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A B S T R A C T   

Record linkage is an important problem studied widely in many domains including biomedical informatics. A 
standard version of this problem is to cluster records from several datasets, such that each cluster has records 
pertinent to just one individual. Typically, datasets are huge in size. Hence, existing record linkage algorithms 
take a very long time. It is thus essential to develop novel fast algorithms for record linkage. The incremental 
version of this problem is to link previously clustered records with new records added to the input datasets. 

A novel algorithm has been created to efficiently perform standard and incremental record linkage. This al
gorithm leverages a set of efficient techniques that significantly restrict the number of record pair comparisons 
and distance computations. Our algorithm shows an average speed-up of 2.4x (up to 4x) for the standard linkage 
problem as compared to the state-of-the-art, without any drop in linkage performance at all. On average, our 
algorithm can incrementally link records in just 33% of the time required for linking them from scratch. 

Our algorithms achieve comparable or superior linkage performance and outperform the state-of-the-art in 
terms of linking time in all cases where the number of comparison attributes is greater than two. In practice, 
more than two comparison attributes are quite common. The proposed algorithm is very efficient and could be 
used in practice for record linkage applications especially when records are being added over time and linkage 
output needs to be updated frequently.   

1. Introduction 

Record linkage refers to the problem of analyzing several input 
datasets and reporting output clusters of records such that each output 
cluster constitutes records pertinent to only one entity (e.g., patient). 
This problem is trivial if a unique primary key exists for each record and 
all the records are error-free. In practice, medical records usually lack 
unique patient identifiers (e.g. SSN or a universal patient ID). Also, 
medical records are not error free. Moreover, state and federal regula
tions, for example HIPAA in the US and the 2002 Directive on Privacy 
and Electronic Communications in Europe, severely restrict access to 
patient identifying information. All of these hurdles, put together, make 
linking medical records an extremely challenging problem [20]. 

The importance of record linkage in the medical and healthcare 
domains has been realized since a long time ago. For instance, in 1900, 
Alexander Graham Bell linked genealogical records and administrative 
records from marriages, census results, and other sources to support his 
familial studies of deafness [1]. In 1929 R. A. Fisher linked public re
cords and family data in the context of human genetics research [2]. 
Since these works, record linkage has been exploited widely in the 

biomedical community. We provide some examples next. 
In [21], Victor and Mera link records from individual patients and 

health care providers across time and geography. They employ a com
bination of exact and probabilistic algorithms. The data used in this 
research came from insurance claim databases used in health-care 
related research programs. This dataset had 52 million records repre
senting more than 20 million persons. There are three major compo
nents in their algorithm: data standardization, weight estimation and 
matching. This algorithm has been validated using divergent, conver
gent, and criterion validity. 

Sauleau, Paumier, and Buemi observe that health-care services are 
making a shift from institution-centered care to consumer centered care 
[19]. They also assert that unambiguous identification of patients is a 
critical success factor for health care reform and for the provision of 
speedy, safe, high quality, comprehensive and efficient health care. Life- 
critical clinical decisions might depend on positive identification. They 
have presented an algorithm to detect exact and approximate duplicates 
within medical identity records [19]. This algorithm helps in attaining a 
better quality of information and to permit cross-linkage among stand- 
alone and clustered databases. There are three steps in the algorithm: 
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The first step is to standardize the data. The second step is to match 
similar pairs of records. The third step is to generate clusters of coherent 
related records. The algorithm was run on a dataset of size 300,000. The 
algorithm identified 240,000 unique clusters. 

Padmanabhan, Carty, et al. have described the approach to record 
linkage used by NHS Digital, a Statutory body in England, and Clinical 
Practice Research Datalink (CPRD). CPRD provides routine record 
linkages between primary care data and several health-related datasets 
within England [16]. 

One notable application of record linkage in the biomedical domain 
is that of linking genealogical records with morbidity, mortality, and 
medical records. Such linking helps researchers identify genetic basis of 
disease. Furthermore, it enables the understanding of how patients with 
different genetic predispositions respond to medications [12]. 

All record linkage algorithms proposed in the literature take time 
that is quadratic in the total number of records (in all the datasets 
collectively). Several indexing techniques have been proposed for record 
linkage to alleviate this high computational complexity. These tech
niques mitigate the complexity of the matching process by filtering out 
obviously non-similar pairs [3]. 

Blocking is another technique that can be used to reduce the run time 
of record linkage algorithms. The basic idea of blocking is to group the 
input records into, not necessarily disjoint, blocks. A record might 
belong to multiple blocks. Then, only candidate records, residing within 
each individual block, are considered for linkage. Another effective 
strategy is the use of filtering. Filters are designed to find similar record 
pairs where similarity is calculated based on a cut-off value under a 
specific similarity metric. A recent survey on both blocking and filtering 
techniques could be found in [17]. 

Two main approaches for record linkage could be found in the 
literature namely, deterministic linkage and probabilistic linkage [6]. In 
deterministic linkage, the grouping of records is based on a set of 
deterministic rules. The use of statistical theory to make an informed 
decision for linking is known as probabilistic linkage. In this approach, 
matching weights are calculated based on probabilities followed by 
selecting a suitable threshold value. Data standardization and cleansing 
are usually done as a preprocessing step to ensure high quality linkage 
results. The data matching phase includes the basic step of comparing 
record pairs. 

A record can be viewed as a collection of attributes. For instance, a 
medical record may constitute the following attributes: first name, last 
name, date of birth, height, gender, blood group, address, etc. For 
comparing record pairs, a suitable subset of attributes, known as com
parison attributes, might suffice. Also, an appropriate similarity measure 
should be carefully selected. 

Clusters are widely used for holding related records and keeping 
track of linkage intermediate and output results. Linkage decisions must 
be made on whether any cluster pair should be merged. These linkage 
decisions are based on a distance metric and a threshold value. Single 
linkage and Complete linkage are two inter-cluster distance metrics 
widely employed in the literature. For two arbitrary clusters A and B, let 
the distances vector D denotes the set of distances between all pairs of 
records a and b where a ∈ A and b ∈ B. Single (Complete) linkage defines 
the distance between A and B as min(D) (max(D)). Edit distance is 
commonly used for measuring the similarity between record pairs. Edit 
distance is defined as the cost of the minimum number of string opera
tions required to transform one string into another. So, each comparison 
attribute of a record is treated as a string and the distance between two 
records is then defined as the sum of the edit distances between each pair 
of comparison attributes. 

We live in a period of time when voluminous data get generated in 
every walk of life (not restricted to science and engineering alone). Most 
of these data could become extremely useful if linked properly. For 
example, linked health records could aid medical and social researchers 
in their studies [5]. This is because record linkage enhances any deduced 
statistics produced from data records. It leads to more accurate and more 

significant statistical information [7]. 
A duplicate is a record that refers to the same entity already refer

enced by another record in the dataset. The reason duplicates exist is 
mainly because data usually come from various sources. Detecting and 
removing/merging such duplicate records, also known as de-duplication, 
is an important step in the record linkage process. The relative frequency 
of duplicate records is known as the rate of duplicates. In real datasets, it 
has been reported that the rates of duplicates can reach 20 percent [22]. 
As the data sources grow, this rate is expected to keep increasing over 
the years. In our approach we leverage such a high rate of duplicates in a 
way that improves the speed of the linkage process. 

Challenges and Innovations: Records to be linked may not have 
unique patient identifiers. There could be several sources of errors. Also, 
regulations such as HIPAA restrict access to patient identifying infor
mation. All of these issues make the problem of record linkage extremely 
challenging [20]. Also, the problem of incremental record linkage is 
even more challenging as evidenced by the long run times of the best 
known algorithms. In this paper we create record linkage algorithms 
that outperform prior algorithms. Some of the innovations we introduce 
are: 1) Our algorithms are inherently incremental; 2) We keep a set of 
representatives for each cluster to speedup the run times; 3) We use 
multimodal attributes for linking; and 4) Many record comparisons are 
avoided with a pruning technique that only uses the lengths of the 
records. 

2. Methods 

2.1. Previous methods 

Different record linkage solutions have been built and made avail
able by several researchers. Examples include Reclink, AtyImo, Fril, and 
CIDACS-RL. Reclink is a probabilistic database linkage system written in 
C++ [4]. AtyImo is a hybrid probabilistic linkage software [18]. It is 
designed particularly for linking massive datasets with a high accuracy. 
An accuracy of 93%-97% in true matches have been reported as a result 
of applying AtyImo for linking 114 million individuals in less than nine 
days using Spark [18]. Fril is another integration and linkage Java-based 
tool. It supports different distance metrics, search, and analysis tools 
[10]. 

Since the amount of data is usually very big in most practical ap
plications, several techniques have been developed to make linking 
more scalable. Karapiperis, et al. have proposed parallel and distributed 
techniques to deal with the scalability issue. They have introduced 
LSHDB, their parallel data engine, which is based on locality sensitive 
hashing [11]. Another way of improving the scalability of the record 
linkage processes is through leveraging some heterogeneous architec
tures (for example, a mix of CPUs and GPUs) [18]. 

Mi et al. [15] have introduced a hierarchical clustering based solu
tion for record linkage. In their work, four techniques have been applied 
to improve both the runtime and space requirement of the linking al
gorithms. One prominent technique is based on the Faster Computation 
of the Edit Distance (FCED). FCED employs upper bounds on edit dis
tance to predict the distance given a specific threshold. A Two-Phase 
record linkage Algorithm (called TPA(FCED)) that employs FCED can 
efficiently integrate large datasets from multiple sources. 

Mamun et al. [14] have introduced efficient sequential and parallel 
algorithms for record linkage. These algorithms are based on hierar
chical clustering and used radix sorting on selected attributes to detect 
and eliminate identical records. Also, a graph has been created that 
represents the links of similar records. This graph is subsequently 
analyzed to find the connected components. Each connected component 
represents a set of records belonging to a unique entity. 

2.2. Formal definition 

We start by giving a formal definition for the record linkage problem 
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in regards to the biomedical domain. Let D = [D1, D2, …, Dm] be a set of m 
datasets. Each dataset Di constitutes a set of records Di = [r1,r2,…,r|Di |]. 
Each record ri defines a real-world entity, a particular patient in a 
medical record linkage setting. Each record constitutes a set of attributes 
ri = [a1,a2,…,an]. Example attributes are: Social Security Number (SSN), 
Patient Identification Number, First Name, Last Name, Date of Birth, and 
Date of Death, …etc. The record linkage problem is the problem of 
identifying a set of clusters (group of records) C = [c1, c2, …, cp] such 
that, for each cluster cj all member records r ∈ cj belong to one and only 
one patient. Two records will be placed in the same cluster if they are 
very similar (as measured by the distance between the two records). 

2.3. Our approaches 

In this paper we focus on deterministic record linkage. In other 
words, we focus on exact matching rather than statistical matching. The 
most important basic operation in the linkage process is comparing a 
pair of records. The brute-force algorithm is to compare each and every 
pair of records. Obviously, this is impractical since there is a quadratic 
growth in the number of comparisons as the total size of the datasets 
increases. One very well known technique to restrict the number of 
comparisons is the blocking technique. A record always consists of 
several attributes. One field is designated as a blocking field. Based on 
the value of this field a set of blocks are constructed. A record is then 
associated with a set of blocks, corresponding to all the l-mers (sub
strings of size l) in it. Only pairs of records sharing one or more blocks 
need to be compared. This dramatically reduces the number of record 
comparisons. Hence, the execution time decreases and the linkage pro
cess becomes more practical. 

In this article we introduce several useful techniques which improve 
the execution speed further. In the following subsections we will present 
these techniques. 

2.3.1. Inherently incremental linking 
The record linkage algorithms found in literature usually iterate over 

the blocks in their outermost loop. For each block, all pairs of records 
within the block are then compared. This has been the general frame
work for most of these linking algorithms. In real applications it is 
usually the case that new records are being generated and saved to re
cord sets over time. We call such new records incremental records. To 
consider the incremental records in the linking process (i.e., update the 
linkage output as a result of appending new records to the datasets) the 
usually adopted block-by-block scanning must be restarted from scratch. 
Of course, this is inefficient. To better handle incremental records, we 
adopt a new linkage framework. We call this new framework Inherently 
Incremental Linking. Next, we describe this proposed framework in detail. 

In each outermost iteration of our algorithm, we pick a single in
cremental record r. The blocks B associated with r are identified. We 
compile a list of candidate clusters C′ sharing one or more blocks from B. 
Then we compile a list of candidate records R′ which is the union of all 
unique representative records in C′. Then based on the edit distances 
D = ED(r, r′) where r′ ∈ R′, record r will be linked according to one of 
two scenarios. 

Scenario 1: There exists at least one distance in D less than the 
threshold value θ. This means record r should be linked with one or more 
related clusters. In this case, the related clusters are merged into a new 
cluster first. Next, record r is added to that newly created cluster and 
becomes available for comparison in subsequent iterations. 

Scenario 2: None of the candidate clusters are related to record r. In 
this case, record r will be added alone in a new singleton cluster. Again, 
this new cluster will become available for comparison in subsequent 
iterations. 

In summary, at any given time during linkage, there are two parti
tions of records. The first partition constitutes the records linked so far. 
And the second partition is the set of incremental records awaiting 

linkage. Another feature of our algorithm is the ability to save and load 
clustering information for the previously linked datasets. This is espe
cially useful for incremental linkage applications where the linkage time 
could be drastically reduced after loading this clustering information. 
The linkage time is reduced because there is no need for pair-wise 
comparisons among any of the previously linked records. Only incre
mental records need to be compared against the linked records. Please 
note that deletion is not supported yet in our algorithm. It is part of our 
future work. 

Fig. 1 illustrates the steps of our incremental linkage process using a 
simple working example. 

2.3.2. Comparison skipping technique 
In our work, record pairs comparisons are based on edit distances 

(see e.g., [9]). Two records Ri and Rj are linked if and only if the edit 
distance between them ED(Ri, Rj) is less than or equal to a threshold 
value θ. Let Ri.f (Rj.f) denotes the comparison attributes of record Ri 

(Rj). The edit distance is computed as: 

ED(Ri, Rj) =
∑K

k=1
ED(Ri.fk, Rj.fk)

Where K is the total number of comparison attributes. We present a 
novel idea that significantly reduces the number of distance computa
tions needed during record linkage. The idea is an extension of the 
observation stated in [15] namely, the sizes of the comparison attributes 
are compared first. The idea is as follows: before calling the function that 
computes ED(Ri,Rj), a much cheaper string length comparisons are done 
first. Denote by strlen(Ri.fk) the string length of the field Ri.fk. If, for any 
k, |strlen(Ri.fk) −strlen(Rj.fk)| > θor 

∑K
k=1|strlen(Ri.fk) −strlen(Rj.fk)| > θ 

then comparison is immediately skipped. Thus, Ri and Rj are considered 
unrelated. 

For efficient implementation of this technique, sizes of all compari
son attributes are evaluated just once at the beginning of our algorithm 
and stored in a vector. The exact skipping fraction (i.e., the fraction of 
skipped record pair comparisons) depends on the distribution of string 
lengths of the records being linked. In our experiments, on an average, 
the skipping fraction (due to employing the distance skipping technique) 
was about 35% of the total number of pair comparisons being considered 
(for θ = 1). 

2.3.3. Representative records 
Another improvement is to keep track of what we call a set of 

representative records for each cluster. The idea is to efficiently deal with 
duplicate records. Instead of comparing against each record in a cluster, 
comparison involves only this set of records. The set is formed as follows: 
Whenever a new record enters a cluster, if its distance to any record in 
the cluster is zero (i.e., this new record is a duplicate) then this record is 
not considered a representative record. Otherwise, the new record 
carries added information. Thus, it is added to the set of representative 
records. 

2.3.4. Treating dates as integers 
To the best of our knowledge, date attributes (e.g., birth dates) were 

treated as strings of characters in all previous works. One of our con
tributions is to parse these date attributes as integers. As shown in 
Section 3, this led to further speedup in the linkage process. In the 
preparation phase of our algorithm, all date attributes are optionally 
parsed into boost::gregorian::date objects, one of the Boost C++ Libraries 
(https://www.boost.org/), which consumes only 4 bytes of memory per 
date field. These date objects internally use adjusted Julian day count 
which is exactly what we need to compare records. Compare this with 
one of the widely used date formats, e.g. mmddyyyy, which consumes 8 
characters. Of course, there is a trade-off in using string versus integer 
representation of date attributes. String representations have the 
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advantage of detecting errors in date entries and might link more re
cords. However, assuming extremely low data entry error rates associ
ated with date entries, our proposed representation leads to a similar 
linkage performance. Note that medical institutions usually verify the 
birth date several times with the patient at each visit, thus reinforcing 
our assumption. 

2.4. Our algorithm 

Algorithm 1. Fast Incremental Record Linkage Algorithm (FIRLA)   
Input: Records dataset DS and distance threshold θ. 
Output: Cluster of records as a result of single-linkage based on the given input 

threshold θ. 
1: Concatenate the comparison attributes for each record R ∈ DS; 
2: Radix-sort the list of concatenated strings; 
3: Deduplicate the sorted list; 
4: Extract and store exactly matched records into clusters. 
5: Store separate records into singleton clusters. 
6: for each cluster C do 
7: isClustered ← False; 
8: for each representative record R ∈ C do 
9: for each block B ∈ R do 

10: for each candidate cluster C′ sharing the same block B with cluster C do 
11: for each candidate record R′ ∈ C′ do 
12: if canSkipComparison(R, R′) then 
13: Continue; 
14: end if 
15: if Distance(R, R′) > θ then 
16: Continue; 
17: else 
18: C′←C′ + C; ▹merge clusters; 
19: isClustered ← True; 
20: break; 
21: end if 
22: end for 
23: end for 
24: end for 
25: end for 
26: if isClustered == False then 
27: Create a new cluster for record R 
28: end if 
29: end for  

In this paper we present a novel record linkage algorithm, called 
FIRLA1. The pseudo-code for the algorithm is presented in Algorithm 1. 
FIRLA invokes all the novel techniques described above and the ones 
presented below. Please note that the function canSkipComparison(R,R′), 
in line 12, implements the comparison skipping and signature-based 
pruning techniques described in Sections 2.3.2 and 2.5, respectively. 

2.5. Signature-based pruning 

This section details our signature-based pruning technique. This 
technique is one of our crucial contributions in this paper. This tech
nique estimates edit distances between two strings without computing 
it. As shown in Section 3, this idea alone has led to an extremely fast 
linkage. Edit distance computation is the most critical and time- 
consuming step in the linkage process. So, every attempt to skip edit 
distance computation will result in a speedup. Of course, speedup is 
guaranteed provided that the extra code, which implements the pruning 
technique, does not take more than the edit distance computation time 
alone. Although this technique is presented and tested in the context of 
English alphabet, it is applicable to other languages. The technique has 
two steps, namely: signature preparation and distance estimation. Next, 
we describe these steps in detail. 

2.5.1. Signature preparation 
In this step, each comparison attribute is mapped into a bit-vector. 

We call this vector the signature of the field. The signatures are 
formally defined as follows: Let Fi

j denote the jth comparison field/ 
attribute of record i. First, all characters are converted into lowercase. In 
the context of English language, Fi

j is a string defined over Σ, where Σ =

a,b,c,…,z. Since |Σ| = 26, signature Si
j is a bit-vector of size 26 (i.e., Si

j =

[b25b24…b0]) where, the alphabet characters a, b, …, z are mapped into 
bits b0,b1,…b25, respectively. First, Si

j is initialized to all zeros. Then, Fi
j is 

mapped into Si
j as follows: the characters of Fi

j are scanned and the 
corresponding bits in the signature are set to 1. For example, if Fi

j =

”Joseph” Then, 

Fig. 1. Incremental Record Linkage using “FIRLA” (A working example).  

1 C++ source code is available upon request for non-commercial purposes 
only 
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Si
j = 00000001001100001010010000  

Note that only bits: b9, b14, b18, b4, b15, and b7 are set to 1. These bits 
correspond to the characters: j, o, s, e, p, and h, respectively. 

2.5.2. Distance estimation 
Now, record pairs are compared as follows: If comparison cannot be 

skipped (see Section 2.3.2) then we apply the logical XOR operator to 
compute the Hamming distance H between the respective signatures. 
Next, the number of ones in the result Ones(H) is efficiently estimated. If 
Ones(H) > 2θ then the distance computation could be skipped. Other
wise, the edit distance is computed. Otherwise, the edit distance 
computation is done. The validity of this technique is established in the 
following Lemma. 

Lemma 1. Let Fa
j and Fb

j denote the jth comparison attributes belonging to 
two records Ra and Rb, respectively. Let Sa

j and Sb
j denote the respective 

signatures for these comparing attributes. Let the Hamming distance between 
both the signatures be denoted by Hj, where Hj = Sa

j ⊕ Sb
j . Assume that we use 

Edit-distance-based record linkage, where the edit distance threshold is θ. Ra 
and Rb can be determined to be unrelated (without calculating the edit dis
tance) if there exists at least one field j such that, Ones(Hj) > 2.θ, where 
Ones(Hj) is the number of ones in the bit-vector Hj. 

Proof. Let Sa
j be the set of characters in Fa

j that are not in Fb
j and let Sb

j 

be the set of characters in Fb
j that are not in Fa

j . If Ones(Hj) > 2θ, it means 

that |Sa
j | +|Sb

j | is > 2θ. In this case it is easy to see that the edit distance 
between Fa

j and Fb
j has to be greater than θ. The edit distance introduced 

by the characters in Sa
j and Sb

j is minimized when |Sa
j | is nearly the same 

as |Sb
j |. Even in this case, the edit distance between Fa

j and Fb
j is > θ 

(assuming that the edit distance introduced by the other characters is 
zero). □ 

3. Results 

Experimental data: We have used real people data to evaluate our 
algorithms. The original datasets have been downloaded from Social 
Security Death Master File courtesy of SSDMF.INFO 2. Each record consists 
of the following attributes: social security number, last name, first name, 
date of birth, and date of death. A modified version of the FEBRL dataset 
generator program 3 has been used to introduce errors in the dataset. 
Note that the datasets used in this study are the same datasets used in 
evaluating state-of-the-art linkage algorithms [13]. All datasets used in 
this study could be downloaded from [23]. 

Datasets generation: The number of records belonging to the same 
entity in a dataset is known as “Multiplicity.” To generate a dataset of 
size N and multiplicity m, we arbitrarily pick N/m records from the 
original datasets. Then, each record is duplicated m times. Next, for each 
entity we introduce errors by corrupting one out of its m records. The 
way data is corrupted is described in the following paragraph in detail. 
Now, for each entity we have m −1 original records that remained intact 
plus one corrupted record. All records in the generated datasets are then 
shuffled. Finally, we save the generated datasets into files which are 
used later as input for our experiments. 

Corrupting data: We have used an unbiased coin to generate the 
probabilities of introducing errors. This is a realistic model since it is less 
likely to find more than one typo in a single record. For 90% of the re
cords, we insert two (three) new characters into first name or last name 
fields with probability of 90% (10%). For the remaining 10% of the 
records, we alter one, two, or three characters of first name or last name 

fields equally with probabilities of 80%,10%, and 10% respectively. 
Scalability: 11 dataset sizes, namely: 50K, 100K, 200K, 400K, 600K, 

800K, 1M, 2M, 3M, 4M, and 5M records have been employed in our 
experiments. We have used a multiplicity of 5. Please note that multi
plicity is defined before introducing errors (i.e., a corrupted record is 
counted in) as it still belongs to the same original entity. 

Experimental Setup: All the experiments were done on a Dell 
OptiPlex-9020 PC with 4 Intel i7-4770CPU @3.40 GHz cores and 24 GB 
of RAM. The operating system running was Ubuntu 18.04.4 LTS. The 
programs have been written in standard C++. 

Evaluation Metrics: We use the following metrics to assess and 
compare performance of linking algorithms:  

1. Execution time: 
Time was measured by taking the CPU clock time which gives the 

instruction level elapsed time a program takes.  
2. Linkage Performance: 

We start evaluating linkage performance by computing the 
confusion matrix shown in Table 1. Then the following four metrics 
are calculated.  
(a) Linkage Precision, P: The ratio of true matches to the total 

predicted matches. 

P = d/(d + b)

(b) Linkage Recall, R: The ratio of successfully predicted, recalled, 
matches to the total number of true matching record pairs. 

R = d/(d + c)

(c) Linkage Accuracy, A: This is defined as the proportion of 
correctly identified links. 

A = (a + d)/(a + d + b + c)

(d) F1 Score, F1: This is calculated from the precision and recall as 
the harmonic mean defined by, 

F1 = 2 ×
PR

P + R   

As pointed out in [8], for large databases, linkage performance 
evaluations which are solely based on the linkage accuracy are 
discouraged since a remarkably high accuracy can be easily obtained 
with sloppy algorithms. However, we have included the linkage accu
racy in our evaluations for ease of comparison with previous work. 

3.1. Standard linkage results 

In our experiments, record linkage is performed for each dataset 
using three different single linkage algorithms: The algorithm by 
Mamun, et al. [14] (SL1), our first proposed algorithm (SL2) which 
implements all of our contributions discussed in this paper except for 
treating dates as integers, and our second proposed algorithm (SL3) that 
treats dates as integers in addition. Fig. 2 and Table 2 show linking times 
in seconds when three comparing attributes were used, namely: first 

Table 1 
Confusion matrix.  

Predicted link True link status 
status Match Non-match 

Match d (true match) b (false match) 
Non-match c (false non-match) a (true non-match)  

2 http://ssdmf.info/download.html  
3 http://sourceforge.net/projects/febrl/ 
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name, last name, and date of birth. 
Another experiment has been conducted for linking records using 

four comparison attributes namely, first name, last name, date of birth, 
and date of death. The linkage time is displayed in Fig. 3. 

The linkage performance in all standard linkage experiments is 
summarized in Table 3 using F1 score. For more details using the other 
performance metrics please refer to the tables in the supplementary file. 

3.2. Incremental linkage results 

The following experiment shows how our algorithm performs in
cremental linkage. The experiment uses a total of 2M records. We 
simulate records being added over time. First, the input file contains the 
first 1M records to start with. The program is run to link those 1M re
cords. Then, we consider the addition of 100K records. Now, the job is to 
link all 1.1M records. (i.e., link the new 100K records with previously 
linked records). Table 4 shows the run times for incrementally linking 
100K to 1M records over a base dataset of 1M records. 

Note that the last column corresponds to linking from scratch. For 
example, standard linking of the entire 2 M records from scratch takes 
391 s (about 6 and a half minutes). Using “FIRLA” cuts this linkage time 
down to 187 s (about 3 min). On an average, our algorithm incremen
tally links in about 33% of the time required for linking from scratch. 
Note that this speedup does not affect any of the performance metrics. 
The linkage output is identical for incremental and one-shot linking. 

4. Discussion 

Our proposed algorithm “FIRLA” outperforms the state-of-the-art 

algorithms [14,13] in all cases where the number of comparison attri
butes is greater than two. Even when the number of comparison attri
butes equals two, just one dataset took more linkage time, namely ds11 
of size five million records. Of course, record linkage time is data 
dependent. Datasets with different distributions of multiplicity factors 
will be linked in different times. 

Also, multiplicity m affects linkage time. We have used m = 5 in our 
experiments because we expect at least m = 5 is common in real appli
cations. As multiplicity increases, more speed up is expected from our 
algorithms mostly because we only compare against representative re
cords from each cluster. Even for m = 1 (i.e., each entity is represented 
by one and only one record in the datasets collectively) our algorithm is 
still faster. In the latter case, the speedup of our algorithm is due to the 
combination of the other techniques that we have introduced and 
implemented therein such as comparison skipping and signature-based 
pruning. 

5. Conclusions 

In this paper we have presented several techniques that can be used 
to speedup record linkage algorithms. We have created algorithms that 
exploit our speedup techniques. Experimental results reveal that our 
algorithms outperform existing algorithms. As noted from the experi
mental results, performance of our algorithms improves as the multi
plicity factor increases. This is the case for most datasets in real 
applications. For instance, each individual can have on an average 5 to 
10 medical records distributed among different health-care institutional 
databases. Hence, we believe that our algorithms will perform very well 
in real applications. 

Fig. 2. Linkage time in seconds when using three comparison attributes: first 
name, last name, and date of birth. SL1 is the algorithm by Mamun, et al. [14], 
SL2 is the first variation of our proposed algorithm (FIRLA) which implements 
all our contributions discussed in this paper except for treating dates as in
tegers, and SL3 is the full-featured version of our proposed algorithm (FIRLA) 
that treats dates as integers in addition. 

Table 2 
Linkage Time in seconds.   

DS ds01 ds02 ds03 ds04 ds05 ds06 ds07 ds08 ds09 ds10 ds11  
#Rec 50 K 100 K 200 K 400 K 600 K 800 K 1 M 2 M 3 M 4 M 5 M 

#CA Algo            

2 SL2 0.0 0.0 4.0 15.5 34.0 61.0 93.0 375.0 850.5 1573.0 2711.0 
SL1 1.0 3.0 9.0 31.0 62.0 106.5 156.0 525.5 1025.5 1655.5 2486.5 

3 SL3 0.0 1.0 3.0 12.0 27.0 51.0 76.0 333.0 793.0 1500.0 2510.0 
SL2 0.0 1.0 4.0 19.5 42.0 81.5 125.0 573.5 1428.0 2763.0 4620.0 
SL1 1.0 3.0 12.0 43.0 87.0 159.0 238.5 917.5 1977.5 3418.0 5364.0 

4 SL3 0.0 1.0 3.0 12.3 26.3 50.3 78.3 333.0 797.3 1521.0 2523.3 
SL1 1.0 3.0 13.0 46.0 94.0 171.0 258.0 1001.0 2142.0 3720.0 5811.0  

Fig. 3. Linkage time in seconds for four comparison attributes: first name, last 
name, date of birth, and date of death. SL1 is the algorithm by Mamun, et al. 
[14] and SL3 is our algorithm (FIRLA) which implements all contributions 
presented in this paper. 
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Table 3 
F1 Score.   

DS ds01 ds02 ds03 ds04 ds05 ds06 ds07 ds08 ds09 ds10 ds11  
#Rec 50 K 100 K 200 K 400 K 600 K 800 K 1 M 2 M 3 M 4 M 5 M 

#CA Algo            

2 SL1 0.93 0.88 0.81 0.72 0.66 0.55 0.46 0.10 0.03 0.01 0.01 
SL2 0.93 0.89 0.82 0.74 0.69 0.62 0.58 0.40 0.29 0.22 0.18 

3 SL1 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.94 0.92 0.90 
SL2 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.95 0.94 0.94 
SL3 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 

4 SL1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 
SL3 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97  

Table 4 
Incremental Linkage Time (in seconds).  

Starting 
size 

Incremental 
size 

Incremental linkage 
time 

Total linkage 
time 

1 M 100 K 28 213 
1 M 200 K 51 255 
1 M 400 K 97 301 
1 M 600 K 135 339 
1 M 800 K 163 367 
1 M 1 M 187 391  
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