surface. Black lines on

the surfaces correspond to thick lines in the projections; the dots mark
the images of vertical black lines.

Finally, in Section 6, we prove Theorem 1.2, and in Section 7 we construct conjectural
area-minimizing and energy-minimizing competitors for BP,, seen in Figure 2. These
competitors are each made up of two Z—graphs (graphs of an equation z = f(x, y)); one
can show numerically that these surfaces have smaller area than BP,,, but we do not
know whether they minimize the area or the energy.
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The question of finding the broadest class of surfaces in H that satisfies Bernstein’s
theorem remains open. It is known that intrinsic Lipschitz graphs do not satisfy Bern-
stein’s theorem; there are many area-minimizing entire intrinsic Lipschitz graphs that are
not vertical planes. These can be highly singular; the first example of such a graph had a
singularity along the x—axis [Pau06], and the examples in [NGR20] can be chosen to have
a characteristic set (the set of points where the tangent plane to the surface is horizontal)
whose closure has positive measure. In these examples, however, the surface fails to be
Cu{n near the singularities, so the Bernstein problem for Cu}n graphs is an open question.

Remark 1.4. The 3D models used in the figures in this paper can be found in .obj format
in the supplementary material for this paper. These files can be opened in Preview on
Macs, Paint 3D on Windows, or any 3D modeling program. They can also be found at
https://cims.nyu.edu/ ryoung/ruledBernstein/.
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Foundation under Grant Nos. 2005609 and 1926686 and research done while the author
was a visiting member at the Institute of Advanced Study. The author would like to thank
Sebastiano Nicolussi Golo, Manuel Ritoré, Richard Schwartz, and the anonymous referee
for their time and advice during the preparation of this paper and to thank the Institute
of Advanced Study for its hospitality.

2. PRELIMINARIES AND NOTATION

2.1. The Heisenberg group. The Heisenberg group H is the 3—dimensional simply con-
nected Lie group with Lie algebra

h:=(X,Y,Z:[X,Y]=Z,[X,Z]=1Y,Z] =0).

We identify H with h via the Baker-Campbell-Hausdorff formula, i.e., H=(X, Y, Z) = R3
and . .
32 &y, ) =(x+x,y+y,z+2 + oy ;yx :

We use X, Y, and Z to denote the coordinate vectors of R3 and the corresponding left-
invariant fields Xx,y,2) = (1,0,—%), Yix,y,2 = (0,1, %), and Z(y,y,z = (0,0,1). Let x,y,z: H—
R be the coordinate functions of H. Every vector v € H generates a one-parameter

subgroup of H; we write (v) = Rv for this subgroup and define v’ = rv for all r € R.

We equip H with the Kordnyi norm ||(x, ¥, 2) lkor = v/ (x% + ¥%)2 + z2 and the corre-
sponding left-invariant distance d(p, g) = || p’1 qlkor- For a,b € R~ {0}, let s, , be the
automorphism s, ,(x,y,2) = (ax,by,abz). We call automorphisms of the form s;;,
t > 0 scaling automorphisms; these satisty ||s;,;(p)llkor = ¢l pllkor and d(s;,¢(p), 51,:(q)) =
td(p,q). ForpeHand r >0,let B(p,r):={geH:d(p, q) < r} be the open ball of radius r
around p. The tangent planes spanned by X and Y are called the horizontal distribution,
and vectors in the horizontal distribution are called horizontal vectors. Acurvey: I — H
whose coordinates are Lipschitz and such that y'(¢) is a horizontal vector for almost every
t is called a horizontal curve.

2.2. The perimeter measure. The sub-Riemannian perimeter of a measurable subset
E cH on an open set QQ c H is given by

Perg(Q) = sup{/ divy(aX +bY)dn:a,be CgO(Q),a2+b2 < 1},
E

where the horizontal divergence divy is defined by divy(aX + bY) = Xa+ Yb and n is
Lebesgue measure on H. This perimeter was introduced in [FSSCO01] as a Heisenberg
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analogue of perimeter in Euclidean space. If Perg(B(0, 1)) < oo for every r > 0, we say that
E has locally finite perimeter. The perimeter is lower semicontinuous, i.e., if Ej, Eo, ...
have locally finite perimeter and 1, converges locally in L; to 1g, then E has locally
finite perimeter and Perg(Q) < liminf;_, Perg, () [FSSCO01, 2.12].

Let EAF := (E~ F) U (F ~ E) be the symmetric difference operator. For Ec H a
measurable set and Q < H an open set, we say that E is a perimeter minimizer in Q if for
every r > 0 and every measurable F c H such that satisfies EA F € B(0,r) N Q, we have
Perg(B(0,r) N Q) <Perr(B(0,r)NQ).

2.3. Intrinsic graphs and intrinsic gradient. For any U c 1 and any function f: U — R,
we define If= {uYf(“) : u € U} to be the intrinsic graph of f and F]J: ={uYt:t> fuw)}to
be the epigraph of f. The intrinsic graph I ¢ is parametrized by the function ¥: U — H,
¥ (1) = uY/ ™. In coordinates,

[p= {(x,f(x,o,z),z+%xf(x,o,z)) 1 (x,0,2) € U}.

We define I1(p) = pY VP,
Xy
(x,y,2) = (x,O,z— ?),
to be the intrinsic projection from H to Vg, so that lTe ¥ ¢ = idy.

Let V¢ be the vector field Vy = X - fZ = (Mlr)«(X) on U. We call this the intrinsic
gradient; we are particularly interested in V¢ f, which determines the tangent plane to I'¢.
The derivative V f exists when f is C 1, but it can be defined distributionally when f is
merely C°. If f: V — Ris continuous, we say that V rf exists in the sense of distributions
if there is a function 6 € Ly, 1o such that for every y € C;,

2
/ Oy dyi = / ~foww+ L o.wdn,
Vo Vo

where p is Lebesgue measure on Vp. If so, we write V¢ f = 6. When f is C !, this coincides
with the previous definition. For U an open subset of V;, we define C[%ﬂ (U) to be the set of
continuous functions f: U — R such that V f is represented by a continuous function
on U. This implies that I is a regular surface in the sense of [ASCV06].

One can also define a version of the Lipschitz condition adapted to the Heisenberg
group. For D c Vg, we say that a function f: D — R is intrinsic Lipschitz or that 'y is
an intrinsic Lipschitz graph if there exists a 0 < A < 1 such that |y(p) — y(q)| < Ad(p, q)
for all p, g € T'y. By Theorem 4.29 of [FSSC11], if U is an open set and f: U — R is an
intrinsic Lipschitz function, then f satisfies an intrinsic version of Rademacher’s theorem
in the sense that V¢ f exists in the sense of distributions and ||V fll« is bounded by
a function of A. Conversely, if f € C°(U) and V rf € Lo(U), then f is locally intrinsic
Lipschitz [BCSC15].

Let D c Vj and let f: D — R be an intrinsic Lipschitz graph. The area formula
[CMPSC14, Thm. 1.6] states that for any bounded open set U c Vj,

Perr;(H_l(U))z/ V1+(Ve2du.
U

More generally, we define

area‘I’f(W):z/ V1+(VeH2du. 3)
w
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for any measurable W c D. For a continuous function f: V, — R and an open subset

Q cH, we say that Iy is area-minimizing in Q if 1“; is perimeter-minimizing in 11~} (Q).

2.4. Horizontal lines and characteristic curves. Let 7: H — A, n(x,y,2) = (x,¥,0). A
horizontal lineis a coset of the form p(V), where V € A. The slope of a horizontal line L
is the slope of (L), i.e., slope(p(aX + bY)) = g.

Let p = (xp,¥p,2p) € Hand m € R, and let L = p(X + mY) be the line of slope m
through p. Let A(f) = p(X + mY)'~*r parametrize L. Then

Xpm(x —Xp) = yp(x—xp)
2

MAWX) =H(p(X+mY)* ™) = |x,y, + m(x—xp),2p +

XpYp

m 2
:(x,O,z,,— —yp(x—xp)—?(x—xp) )

:H(p)+(x—xp,0,—yp(x—xp)—%(x—xp)z). @

Thatis, II(L) is a parabola, and any parabola in V} is the projection of a unique horizontal
line.

Given an open subset U c 1y and a continuous function f: U — R, the characteristic
curves of Ty are the integral curves of the vector field V¢ = X — f Z. By the Peano Existence
Theorem, for every p € U, there is a characteristic curve through p, but when f is not
Lipschitz, this curve may not be unique. Note, however, that two characteristic curves
that meet at a point p must have the same tangent vector at p.

The characteristic curves of I'; are projections of horizontal curves contained in I’ f; if
f: Vo — Ris an intrinsic Lipschitz function and A: I — V} is a characteristic curve for I'f,
theny =W (oA is a horizontal curve in T ¢; conversely, if y: I — I'y is a horizontal curve
such that x(y(¢)) = t for all ¢, then IToy is a characteristic curve.

Recall that if ¥ c H is a surface, a ruling of X is a horizontal line segment (possibly
infinite) that lies in 2, with endpoints in X. We say that X is a ruled surface if every point
of Z is contained in at least one ruling. Ruled surfaces need not be regular in the sense
of [ASCV06]. For example, the broken plane in Figure 1 is a ruled surface but its tangent
cone at the origin is not a plane.

When an intrinsic graph I' is a ruled surface, we can say more about its characteristic
curves. By (4), the projection of any ruling of I'¢ is a parabola. If Ry and R; are distinct
rulings of T f such that II(R;) and I1(Ry) intersect at a point p € Vp, then [1(R;) and II(R»)
must be tangent at p. It follows that I1(R;) and II(R,) cannot cross. That is, the following
lemma holds.

Lemma 2.1. Let Ry and R, be distinct rulings of T'¢. Let gg, : I; — R be such that TI(R;) =
{(x,0,8g,; (X)) : x € I;}. Then gg,(x) < gr,(x) for all x € I, N I or gg, (x) = gr, (x) for all
xehnlk.

3. DEFORMATIONS OF GRAPHICAL STRIPS

Let D < Vj. A graphical strip over D is an intrinsic graph I' ¢ of a continuous function
f: D —Rsuch that I'y is ruled and every ruling intersects the z-axis. (This definition
differs slightly from the definitions found in [NSC19], [GR15], and [DGNP09], which
assume that f is Lipschitz or C? with respect to the Euclidean structure on R?.)

A notable example of a graphical strip is the broken plane illustrated in Figure 1.
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Definition 3.1. Let u = 0. The broken plane BP,, consists of two vertical half-planes of
slope +u connected by two wedges in the xy—plane. (See Figure 1.) That is,

BP, ={(x,—ux,2): x€R,z=01U{(x,ux,2) : xR, z< 0 U{(x,,0): |yl < ulx|}. (5)
As u — oo, this converges to the set
BPy :=(Y,Z)U(X,Y)

We require u = 0 so that BP,, is an intrinsic graph. The upper half-plane P; =
{(x,—ux,z): x €R,z> 0} has projection II(P}}) = {(x,0,2) : z > %xz}, while P;, = {(x, ux,z):
x € R, z <0} has projection I1(P;)) = {(x,0,2) : 2 < _T”xz}. When 0 < u < oo, these regions
are disjoint and BP,, =TI, , where

ux z<-3x
by(x,0,2) =4 =2 |z]<Lx?
—ux z>%4x2,

When u <0, H(P:{ ) and II(P,,) overlap, so (5) defines a ruled surface, but not an intrinsic
graph.

Since BP,, is an intrinsic graph, we can define its epigraph BP}, = l";;u. This is the union
of two quadrants in H, one bounded by the x y-plane and the upper half-plane with slope
—u and one bounded by the xy—-plane and the lower half-plane with slope u. As u — oo,
these epigraphs converge to the set

BP. :=1{(x,y,2) €H:xz>0}.

In this paper, we mainly consider graphical strips I" over K = {(x,0,2) € Vp: 1< x <1},
in which case I' is symmetric around the z-axis (i.e., s—1,—1(I') =I') and I' is determined
by the intersection I' N {x = 1}. That s,

r= U I[ps1apl,
peln{x=1}

where [p;, p»] denotes the line segment from p; to p,.
LetTf be a graphical strip over K andlet a: R — R, a(w) = f(1,0, w). Then

Ffﬂ{x:l}:Xya,
where v, := {(0, a(z2), 2) : z € R} is the graph of a in the yz—plane, and Ip=38aq, where
Se=UJ [X7'0,—a(w), w), X+ (0,a(w), w)]

weR
-U (—1,—a(w),w+ M),(l,a(w),w+ “(w))].
weR 2 2
a(w)

For weR, letn(w):=w+ =
For example, forany 0 < u < oo, BP,, NIT"1(K) is a graphical strip over K and BP,, NI[T"1(K) =
Sa, Where

u z<—%
a(z) =by(1,0,2) =1 -2z |z|l< ¥
-u  z>4.

In general, for any continuous a: R — R, we can define S, as above. This is a ruled sur-
face bounded by Xy, and X~'y_,, but it is not always an intrinsic graph. In Section 3.1,
we will show the following lemma.
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Lemma 3.2. Let Sy be as above. Then S, is a graphical strip over K if and only if

% = -2 for all w, < w; andn®) =R.

Note in particular that if S, is a graphical strip, then 77 is a non-decreasing function; n
is increasing if and only if the rulings of S, do not intersect.

The main goal of this section is to prove the following characterization of area-
minimizing graphical strips over K. Let U be the interior of oK, ie, U={x, ¥, 2) €
H:-1<x<1}.

Proposition 3.3. Let Sy be a graphical strip over K. Then S, is area-minimizing on U if

and only if% =-1 forallw, < w,.

By the following lemma, this characterization is equivalent to the characterization in
Theorem 1.1.

a(wr)—a(wy)

Lemma 3.4. Let S, be a graphical strip over K. Then = -1 forallw, <w, if

Wy — w1
and only if there is a function o' R — R such that =2 < U(Zzzz)—:gl(ZI) <2 forallz) < zp and
Sa = U [(—1,—0(2),2),(l,g(z),z)]. (6)

zeR

We will prove Lemma 3.4 in Section 3.1.

Proof of Theorem 1.1. The first part of the theorem follows from Proposition 3.3 and
Lemma 3.4. For the second part, suppose that S, is area-minimizing on U, so that it can
be written as in (6). For any zj € R, any horizontal line through Z* is contained in the
plane P = {z = zp} c H. The intersection P N S, is the segment [(-1,-0(2), 2), (1,0(2), 2)],
and this segment is the unique ruling through Z%. If u > 0, then BP,, has infinitely many
different rulings through the origin, so BP,, is not area-minimizing. |

There are two main ideas to the proof of Proposition 3.3. First, in Section 3.2, we will
show that a perimeter-minimizing graphical strip satisfies % = —1forall w; <
wy by defining a family S, ; of deformations of S,. These deformations are parametrized
by functions 7 € C°(R). Each surface S, ; is a union of a ruled graph over the strip
K* =10,1] x {0} x R and a ruled graph over the strip K~ = [-1,0] x {0} x R, with common
boundary y;. We will show that the area of these deformations satisfies the following
formula.

Proposition 3.5. Let S, be a graphical strip over K and suppose that a: R — R is Lipschitz.
Let wy < wy be such that n~'(n(w;)) = {w;} and let D = {(x,y,2) e H:n(w;) < z <
n(wy)}. Let T € CX([n(w1),n(w2)]). Then there is a C = C(t) > 0 such that for all A €

(_Cil, Cil)!
|area(D N Sq 7)) —area(D N Sg) — A? H(T)| < Clwo — w))IAP, (7)

where

00 2
(1) = / Lwnsu +a' (w)dw

oo (L+a(w)?)?
In Lemma 3.8, we conclude that if S, is an area-minimizing graphical strip over K,
then % = —1 for all wy < wy.
Second, in Section 3.3, we show that monotone sets are perimeter-minimizing and
conclude that S}, is perimeter-minimizing when %‘;}aw” = —1 for all w; < w,. This
is a consequence of the kinematic formula, which expresses the perimeter of a subset

E cH in terms of an integral over the set of horizontal lines that intersect 0E. When E is
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monotone, then almost every horizontal line intersects 0 E in at most one point. In this
case, deformations of E increase the number of intersections and thus increase perimeter.
Proposition 3.3 follows immediately from the results of Section 3.2 and Section 3.3.

3.1. Graphical strips. In this section, we prove Lemma 3.2 and Lemma 3.4.

Proof of Lemma 3.2. By construction, every pointin S, is contained in a ruling and every
ruling intersects the z—axis. In order for S, to be a graphical strip, we need it to be an
intrinsic graph over K.

Let®: [-1,1] xR —H, O(x, w) = (x, xa(w),n(w)) parametrize S, and let p: [-1,1] x
R — K be the map

plx, w) =IO, w)) =1 (x, xa(w),n(w))

a(zw) x| = (%,0,n(w)(1 - x*) + wx?).

=1x0,n(w) -
Suppose that 7 is surjective and % = —2forall s < t. We claim that p|(-1,1)~o) =R
is a homeomorphism. Let hy(w) := z(p(x, w)) = n(w)(1 - x%) + wx?. Since 71 is nonde-
creasing, hy is an increasing surjective function when x # 0. It follows that p|(-1,1j<0p xR
is a bijection. For any a and bsuch that-1<sa<b<0or0<a<b<landanyc<d,

p((a,b) x (c,d)) ={(x,0,2) : x € (a, b), z € (hx(c), hx(d))}

is an open set, so pl(-1,1~{0) xr is an open map. Therefore, p restricts to a homeomor-
phism from ([—1,1] ~{0}) xR to K ~(Z).
Letq = (q1,42) := (Plg-1,1~0pxr) " : K~(Z) — (=1,11~{0}) xR. For (x,2) € K, let

{xa(qz(x, z2)) x#0
0

fa(x,2):= oo

Then f, (p(x, w)) = xa(w), so
¥ (plx, w) = O, w)) Y™ = 0(x, w),

andTr, = S,.

We claim that f; is continuous. Since q is continuous, f, is continuous on K ~(Z).
Let z € R and let w; < w» be such that n(w;) < z <n(w2) and let C = maXyew,,w, la(W)].
Let

D =p([-1,1] x [wy, wz]) ={(x,0,2) : x € [-1,1], z € [hx(C), hy(d)]};
this contains a neighborhood of (0,0, z), and if v = (x,0,2) € D, then |f,(v)| < Cx. It
follows that f; is continuous at (0,0, z) for any z € R.

Conversely, if there are s < ¢ such that M < —2,thenn(#) <n(s), and there is some
x > 0 such that hy(s) = hy(2). Then p(x,s) = p(x, 1), but y(O(x, s)) = xa(s) # y(O(x, 1)).
Therefore, S, is not an intrinsic graph. Likewise, if 7 is not surjective, then I1(S,) is a
strict subset of K. O

a(wz)—a(wr) aw).

w2 —wq 2
this is invertible and surjective by our hypothesis on @, and we define o (z) = a(n™!(2)).
When z =n(w),

(-1, —a(w),n(w)), 1, a(w),n(w))] = [(-1,-0(2),2),(1,0(2), 2)],

Proof of Lemma 3.4. Suppose that =—-1forall s<t Letn(w):=w+

SO

Sa=UJIl(-1,-0(2),2),1,0(2),2)].

zeR
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0(z2)—0(z1)

Let z; < zp. We claim that —2 < e < 2. Letw; = n‘l(z,-) and a; = a(w;) = o(z;).

Then z; = n(w;) = w; + % Since 7 is monotone, we have w; < w», so
az —ady
wy—wy1=2—21———— >0,
2
i.e., a» — a1 < 2(zp — z1). Furthermore,

a—ar _ a(wy)—a(wy) _1

w2 —wq W2 — Wi
SO

1
612—6112wl—w2=Zl—Zz+§(d2—a1),

S0 az — a) = —2(z, — z1). Therefore, -2 < —”(ZZ:‘Z’I(Z” <2.
Conversely, suppose that

Sa = UJl(-1,-0(2),2),1,0(2),2)] ®)

zeR

for some o such that

- 0(z3) —0(z1) <

-2< 2 9

-2

a(wr)—a(w)

>
o > 1 for all w; < wy.

for all z; < zp. We claim that
We have

{(x,,2)€S4:x=11={(1,0(2),2) : ze R} = {(1, a(w),n(w)) : w € R},

so o(n(w)) = a(w) for all w e R. Let w; < w-. Since 7 is nondecreasing, we have n(w;) <
n(wy). In fact n(w;) < n(w»); otherwise, S, would have two rulings with the same z—
coordinate.

By (9) with z; = n(w1), z2 = n(wo),

o (n(w2)) = o (n(wy)) = -2 (n(w) —n(wn))

a(w a(w
a(wr)—a(wy) = -2|wy + (ws) -—w; — (2 !
2(a(wo) —a(wn)) = —2(w2 — wy),
) % = —1, as desired. O

3.2. Deforming ruled surfaces. Recall that for any function 7: R — R, we define y; :=
{(0,y,2) : y = 1(2)} to be the graph of 7 in the yz—plane, so that S, has boundary

0SSy = X_lya UXy_q.
In this section, for any sufficiently small 7, we construct a ruled graph X; 5 over K* =
[0,1] x {0} x R with boundary 0Z; 4 = Y7 U XY,. By gluing two such graphs together, we
obtain a surface
Sa,r:=Zr,aUS-1,-1(Z-7,0)
which is a deformation of S,,.
First, we construct Z; 4.

Lemma3.6. Leta,7: R— R be continuous functions. Letn(w) := w + %, and suppose

that % = -2 forall s < t andn(R) = R. Suppose that Lip(t) < 2. Then there is a
unique ruled graph X , with boundary 0Z; ¢ = Y7 U XYq.
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Proof. We first construct a tilted coordinate system on the yz—plane. Let P c H be the
yz-plane andlet Q = Y + % Then P = (Q, Z). Since Lip(7) < 2, we can write y; as a
P—graph. That is, any point Z?Y" € y; can be written

7(2)

Z2yT@ = z2="2 pr(a) _ 42 pr(2) (10)
where ((z) :=z— % Then ( is invertible, so, letting w = {(z),
Y =129 P W)y e Ry,
Let B(w) := ("' (w)).
Let weRandlet p= XZ¥Y*W € Xy,. Forany meR,
p-(X+mY) ' = (1, a(w),n(w)(-1,-m,0)
= (0, a(w) — m,n(w) + W) = Znw) patw-m ()

which lies in y; if and only if m = a(w) — f(n(w)). In this case,

Znw) patw)=m _ zn(w) ppaw) 19 7" mw) yr@ o) — hw) yrihw)
where h(w) := ("' (n(w)). Let
R, = | xz¥y*w Zn(w)pﬁ(n(w))] - [XZWY“(”’) 7 h(w) yT(h(w) 12)

be the segment connecting p to y;. Since 7 is surjective, every point of y; is the endpoint
of some such segment. We call the union of these segments

Zra :=URw.
w

This is a surface ruled by the R,, and bounded by y; and Xy,.
Let 6(w) = a(w) — B(n(w)), let

A () := ZMW yThW) (x4 5(u) V)* = XZV YW (X + 6 (w) V) ¥

parametrize R, and let O(x, w) := 1,,(x) parametrize X; ,. We claim that Z; , is an
intrinsic graph.
For each w, there is some quadratic g, such that IT1(1,,(x)) = (x,0, g,,(x)). We have

2w (0) = z(TI(A,,(0))) = z(AL(Z"W yThWy) = p(w),

guw(1) = z(I(A, (1)) = zq1(X ZY Y ¥ W) = ),
and g} (x) = —slope Ry, = =6 (w), so

o(w)
gwx)=Q1-xh(w)+xw+ TX(I - X).

Then II(O(x, w)) = (x,0, g, (x)). We claim that for every x € (0, 1], the map w — g, (x) is
monotone increasing.

Suppose that there are xp € (0,1] and w; < wy such that g, (xo) = guw, (x0). Let p(x) =
8w, (%) — g, (x). Then p(0) = h(ws) — h(wn) 20, p(1) = wp — wy >0, and p” (x) = 2¢ for
all x, where ¢ = w. Since p is quadratic, p(0) =0, p(1) >0, and p(xp) =0, it has
a minimum at some point r € (0,1) and p(r) < 0. Therefore, p(x) = p(r) + c(x - r)? and
c>0.

This implies

h(ws) — h(wy) = p(1) = p(r) + c(1 - 1)
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Since & is nondecreasing, p(r) <0, and r € (0, 1),
0< h(ws) — h(w) < c(1-1)%

By equation (4), since 1, is a line of slope § (w) through (0, 7(h(w)), h(w)), we can
also write

5
8w (%) = h(w) —T(h(w))x — (Tw)xz.

Then g;,(0) = —7(h(w)), and
IT(h(w2) - T(h(w1)| = |p' )] = 2¢|1 = 1| > 2c(1 = 1)* = 2| h(ws) — h(wy)],

which contradicts the assumption that Lip(7) < 2.

Thus, for every x € (0,1], the map w— g, (x) is increasing, and the map w — g,,(0) =
h(w) is non-decreasing. Suppose that p, g € Z; 4 satisfy I1(p) = I1(g). There are x;,x, €
[0,1] and wy, w; € R such that p = ©(x;, w;) and g = O(x,, wy); since I1(p) = 1(g), we
have x; = x». By the above, if x; € (0, 1], then p = q. Otherwise, if x; = x, =0, then p and
g lie on y;, but Il is injective on y;, so p = q. Therefore, I1 is injective on Z; 4, so Z; 4 is
an intrinsic graph. O

Next, we calculate the area of X; 4 using the area formula (3).

Lemma 3.7. Suppose that « is Lipschitz and that S, is a graphical strip over K. Let
nw)=w+* {(z)=z- 12, B(w) =1~ (W), and 5(w) = a(w) — Bn(w)) as above.
By Lemma 3.2, &' (w) = -2 for almost every w andn is nondecreasing.

Let

O(x, w):=XZV YW (X + §(w)Y)*!

parametrize ;. Leta < b. Then

b
area®([0,1] x [a, b)) = / V1+6(w)?
a

Proof. By the area formula,

b rl
area@([O,l]x[a,b])z/ / V1+6w)?-|J[MeO](x, w)|dxdw
a JO
b
:/ V1+6w)?j(w)dw,
a

! 1 6(1))
1+a(W))dw—— Vi+m2dm. (13)
2 6 /s

where j(w) = [} |/ O] (x, w)| dx.
Each ruling ©([0, 1] x {w}) is a line with slope § (w) going through X Z%¥ YeW) Since
M(XZYy*w) =(1,0, w), by (4),
o(w) 2
e w)=(x,0,w-—a(w)(x—1) — T(x— 1)

Since ITo © is injective, for any x € (0,1), w — z(II(®(x, w))) must be increasing. Then

_ 2
JMoBl(x, w) =1+ (1 - )’ (w) - gx) §'(w) =0,
and
1 2 , ,
](LU):/ 1+(1_X)OC’(LU)—(1 X) 6’(W)dx:l+a(w)_6(w)
0 2 ) 6
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Therefore,
b a(w) §(w)
area©([0,1] x [a, b]) =/ V1+6(w)? (1 + 5~ T) dw
a
=/ / \/1+6(w)2(1+ )dw— V1+m?dm,
a Jo 2 8(a)
where we substitute m = 6 (w) in the last equality. ]

For 7 such that Lip(7) < 2, let
Sa,r:=Zr,aUS-1,-1(Z-1,a).

This is a deformation of S, and we will use Lemma 3.7 to calculate the second variation
of its area.

Proof of Proposition 3.5. Let A be small enough that Lip(A7) < 2, so that 2, 4 exists. Let
(1(2)=2z— @, let

prw) = Az(7 (w)),
and let 61 (w) = a(w) — B (n(w)), so that

Onra(x, w) = XZVYYW (X + 6, (w)Y)*!
parametrizes Xy, o, and s_1,—1 0 ©_,; , parametrizes s_1,-1(Z_j7 o). Let
Ruyt = Or,q ([0, 1] x {w}) = | 26 N y el ) x zwyatw)]

Let w; < wy be such that n‘l(n(wi)) ={w;} andlet D = {(x,y,2) e H: n(w)) < z <
1(w,)}. Then for z ¢ (n(w1),n(w,)), we have {; (z) = 2,50 { ;' (2) = zand
(,{1((17(14/1),17(11/2))) < (n(w1),n(wz)).
We claim that for any [1] < 1,
Sa,ar N D =0)7 o ([0,1] x [wr, w2]) U s-1,-1(O- 27,4 ([0, 1] x [wy, w])). (14)

It suffices to show that R,y ¢ D when w € [w;, wo] and Ry, ) N D = @ otherwise. The
endpoints of R,y have z—coordinates

Z(qum(w)) YM((;l(n(wn)) = (; m(w))

and z(XZ"Y*™)) = n(w). When w € [w;, w], we have ;' (n(w)) € [n(w1),n(w,)] and
n(w) € N(w1),n(w2)], s0 Ryx < D. When w ¢ [wy, wa], we have ¢! (n(w)) = n(w) ¢
[n(w1),n(w2)], so Ry, is disjoint from D.

On the other hand, when w € [w;, w,], we have n(w) € [n(w,),n(w-.)] and (il (n(w)) €
[n(w1),n(w>)], so both endpoints of © ;4 ([0, 1] x {w}) liein D. It follows that ©; 4 (x, w) €
D if and only if w € [w;, w,], which shows (14).

Therefore, by Lemma 3.7,

area(Sq ar N D) = area®); ¢ ([0,1] x [wy, we]) + area®_ 17 ([0, 1] x [wy, wal)

wy 6 (w2)
:/ (\/1+61(w)2+\/1+6,1(w)2)
w1

!
1
1+a(ZW))dw—— V1+m2dm.
It remains to differentiate 6 ) (w). Let z,, (1) :=( /11 (w). Then

3 Jsw

A
(a(zwA) =z (A) — Er(zw(/l)) =w.
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We differentiate both sides with respect to A to find
1 A
z,,(A) — ET(ZW(M) + ET'(ZW(M)Z;U(M =0.
Setting A = 0 and noting that z,,(0) = {61 (w) = w, we find z},(0) = %T(w). Likewise, let
by(A) := Byr(w) = At(2,(A)). Then
b, (D) =1(2,, V) + A1 (21, (M) 2}, (),

so b}, (0) = 7(#) and b}, (0) = 27'(z,,(0))z},(0) = T (w) T (W), i.e.,

2
Ba(w) =At(w) + %r’(w)r(w) +0,(A%)

for sufficiently small A, where O; (A3) denotes an error term of magnitude at most C (T)A3.
Substituting this into the power series

1
Vith-al=V1+a?-—2 b+ B2+ 0,
Vita  2(0+ad)?

and abbreviating a = a(w), z=n(w), T = 7(z2), % =1'(n(w)), we find

V/ 1+ (Ba(n(w)) — a(w)) + /1 + (B_a (n(w) - a(w))?

2 2
~Viva?- e et

a
+=—1
Vi+a? 2dz ) 201+a?)?

A2 d At1)?
+Vitaz- 2 (—/11+——T1)+(;)3+OT(7L3)
V1+a? 2.dz ) 201+a?):
dr , 72

=2V1+a?- A2+ 0:(A%).

a
AL L
V1+a? dz (1+a?)?2

Substituting this into (13), using the fact that % = 3—3} =1+
parts we find

1 da

2 qw and integrating by

area(Sq,1; N D) —area(Sq0N D)
w2 a dr 72 1 da
:)12/ - T—+ (1+——)dw+0(13|w —-wl)
w ( V1i+a?2 dz (1+a2)§) 2 dw ' 2 !
we a dr dz 72 1 da
=22 -_— T ——+— 1 ——)d 0,23 -
/wl V1+a? szdw+(1+a2)§( +2dw W+ Or (M wz = wr)

wo 1 d 2 2 1d
:AZ/ 3_a.T_+T—3(]_+——a)dw+O‘[(/13|w2_w1|)
w (Q+a?)z dw 2 q4enz | 2dw

wo 2 d
:Az/ T—3(1+—a) dw + 0; (A3 |wy — wy)).
w (1+a?)? dw

This proves the proposition. O

Though the proposition deals with the case that a is Lipschitz, we can use it to find a
necessary condition for S, to be perimeter-minimizing in the general case.

Lemma 3.8. Suppose that S, is a graphical strip over K and S, is area-minimizing in U.

a(wp)—a(w)
Then ===, = = 1 for allw, < w;.
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Proof. Note that S} A S+ ; is not compactly contained in U, so S4 ), is not a valid
competitor for S, in U. We ﬁx this by scaling S, slightly. This also lets us replace a by a
Lipschitz function.

Let S, be a graphical strip over K and suppose that S, is perimeter-minimizing in U.
Lete>0andlet §:= S1+¢,1+¢(Sq). Then Sisa graphical strip over §14¢,1+¢(K), SO SnUis
a graphical strip over S. Let f: K — R be the function such that S, =T'y. Then S=r, P

where f : S14¢,1+¢(K) — Ris the function

Fep=0+0f (siiepse ().
Let a.(w) = &(w) := f,(1,w). Then 8N U = S, and § is perimeter-minimizing in U :=
S1+e,1+e(U). X .
We claim that & is Lipschitz. For w € R, let p,, = XZ* Y*®) Then p,, € S and there is
aruling R,, through p,, with slope &(w). By (4),
M(Rw) ={(x,0,gw(0) : x€ [~1 ¢, 1 +el},
where

(x—1)%

. a(w)
gwX)=w-aw)(x-1)- 2
Let s < t, so that gs(1) = s < t = g;(1). By Lemma 2.1, gs(x) < g;(x) forall x e [-1 -
g,1+¢]. Then
g/0)—g (0)—t+ﬂ—s—&>0
N 2 2 y
so &(t) —a(s) = —-2(t—s) and
2
gi(l+e)—gs(l+¢)= t—s—(£+ %)(d(t)—d(s))zo,

i.e,
-1
(t—2s).

2
a(t)—a(s) < (8+ E

That s, & is Lipschitz.
We claim that &’(w) = —1 for almost every w € R. Suppose by contradiction that
{w: &' (w) < —1} has positive measure. Let

0o 2

11(7) =/ Lg (1+é&'(w) dw;
—oo (1+ &(w)?)?2

we claim that there is a 7 € CZ° such that II(7) < 0.

Letfj(w):= w+ a(zw)
is not injective, then there is some z; € R such that 17‘1 (zo) = [a, b] for some a < b. For
any w € (a, b), we have f(w) = w + “("’) = 2y, SO &(w) = 2zp — 2w and thus &' (w) = —
Therefore,

© 1 b
11(1{ZO})=/ L@ arw) _/ 1 _dwe<o
(1+a(w)?)? a  (+a(w?)?

If 7} is injective, we let wy € R be a Lebesgue point of &' such that &' (wp) < -1 and
let I, = (A(wo — 1), fH(wy + 1r)). Since & is continuous, wy is also a Lebesgue point of
1+a' w)(1+a&w)?2,and

(1 1 [Wotr 1 1+a
lim (Ir)zlim— —(1+a(w))dw-a—(w0).<0.

r—0 2r r=021 Jiuy—r (1+a(w)2)2 (1+&(w0)2)%

. We consider two cases, depending on whether 7 is injective. If 7}
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In either case, there is some bounded interval I (possibly I = {zp}) such that II(1) <0.
Let 7; € C° be a sequence of uniformly bounded functions with uniformly bounded sup-
ports such that 7; — 1; pointwise. Then lim;_.o, II(7;) = II(1;) by dominated convergence,
so there is a 7; such that II(7;) < 0. Let Fj = (S~ U) U Sg,a1;- Then F) is a deformation of
Fy = 8, and there is an r > 0 such that F;[ AST€eUnBO,r). By Proposition 3.5, there is a
C > 0 such that

area(B(0,r) N Fy) <area(B(0,r) N 8) + A?II(t;) + CA3,

so area(B(0,7) N Fy) < area(B(0,r) N S) when A is sufficiently small. This contradicts the
fact that S is area-minimizing on U, so &' (w) = —1 for almost every w e R.

Thus, if Sy is area-minimizing in U, then % =—1foralle >0andall w, >
w; . The continuity of f implies that

lim @, (w) = lim (1 + e f(sil 1..(1,0,w)) = f(1,0,w) = a(w),

+e,1+¢€
)
a(wr)—a(wy) .. «(wo)—bg(wn)
=lim =-1.
wy — wq £—0 wyr — W1
This proves the lemma. O

3.3. Minimality of graphical strips. In this section, we show that monotone subsets of
H are perimeter-minimizing and give a criterion for S, to be monotone. We first recall
some definitions and formulas. Let £ be the space of horizontal lines in H, and for U c H,
let £ (U) denote the set of horizontal lines that intersect U. Let £ be the measure on
 that is invariant under isometries of H (rotations around the z—axis, left-translations,
and maps s;1,+1). This measure is unique up to constants, and we normalize it so that
N (ZL(B(0,1))) = r° for every r > 0.

The kinematic formula (see [Mon05] or equation (6.1) in [CKN11]) relates perimeter
on lines to perimeter in H as follows. There is a constant ¢ > 0 such that for any set
E c H with locally finite perimeter and any open subset W c H, Perg~ (W N L) < oo for
A —almost every line L and

Perg(W) = c/ Pergnr(WNL)dA(L). (15)
<

Here, Pergq is the perimeter of EN L as a subset of L. If Pergny is finite, then there is a
finite union of intervals S c L such that (E A S) n L has measure zero and Pergny, is the
counting measure on 9S.

We say that a subset W < H is convex if it is convex as a subset of R3. For any g € H,
the map h — gh is affine, so convexity is preserved by left-translation. Let E c H be a
set with locally finite perimeter and let W < H be a convex open set. We say that E is
monotone on W if for almost every L € £, we have Perg~r (W n L) < 1. Thatis, up to a
set of measure zero, EN W N Lis one of &, W N L, or the intersection of W n L with a ray.
Monotonicity is preserved by left-translation.

Proposition 3.9. Let E c H be a set with locally finite perimeter and let W c H be a convex
open set such that E is monotone on W. Then E is perimeter-minimizing in W.

Proof. Let F c H be a set with locally finite perimeter such that EA F € W. We claim that
PerEﬂL(WﬂL) <PeI‘FQL(WﬂL) (16)

for almost every line L € £.
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For almost every line L € £, we have Pergn (W N L) < 1. If Pergn, (W N L) =0, then
(16) holds, so we suppose that Pergnr (W N L) = 1. Then W N0 41 (E N L) consists of a
single point, say p, and there is a ray R based at p suchthat ENWNL=RnNnWnL,upto
anull set.

Since W is conve, the intersection W N L is an interval, with (up to null sets) one end
of WnLin E and the other end outside of E. Since EAF € W, we likewise have one end of
W N Lin F and the other end outside of F. Therefore, Pergnr.(WNL) =1 =Pergnr(WNL).

By (15),

Perg(W) = c/ Pergnr(WNL)dA (L) < Pergp(W),
&
so E is perimeter-minimizing on W. (]
Finally, we apply this to S,.

Lemma 3.10. Let S, be a graphical strip over K and suppose that % = —1 forall
s<t. Then S; is perimeter-minimizingon U = {—-1<x <1} cH.

Proof. We claim that S} is monotone on U. By Lemma 3.4,

Sa = UJl(-1,-0(2),2),1,0(2),2)]
zeR
for some Lipschitz function : R — R such that -2 < ¢/(z) < 2 for all z.

For x € [-1,1], ze R, let ®(x, 2) = (x, x0(2), 2) parametrize Sq. It suffices to show that
any horizontal line that does not contain a ruling of S, intersects ®((—1,1) x R) at most
once.

Let x1,x2 € (—1,1) and z; < zy. The horizontal plane P; centered at ®(x), z) is the set

Py ={(x1,x10(21),21) - (x—x1,y — x10(21),0) : x, y € R}
:{(x,y,zﬁ%ww):x,ym},
so @ (xy, 22) € Py if and only if
X1X20(22) — X2 x10(21)

Zp =21+ ) ,

ie.,

0(z2) —0(z1) _

X1X2 2.

22— 21
Since % < 2and |x; x2| < 1, thisisimpossible. Therefore, if L intersects ®((—1, 1) x
R) at two points, then those two points have the same z—coordinate and thus lie on the

same ruling of Sy. Therefore, S, is monotone on U and thus perimeter-minimizing on
U. ]

Lemma 3.8 and Lemma 3.10 prove the two directions of Proposition 3.3.

4. SCALING LIMITS OF RULED GRAPHS

In the last section, we classified area-minimizing graphical strips. In this section and
the next section, we will use the classification of area-minimizing graphical strips to
classify entire area-minimizing ruled intrinsic graphs. We first show that the scaling
limit of an entire ruled intrinsic graph is a graphical strip; in fact, it is a broken plane
(Definition 3.1).
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Lemmad4.1. Let f: Vo — R be a continuous function such that T ¢ is a ruled surface. There
are u € [0,00] and 0 € R such that ifrotg: H — H is rotation by 6 around the z—axis, then
s;} (F}) — roty(BP,) as t — co. Furthermore, ifu =0, thenT risa vertical plane.

We write E; — E if E; converges locally to E, that is, for every compact set K c H, we
have #*((E; AE)nK) — 0.

We prove Lemma 4.1 by analyzing the characteristic curves of I's. As noted in Sec-
tion 2.4, every ruling of I'y projects to a parabola in Vp, and since T'¢ is entire, these
parabolas cover V.

For each ruling R, let m(R) be the slope of R, let w(R) = (0, wy(R), w.(R)) € Wy be the
point where R intersects the yz-plane, and let Ar(f) = w(R)(X + m(R)Y) 4 parametrize R.
Let gr(f) = z(II(Ar(1))) so that [1(R) is the graph {(x,0, gr(x)) € V; : x € R}; by (4),

m(R) ,
gr(x) = wz(R)—wy(R)x—Tx . a7
We first prove some lemmas describing I'.

Lemma 4.2. Let R, and R, be distinct rulings of Ty and suppose that w(R) < w;(Rp).
Then gg, (x) < gr, (x) for all x e R and m(R;) = m(Ry).

Proof. We have gg, (0) = w;(R1) < w;(R2) = gr,(t), so by Lemma 2.1, gg, () < gg, (¢) for
all z. By (17), this implies m(R;) = m(Ry). (Il

For p e H, m € R, let L, ; be the horizontal line of slope m through p.

Lemma4.3. Let Ry and R, be distinct rulings of T ¢ that intersect at a point p € H; suppose
that m(Ry) < m(Ry). Then for every m € [m(Ry), m(R2)], Lp,m is a ruling of Ly

Proof. After a translation, we may suppose that p = 0, so that R; = Lo ju(r,) and II(R;) is
the graph of the function g;(x) = —@xz. Let m e (m(Ry), m(R»)), q = (1,0, —%), and
let M be the ruling through ¥ r(g). By Lemma 2.1, gg, (%) < gm(x) < gr, (%), and since
the graphs of g, and gg, are tangent to the x—axis at 0, so is the graph of gy. Since

gm(1) = -2, we have gy (x) = -3 x%, 50 M = Lo . O

Combining these two lemmas, we get the following characterization of the rulings of
Ly
Lemma4.4. Let f: Vo — R be a continuous function such that T ¢ is a ruled surface. Let
R ={(z,m) €R®: Ly ,(z5),m < T'f)

and for ze R, let
o(z) = Sup{m : L\Pf(ZZ),m C rf}

Then o is nondecreasingand % = {(z, m) € R%:0(z7) < m<o(z)}, whereo(z™) =lim;_.,- o (£).

Proof. SinceT’ r is an intrinsic graph, no ruling of T  is a coset of (Y), i.e., every ruling
of I'y has finite slope. For p € ', let My, = {m: Ly, <T ¢}. Then M) is nonempty. Since
I'f is closed, any sequence of rulings through p has a subsequence that converges to a
ruling through p, so M), is compact. Therefore, 0(2) = max My ,(zz) and (z,0(z)) € Z for
all ze R. Let z; < zy. Then (z1,0(z1)), (z2,0(22)) € X, so by Lemma 4.2, 0(z1) < 0(2p), i.e.,
o is nondecreasing.

For every z € R, the sequence of rulings L 1, converges to Ly ;(z2),5(z7), SO

1
¥ (ZF )00z 1)

Ly ;(z7),0(z-) is aruling of T'y. By Lemma 4.3, we have (z,m) € Z forall me [0(z7),0(2)],
s0{(z,meR?:g(z)sm<o(2)}cXR.
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Conversely, suppose that (z, m) € R. On one hand, m < o (z) by definition. On the other
hand, if (z/,m') € Z and z’ < z, then m’ < m by Lemma 4.2, so o(z~) < m. Therefore,
R =1{(z,m) eR?:0(z7) < m<o(z)}, as desired. O

Let Mmoo, =lim;_.o 0 (f) and m_o, =lim;_._o, o (¢). These limits determine the scaling
limit of T'f.

Lemma4.5. Fort>0, let fi(p) = 17" f(s;,/(p)) so thatTy, = s;;(Ty). For x #0, let

M_ooX ifM_oo <00 andz< —%xz

— 2z D 2
F(x,0,2) =4 -= if — T > w2 < z<— 2x
MooX  if Moo > ooandz;—T""xZ.
Then f; converges to F pointwise almost everywhere on Vi as t — oo.
Proof. Let x9, zo € R. We first consider the case that xy # 0 and zp € (—ng, ——xo).
Let Ry, R, be rulings of ' such that — m(R‘) M xs <zg<— m(RZ) x5. Then

m;”umﬂ+mn<ﬁ%

gR1 (txo) =

when ¢ is sufficiently large; likewise, gg, (£x9) > t?zy when t is sufficiently large. That
is, there is some #p > 0 such that s ;(xo, 0, z9) = (£x,0, 2 zg) is between I1(R;) and I1(R,)
when ¢ > .

For each ¢ > 0, let S; be a ruling of Iy such that (x,0, t2zg) € I1(S;). When ¢t > 1,
we have gp, (£x0) < 2z < 8r, (txp) and thus gg, < gs, < gr, on all of R. We will use this
inequality to bound the coefficients of gg,.

Let C > 0 be such that |gg, (x)| < C and |gg, (x)| < C for all x € [-1,1]. Then |gs, (x)| < C
forall x € [-1,1]. By (17), this implies |w,(S;)| = 1gs,(0)| < C and

wy(Sp)| =

8s,(=1)—gs,(1) ‘ <C

By (17) with x = txo,

m(S;)
gs, (tx0) + —— (tx0)* = w;(S1) — wy (S X,
SO
S
ﬁ@+z%ﬁu%ﬁsc+am%
and
m(S;y) zp C C
S| S—=+—.
2 x5 | ltxol?  |txol

That is, lim;_.o, m(S;) = 220 . Since the graph of gg, is a characteristic curve, gs, satisfies

the differential equation gS (x) = -f(x,0, gs, (x)). Therefore,

lim f;(x0,0, 20) = lim ¢~ f(£x0,0, t*20) = lim —¢ "' g§ (£x0)
t—o00 t—o00 t—o0 t

2
= lim — ¢~ (=m(Sy) txo — wy(Sp)) = hm m(Sy)xp = —ﬁ,
[—00 X0

as desired.
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Next, we consider the case that my, > —oo and % > — % Letee (0,1) andlet R; bea
0
ruling of T ¢ such that me, < m(Ry) < my + €. Then there is a £y such that

Moo + €
12 x2 < gr, (tx0) < 29 (18)

when > tj.

Let ¢ > tp and let S; be a ruling of Ty such that (£xy,0, tzzo) e I1(Sy). By Lemma 2.1,
8r, (%) < gs,(x) for all x € R, and by Lemma 4.2, m(R;) = m(S;) = M. Let h(x) = gs,(x) —
gr, (x). We have h(x) = 0 for all x and k" (x) = m(R;) —m(S;) € [0, €]. Since h is a quadratic,
forany w eR,

1
0< h(txg+ w) = h(txy) + W (tx0) w + 5h”(z:xo)w2 < h(txg) + h (txo) w + ng.
Letting w = —&~' 1/ (txp), this implies

' (tx0)?
—_—
2¢€

and thus | k' (tx0)| < /2eh(txg) = \/2£(t2z0 — gg, (tx0)). By (18),

h(txg) — 0

Moo

+ &€
2
: ) < Clelve,

|K (tx0)| s\/Zetz (z0+

where C = /229 + (Moo + 1) X2.

Therefore,
—gp (tx0)| | —gs (tx0) —gp (tX0) _
fi(x0,0,20) — —— = ft -— =¢|7 K (tx0) < CV/e.
When 7 > max{fy, e wy (R},
| f¢(x0,0, 20) — Moo o]
~8p, (tx0) | | =g, (tx0)
<|ft(x0,0,29) = + —m(R1)Xo| + |m(R1) — Mool | Xol
[wy (Ry)l
<Cve+ —2 4 elxo
< Cve+e(l+]xgl).
Since € was arbitrary, lim;_.« f;(x0,0, 29) = McoXp, as desired. The case that zg < — %xﬁ
is similar. 0

Finally, we prove Lemma 4.1.

Proof of Lemma 4.1. For —oos M < m <00, let

mx ifm<ocoand z< -2 x?

Fom(x,0,2) =4 -2 if - 2x? <z< 42

Mx ifM>-ocoandz>-¥x2

By Lemma 4.5, f; converges pointwise almost everywhere to F := Fy;,___ ., SO lr}
t
converges weakly to lr;. We claim that for any m, M there are 6 and u such that, up to a

set of measure zero, F;m ., =Totg (BP;).
Suppose that m and M are both finite. Then I'z contains the intrinsic graph of
ap(x,0,z) = Mx over the set {z < —Mx?}. This is the upper vertical half-plane through 0
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of slope M, bounded by the x y—plane. Likewise, I'r contains the lower half-plane through
0 of slope m, bounded by the xy-plane. Finally, I'r contains the graph of k(x,0, z) = — 272
over the set {- %xz <z<-— %/[xz} ; this is the union of the horizontal lines through the ori-
gin with slopes between m and M. It follows that, up to a set of measure 0, I’ ;m ,, consists
of two quadrants of H, one above the xy—plane, bounded by the vertical plarie through
0 of slope M, and one below the xy—plane, bounded by the vertical plane through 0 of
slope m.

Thus, if m_o, and my are finite, then 1"; is a union of two quadrants. If 71_, Or My
are infinite, then F is a limit of Fy;, p's. As m — m_o and M — m, F;myM converges
to a union of two quadrants with slopes 7_, and mu, so I';. is again a union of two
quadrants. Any such union can be written as roty (BP},) for some u € [0,00] and 0 € R, so
F;Zt — roty (BP}) as desired.

Finally, suppose that u = 0, so that roty (BP,,) is a vertical plane V. In this case, My, =
M_oo; let m = my,. Then, by Lemma 4.4, every ruling of Ty has slope m. By (4), if L;
and L; are two horizontal lines with slope m and wy(L1) # wy (L), then IT(L;) and I1(L,)
intersect transversely, so L and L, cannot both be rulings of the same intrinsic graph. It
follows that any two rulings Ry, R, < I' ¢ have the same projection to the xy-plane, i.e.,

n(R1) =7(Ry) ={(x,5,0) eH: y = mx+ wy(R))}.

Therefore, I'r = {(x, y,2) € H: y = mx + wy(R1)} is a vertical plane. (]

5. PROOF OF THEOREM 1.3

Now we prove Theorem 1.3. We will need the following closure result for perimeter-
minimizing subsets of H. This statement and proof is based on Theorem 21.14 of [Mag12].

Proposition 5.1. Let A cH be an open set and let Ey, E»,--- < H be a sequence of perimeter
minimizers in A such that E;n A— EnN A, wherePerg(U) < oo foreveryU € A. Then E is
a perimeter minimizer in A.

We will need the following metric characterization of perimeter. For a measurable set
E cH,let E be the set of density points of E, i.e,

*(B(p,r)NE
5O ;:{pEIH]: lim le},
r—0+  F4B(p, 1))
and let E© = (H~ E)V). Let 0 4 E be the measure-theoretic boundary of E, i.e.
0 E:=H~(EVUE?).

Franchi, Serapioni, and Serra Cassano [FSSC01] showed that there is a left-invariant
homogeneous metric dy, and a corresponding spherical Hausdorff measure .#2, such
that for any set E c H with locally finite perimeter,

Perg(U) = 3 (U N8y E).
Proof of Proposition 5.1. Let F c H be a set such that EA F € A and Perp(U) < oo for

every U € A. We claim that Perg(A) < Perp(A).
Our first goal is to find a set G such that EA F € G € A and such that

L3 (01FNAG) =0 (19)
and

liminf73 ((EY A E") 0G| =0. 20)

1—00
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By the compactness of E A F, there are finitely many points p; and radii r; such that
EAFEU;B(pj,rj)and B(pj,2rj) € A forall j.

We claim that there is a ¢ € [1,2] such that G; = UjB(pj, tr)) satisfies (19) and (20).
Since yof‘o (0 71 F N Gy) < oo, G satisfies (19) for all but countably many ¢ € [1,2]. Further-
more, the coarea formula implies that

2
/1 F3 ((E(l) AEP)noB(pj, trj)) dr < rj—1]54 ((E(l) AED) nB(pj,er)).

By Fatou’s lemma,

1—00

2
/1 liminf. %3 ((E(U AEP)N GG,) dt

2
sli_minf/ Zy;((E(“AEﬁ”)naB(pj,trj)) dr

1—00 1 j

1—00

Sliminf Y ;174 (EY A EL) 0 B(pj,2r) =0,
]

so G, satisfies (20) for almost every ¢ € [1,2]. Let G = G, for some ¢ such that (19) and (20)
are satisfied.

Let G be the closure of G, and for each i, let F; = (FN G) U (E; ~G). To bound 0 z F;,
note that 0 ;1 F,NG=074FNGand 0 zp1 F; ~G =074 E; ~G. If p € 0 704 F; N 0G, then
either p€ 0 uF, p€d muE;, or pe E;U A FW Therefore,

001 Fi < (071 F N G) U (0,104 Ei~G) U ((EY A FP) naG). 1)

Let U be an open set such that G € U € A. Since E; is a perimeter minimizer and
E;ANF;eU,

Perg, (U) < Perg, (U) = S22 (UN8 yu Fy).
By (21),
Pery;, (U) < Pery(G) + Perg, (U ~ G) + 72 (EV A E) n9G).

Subtracting Perg, (U ~ G) from both sides,
Per, (G) < Pers(G) + 73 ((EV AE") naG).
By the lower semicontinuity of perimeter and equations (19)—(20),
Perg(G) < liminf Perg; (G) < Per (G) = Perp(G),
as desired. O
Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. Let T be an entire area-minimizing ruled intrinsic graph and let
I'* be its epigraph, so that ['" is perimeter-minimizing. By Lemma 4.1, there are 6 and
u € [0,00] such that s;}(FJ’) — 10ty(BP,) as t — co. By Proposition 5.1, roty(BP}) is
perimeter-minimizing; we claim that u = 0.
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By Theorem 1.1, BP; is not perimeter-minimizing when u € (0,00). We claim that BP:;O
is not perimeter-minimizing. Recall that BPY_ = {(x, y,z) € H: xz > 0}; one calculates that

Y~ 'BP, :{(x y-t z+z)€ﬂ-ﬂ‘xz>0}
00 ) ’ 2 .

tx
={(x,y,z)€ﬂ-ﬂ:x(z—?)>0}.

That is, (Y ~* BPZ)) consists of the plane {x = 0} and the plane {z = tz—x}. As t — o0, these
planes grow closer together. In fact, #*(BP,,nB(Y?,1)) — 0, #°(BP/,ndB(Y’,1)) — 0,
and Pergp+ (B(Y',1)) 2 1. Let C; = BP}_ ~B(Y',1); then

Perc, (B(Y',2)) = Perpps (B(Y',2)~ B(Y',1)) + .7 (BPL, ndB(Y", 1)),

and Perc, (B(Y%,2) < PerBPgo (B(Y*,2)) when t is large. Thus BP/_ is not area-minimizing.
The only remaining possibility is that s, ;(I'*) — rotg(BP;). By the second part of
Lemma 4.1, this implies that I' is a vertical plane. (]

6. NON-UNIQUENESS OF AREA-MINIMIZERS

In this section, we consider the boundary case of Theorem 1.1, where o(z) = —2z. By
Theorem 1.1, the surface
z = U [(_I)ZZ) Z)) (l) _2Z) Z)]

zeR
is area-minimizing, but Theorem 1.2 asserts that there are uncountably many area-
minimizing surfaces with the same boundary. In this section, we will prove Theorem 1.2.
First, note that for all z;,z € R,

(—1,2Z1,Zl)71(1,—2Z2,Z2) = (ly —221,—Z1)(1,—222, ZZ) = (2v _221 _222;0)) (22)

so any two points (—1,2z,2z;) and (1,—-2z, zp) are connected by a horizontal line. For
any surjective continuous increasing function p: R — R, let Z, be the ruled surface
2, = J(-1,22,2),(1,-2p(2), p(2))].
zeR
Let
Fp(x,2) = (-1,22,2) - (1,—z— p(2),0)""
parametrize X, and let U = {(x, y,z) € H: -1 < x < 1}. We claim that X, is an intrinsic
graph whose epigraph is monotone in U.

Lemma 6.1. Let ay, ay, b, b, be such that by < b, and a; < a,. Fori = 1,2, let R; =
((=1,2a;,a;),(1,-2b;, b;)). There are no horizontal lines from Ry to R,.

Proof. Our argument is based on the hyperboloid lemma proved in [CK10, Lemma 2.4],
but we give a self-contained proof.

Let 7: H — R, 7 (x, ¥, 2) = (x,y) be the projection to the xy-plane. Then n(R;) =
((-1,2a;),(1,-2b;)), and since b; < b, and a; < ay, the projections 7 (R;) and 7 (R»)
intersect at some point p = (xp, o). Let g; = (xo, Yo, z;) € R; be the point such that
n(g:) =p.

Let Vi = (1,—a; — b;,0), so = -1 —xp and # = 1 - xo so that R; = {q; V] : r € (so, o)}
Suppose that g; V;{ is connected to gV, by a horizontal segment. Recalling that V' is
just alternate notation for sV;, we have q; - sV; - W = g2 - tV5 for some W € A. Projecting
to R?, we see that

n(qy-sVi-W)=p+sVi+W=p+1tV,,
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ie., W=tV,—sV; and
sVi-(tVa—sV) - (=tVa)=(-q1) g2 = (22— z1) Z.
By the Baker-Campbell-Hausdorff formula, V-W =V + W + %[V, W1, so

1 1 t
sVi-(tVo—sW1)-(=tV) = E[Svly tVo—sVil+ z[l‘Vz,—l‘Vz] = SE[VI;VZ]-

We calculate that [V, Vo] = wZ, where w = %(al —ay+by—by) >0,s0 2z — z; = wst.

By (22), there is a horizontal line from ¢, Vls‘) =(-1,2a;,a;) to g» Vzt" =(1,-2by, b»), so
2y — z1 = wspty. Therefore, p; V' is connected to p> VZ” by a horizontal line if and only if
st = sgtp. But there are no s, t € (sg, fp) such that st = s ty, so there are no horizontal lines
connecting R; and R». U

This implies that X, is an intrinsic graph, since any coset of (Y) intersects X, at most
once. We claim that Z, is an intrinsic graph over K = [~1,1] x {0} x R< Vp. By (4),

II([(-1,221,21) (1, 222, 22)]) ={(x,0, §z,,2, (X)) : x € R}
where

Z1+ 2z z zZ
Gorer (X) :2z1—221(x+1)+%(x+1)2:El((x+1)2—4(x+1)+4)+?2(x+1)2

21 2 z2 2
= ?(x 1) +?(x+1) . (23)
Therefore, I1(F, (x, 2)) = (x,0, gz,p(2) (x)). Since p(z) is surjective, z— gz p(z) (X) is surjec-
tive for any x € [-1, 1]. We conclude that T1(Z,) = K.

By Lemma 6.1, the epigraph X7 is monotone in U. Proposition 3.9 implies that X, is
area-minimizing in U. This proves Theorem 1.2.

Finally, we calculate the area of Z,; since X, is area-minimizing in U, the area of
F,([-1,1] x [a, b]) should depend only on a, b, p(a) and p(b). Suppose that p is Lipschitz.
By the area formula (3), for any a < b,

b rl1
arean([—l,l]X[a,b])=/ / Y1+ (= +p(2)?|J[To Fpl(x,2)| dxdz
-1
¢ b
:/ 1+ (z+p(2)2j(2)dz,
a

where j(z) = [ |J[[To F,](x,2)| dx. By (23), we have
1 1 1 ! 4
j(z)=/ az[gz,P(z)(x)]dxz/ —(x—1)2+w(x+1)2dx=—(1+p’(z)),
1 12 2 3
so, by substitution,

b b+p(b)
areaF,([-1,1] x[a,b]):%/ \/1+(z+p(z))2(1+p'(z))dz=%/ V1+m2dm.
a a

+p(a)
7. CONJECTURAL MINIMIZERS

In this section, we construct the surfaces shown in Figure 2, which we conjecture
to be area-minimizing or energy-minimizing competitors for BP,,. We first construct
the family of conjectural energy minimizers. Given an intrinsic Lipschitz graph T'r such
that f is defined on an open subset U c Vj, we define the intrinsic Dirichlet energy of
fonU by Ey(f) = %fU(fo)zd,u, where p is Lebesgue measure on V. We say that f
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FIGURE 3. A schematic of £/ with important features labeled.

is energy-minimizing on U if, for any r > 0, we have Eynpo,r) (f) < Eungo,r(g) for any
intrinsic Lipschitz function g such that g — f € C2(U n B(0, r)).

An intrinsic Lipschitz graph is harmonic if it is a critical point of the energy with
respect to contact deformations, which are smooth deformations of H that preserve the
horizontal distribution. These graphs were studied in [You20]. Harmonic graphs can
often be written as unions of horizontal lines which meet along horizontal curves. These
graphs satisfy a slope condition; if two horizontal segments intersect on a horizontal
curve, then the slope of the curve is the average of the slopes of the horizontal segments.

Let W, := BP, n{(x,¥,2) : |x| <1} and let 8. W,, = BP,,n{x = £1} be the two curves
bounding W,,. We will construct a harmonic intrinsic graph =" which is bounded by W,
and ruled away from two singular curves; we conjecture that ZZ is an energy-minimizing
filling of 6W,,.

The idea behind the construction of X is that there is a horizontal segment A =
[(-1,—-u,— %), (1,—u, ¥)] connecting - W, to 8, W,,. This separates dW,, into two parts:
one consisting of A and the upper portions of . W,, and one consisting of A and the
lower portions of 0. W;,. We will fill each part by a harmonic intrinsic graph.

Let @ = a(u) be the curve marked by a thick line in Figure 3. This is the curve made up
of five segments a;, ..., as,

u u
a= (11,000 % (-1,1,0) 2 (-1,-u,0) % (—1,—14,—5) @ (L—u,EJ % (1, -u,00).

(Thatis, @ = a; U--- U a5, where a; is the vertical ray pointing upward from (-1, «,0),
a =[(-1,u,0),(-1,—u,0)], and so on.) Here, a;, a3, and as are vertical, a4 is horizontal,
and a; is neither.

The formula for the graph filling a is complicated, so we describe it in terms of its
horizontal foliation. Let g1 = (0,— %, §). For any y € [~u, u], we have g1 - (-1, y + §,0) =
(-1, ,0), so there is a horizontal line from ¢, to any point in a». Let g» = (1,—u, %); then
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FIGURE 4. A schematic of X, with important features labeled.

q1-(1,-%,0) = g2, so q1 and ¢ are connected by a horizontal segment. The segment
(g1, g2] will be the characteristic set of ZZ.

We write Zﬁ as a union of three families of horizontal segments, labeled (1), (2), and
(3) in Figure 3.

(1) Segments connecting ¢, to the points of ;.

(2) For each point p € [q1, g2], segments connecting p to a point on a; and a point
on as.

(3) Segments with slope —u connecting (-1, u, z) to (1,—u, z) for z € [%,oo).

For each t € [0,1], the second family contains two horizontal segments connecting
q-(Q, —%,O)I to ) and as. The projections of these segments to A connect (z, —%(t +1))
to (—1, £u), so they have slope — 5 + ;X5 while the characteristic nexus of 2" has slope — £.
That s, ZZ satisfies the slope condition in [You20]. By Remark 3.10 of [You20], X, is an
intrinsic Lipschitz graph, so ZZ is a harmonic graph. The full surface in Figure 2 is a union
1 Us_11(ZM of two copies of £, and we conjecture that this is the minimal-energy
surface filling 0W,,.

Note that for any u > 0, we can write X" = sl,u(Z{?). Stretch automorphisms send
energy minimizers to energy minimizers [You20, 3.2], so proving that Z{l minimizes
energy would imply that all of the 2/’s minimize energy.

Now we construct conjectural area-minimizing surfaces Z, filling dW,,. These look
similar to the harmonic surfaces constructed above; the main differences are that the
characteristic set is the horizontal lift of a hyperbola rather than a horizontal line segment
and that X, contains a family of horizontal segments of slope 0, all parallel to a4 (labeled
(3) in Figure 4).

We construct X, out of area-minimizing Z-graphs and vertical rectangles. As de-
scribed in [CHYO07], an area-minimizing Z—graph X can be written as a union of hori-
zontal line segments. These segments can meet along horizontal curves in X as long as
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FIGURE 5. The projections to A of the horizontal segments that make
up Z,.

the tangent line to the horizontal curve bisects the angle between the horizontal line
segments. Such singularities form the characteristic set of the surface.

Figure 5 shows the projection to the xy—plane A of the horizontal segments that make
up X,. The characteristic set of X,,, marked by one of the thick lines in Figure 5, is a lift
of a segment of the hyperbola in A with foci at (-1, +u) that passes through the point
(1, —u). We call this hyperbola y; one can calculate that y satisfies the equation

y? ~ (x+1)? _
WVi2+1-12 w?-(VuZ+1-12

Let

1
a=-(Vur+1 1)\/u2_(\/m_1)2 +1
so that (0,a) € y. Let L = [(—1,0), (1, —u)] be the long dashed line in Figure 5. The segment
of y from (0, a) to (1, —u) lies below L, so a < —%.

We construct X, by lifting the lines in Figure 5 to H. Let p; = (0, a, %). Then for
any y € [-u, u], we have p; - (-1,y—a,0) = (-1, y,0), so the lines on the left of Figure 5
lift to horizontal lines from the points of a, to p;. Let ¥ be the lift of y that passes
through p; = (0,4, §), and let b be such that p, = (1,~u, b) € . The concatenation of
[(-1,-u,0), p1], ¥, and [p2, sz‘Z] is a horizontal curve in X, that connects (-1, —u,0) to
p2 X “2=(-1,-u,b-u) and projects to the thick curve in Figure 5. The area of this curve
is equal to u — b, and the curve is contained in the triangle with vertices (-1, —u), (1, —u),
and (0,-%) (marked by dashed lines in Figure 5), s0 0 < u—b < § and 5 < b < u. That s,
the endpoint of ¥ lies in the interior of a3, as illustrated in Figure 4.

The horizontal segments in X, can be divided into four families, labeled (1), (2), (3),
and (4) in Figure 4:

(1) Segments connecting p; to the points of a,.

(2) For each point p € ¥, segments connecting p to a point on @; and a point on as.
The projections of these segments to A connect points on the hyperbola y to its
two foci.
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(3) Segments with slope 0 connecting (—1,~u,z— u) to (1,~u, z) for z€ [, b].
(4) Segments with slope —u connecting (—1, i, z) to (1, —u, z) for z € [b, 00).

Since the tangent line to a hyperbola at a point bisects the lines from the point to the foci
of the hyperbola, this surface satisfies the angle condition in Section 7 of [CHY07] and
is thus an area-minimizer. The full surface in Figure 2 is a union X, u s_; ; (£,) of two
copies of Z,,, and we conjecture that this is the area-minimizing surface filling dW,,.
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