Journal of Biomedical Informatics 130 (2022) 104094

o %

ELSEVIER

Journal of Biomedical Informatics

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/yjbin

Check for

FIRLA: a Fast Incremental Record Linkage Algorithm™ e

Ahmed Soliman, Sanguthevar Rajasekaran

Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 062694155, United States

ARTICLE INFO

Keywords:

Record linkage

Data linkage

Edit distance

Electronic health records
Deterministic linkage

ABSTRACT

Record linkage is an important problem studied widely in many domains including biomedical informatics. A
standard version of this problem is to cluster records from several datasets, such that each cluster has records
pertinent to just one individual. Typically, datasets are huge in size. Hence, existing record linkage algorithms
take a very long time. It is thus essential to develop novel fast algorithms for record linkage. The incremental
version of this problem is to link previously clustered records with new records added to the input datasets.

A novel algorithm has been created to efficiently perform standard and incremental record linkage. This al-
gorithm leverages a set of efficient techniques that significantly restrict the number of record pair comparisons
and distance computations. Our algorithm shows an average speed-up of 2.4x (up to 4x) for the standard linkage
problem as compared to the state-of-the-art, without any drop in linkage performance at all. On average, our
algorithm can incrementally link records in just 33% of the time required for linking them from scratch.

Our algorithms achieve comparable or superior linkage performance and outperform the state-of-the-art in
terms of linking time in all cases where the number of comparison attributes is greater than two. In practice,
more than two comparison attributes are quite common. The proposed algorithm is very efficient and could be
used in practice for record linkage applications especially when records are being added over time and linkage

output needs to be updated frequently.

1. Introduction

Record linkage refers to the problem of analyzing several input
datasets and reporting output clusters of records such that each output
cluster constitutes records pertinent to only one entity (e.g., patient).
This problem is trivial if a unique primary key exists for each record and
all the records are error-free. In practice, medical records usually lack
unique patient identifiers (e.g. SSN or a universal patient ID). Also,
medical records are not error free. Moreover, state and federal regula-
tions, for example HIPAA in the US and the 2002 Directive on Privacy
and Electronic Communications in Europe, severely restrict access to
patient identifying information. All of these hurdles, put together, make
linking medical records an extremely challenging problem [20].

The importance of record linkage in the medical and healthcare
domains has been realized since a long time ago. For instance, in 1900,
Alexander Graham Bell linked genealogical records and administrative
records from marriages, census results, and other sources to support his
familial studies of deafness [1]. In 1929 R. A. Fisher linked public re-
cords and family data in the context of human genetics research [2].
Since these works, record linkage has been exploited widely in the

* C++ source code is available upon request for non-commercial purposes only.

biomedical community. We provide some examples next.

In [21], Victor and Mera link records from individual patients and
health care providers across time and geography. They employ a com-
bination of exact and probabilistic algorithms. The data used in this
research came from insurance claim databases used in health-care
related research programs. This dataset had 52 million records repre-
senting more than 20 million persons. There are three major compo-
nents in their algorithm: data standardization, weight estimation and
matching. This algorithm has been validated using divergent, conver-
gent, and criterion validity.

Sauleau, Paumier, and Buemi observe that health-care services are
making a shift from institution-centered care to consumer centered care
[19]. They also assert that unambiguous identification of patients is a
critical success factor for health care reform and for the provision of
speedy, safe, high quality, comprehensive and efficient health care. Life-
critical clinical decisions might depend on positive identification. They
have presented an algorithm to detect exact and approximate duplicates
within medical identity records [19]. This algorithm helps in attaining a
better quality of information and to permit cross-linkage among stand-
alone and clustered databases. There are three steps in the algorithm:

E-mail addresses: ahmed.soliman@uconn.edu (A. Soliman), sanguthevar.rajasekaran@uconn.edu (S. Rajasekaran).

https://doi.org/10.1016/.jbi.2022.104094

Received 15 November 2021; Received in revised form 2 May 2022; Accepted 4 May 2022

Available online 10 May 2022
1532-0464/© 2022 Elsevier Inc. All rights reserved.

mailto:ahmed.soliman@uconn.edu
mailto:sanguthevar.rajasekaran@uconn.edu
www.sciencedirect.com/science/journal/15320464
https://www.elsevier.com/locate/yjbin
https://doi.org/10.1016/j.jbi.2022.104094
https://doi.org/10.1016/j.jbi.2022.104094
https://doi.org/10.1016/j.jbi.2022.104094
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2022.104094&domain=pdf

A. Soliman and S. Rajasekaran

The first step is to standardize the data. The second step is to match
similar pairs of records. The third step is to generate clusters of coherent
related records. The algorithm was run on a dataset of size 300,000. The
algorithm identified 240,000 unique clusters.

Padmanabhan, Carty, et al. have described the approach to record
linkage used by NHS Digital, a Statutory body in England, and Clinical
Practice Research Datalink (CPRD). CPRD provides routine record
linkages between primary care data and several health-related datasets
within England [16].

One notable application of record linkage in the biomedical domain
is that of linking genealogical records with morbidity, mortality, and
medical records. Such linking helps researchers identify genetic basis of
disease. Furthermore, it enables the understanding of how patients with
different genetic predispositions respond to medications [12].

All record linkage algorithms proposed in the literature take time
that is quadratic in the total number of records (in all the datasets
collectively). Several indexing techniques have been proposed for record
linkage to alleviate this high computational complexity. These tech-
niques mitigate the complexity of the matching process by filtering out
obviously non-similar pairs [3].

Blocking is another technique that can be used to reduce the run time
of record linkage algorithms. The basic idea of blocking is to group the
input records into, not necessarily disjoint, blocks. A record might
belong to multiple blocks. Then, only candidate records, residing within
each individual block, are considered for linkage. Another effective
strategy is the use of filtering. Filters are designed to find similar record
pairs where similarity is calculated based on a cut-off value under a
specific similarity metric. A recent survey on both blocking and filtering
techniques could be found in [17].

Two main approaches for record linkage could be found in the
literature namely, deterministic linkage and probabilistic linkage [6]. In
deterministic linkage, the grouping of records is based on a set of
deterministic rules. The use of statistical theory to make an informed
decision for linking is known as probabilistic linkage. In this approach,
matching weights are calculated based on probabilities followed by
selecting a suitable threshold value. Data standardization and cleansing
are usually done as a preprocessing step to ensure high quality linkage
results. The data matching phase includes the basic step of comparing
record pairs.

A record can be viewed as a collection of attributes. For instance, a
medical record may constitute the following attributes: first name, last
name, date of birth, height, gender, blood group, address, etc. For
comparing record pairs, a suitable subset of attributes, known as com-
parison attributes, might suffice. Also, an appropriate similarity measure
should be carefully selected.

Clusters are widely used for holding related records and keeping
track of linkage intermediate and output results. Linkage decisions must
be made on whether any cluster pair should be merged. These linkage
decisions are based on a distance metric and a threshold value. Single
linkage and Complete linkage are two inter-cluster distance metrics
widely employed in the literature. For two arbitrary clusters A and B, let
the distances vector D denotes the set of distances between all pairs of
records a and b where a € A and b € B. Single (Complete) linkage defines
the distance between A and B as min(D) (max(D)). Edit distance is
commonly used for measuring the similarity between record pairs. Edit
distance is defined as the cost of the minimum number of string opera-
tions required to transform one string into another. So, each comparison
attribute of a record is treated as a string and the distance between two
records is then defined as the sum of the edit distances between each pair
of comparison attributes.

We live in a period of time when voluminous data get generated in
every walk of life (not restricted to science and engineering alone). Most
of these data could become extremely useful if linked properly. For
example, linked health records could aid medical and social researchers
in their studies [5]. This is because record linkage enhances any deduced
statistics produced from data records. It leads to more accurate and more

Journal of Biomedical Informatics 130 (2022) 104094

significant statistical information [7].

A duplicate is a record that refers to the same entity already refer-
enced by another record in the dataset. The reason duplicates exist is
mainly because data usually come from various sources. Detecting and
removing/merging such duplicate records, also known as de-duplication,
is an important step in the record linkage process. The relative frequency
of duplicate records is known as the rate of duplicates. In real datasets, it
has been reported that the rates of duplicates can reach 20 percent [22].
As the data sources grow, this rate is expected to keep increasing over
the years. In our approach we leverage such a high rate of duplicates in a
way that improves the speed of the linkage process.

Challenges and Innovations: Records to be linked may not have
unique patient identifiers. There could be several sources of errors. Also,
regulations such as HIPAA restrict access to patient identifying infor-
mation. All of these issues make the problem of record linkage extremely
challenging [20]. Also, the problem of incremental record linkage is
even more challenging as evidenced by the long run times of the best
known algorithms. In this paper we create record linkage algorithms
that outperform prior algorithms. Some of the innovations we introduce
are: 1) Our algorithms are inherently incremental; 2) We keep a set of
representatives for each cluster to speedup the run times; 3) We use
multimodal attributes for linking; and 4) Many record comparisons are
avoided with a pruning technique that only uses the lengths of the
records.

2. Methods
2.1. Previous methods

Different record linkage solutions have been built and made avail-
able by several researchers. Examples include Reclink, AtyImo, Fril, and
CIDACS-RL. Reclink is a probabilistic database linkage system written in
C++ [4]. Atylmo is a hybrid probabilistic linkage software [18]. It is
designed particularly for linking massive datasets with a high accuracy.
An accuracy of 93%-97% in true matches have been reported as a result
of applying AtyImo for linking 114 million individuals in less than nine
days using Spark [18]. Fril is another integration and linkage Java-based
tool. It supports different distance metrics, search, and analysis tools
[10].

Since the amount of data is usually very big in most practical ap-
plications, several techniques have been developed to make linking
more scalable. Karapiperis, et al. have proposed parallel and distributed
techniques to deal with the scalability issue. They have introduced
LSHDB, their parallel data engine, which is based on locality sensitive
hashing [11]. Another way of improving the scalability of the record
linkage processes is through leveraging some heterogeneous architec-
tures (for example, a mix of CPUs and GPUs) [18].

Mi et al. [15] have introduced a hierarchical clustering based solu-
tion for record linkage. In their work, four techniques have been applied
to improve both the runtime and space requirement of the linking al-
gorithms. One prominent technique is based on the Faster Computation
of the Edit Distance (FCED). FCED employs upper bounds on edit dis-
tance to predict the distance given a specific threshold. A Two-Phase
record linkage Algorithm (called TPA(FCED)) that employs FCED can
efficiently integrate large datasets from multiple sources.

Mamun et al. [14] have introduced efficient sequential and parallel
algorithms for record linkage. These algorithms are based on hierar-
chical clustering and used radix sorting on selected attributes to detect
and eliminate identical records. Also, a graph has been created that
represents the links of similar records. This graph is subsequently
analyzed to find the connected components. Each connected component
represents a set of records belonging to a unique entity.

2.2. Formal definition

We start by giving a formal definition for the record linkage problem

A. Soliman and S. Rajasekaran

in regards to the biomedical domain. Let D = [D;, Dy, ...,Dn] be aset of m
datasets. Each dataset D; constitutes a set of records D; = [ry,r2,... ,r|Di‘].
Each record r; defines a real-world entity, a particular patient in a
medical record linkage setting. Each record constitutes a set of attributes
r; = [a1,az,...,a,). Example attributes are: Social Security Number (SSN),
Patient Identification Number, First Name, Last Name, Date of Birth, and
Date of Death, ...etc. The record linkage problem is the problem of
identifying a set of clusters (group of records) C = [ci,Ca, ..., ¢p] such
that, for each cluster c; all member records r € ¢; belong to one and only
one patient. Two records will be placed in the same cluster if they are
very similar (as measured by the distance between the two records).

2.3. Our approaches

In this paper we focus on deterministic record linkage. In other
words, we focus on exact matching rather than statistical matching. The
most important basic operation in the linkage process is comparing a
pair of records. The brute-force algorithm is to compare each and every
pair of records. Obviously, this is impractical since there is a quadratic
growth in the number of comparisons as the total size of the datasets
increases. One very well known technique to restrict the number of
comparisons is the blocking technique. A record always consists of
several attributes. One field is designated as a blocking field. Based on
the value of this field a set of blocks are constructed. A record is then
associated with a set of blocks, corresponding to all the l-mers (sub-
strings of size [) in it. Only pairs of records sharing one or more blocks
need to be compared. This dramatically reduces the number of record
comparisons. Hence, the execution time decreases and the linkage pro-
cess becomes more practical.

In this article we introduce several useful techniques which improve
the execution speed further. In the following subsections we will present
these techniques.

2.3.1. Inherently incremental linking

The record linkage algorithms found in literature usually iterate over
the blocks in their outermost loop. For each block, all pairs of records
within the block are then compared. This has been the general frame-
work for most of these linking algorithms. In real applications it is
usually the case that new records are being generated and saved to re-
cord sets over time. We call such new records incremental records. To
consider the incremental records in the linking process (i.e., update the
linkage output as a result of appending new records to the datasets) the
usually adopted block-by-block scanning must be restarted from scratch.
Of course, this is inefficient. To better handle incremental records, we
adopt a new linkage framework. We call this new framework Inherently
Incremental Linking. Next, we describe this proposed framework in detail.

In each outermost iteration of our algorithm, we pick a single in-
cremental record r. The blocks B associated with r are identified. We
compile a list of candidate clusters C’ sharing one or more blocks from B.
Then we compile a list of candidate records R’ which is the union of all
unique representative records in C'. Then based on the edit distances
D = ED(r,r') where ' € R/, record r will be linked according to one of
two scenarios.

Scenario 1: There exists at least one distance in D less than the
threshold value 6. This means record r should be linked with one or more
related clusters. In this case, the related clusters are merged into a new
cluster first. Next, record r is added to that newly created cluster and
becomes available for comparison in subsequent iterations.

Scenario 2: None of the candidate clusters are related to record r. In
this case, record r will be added alone in a new singleton cluster. Again,
this new cluster will become available for comparison in subsequent
iterations.

In summary, at any given time during linkage, there are two parti-
tions of records. The first partition constitutes the records linked so far.
And the second partition is the set of incremental records awaiting

Journal of Biomedical Informatics 130 (2022) 104094

linkage. Another feature of our algorithm is the ability to save and load
clustering information for the previously linked datasets. This is espe-
cially useful for incremental linkage applications where the linkage time
could be drastically reduced after loading this clustering information.
The linkage time is reduced because there is no need for pair-wise
comparisons among any of the previously linked records. Only incre-
mental records need to be compared against the linked records. Please
note that deletion is not supported yet in our algorithm. It is part of our
future work.

Fig. 1 illustrates the steps of our incremental linkage process using a
simple working example.

2.3.2. Comparison skipping technique

In our work, record pairs comparisons are based on edit distances
(see e.g., [9]). Two records R; and R; are linked if and only if the edit
distance between them ED(R;,R;) is less than or equal to a threshold
value 0. Let R;.f (R;.f) denotes the comparison attributes of record R;
(R)). The edit distance is computed as:

K

ED(R;,R)) = > ED(R: fi, R;fi)

k=1

Where K is the total number of comparison attributes. We present a
novel idea that significantly reduces the number of distance computa-
tions needed during record linkage. The idea is an extension of the
observation stated in [15] namely, the sizes of the comparison attributes
are compared first. The idea is as follows: before calling the function that
computes ED(R;,R;), a much cheaper string length comparisons are done
first. Denote by strlen(R;.fi) the string length of the field R; fi. If, for any
k, |strlen(R;.f) —strlen(R; fi)| > Gor S"k_,|strlen(R;.fi) —strlen(R;.fi)| > 0
then comparison is immediately skipped. Thus, R; and R; are considered
unrelated.

For efficient implementation of this technique, sizes of all compari-
son attributes are evaluated just once at the beginning of our algorithm
and stored in a vector. The exact skipping fraction (i.e., the fraction of
skipped record pair comparisons) depends on the distribution of string
lengths of the records being linked. In our experiments, on an average,
the skipping fraction (due to employing the distance skipping technique)
was about 35% of the total number of pair comparisons being considered
(for 0 = 1).

2.3.3. Representative records

Another improvement is to keep track of what we call a set of
representative records for each cluster. The idea is to efficiently deal with
duplicate records. Instead of comparing against each record in a cluster,
comparison involves only this set of records. The set is formed as follows:
Whenever a new record enters a cluster, if its distance to any record in
the cluster is zero (i.e., this new record is a duplicate) then this record is
not considered a representative record. Otherwise, the new record
carries added information. Thus, it is added to the set of representative
records.

2.3.4. Treating dates as integers

To the best of our knowledge, date attributes (e.g., birth dates) were
treated as strings of characters in all previous works. One of our con-
tributions is to parse these date attributes as integers. As shown in
Section 3, this led to further speedup in the linkage process. In the
preparation phase of our algorithm, all date attributes are optionally
parsed into boost::gregorian::date objects, one of the Boost C++ Libraries
(https://www.boost.org/), which consumes only 4 bytes of memory per
date field. These date objects internally use adjusted Julian day count
which is exactly what we need to compare records. Compare this with
one of the widely used date formats, e.g. mmddyyyy, which consumes 8
characters. Of course, there is a trade-off in using string versus integer
representation of date attributes. String representations have the

A. Soliman and S. Rajasekaran

Journal of Biomedical Informatics 130 (2022) 104094

Step1:
. 3 5 Step 5: Step 6:
convert to lowercase() Step 2 " Step 3: Step 4: i i
med o Shmed solman concatenate attributes Radix sorting Deduplication Linking Save dlustering information
, <tadit G-k | [0-R s
a ext available
Joseph David joseph david <Z' Ci=Rs Ci="Fs, Ry _)>c\uster index
John Smith — john smith e —» | (=R > C=-1
Adrian Josh adrian josh <3 =R Cs=Rs
Ahmad Soliman ahmad soliman <2josep ‘pl Cy=Ry.R
Joseph David joseph david <6 josep! Cy= Ry Ry e
—— <1 5=Ri 57
File: ds_inc_ex1 index = record offset in file

7 records

Exact clustering Merged clusters: File: ds_inc_ex1.clusters

G016
Later,
three records
have been added sten2
ep 2:
Load clustering information E\t:fwnsg
Step L g:\::d ?:’S‘c;’esxzfcl:;r:ez Step 3: Stepd: Step 5: Starting at next available SteP 7:
‘Ahmed Soliman convertto lowercase() i concatenate attributes Radix sorting Deduphcat\don ‘ clustering index i.e. C6 _Save clustering info
Sanguthevar Rajasekaran ::;"geudnf:\margjasekaran Co=Ry (new records only) (new records only) (new records only)
}U;Ep: D-;:”d joseph david Ci=1Rs, Ry
john Smi —> > -
Adrian Josh john smith G=-1 Co=Rs.Ry | —»
Ahmad Soliman adrian josh Cy=Ry Cr=Rr
Joseph David ahmad soliman Cy=Ry,Rs pov t
3 sekran joseph david L= arting from next
; el -~ Cd il available cluster index
index = record offset in file (ds0.nc)
i Read records & update ds Another datastructur (dso) ~ Work on datastructure ds i.e. C6 in this example

File: ds_inc_ex1

update ds is updated accordingly where:
ds.id where:
10 records

ds.dod ds0.nrc = 7 (# records) Update ds0

ds.dob {ob
while: oo

ds.records ds.nc = 6 (next available ctor

ds.n Cluster index) toc

dsfn ctosrr

ds.eav ne=6

ds.blocks nre=1

ds.sri = 7 (starting record index)

Merged clusters:
C3 ¢ (3,5
Cs ¢ 05,0y

Fig. 1. Incremental Record Linkage using “FIRLA” (A working example).

advantage of detecting errors in date entries and might link more re-
cords. However, assuming extremely low data entry error rates associ-
ated with date entries, our proposed representation leads to a similar
linkage performance. Note that medical institutions usually verify the
birth date several times with the patient at each visit, thus reinforcing
our assumption.

2.4. Our algorithm

Algorithm 1. Fast Incremental Record Linkage Algorithm (FIRLA)

Input: Records dataset DS and distance threshold 6.

Output: Cluster of records as a result of single-linkage based on the given input
threshold 6.

: Concatenate the comparison attributes for each record R € DS;

: Radix-sort the list of concatenated strings;

: Deduplicate the sorted list;

: Extract and store exactly matched records into clusters.

: Store separate records into singleton clusters.

: for each cluster C do

isClustered « False;

for each representative record R € C do

9: for each block B € R do

PN UL WN

10: for each candidate cluster C' sharing the same block B with cluster C do
11: for each candidate record R’ € C’' do

12: if canSkipComparison(R,R’) then

13: Continue;

14: end if

15: if Distance(R,R’) > 6 then

16: Continue;

17: else

18: C«C + G >merge clusters;
19: isClustered « True;

20: break;

21: end if

22: end for

23: end for

24: end for

25: end for

26: if isClustered == False then

27: Create a new cluster for record R

28: end if

29: end for

In this paper we present a novel record linkage algorithm, called
FIRLA'. The pseudo-code for the algorithm is presented in Algorithm 1.
FIRLA invokes all the novel techniques described above and the ones
presented below. Please note that the function canSkipComparison(R,R’),
in line 12, implements the comparison skipping and signature-based
pruning techniques described in Sections 2.3.2 and 2.5, respectively.

2.5. Signature-based pruning

This section details our signature-based pruning technique. This
technique is one of our crucial contributions in this paper. This tech-
nique estimates edit distances between two strings without computing
it. As shown in Section 3, this idea alone has led to an extremely fast
linkage. Edit distance computation is the most critical and time-
consuming step in the linkage process. So, every attempt to skip edit
distance computation will result in a speedup. Of course, speedup is
guaranteed provided that the extra code, which implements the pruning
technique, does not take more than the edit distance computation time
alone. Although this technique is presented and tested in the context of
English alphabet, it is applicable to other languages. The technique has
two steps, namely: signature preparation and distance estimation. Next,
we describe these steps in detail.

2.5.1. Signature preparation

In this step, each comparison attribute is mapped into a bit-vector.
We call this vector the signature of the field. The signatures are
formally defined as follows: Let F]‘ denote the j* comparison field/
attribute of record i. First, all characters are converted into lowercase. In

the context of English language, F]l is a string defined over X, where X

a,b,c,...,z. Since |Z| = 26, signature S} is a bit-vector of size 26 (i.e., S}
[b2sbaa...bo]) where, the alphabet characters a, b, ...,z are mapped into
bits by,b1,...bas, respectively. First, Sjl: is initialized to all zeros. Then, FJ‘ is
mapped into S}‘: as follows: the characters of FJ‘ are scanned and the
corresponding bits in the signature are set to 1. For example, if Pj =
”Joseph” Then,

1 C++ source code is available upon request for non-commercial purposes
only

A. Soliman and S. Rajasekaran
S} = 00000001001100001010010000

Note that only bits: by, by4, big, b4, bis, and b; are set to 1. These bits
correspond to the characters: j, o, s, e, p, and h, respectively.

2.5.2. Distance estimation

Now, record pairs are compared as follows: If comparison cannot be
skipped (see Section 2.3.2) then we apply the logical XOR operator to
compute the Hamming distance H between the respective signatures.
Next, the number of ones in the result Ones(H) is efficiently estimated. If
Ones(H) > 20 then the distance computation could be skipped. Other-
wise, the edit distance is computed. Otherwise, the edit distance
computation is done. The validity of this technique is established in the
following Lemma.

Lemma 1. LetFj and Fj’ denote the j™ comparison attributes belonging to
two records R, and Ry, respectively. Let S and SJI-’ denote the respective
signatures for these comparing attributes. Let the Hamming distance between
both the signatures be denoted by H;j, where H; = S & S]l?. Assume that we use
Edit-distance-based record linkage, where the edit distance threshold is 0. R,
and Ry, can be determined to be unrelated (without calculating the edit dis-
tance) if there exists at least one field j such that, Ones(H;) > 2.6, where
Ones(H;) is the number of ones in the bit-vector H;.

Proof. Let S} be the set of characters in F}' that are not in Ff and let S}’
be the set of characters in FJ” that are not in F;'. If Ones(Hj) > 26, it means
that |S7| +|S]l? | is > 26. In this case it is easy to see that the edit distance
between F}' and Fjb has to be greater than 6. The edit distance introduced
by the characters in S} and Sjb is minimized when |S;| is nearly the same
as |SJI? |- Even in this case, the edit distance between F; and Fjb is >0

(assuming that the edit distance introduced by the other characters is
zero). [

3. Results

Experimental data: We have used real people data to evaluate our
algorithms. The original datasets have been downloaded from Social
Security Death Master File courtesy of SSDMF.INFO 2. Each record consists
of the following attributes: social security number, last name, first name,
date of birth, and date of death. A modified version of the FEBRL dataset
generator program ° has been used to introduce errors in the dataset.
Note that the datasets used in this study are the same datasets used in
evaluating state-of-the-art linkage algorithms [13]. All datasets used in
this study could be downloaded from [23].

Datasets generation: The number of records belonging to the same
entity in a dataset is known as “Multiplicity.” To generate a dataset of
size N and multiplicity m, we arbitrarily pick N/m records from the
original datasets. Then, each record is duplicated m times. Next, for each
entity we introduce errors by corrupting one out of its m records. The
way data is corrupted is described in the following paragraph in detail.
Now, for each entity we have m —1 original records that remained intact
plus one corrupted record. All records in the generated datasets are then
shuffled. Finally, we save the generated datasets into files which are
used later as input for our experiments.

Corrupting data: We have used an unbiased coin to generate the
probabilities of introducing errors. This is a realistic model since it is less
likely to find more than one typo in a single record. For 90% of the re-
cords, we insert two (three) new characters into first name or last name
fields with probability of 90% (10%). For the remaining 10% of the
records, we alter one, two, or three characters of first name or last name

2 http://ssdmf.info/download.html
3 http://sourceforge.net/projects/febrl/

Journal of Biomedical Informatics 130 (2022) 104094

fields equally with probabilities of 80%,10%, and 10% respectively.

Scalability: 11 dataset sizes, namely: 50K, 100K, 200K, 400K, 600K,
800K, 1M, 2M, 3M, 4M, and 5M records have been employed in our
experiments. We have used a multiplicity of 5. Please note that multi-
plicity is defined before introducing errors (i.e., a corrupted record is
counted in) as it still belongs to the same original entity.

Experimental Setup: All the experiments were done on a Dell
OptiPlex-9020 PC with 4 Intel i7-4770CPU @3.40 GHz cores and 24 GB
of RAM. The operating system running was Ubuntu 18.04.4 LTS. The
programs have been written in standard C++.

Evaluation Metrics: We use the following metrics to assess and
compare performance of linking algorithms:

1. Execution time:

Time was measured by taking the CPU clock time which gives the

instruction level elapsed time a program takes.
2. Linkage Performance:

We start evaluating linkage performance by computing the
confusion matrix shown in Table 1. Then the following four metrics
are calculated.

(a) Linkage Precision, P: The ratio of true matches to the total
predicted matches.

P=d/(d+b)

(b) Linkage Recall, R: The ratio of successfully predicted, recalled,
matches to the total number of true matching record pairs.

R=d/(d+c)

(c) Linkage Accuracy, A: This is defined as the proportion of
correctly identified links.

A= (a+d)/(a+d+b+c)

(d) F1 Score, F;: This is calculated from the precision and recall as
the harmonic mean defined by,

PR

F=2x
P+R

As pointed out in [8], for large databases, linkage performance
evaluations which are solely based on the linkage accuracy are
discouraged since a remarkably high accuracy can be easily obtained
with sloppy algorithms. However, we have included the linkage accu-
racy in our evaluations for ease of comparison with previous work.

3.1. Standard linkage results

In our experiments, record linkage is performed for each dataset
using three different single linkage algorithms: The algorithm by
Mamun, et al. [14] (SL1), our first proposed algorithm (SL2) which
implements all of our contributions discussed in this paper except for
treating dates as integers, and our second proposed algorithm (SL3) that
treats dates as integers in addition. Fig. 2 and Table 2 show linking times
in seconds when three comparing attributes were used, namely: first

Table 1
Confusion matrix.

Predicted link True link status

status Match Non-match

Match
Non-match

d (true match)
¢ (false non-match)

b (false match)
a (true non-match)

A. Soliman and S. Rajasekaran

L A A AlArrrhaEEL
SL1 —5— !
SL2 —o—
s000 |-512 ‘

T T IS STTII 3 5

2000 R T R T A AR Y

Linking time in seconds

. ; L
200 N R
Number of Records

0
Goo¢

Fig. 2. Linkage time in seconds when using three comparison attributes: first
name, last name, and date of birth. SL1 is the algorithm by Mamun, et al. [14],
SL2 is the first variation of our proposed algorithm (FIRLA) which implements
all our contributions discussed in this paper except for treating dates as in-
tegers, and SL3 is the full-featured version of our proposed algorithm (FIRLA)
that treats dates as integers in addition.

name, last name, and date of birth.

Another experiment has been conducted for linking records using
four comparison attributes namely, first name, last name, date of birth,
and date of death. The linkage time is displayed in Fig. 3.

The linkage performance in all standard linkage experiments is
summarized in Table 3 using F; score. For more details using the other
performance metrics please refer to the tables in the supplementary file.

3.2. Incremental linkage results

The following experiment shows how our algorithm performs in-
cremental linkage. The experiment uses a total of 2M records. We
simulate records being added over time. First, the input file contains the
first 1M records to start with. The program is run to link those 1M re-
cords. Then, we consider the addition of 100K records. Now, the job is to
link all 1.1M records. (i.e., link the new 100K records with previously
linked records). Table 4 shows the run times for incrementally linking
100K to 1M records over a base dataset of 1M records.

Note that the last column corresponds to linking from scratch. For
example, standard linking of the entire 2 M records from scratch takes
391 s (about 6 and a half minutes). Using “FIRLA” cuts this linkage time
down to 187 s (about 3 min). On an average, our algorithm incremen-
tally links in about 33% of the time required for linking from scratch.
Note that this speedup does not affect any of the performance metrics.
The linkage output is identical for incremental and one-shot linking.

4. Discussion

Our proposed algorithm “FIRLA” outperforms the state-of-the-art

Journal of Biomedical Informatics 130 (2022) 104094

algorithms [14,13] in all cases where the number of comparison attri-
butes is greater than two. Even when the number of comparison attri-
butes equals two, just one dataset took more linkage time, namely ds11
of size five million records. Of course, record linkage time is data
dependent. Datasets with different distributions of multiplicity factors
will be linked in different times.

Also, multiplicity m affects linkage time. We have used m = 5 in our
experiments because we expect at least m = 5 is common in real appli-
cations. As multiplicity increases, more speed up is expected from our
algorithms mostly because we only compare against representative re-
cords from each cluster. Even for m = 1 (i.e., each entity is represented
by one and only one record in the datasets collectively) our algorithm is
still faster. In the latter case, the speedup of our algorithm is due to the
combination of the other techniques that we have introduced and
implemented therein such as comparison skipping and signature-based
pruning.

5. Conclusions

In this paper we have presented several techniques that can be used
to speedup record linkage algorithms. We have created algorithms that
exploit our speedup techniques. Experimental results reveal that our
algorithms outperform existing algorithms. As noted from the experi-
mental results, performance of our algorithms improves as the multi-
plicity factor increases. This is the case for most datasets in real
applications. For instance, each individual can have on an average 5 to
10 medical records distributed among different health-care institutional
databases. Hence, we believe that our algorithms will perform very well
in real applications.

6000
5000
4000
3000

2000

Linking time in seconds

1000

. ‘ : L
600 go0¢ N A g\
Number of Records

Fig. 3. Linkage time in seconds for four comparison attributes: first name, last
name, date of birth, and date of death. SL1 is the algorithm by Mamun, et al.
[14] and SL3 is our algorithm (FIRLA) which implements all contributions
presented in this paper.

Table 2
Linkage Time in seconds.
DS ds01 ds02 ds03 ds04 ds05 ds06 ds07 ds08 ds09 ds10 ds11
#Rec 50K 100 K 200 K 400 K 600 K 800 K 1M 2M 3M 4M 5M
#CA Algo
2 SL2 0.0 0.0 4.0 15.5 34.0 61.0 93.0 375.0 850.5 1573.0 2711.0
SL1 1.0 3.0 9.0 31.0 62.0 106.5 156.0 525.5 1025.5 1655.5 2486.5
3 SL3 0.0 1.0 3.0 12.0 27.0 51.0 76.0 333.0 793.0 1500.0 2510.0
SL2 0.0 1.0 4.0 19.5 42.0 81.5 125.0 573.5 1428.0 2763.0 4620.0
SL1 1.0 3.0 12.0 43.0 87.0 159.0 238.5 917.5 1977.5 3418.0 5364.0
4 SL3 0.0 1.0 3.0 12.3 26.3 50.3 78.3 333.0 797.3 1521.0 2523.3
SL1 1.0 3.0 13.0 46.0 94.0 171.0 258.0 1001.0 2142.0 3720.0 5811.0

A. Soliman and S. Rajasekaran

Journal of Biomedical Informatics 130 (2022) 104094

Table 3
F1 Score.
DS ds01 ds02 ds03 ds04 ds05 ds06 ds07 ds08 ds09 ds10 ds11
#Rec 50 K 100 K 200 K 400 K 600 K 800 K 1M 2M 3M 4M 5M
#CA Algo
2 SL1 0.93 0.88 0.81 0.72 0.66 0.55 0.46 0.10 0.03 0.01 0.01
SL2 0.93 0.89 0.82 0.74 0.69 0.62 0.58 0.40 0.29 0.22 0.18
3 SL1 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.94 0.92 0.90
SL2 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.95 0.94 0.94
SL3 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
4 SL1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
SL3 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
[5] Rinku Dewri, Toan Ong, R. Thurimella, Linking health records for federated query
Table 4 processing, Proc. Privacy Enhan. Technol. 2016 (2016) 23-24.
Incremental Linkage Time (in seconds). [6] Harron K. Doidge JC. Demystifying probabilistic linkage: Common myths and
misconceptions. Int J Popul Data Sci., 3, 2018.
Starting Incremental Incremental linkage Total linkage [7] Halbert L. Dunn. Record Linkage. American Journal of Public Health and the
size size time time Nations Health, 36(12), 1412-1416, December 1946. Publisher: American Public
Health Association.
1M 100K 28 213 [8] David Hand, Peter Christen, A note on using the F-measure for evaluating record
1M 200K 51 255 linkage algorithms, Stat. Comput. 28 (3) (2018) 539-547.
1M 400 K 97 301 [9] E. Horowitz, S. Sahni, S. Rajasekaran, Computer algorithms, Silicon Press (1998).
M 600 K 135 339 [10] Pawel Jurczyk, James J. Lu, Li Xiong, Janet D. Cragan, Adolfo Correa, Fine-grained
1M 800 K 163 367 record integration and linkage tool, Birth Defects Res. Part A: Clin. Mol. Teratol. 82
1M 1M 187 391 (11) (2008) 822-829.
[11] D. Karapiperis, A. Gkoulalas-Divanis, V. Verykios, Lshdb: a parallel and distributed
engine for record linkage and similarity search, in: 2016 IEEE 16th International
Declaration of Competing Interest Conference on Data Mining Workshops (ICDMW), 2016, pp. 1-4.
[12] Daijin Kim, Steven Labkoff, Samuel H Holliday, Opportunities for electronic health
record data to support business functions in the pharmaceutical industry—a case
The authors declare that they have no known competing financial study from pfizer, inc, J. Am. Med. Inform. Assoc. 15 (5) (2008) 581-584.
interests or personal relationships that could have appeared to influence [13] Abdullah-Al Mamun, Robert Aseltine, Sanguthevar Rajasekaran, Efficient record
. . linkage algorithms using complete linkage clustering, PLOS ONE 11 (4) (2016)
the work reported in this paper. 1-91. 04
[14] Abdullah-Al Mamun, Tian Mi, Robert Aseltine, and Sanguthevar Rajasekaran.
Efficient sequential and parallel algorithms for record linkage. Journal of the
ACkDOWIedgement American Medical Informatics Association, 21(2), 252-262, sep 2014.
[15] Tian Mi, Sanguthevar Rajasekaran, Robert Aseltine, Efficient algorithms for fast
This research has been supported in part by the National Science integration on large data sets from multiple sources, BMC Med. Inform. Decis. Mak.
. . 12 (1) (2012).
Four}datlon (NSF) Grants 17_43418 and 1843025. This work was [16] Shivani Padmanabhan, Lucy Carty, Ellen Cameron, Rebecca E. Ghosh,
partially supported by the United States Census Bureau under Award Rachael Williams, Helen Strongman, Approach to record linkage of primary care
Number CB21RMDO0160003. The content is solely the responsibility of data from clinical practice research datalink to other health-related patient data:
the authors and does not necessarily represent the official views of the overview and implications, Eur. J. Epidemiol. 34 (2019) 91-99.
[17] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.
US Census Bureau. Blocking and filtering techniques for entity resolution: A survey. ACM Comput.
Surv., 53(2), March 2020.
. . [18] R. Pita, C. Pinto, S. Sena, R. Fiaccone, L. Amorim, S. Reis, M.L. Barreto, S. Denaxas,
Appendlx A. Supplementary material M.E. Barreto, On the accuracy and scalability of probabilistic data linkage over the
brazilian 114 million cohort, IEEE Journal of Biomedical and Health Informatics 22
Supplementary data associated with this article can be found, in the . 1(32?1((10158) 1346*3J53- Philinne Pamier. Antoine Buermi. Medical record linkase i
: . . C s rik A. Sauleau, Jean Philippe Paumier, Antoine Buemi, Medical record linkage in
online version, at https://doi.org/10.1016/j.jbi.2022.104094. health information systems by approximate string matching and clustering, BgMC
Med. Inform. Decis. Mak. 5 (2005) 1-13.
[20] Gulzar H. Shah, Kaveepan Lertwachara, Anteneh Ayanso, Record Linkage in
References Healthcare, Int. J. Healthcare Deliv. Reform Initiat. 2 (3) (2011) 29-47.
[21] Timothy W. Victor, Robertino M. Mera, Record linkage of healthcare insurance
[1] AG Bell. The deaf. In: US Department of Commerce and Labor, Bureau of the claims, Stud. Health Technol. Inform. 84 (3) (2001) 1409-1413.
Census. Special Reports: The blind and the deaf, 1900. [22] William E. Winkler. Matching and Record Linkage. In Brenda G. Cox, David A.
[2] Joan Fisher Box, R.A. Fisher, the Life of a Scientist, Wiley, New York, 1978. Binder, B. Nanjamma Chinnappa, Anders Christianson, Michael J. Colledge, and
[3] Peter Christen, A survey of indexing techniques for scalable record linkage and Phillip S. Kott, editors, Wiley Series in Probability and Statistics, pages 353-384.
deduplication, IEEE Trans. Knowl. Data Eng. 24 (9) (2012) 1537-1555. John Wiley & Sons Inc, Hoboken, NJ, USA, October 2011.
[4] Kenneth R. de Camargo Jr. and Cldudia M. Coeli. Reclink: aplicativo para o [23] A. Soliman, Record Linkage Datasets (2022), https://doi.org/10.6084/m9.

relacionamento de bases de dados, implementando o método probabilistic record
linkage. Cadernos de Satde Publica, 16(2), 439-447, jun 2000.

figshare.19500671.v1.

https://doi.org/10.1016/j.jbi.2022.104094
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0010
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0015
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0015
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0025
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0025
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0040
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0040
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0045
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0050
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0050
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0050
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0055
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0055
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0055
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0060
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0060
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0060
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0065
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0065
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0065
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0075
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0075
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0075
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0080
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0080
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0080
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0080
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0090
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0090
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0090
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0090
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0095
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0095
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0095
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0100
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0100
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0105
http://refhub.elsevier.com/S1532-0464(22)00110-1/h0105
https://doi.org/10.6084/m9.figshare.19500671.v1
https://doi.org/10.6084/m9.figshare.19500671.v1

	FIRLA: a Fast Incremental Record Linkage Algorithm
	1 Introduction
	2 Methods
	2.1 Previous methods
	2.2 Formal definition
	2.3 Our approaches
	2.3.1 Inherently incremental linking
	2.3.2 Comparison skipping technique
	2.3.3 Representative records
	2.3.4 Treating dates as integers

	2.4 Our algorithm
	2.5 Signature-based pruning
	2.5.1 Signature preparation
	2.5.2 Distance estimation

	3 Results
	3.1 Standard linkage results
	3.2 Incremental linkage results

	4 Discussion
	5 Conclusions
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Supplementary material
	References

