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ABSTRACT: Coral reefs comprise some of the most biodiverse habitats on the planet. These eco-
systems face a range of stressors, making quantifying community assemblages and potential
changes vital to effective management. To understand short- and long-term changes in biodiver-
sity and detect early warning signals of decline, new methods for quantifying biodiversity at scale
are necessary. Acoustic monitoring techniques have proven useful in observing species activities
and biodiversity on coral reefs through aggregate approaches (i.e. energy as a proxy). However,
few studies have ground-truthed these acoustic analyses with human-based observations. In this
study, we sought to expand these passive acoustic methods by investigating biological sounds and
fish call rates on a healthy reef, providing a unique set of human-confirmed, labeled acoustic
observations. We analyzed acoustic data from Tektite Reef, St. John, US Virgin Islands, over a
2 mo period. A subset of acoustic files was manually inspected to identify recurring biotic sounds
and quantify reef activity throughout the day. We found a high variety of acoustic signals in this
soundscape. General patterns of call rates across time conformed to expectations, with dusk and
dawn showing important and significantly elevated peaks in soniferous fish activity. The data
reflected high variability in call rates across days and lunar phases. Call rates did not correspond
to sound pressure levels, suggesting that certain call types may drive crepuscular trends in sound
levels while lower-level critical calls, likely key for estimating biodiversity and behavior, may be
missed by gross sound level analyses.

KEY WORDS: Marine protected area - Soundscape - Noise - Biodiversity - Acoustic behavior -
Monitoring - Tropics

1. INTRODUCTION

As global biodiversity continues to decline (But-
chart et al. 2010), cost-effective and scalable ecosys-
tem monitoring techniques are of increasing im-
portance (Cardinale et al. 2012). Passive acoustic
monitoring (PAM) is a non-invasive and highly scala-
ble monitoring method which has been used to exam-
ine the health and biodiversity of marine and terres-
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trial ecosystems by extracting significant biological
patterns from acoustic recordings over days to sev-
eral months (Buxton et al. 2018, Gibb et al. 2019,
Mooney et al. 2020). Animals produce and use sound
for a wide variety of behaviors, including intentional
acoustic signals for mate attraction, echolocation,
group cohesion, and territorial defense as well as un-
intentional sounds from movement and feeding
(Bradbury & Vehrencamp 1998). By detecting and
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monitoring changes in biological sounds of interest, it
is possible to gain insight into the presence and activ-
ity of species and perhaps detect ecologically impor-
tant behaviors such as foraging or spawning events
(Myrberg 1986, Mann & Lobel 1995, Nordeide &
Kjellsby 1999, Lobel 2002, Jones et al. 2004).

Coral reefs comprise some of the most biodiverse
habitats on the planet (Odum & Odum 1955, Connell
1978, Birkeland 1997). PAM on coral reefs has been
implemented in multiple studies (e.g. Kennedy et al.
2010, Kaplan et al. 2015, Staaterman et al. 2017, Di-
moff et al. 2021) but is just beginning to gain traction
as a reef-habitat monitoring and management tool.
Yet PAM on reefs is rapidly expanding due to its po-
tential in tracking environmental changes happening
in these critical habitats. Many reefs are threatened
by a range of local and global stressors, from over-
fishing (Jackson et al. 2001, Pandolfi et al. 2003) and
pollution (McCulloch et al. 2003) to climate change
(Gardner et al. 2003, Hughes et al. 2003). Reef eco-
systems not only foster abundant biodiversity in our
oceans but also provide countless ecosystem services,
including fisheries (Smith 1978), coastal protection
(van Zanten et al. 2014), recreational activities (Bran-
der et al. 2007), and cultural importance (Johannes
2002). It is evident that changes in reef complexity
and biodiversity have significant impacts on these
ecosystem services (Pratchett et al. 2014).

New methods for quantifying biodiversity at scale
are therefore necessary to detect short- and long-
term changes in reef complexity and health as global
and local threats increase (Beijbom et al. 2012,
Mooney et al. 2020, Kennedy et al. 2021). The most
common method of reef population and community
surveys is diver-based underwater visual censuses
(Brock 1954). These observations can be extremely
time-consuming, cost-prohibitive in remote loca-
tions, can introduce observer bias, and may alter fish
behavior, likely confounding biodiversity metrics
(Brock 1982, Sale & Sharp 1983, Thompson & Map-
stone 1997, Edgar et al. 2004, Harvey et al. 2004). To
reduce these biases, there has been increasing inter-
est in non-invasive methods that monitor species
abundance and biodiversity. Reefs lend themselves
particularly well to PAM because of the abundance
of intentional and unintentional biotic sounds from
soniferous fish and invertebrates (Rice et al. 2022),
and so by listening for reef sounds associated with
soniferous fish and invertebrates, researchers can
monitor reefs passively. Sound is an important com-
ponent of many reef fish behaviors such as mating,
feeding, and communication (Myrberg 1981, 1986,
Mann & Lobel 1997, Tricas & Boyle 2021). Reef

soundscapes also contain many ancillary sound cues
which cause changes in fish and invertebrate activity
(Radford et al. 2008, Lillis & Mooney 2018).

An increasing number of studies leverage these
sounds and use a higher-level aggregate approach
and proxies (i.e. energy, diel patterns, various in-
dices) to estimate community assemblages, complex-
ity, and reef fish diversity due to difficulty in as-
signing call type to species (Kennedy et al. 2010,
Kaplan et al. 2015, Bertucci et al. 2016, Lin et al. 2017,
Staaterman et al. 2017). However, these methods can
be biased by certain factors, such as the choruses of
acoustically dominant species of fish and inverte-
brates (Mooney et al. 2020), and often fail to verify the
actual diversity of call types and their respective call
rates. Consequently, bulk analyses can potentially in-
duce inconsistencies when they are used as proxies
for biodiversity and biotic activities on a reef.

Here, we sought to expand acoustic methods and
data sets by investigating patterns and changes in
fish call rates throughout the day using a manual sur-
vey method (e.g. Kaplan et al. 2014, Tricas & Boyle
2014, Silva et al. 2016) to identify call presence and
discrimination. We examined and analyzed recurring
biotic sounds to determine fish vocalization trends
and variability at Tektite Reef in St. John, US Virgin
Islands (USVI). We selected Tektite Reef based on its
relatively high health condition compared to nearby
reefs (Kaplan et al. 2015) and its long history of eco-
logical and bioacoustic assessments (Edmunds 2013,
Kaplan & Mooney 2015, Kaplan et al. 2015, Lillis &
Mooney 2018, Lillis et al. 2018), which provide an im-
portant regional baseline and sufficient data to ob-
serve overall daily patterns in fish call rates. We then
compared trends with existing bulk analytical meth-
ods applied to our data.

2. MATERIALS AND METHODS

Data were collected using a single-channel Sound-
trap 300ST recorder (Ocean Instruments). The re-
corder was placed at Tektite Reef (18°18'26.8" N,
64°43'14.7" W; Fig. 1), 0.5 m above the benthos,
attached to a rebar stake. From prior acoustic moni-
toring studies, we knew Tektite was acoustically rich
relative to surrounding reefs and that this richness
corresponded with observed high fish diversity
(Kaplan et al. 2015). The SoundTrap was deployed
from 19 March to 12 July 2017 and set to record on a
duty cycle with 3 s of self-calibration and 60 s of re-
cording every 10 min. For data analysis, 8 d were
sampled by 2 independent, trained analysts in April
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Fig. 1. (A) St. John, US
Virgin Islands National
Park, with Tektite Reef
noted by the red star; (B)
single-channel Sound-
trap 300 STD recorder

(Ocean Instruments) at
Tektite reef. The hy-
drophone (and attached
temperature and light
logger) is at the top of

A | Y
K"«T:\\l-\);ﬁ
1836 | T T
o e
34
183 ST. JOHN
18.32
N
. Tektite A |_2_k_m_.|
64.80 64.75 64.70

Longitude "W

and May 2017 during the full (11 April, 12 May),
third-quarter (19 April, 18 May), new (26 April, 25
May), and first-quarter (2 May, 1 June) moons. Be-
cause such manual analysis was extremely time-
intensive, the goal here was not to characterize all
fish sounds found on Tektite Reef but to investigate
prominent call types and quantify call rates during
early summer, an acoustically active season (Kaplan
et al. 2015), as a first look into call patterns and fine-
scale acoustic diversity. This analysis would then
provide a key comparison to batch analyses, for ex-
ample using bandpass-filtered sound pressure levels
(SPLs) as a proxy for fish activity (Staaterman et
al. 2014, Bertucci et al. 2015, Kaplan et al. 2015).
Furthermore, our analyses include fine-scale labels
which will help validate subsequent automated
acoustic event detection and classification efforts.

To label individual acoustic events, we used an
interactive graphical user interface created in MAT-
LAB R2020a (MathWorks) to visualize and analyze
1 min sound files every 30 s for each recording day.
Recordings were first down-sampled from their orig-
inal 48 kHz sampling rate to 4000 Hz, allowing for
analysis of sounds in the frequency band from 0-
2000 Hz containing nearly all fish vocalizations (Tri-
cas & Boyle 2014, Kaplan et al. 2015). Spectrograms
(128 point, 32 ms Hamming window, 75% overlap,
1024 point Fast Fourier Transform size) were visual-
ized in 10 s time frames to better observe calls. Indi-
vidual calls were manually labeled with time-
frequency bounding boxes within those 10 s spectro-
grams (see Fig. 2A). Time and frequency limits and
corresponding labels were saved to a text file associ-
ated with each audio file. Because these reefs experi-
ence intermittent small boat traffic (Dinh et al. 2018),
we labeled and removed periods with audible boat

the rebar; supporting
battery pack is below

noise that could mask detection of fish calls, similar
to Kaplan et al. (2015). A final check of each file was
made after initial auditing to parse out dense vocal-
ization sequences.

Call rate for each file was calculated as the number
of calls per minute (of all call types) of audio after ex-
cluding periods with vessel noise (e.g. Kaplan et al.
2015). Average call rate per minute was determined
throughout the 8 d of data for each 1 h interval. To
observe patterns in dawn and dusk chorusing peaks,
call rates were aggregated and averaged among
night, dawn, day, and dusk (defined as 20:01-04:34,
04:35-05:53, 05:54-18:42, and 18:43-20:00 h, respec-
tively) following data on www.timeanddate.com
(Table 1).

As a comparison to call rate estimates, we quanti-
fied the received SPL within the fish band, a 50-
1200 Hz low-frequency band that includes most fish
acoustic activity, as a proxy for large-scale biotic
activity, following previous studies (Kaplan et al.
2018, Au & Banks 1998, Tricas & Boyle 2014). Files
containing vessel noise were removed from the ana-
lysis. We filtered each file with a 50-1200 Hz 4-pole
Butterworth bandpass filter, then calculated the root-
mean-square (RMS) SPL for each 1 s period, trans-
formed it to decibels, and corrected for the acoustic

Table 1. Corresponding times of analysis periods

Time period Start time (h) End time (h)
Night 20:01 4:34
Dawn 4:35 5:53
Day 5:54 18:42
Dusk 18:43 20:00
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sensitivity of the instrument using calibration levels
from the manufacturer. Finally, we calculated the
arithmetic mean RMS SPL for each file as a direct
comparison to the manual call count estimates.

A linear mixed-effects model was used to observe
how time of day and lunar phase affected call rates,
using the ‘lme4' toolbox (Bates et al. 2015) in R
v.4.1.2 (www.r-project.org/). We modeled time of
day and lunar phase as fixed effects to examine
their importance to call rate and mean sound level.
To account for variation between individual days,
we added day as a random effect on the intercept.
We generated 4 nested models: a null model with
only day as a random effect, 2 extending models
that were the same as previous but sequentially ad-
ded time of day and lunar phase, and finally a full
model that included the interaction between time of
day and lunar phase. A stepwise likelihood ratio
test was performed from most to least complicated
model using the ‘anova’ function from the ‘car’
package in R (Fox & Weisberg 2019) to evaluate the
importance of each fixed effect and determine
which model was best fitted to the data. A pairwise
comparison using the ‘Ismean’ toolbox (Lenth 2016)
in R was then used to determine whether average
call rates at night, dawn, day, and dusk were signif-
icantly different from each other.

To understand the impact of individual calls on total
energy content of the soundscape, we filtered all
manually labeled fish sounds with a 50-1200 Hz 4-
pole bandpass filter. We then defined the call duration
as the period containing 95 % of the total acoustic en-
ergy (following Madsen et al. 2006) and calculated
the received level (RL) as the RMS SPL over the 95 %
energy duration. Finally, we estimated the sound ex-
posure level (SEL) for each call by multiplying the av-
erage intensity by the total duration (in decibels, by
adding 10 x logy[d] to the RMS SPL in dB).

3. RESULTS

We addressed fish call rates on a coral reef across
8 d of recordings spread over 2 mo. Like many coral
reefs, Tektite Reef provides habitat to a community
of fish and invertebrates across trophic levels (Kap-
lan et al. 2015, Mooney et al. 2017); consequently, a
diversity of call types were noted across these days
and months. Given the previous efforts to address
sound energy on reefs, this particular effort sought
to address the temporal patterns of these reef fish
calls with respect to overall sound levels. Call clas-
sification was not addressed here specifically but is

a focus of ongoing work. To provide some context,
Fig. 2 shows a series of example spectrograms with
4 call types that were seen most often. The low-fre-
quency soundscape was primarily dominated by a
variety of pulsed calls (Fig. 2B-D), though occa-
sional tonal calls were also present, and at least one
tonal call type (Fig. 2E) was seen intermittently
throughout the 8 d.

Hourly rates of individual biological calls showed
general peaks around dawn (05:30 h) and dusk
(19:30 h) (Fig. 3). However, there appears to be a
wide variety in call rate throughout each day. The
highest call rate was seen at 19:30 h on 19 April
(Fig. 3C), with 149.5 calls min~!. The lowest call rate
was 8.5 calls min~! at 15:30 h on 2 May (Fig. 3E).

The linear mixed-effects model showed that time
of day had a significant effect on call rate and that the
effect of time of day depended on lunar phase
(Table 2, Fig. 4A). However, phase alone did not
have an impact on call rate. Akaike's information cri-
terion (AIC) suggests the full model is best (AIC =
3145.2), while Bayesian information criterion (BIC)
suggests Model 1 is the best (BIC = 3170.4). This dis-
crepancy indicates that the effect of the interaction
between time of day and lunar phase is tentative.

Mean nighttime call rates (65.3 + 5.17 calls min™})
and daytime call rates (59.8 + 5.08 calls min~!) were
lower than the mean call rate at dawn (81.3 + 7.84
calls min~!) and dusk (79.3 + 7.11 calls min™!). Using
pairwise comparisons, the dawn and dusk periods
showed significantly higher call rates compared to
day (331 = 3.269, p = 0.0065 and t33; = -3.418, p =
0.0039, respectively). Dusk and dawn were only bor-
derline significant from dawn (33 = 2.410, p =
0.0771) and dusk (337 = 2.423, p = 0.0748). No other
pairwise comparisons were significant.

Received SPL values (dB,,s re 1 pPa) between 50
and 1200 Hz showed similar trends, with general
peaks at dawn and dusk (Fig. 5). There was variation
in energy during each of the 8 d; however, the high-
est variability was seen during the day (~05:54-
18:42 h), with large peaks such as that at 09:30 h on
10 May (Fig. 5B) and 12:30 h on 26 April (Fig. 5D).
The average received SPL depended only on time of
day and not on lunar phase (Table 3).

Nighttime RLs (93.14 + 0.25 dB re 1 pPa) were
lower than dawn (98.49 + 0.65 dB re 1 pPa), day
(97.58 + 0.21 dB re 1 pPa), and dusk (98.03 =+
0.55 dB re 1 pPa) (Fig. 4B). Using pairwise compar-
isons, night showed significantly lower RLs from
dawn (f3g0 = 7.782, p = 0.001), day ({379 =15.044, p =
0.001), and dusk ({379 = 8.278, p = 0.001). All other
comparisons were not significant.
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Fig. 2. (A) Example spectrogram with bounding boxes around fish sounds and 4 commonly seen call types: (B) double pulse
between ~0.2-1 kHz, (C) multipulsed between ~0.2-1 kHz, (D) rapid pulse between ~0.1-0.5 kHz, and (E) low-frequency
burst pulse call between ~0-0.5 kHz

While call rates and SPLs appeared to follow a gen-
erally similar diel trend, fish calls were generally short
(median 95% energy duration: 0.13 s; Fig. 6A) and

low a

mplitude (median RL: 98.5 dB re 1 pPa; Fig. 6B),

resulting in very little energy contributed to the over-
all soundscape (Fig. 6C). As a consequence, we did
not find a significant correlation between received
SPLs and call rate (Fig. 6D).
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Fig. 3. Temporal variation in hourly acoustic call rates: (A) hourly call rate throughout the day shown across 8 full (24 h) days.

Hourly call rate for individual days during (B) full moon on 11 April (red) and 10 May (blue); (C) third-quarter moon on 19 April

(red) and 08 May (blue); (D) new moon on 26 April (red) and 25 May (blue); and (E) first-quarter moon on 2 May (red) and

1 June (blue). All call rates were calculated as number of calls in periods without vessel noise divided by the total duration

without vessel noise. Gaps: periods where vessel noise masked biotic sounds in both recording files for that hour. Note that
call rates are not measured continuously but at 30 min intervals
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Fig. 4. Relationship between time of day (night, dawn, day, and dusk) and lunar phase (new, first, full, and third moons) on (A) call
rate and (B) received levels. Grey line: mean of all lunar values at that time of day. Note that hierarchical model selection showed
that, in contrast to call rate, received level was best modeled without accounting for lunar phase but is shown here for comparison

Table 2. Linear mixed-effects model and likelihood-ratio test for call rates. Four linear mixed-effects models were imple-
mented to examine drivers of fish and invertebrate call rate on the reef. Time of day (categorical: night, dawn, day, dusk) and
lunar phase (categorical: new, 1%, full, 3"%) were modeled as fixed effects along with their interaction (all in bold). Stochastic
differences between days were modeled by including day as a random effect on the intercept (in italics). Models were tested
hierarchically in order of decreasing model complexity, with x? and p-values for each model representing a likelihood-ratio
test against the model one level below with a single fixed effect removed (with * and bolded values when p < 0.05). Results
show that time of day significantly improved the model, and Akaike's information criterion (AIC) score and likelihood-ratio
test further suggest that the effect of time of day depends on lunar phase. BIC: Bayesian information criterion

Model df AIC BIC %2 P
Full model: CallRate ~ TimeOfDay x Phase + TimeOfDay + Phase + (1/Day) 318 3145.2 3213.9 25.349 0.0026*
Model 2: CallRate ~ TimeOiDay + Phase + (1/Day) 327 3152.5 3186.9 0.9373 0.8164
Model 1: CallRate ~ TimeOfDay + (1/Day) 330 31475 3170.4 20.238 0.0002*

Null model: CallRate ~ (1/Day) 333 3161.7 3173.1
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Fig. 5. Temporal variation in hourly sound pressure level (SPL): (A) hourly received SPL in the 50-1200 Hz frequency band

throughout the day shown across 8 d. Hourly received levels for individual days during (B) full moon on 11 April (red) and 10 May

(blue), (C) third-quarter moon on 19 April (red) and 18 May (blue), (D) new moon on 26 April (red) and 25 May (blue), and (E)

first-quarter moon on 2 May (red) and 1 June (blue). Note that per-file sound pressure level was measured at 30 min intervals for
the same files analyzed in Fig. 3

18

0 6

12 24 0 6 12

Table 3. Linear mixed-effects models implemented to examine drivers of received sound levels (RL) on the reef. See Table 2
for further details. Results show that time of day significantly improved the model (* and bolded p-values for p < 0.05)

Model df AAIC  ABIC X2 P
Full: RL ~ TimeOfDay x Phase + TimeOfDay + Phase + (1/Day) 366 1866.1 1937.2 8.9948 0.4378
Model 2: RL ~ TimeOfDay + Phase + (1/Day) 375 1857.1 1892.6 4.0427 0.2569
Model 1: RL ~ TimeOifDay + (1/Day) 378 1855.1 1878.8 196.97 <0.0001*
Null: RL ~ (1/Day) 381 2046.1 2057.9
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Fig. 6. (A) Duration of individually labeled fish calls (95 % energy criteria) shown as a normalized probability density function
(Norm PDF); (B) root-mean-square received level (RL) in 50-1200 Hz fish bands for individual fish calls (blue) and median 1 s
RL for individual files. (C) Sound exposure level (SEL) for individual fish calls (blue) and 60 s source files (red) showing the rel-
atively low energy content of fish calls compared to the energy content of source files. (D) Relationship between call rate for
each file (calls min~!) and median RL for that file. Gray dashed line: linear best fit model (note that correlation is not significant)
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4. DISCUSSION

New cost-effective ways to determine coral reef
health and biodiversity are needed to understand
changes in reef health due to many current stressors.
Marine soundscapes have been of increasing interest
because they facilitate scalable longer-term observa-
tions, are cost-effective, and can support near real-
time detection of reef animal activity. However, to
our knowledge, most acoustic methods for observing
reef soundscapes take a higher-level aggregate ap-
proach with limited, albeit time-intensive, assess-
ments of the in situ acoustic activity of reef fish and
invertebrates. The goal of this study was to deter-
mine how call rates within a coral reef soundscape
vary throughout the day using a detailed manual
method that is often applied to the signals and calls
of other vocalizing taxa but rarely applied to fish call
rates and characterizations. This work highlights the
temporal patterns of these call rates while comparing
them to the overall acoustic sound levels on the reefs
(Fig. 6).

Using PAM data from St. John (USVI) and manual
analysis methods, we observed daily call rates at Tek-
tite, a well-studied reef (Edmunds 2002, 2010). Call
rates varied widely, ranging from 10 to 150 calls
min~', We found an increase in call rates around dusk
and dawn, similar to those seen in previous studies on
this reef (Kaplan et al. 2015) and elsewhere (Staater-
man et al. 2014, Kaplan et al. 2018). These methods
tend to quantify overall SPLs and thus could be domi-
nated by repeated, high-intensity calls from certain
fish or invertebrate choruses (Radford et al. 2008, Par-
sons et al. 2016, Kahl et al. 2021, Bolgan et al. 2022)
and miss more subtle lower-amplitude calls. Interest-
ingly, we did not see a clear association between call
SPL and call rate, despite generally similar diel trends
(Fig. 6). Most calls were short, low-amplitude (and
low signal-to-noise ratio) calls and thus did not con-
tribute much acoustic energy to the larger sound-
scape (Fig. 6C). Given a median SEL of 90.3 dB re
1 pPa%s and a median SEL of 113.4 dB re 1 pPa%s per
60 s file, it would take an average of 204 calls to in-
crease the total acoustic energy by 3 dB. There could
be many reasons that many reef fish calls are rela-
tively low amplitude, but in part, this may be an eco-
logically important strategy; to communicate suffi-
ciently with your neighbor conspecifics but not
necessarily acoustically advertise one's position on a
predator-rich reef.

We also noted an approximate halving of call rates
during the day (compared to the crepuscular time
periods), suggesting a lower level of activity within

the fish community during those periods. Further,
these lower daytime call rates underscore the need
for caution when applying brief ‘snapshot’ record-
ings, especially if they are made during the daytime
(Kennedy et al. 2010), as they may not fully capture
the acoustic diversity of the reef. Presumably, the fish
community did not change substantially during the
8 d recording period, but these data show the call
rates did change significantly.

Our current SPL data (Fig. 5) show an increase dur-
ing the day similar to previous studies (Kaplan et al.
2015), which suggests an increase in biological activ-
ity. However, we suspect that these differences may
be a result of bulk analyses picking up some compo-
nent of the background soundscape. This may be
simply wind-driven wave sounds from warmer day-
time temperatures or an abundance of a few harder-
to-discriminate call types (such as choruses and sig-
nals near background), which would elevate overall
sound levels but be hard to discern and label in our
manual analyses. Our analysis methods are not
driven by the energy of calls, but each individual call
is weighed equally. By taking a more individualized
approach, we eliminate background noise sources,
such as wind and vessels, that may dominate the
soundscape and largely influence energy analyses.
Of course, dominant, repetitive individual calls could
influence this method, but at least anecdotally (Fig. 2),
this was not the case. Further research on call-type
characterization would help address this uncertainty.

We also observed variability in call rate throughout
each individual day. There are evident peaks in the
mornings of 11 and 19 April. Upon further investiga-
tion, these peaks appear to be dominated by a single
call type, which appears as a triple pulse with a fre-
quency range between 300 and 1200 Hz. During this
chorusing, rapid pulsing occurs for about 10 min at a
time with up to 40 individual calls within that period.
While it is unclear what animal is causing these
sounds and for what reason, it is possible that it may
be one individual or species. Determining which spe-
cies is making sounds has been a long-standing
question and need in bioacoustics (Fish & Mowbray
1970). New methods such as rebreather or passive
acoustic arrays and camera systems are now being
applied to address such questions (Tricas & Boyle
2014, Mouy et al. 2018). In many cases, we are still
discerning how fish call characteristics are influ-
enced by environmental conditions. Compared to
mammals, fish call repertoires are somewhat fixed,
but it appears that key events such as changes in
temperature, upwelling, or habitat loss may influ-
ence call rates and signal parameters (Connaughton
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et al. 2002, Mann & Grothues 2009, Papes & Ladich
2011, Mooney et al. 2016, Lamont et al. 2022). More
work is needed here to better apply our bioacoustic
assessment analysis tools.

Finally, this study underscores that diel patterns
are a major driver of call rates, more so than lunar
trends observed in the USVI and Hawaiian coral
reefs (Kaplan et al. 2015, 2018). Given that bulk ana-
lysis methods often compare reef health or biodiver-
sity based on sound levels, a possible next step could
be to apply these call rate observations to additional
reefs and compare noted call rates and diversity
across a range of reef conditions. However, one limi-
tation is the time-intensive nature of such manual
analyses (hence the application of diversity and
sound-level metrics) (Mooney et al. 2020). Machine
learning is also an approach recently applied to coral
reef sounds which has been used to identify reef fish
choruses and bioacoustic patterns (Lin et al. 2017,
Lin & Tsao 2020). Manually labeled data sets provide
an important ground-truth resource with which to
validate automated machine-learning methods and
ultimately allow for scaling up individual-level PAM.
Quantifying the call rates of fish, the parameters of
those calls, and how such sound patterns may be
driven by environmental or human-induced (i.e.
noise) changes is a rapidly emerging field (Munger
et al. 2022). However, the optimal method of detect-
ing potential changes has yet to be determined. The
data here help lay the groundwork for applying
emerging methods using traditional detectors or
machine learning. SPLs on their own may not be the
best metric, but actual call rates can certainly help
support those methods as well as elucidate behaviors.

Open-source collections of fish sounds are still in
their infancy but are rapidly developing (i.e. recently
launched www.fishsounds.net; Looby et al. 2022).
Manual identification and labeling of calls, such as
this work, or manual labeling of calls and subsequent
unsupervised identification of call types (Parra-
Hernéndez et al. 2020, Sainburg et al. 2020) are crit-
ical for populating these data collections with a
wealth of individual fish and invertebrate sounds.

While this was a quantitative analysis of call rates,
a subsequent analysis is underway to examine call
types, differentiation, and potential niche with over
100 call types defined (authors' unpubl. data). Dis-
cerning call types in coral reefs is challenging
because of the high number of calls and the ability of
individual species to make a variety of call types
depending on behavior (Kasumyan 2008). Previous
studies have attempted to determine call types in
aquarium settings but have shown that it is impossi-

ble to recreate specific behaviors and sounds in cap-
tivity (e.g. Hawkins & Amorim 2000, Sirovi¢ & Demer
2009). Therefore, peer-reviewed efforts to discern
call categorization are needed. These can eventually
be used for training automated algorithms to simulta-
neously detect and parse out the rich fauna found in
coral reefs, similar to how current deep neural nets
are now capable of classifying hundreds of bird
sounds with high accuracy (Kahl et al. 2021). Such an
individual-level approach to the analysis of coral reef
soundscapes may be promising for tracking local
abundance of keystone species, invasive species, or
sentinel species that respond early to ecosystem
changes (Tricas & Boyle 2021) and thus have the
potential to transform coral reef ecosystem monitoring.
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dmo.org/project/659919.
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