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Abstract
We introduce deep learning models to estimate the masses of the binary components of black hole
mergers, (m1,m2), and three astrophysical properties of the post-merger compact remnant,
namely, the final spin, af, and the frequency and damping time of the ringdown oscillations of the
fundamental ℓ= m = 2 bar mode, (ωR,ωI). Our neural networks combine a modified WaveNet
architecture with contrastive learning and normalizing flow. We validate these models against a
Gaussian conjugate prior family whose posterior distribution is described by a closed analytical
expression. Upon confirming that our models produce statistically consistent results, we used them
to estimate the astrophysical parameters (m1,m2,af,ωR,ωI) of five binary black holes: GW150914,
GW170104, GW170814, GW190521 and GW190630. We use PyCBC Inference to directly compare
traditional Bayesian methodologies for parameter estimation with our deep learning based
posterior distributions. Our results show that our neural network models predict posterior
distributions that encode physical correlations, and that our data-driven median results and 90%
confidence intervals are similar to those produced with gravitational wave Bayesian analyses. This
methodology requires a single V100 NVIDIA GPU to produce median values and posterior
distributions within two milliseconds for each event. This neural network, and a tutorial for its use,
are available at the Data and Learning Hub for Science.

1. Introduction

The advanced LIGO [1, 2] and advanced Virgo [3] observatories have reported the detection of tens of
gravitational wave sources [4–6]. At design sensitivity, these instruments will be able to probe a larger volume
of space, thereby increasing the detection rate of sources populating the gravitational wave spectrum. Thus,
given the expected scale of gravitational wave discovery in upcoming observing runs, it is in order to explore
the use of computationally efficient signal-processing algorithms for gravitational wave detection and
parameter estimation.

The rationale to develop scalable and computationally efficient signal-processing tools is apparent.
Advanced gravitational wave detectors will be just one of many large-scale science programs that will be
competing for access to oversubscribed and finite computational resources [7–10]. Furthermore,
transformational breakthroughs in multi-messenger astrophysics over the next decade will be enabled by
combining observations in the gravitational, electromagnetic and astro-particle spectra. The combination of
these high dimensional, large volume and high speed datasets in a timely and innovative manner presents
unique challenges and opportunities [11–13].

© 2021 The Author(s). Published by IOP Publishing Ltd



Mach. Learn.: Sci. Technol. 3 (2022) 015007 H Shen et al

The realization that companies such as Google, YouTube, among others, have addressed some of the
big-data challenges we are facing in multi-messenger astrophysics has motivated a number of researchers to
learn what these companies have done, and how such innovation may be adapted in order to maximize the
science reach of big-data projects. The most successful approach to date consists of combining deep learning
with innovative and extreme scale computing.

Deep learning was first proposed as a novel signal-processing tool for gravitational wave astrophysics
in [14]. That initial approach considered a 2D signal manifold for binary black hole mergers, namely the
masses of the binary components (m1, m2), and considered simulated advanced LIGO noise. The fact that
such method was as sensitive as template-matching algorithms, but at a fraction of the computational cost
and orders of magnitude faster, provided sufficient motivation to extend such methodology and apply it to
detect real gravitational wave sources in advanced LIGO noise in [15, 16]. These studies have sparked the
interest of the gravitational wave community to explore the use of deep learning for the detection of the large
zoo of gravitational wave sources [17–38].

Deep learning methods have matured to now cover a 4D signal manifold that describes the masses of the
binary components and the z-component of the 3D spin vector: (m1,m2, sz

1, s
z
2) [39, 40]. These algorithms

have been used to search for and find gravitational wave sources processing open source advanced LIGO data
in bulk, which is available at the Gravitational Wave Open Science Center [41]. In the context of
multi-messenger sources, deep learning has been used to forecast the merger of binary neutron stars and
black hole-neutron star systems [37, 42]. The importance of including eccentricity for deep learning
forecasting has also been studied and quantified [38]. In brief, deep learning research is moving at an
incredible pace.

Another application area that has gained traction is the use of deep learning for gravitational wave
parameter estimation. The established approach to estimate the astrophysical parameters of gravitational
wave signals is through Bayesian inference [43–46], which is a well tested and extensively used method,
though computationally-intensive. On the other hand, given the scalability and computational efficiency of
deep learning models, the gravitational wave parameter estimation can take advantage of its power to
produce faster inference.

Gravitational wave parameter estimation has rapidly evolved from point-wise parameter
estimation [14–16] to the use of neural networks dropouts to provide estimation intervals [47], and to
output a parametrized approximation of the corresponding posterior distribution [48]. Other methods have
proposed the use of Conditional Variational Auto-Encoders (CVAEs) to infer the parameters of GWs
embedded in simulated noise [49, 50]. In [51] the authors harnesses new methods, e.g. normalizing
flow [52], to do parameter estimation over the full 15-dimensional space of binary black hole system
parameters for the event GW150914. Building upon this study, authors in [53] presented deep learning
methods to estimate the astrophysical parameters of several gravitational wave events. One can also refer
to [54, 55] for a comprehensive review of the gravitational-wave-based machine learning approaches.

In this article we quantify the ability of deep learning to estimate the masses of the binary components of
binary black hole mergers, and of the astrophysical parameters that describe the properties of the black hole
remnant, namely, the final spin, af, and the frequency and damping time of the ringdown oscillations of the
fundamental ℓ= m = 2 bar mode, (ωR, ωI), known as quasinormal modes (QNMs) [56]. An existing
approach proposes to use neural networks to solve differential equations for QNMs [57]. Our approach, on
the other hand, differs from this or other studies in the literature in that we estimate the astrophysical
parameters of the remnant by directly feeding time-series advanced LIGO strain data into our deep learning
algorithms.

This article is organized as follows. In section 2 we describe the architecture of our neural network
model, and the datasets used to train, validate and test it. We briefly describe the Bayesian inference pipeline,
PyCBC Inference, in section 3, which we used as a baseline to compare the full posterior distributions
predicted by our deep learning model. We quantify the accuracy and physical consistency of the predictions
of our deep learning model for several gravitational wave sources in section 4. We summarize our findings
and future directions of work in section 5.

2. Methods

Herein we describe several methods to improve the training performance and model accuracy of our
algorithms. We have used PyTorch [58] to design, train, validate and test our neural network models.

2.1. Deep learning model objective
The goal of our deep learning model is to estimate a posterior distribution of the physical parameters of the
waveforms from the input noisy data. This approach shares similarities with Bayesian approaches such as
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Markov Chain Monte Carlo (MCMC), e.g. once a likelihood function and a predefined prior are provided,
posterior samples may be drawn. The difference between the deep learning model and MCMC is that our
proposed framework will learn a distribution from which we can easily draw samples, thereby increasing
computational efficiency significantly. It is worth emphasizing that once the likelihood model is properly
defined, the framework we introduce here may be applicable to other disciplines.

In the context of gravitational waves, the noisy waveform y is generated according to the following
physical model,

yi,ℓ = F(xi)+ ni,ℓ, (1)

where F is the function that maps the physical parameters (masses and spins) xi to the gravitational
waveform template [46, 59, 60], and ni,ℓ denotes the additive noise at various signal-to-noise ratios (SNR).
We use yi,ℓ with subscript pair (i, ℓ) to specifically indicate the ith template associated with ℓth noise
realization in our dataset D. For simplicity, we use y and x to indicate noisy waveforms and the physical
parameters when the specification of i or ℓ subscript is not needed. We use K and M to denote the dimension
of y and x, respectively.

We use WaveNet [61] to extract features from the input noisy waveforms. WaveNet was first introduced
as an audio synthesis tool to generate human-like audios given random inputs. It uses dilated convolutional
kernel and residual network to capture the spatial information both in the time domain and the model depth,
which has been shown to be a powerful tool in model time-series data. Previously, [40, 62] tailored this
architecture for gravitational wave denoising and detection. The encoded feature vector h ∈ R

L comes from
an embedding function parameterized by the WaveNet weights ω, fω : y 7→ h. In other words, h = fω(y).

Normalizing flow is a technique to transform distributions with invertible parameterized functions.
Specifically, we use a conditional version of normalizing flow: conditional autoregressive spline [63–66] to
learn the posterior distribution on top of the encoded latent space by WaveNet encoding. and we implement
it through a PyTorch-based probabilistic programming package: Pyro [65]. Mathematically, we denote the
invertible function g(h,θ) : z 7→ x is parameterized by the learnable model weights θ and the encoded feature
h. In this way, we encode dependencies of the posterior distribution on the input y. The random vector
z ∈ R

M is drawn according to a pre-defined base distribution p(z), and has the same dimension as x. The
function g(h,θ)(z) is then used to convert the base distribution p(z) to the approximated posterior
distribution p̂ω,θ(x|y) of the physical parameters,

p̂ω,θ(x|y) = p(z)

∣

∣

∣

∣

det

(

∂g(h,θ)(z)

∂z

)∣

∣

∣

∣

−1

, (2)

with h = fω(y).
The computation of the transformation g(h,θ)(z) contains two steps. The first step is to compute the

intermediate coefficients α from the feature vector h based on the function kθ, which is parameterized by two
fully connected layers with weights denoted as θ, i.e. α= kθ(h). The coefficients α are used to combine the
invertible linear rational splines to form g(h,θ) (see equation (5) in [64] for details). Therefore, g(h,θ) is an
element-wise invertible linear rational spline with coefficients α. Since h depends on the input waveform y
and α= kθ(h), the resulting mapping g(h,θ) and parameterized distribution in equation (2) vary with the
input y. The parameterization of the estimated posterior distribution is illustrated in figure 1.

To learn the network weights, we need to construct the empirical loss objective given the collection of
training data {xi,yi,ℓ}. We propose to include a loss term defined on the feature vectors in our learning
objective to take account for the variation in the waveform due to noise. That is if the underlying physical
parameters are similar, then the similarity of the feature vectors should be large, and vice versa. To achieve
this, we use contrastive learning objective [67] to distinguish positive data pairs (waveforms with the same
physical parameters) from the negative pairs (noisy waveforms with different physical parameters).
Specifically, we use the normalized temperature-scaled cross entropy (NT-Xent) loss used in the
state-of-the-art contrastive learning technique SimCLR [68, 69]. SimCLR was originally introduced to
improve the performance of image classification with additional data augmentation and NT-Xent loss
evaluation. We adapt the NT-Xent loss used in contrastive learning to our feature vectors,

l(hi,j,hi,ℓ)≡− log
esim(hi,j,hi,ℓ)/τ

∑

i ′ ̸=i

∑2
j=1

∑2
ℓ=1 esim(hi,j,hi ′,ℓ)/τ

, (3)

where hi,· = fω(yi,·), τ ∈ (0,∞) is a scalar temperature parameter, and we choose τ = 0.2 according to the
default setting provided in [68]. The NT-Xent loss performs in such a way that, regardless of the noise
statistics, the cosine distances of the encoded features associated with the same underlying physical
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Figure 1.Model Architecture. The first component of our model is a WaveNet architecture with 11 blocks, whose input is a
1 s-long waveform sampled at 4096 Hz, denoted by y. The output of the WaveNet modulo is a 254 dimensional vector, h, that is
fed into a normalizing flow modulo, which is then combined with a base distribution, p(z), to provide the posterior distribution
estimation p̂ω,θ(x|y). z represents the random variable for the base distribution, and x represents the physical parameters of the
binary black hole mergers, respectively.

parameters (i.e. hi,j and hi,ℓ) are minimized, and the distances of features with different underlying physical
parameters are maximized. Consequently, the trained model is robust to the change of noise realizations and
noise statistics. Therefore, incorporating the term in equation (3) can be used as a noise stabilizer for
gravitational wave parameter estimation. We found that the inclusion of this term speeds up the convergence
in training.

Our deep learning objective in equation (4) combines the NT-Xent loss in equation (3) with the posterior
approximation term. Given a batch of B physical parameters xi, we generate different noise realizations yi,ℓ

for each xi and the empirical loss function is,

L(ω,θ) =
1

2B

B
∑

i=1



−
2
∑

ℓ=1

log p̂ω,θ(xi|yi,ℓ)+
2
∑

ℓ=1, ℓ ̸=j

2
∑

j=1

l( fω(yi,j), fω(yi,ℓ))



 , (4)

where p̂ω,θ(xi|yi,ℓ) is defined in equation (2). Minimizing the loss in equation (4) with respect to ω and θ
provides a posterior estimation for gravitational wave events.

It is worth pointing out that while references [70, 71] apply q(z), an arbitrary random distribution to
their generative model, our posterior distributions do not involve arbitrary random distributions.

2.2. Separate models for parameters
In this paper, we are interested in the following physical parameters: (m1,m2,af,ωR,ωI). We find that trying
to estimate all parameters using a single model lead to sub-optimal results given that they are of different
scales. Thus, we use two separate models with similar model architecture as shown in figure 1. One model is
used to estimate the masses (m1,m2) of the binary components, while the other one is used to infer the final
spin (af) and QNMs (ωR,ωI) of the remnant.

The final spin of the remnant and its QNMs have similar range of values when the QNMs are cast in
dimensionless units. We trained the second model using the fact that the QNMs are determined by the final
spin af using the relation [56]:

ω220 (af) = ωR + iωI, (5)

where (ωR, ωI) correspond to the frequency and damping time of the ringdown oscillations for the
fundamental ℓ= m = 2 bar mode, and the first overtone n= 0. We compute the QNMs following [56]. One
can translate ωR into the ringdown frequency (in units of Hertz) and ωI into the corresponding (inverse)
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damping time (in units of seconds) by computing Mf ·ω220, where Mf is the final mass of the remnant, and
can be determined using equation (1) in [72]. An additional benefit of using two separate models is that the
training converges faster with two models considering two different sets of physical parameters at different
magnitudes.

2.3. Dataset preparation and training
2.3.1. Modeled waveforms
We used the surrogate waveform family [73] to produce modeled waveforms that describe binary black holes
with component masses m1 ∈ [10M⊙, 80M⊙], m2 ∈ [10M⊙, 50M⊙], and spin components
sz
{1,2} ∈ [−0.9, 0.9]. By uniformly sampling this parameter space we produce a dataset with 1061 023

waveforms. These waveforms describe the last second of the late inspiral, merger, and ringdown. The
waveforms are produced using a sample rate of 4096 Hz.

For training purposes, we label the waveforms using the masses and spins of the binary components, and
then use this information to also enable the neural net to estimate the final spin of the black hole remnant
using the formulae provided in [74], and the QNMs following [56]. In essence, we are training our neural
network models to identify the key features that determine the properties of the binary black holes before
and after merger using a unified framework.

We use 90% of these waveform samples for training, 10% testing. The training samples are randomly and
uniformly chosen. Throughout the training, we use AdamW optimizer to minimize the mean squared error
of the predicted parameters with default hyper-parameter setups [75]. We choose the learning rate to be
0.0001. To simulate the environment where the true gravitational waves are embedded, we use real advanced
LIGO noise to compute power spectral density (PSD), which is then used to whiten the templates.

2.3.2. Advanced LIGO noise
For training we used a 4096 s-long advanced LIGO noise data segment, sampled at 4096 Hz, starting at GPS
time 11 262 59 462. We obtained these data from the Gravitational Wave Open Science Center [41].
We estimate a PSD using the entire 4096 s segment to whiten the modeled waveforms and noise. For each
one second long noisy waveform used in training, we combine the clean whitened template with a randomly
picked one second long noise segment from the 4096 s-long advanced LIGO strain data. For each generated
waveform template (see equation (1)), we apply two different noisy realizations. As a result, the total number
of noisy waveforms (clean templates + noise realizations) applied during training is equal to: # of training
iterations × batch size × 2.

In section 4, we demonstrate that our model, trained only with advanced LIGO noise from the first
observing run, is able to estimate the astrophysical parameters of other events across O1-O3. We fixed the
merger point of the training templates at the 3596th timestep out of 4096 total timesteps. We empirically
found having a fixed merger point, rather than shifting the templates to have time-invariant property,
provides a tighter estimation of the posteriors. Our deep learning model was trained on 1 NVIDIA V100 GPU
with a batch size of 8. In general, it takes about one to two days to fully train this model.

2.4. GPS trigger time
It is known that a trigger GPS time associated with a gravitational wave event, typically provided by a
detection algorithm, may differ from the true time of coalescence. Therefore, we perform a local search
around the trigger time by any given detection algorithm as a pre-processing step for the parameter
estimation using the trained model. We first identify local merger time candidates by evaluating the
normalized cross-correlation (NCC) of the whitened observation with 33 713 whitened clean templates,
whose physical parameters uniformly cover the range: m1 ∈ [10M⊙, 80M⊙], m2 ∈ [10M⊙, 50M⊙], and
sz
{1,2} ∈ [−0.9, 0.9], over a time window of 0.015 seconds around the time candidates. The time points with

top NCC values are selected as the candidates. Then we use the trained models to estimate the posterior
distributions of the physical parameters at each candidate time point. In practice, we found that the trigger
times with the best NCC values differ from those published at the Gravitational Wave Open Science
Center by up to 0.01 s. These trigger times produce different posterior distributions that vary in size by up
to ±1M⊙ for the masses of the binary components, and up to 5% for the astrophysical properties of the
compact remnant. We have selected the time point that gives the smallest 90% confidence area for the results
we present in section 4.2.
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Figure 2. Comparison of posterior distributions produced by our deep learning model (red contours) and a Gaussian conjugate
prior family whose posterior distribution (black contours) is given by a closed analytical model. These data-driven predictions for
the 50% (the inner ellipse) and 90% (the outer ellipse) confidence contours are in agreement with expected statistical results.

3. Bayesian inference

We compare our data-driven posterior estimation with PyCBC Inference [46, 59, 60], which uses a
parallel-tempered MCMC algorithm, emcee_pt [76], to evaluate the posterior probability p(x|y) for the set
of source parameters x given the data y. The posterior is calculated as p(x|y)∝ p(y|x)p(x) where p(y|x) is the
likelihood and p(x) is the prior. The likelihood function for a set of N detectors is

p(y|x) = exp

(

−1

2

N
∑

i=1

〈ŷi(k)− ŝi(k,x)|ŷi(k)− ŝi(k,x)〉
)

, (6)

where ŷi(k) and ŝi(k,x) are the frequency-domain representations of the data and the model waveform for
detector i. The inner product 〈·|·〉 is defined as

〈âi(k)|b̂i(k)〉= 4 R
ˆ ∞

0

âi(k)b̂i(k)

Pi(k)
dk , (7)

where Pi(k) is the PSD of the ith detector.
We performed the MCMC analysis using the publicly available data from the GWTC-1 release [4] and

used the corresponding publicly available PSD files for each event [77]. We analyse a segment of eight
seconds around the GPS trigger 11 675 59 935.6, with the data sampled to 2048 Hz. We use the
IMRPhenomD [78] waveform model to generate waveform templates to evaluate the likelihood. We assume
uniform priors for the component masses with m{1,2} ∈ [10M⊙,80M⊙) and uniform priors on the
component spins with a{1,2} ∈ (−0.99,0.99). We also set uniform priors on the luminosity distance with
DL ∈ [10,4000)Mpc and the deviation of the arrival time from the trigger time −0.1<∆t< 0.1. We set
uniform priors for the coalescence phase and the polarization angle ϕc,ψ ∈ [0,2 π). The prior on the
inclination angle between the binary’s orbital angular momentum and the line of sight, ι, is set to be uniform
in the sine of the angle, and the right ascension and declination have priors to be uniform over the sky.

Furthermore, they may be used to cross validate the physical reality of an event [39, 40], and to assess
whether the estimated merger time is consistent between the two separate models. For instance, if the models
output very different merger times, then we may conclude that they are not providing a reliable merger time.
On the other hand, when their results are consistent, within a window between 0.001 s and up to 0.005 s,
then we can remove the ambiguity introduced when using the NCC approach described in section 2.4.

4. Experimental results

In this section we present two types of results. First, we validate our model with a well known statistical
model. Upon confirming that our deep learning approach is statistically consistent, we used to estimate the
parameters of five binary black hole mergers.
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Figure 3. Data-driven posterior distributions, including 50% and 90% confidence regions, for the masses of black hole mergers.

4.1. Validation on simulated data
We performed experiments on simulated data that have closed form posterior distributions. This is
important to ascertain the accuracy and reliability of our method. The simulated data are generated through
a linear observation model with additive white Gaussian noise,

y = Ax+ n, (8)

7
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Figure 4. Data-driven posterior distributions, including 50% and 90% confidence regions, for (af, ωR) of black hole mergers.

where the additive noise n ∼N (0,σ2I). We consider the underlying parameters x ∈ R
M and the linear map

A ∈ R
K×M, with M = 2 and K = 5. The likelihood function is

p(y|x) = 1

(
√

2πσ)K
exp

(

−‖y−Ax‖2

2σ2

)

. (9)
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Figure 5. Data-driven posterior distributions, including 50% and 90% confidence regions, for (af, ωI) of real black hole mergers.

If we assume the prior distribution of x is a Gaussian distribution with mean 0 and covariance S, we can get
an analytical expression for the posterior distribution of x given the observation y,

p(x|y) = C exp

(

−1

2
(y−Σ−1b)TΣ−1(y−Σ−1b)

)

, (10)

9
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Table 1. Data-driven and Bayesian results [4, 79] for the median and 90% confidence intervals of the masses of five binary black hole
mergers. The network signal-to-noise ratio (SNRs) for each event are also provided for reference.

Our model LIGO [4, 79]

Event name m1[M⊙] m2[M⊙] m1[M⊙] m2[M⊙] SNR

GW150914 38.85+6.90
−4.15 31.20+4.39

−5.94 35.60+4.70
−3.10 30.60+3.00

−4.40 24.4
GW170104 28.90+6.55

−3.80 22.75+3.73
−5.14 30.80+7.80

−5.60 20.00+4.90
−4.60 13.0

GW170814 33.92+9.14
−5.27 24.31+4.13

−5.46 30.60+5.60
−5.30 25.20+2.80

−4.00 15.9
GW190521 46.10+8.77

−6.61 33.74+6.68
−8.47 42.10+5.90

−4.90 32.70+5.40
−6.20 14.4

GW190630 34.00+7.19
−4.43 26.17+4.54

−5.86 35.00+6.90
−5.70 23.60+5.20

−5.10 15.6

where

C =
1

√

(2π)M|Σ|
, Σ= S−1 +

1

σ2
ATA, b =

1

σ2
ATy .

During the training stage we draw 100 samples of x from its prior p(x), and y is generated through the linear
observation model (8). We train a 3-layer model with the model objective (4), and show three examples of
the posterior estimation in figure 2. Therein we show 50% and 90% confidence contours. Black lines
represent ground truth results (ellipses given the posterior is Gaussian), while the red contours correspond to
the neural network estimations, based on Gaussian kernel density estimation (KDE) with 9000 samples
generated from the network. These results indicate that our deep learning model can produce reliable and
statistically valid results.

4.2. Results with real events
In this section we use our deep learning models to estimate the medians and posterior distributions of the
astrophysical parameters (m1,m2) and (af,ωR,ωI), respectively, for five binary black hole mergers:
GW150914, GW170104, GW170814, GW190521 and GW190630.

As described in section 2.1, we consider 1 s-long advanced LIGO noise input data batches, denoted as y,
sampled at 4096 Hz. We construct two posterior distribution estimations, p̂ω,θ(x|y), by minimizing the loss
in equation (4) for (m1,m2) and for (af,ωR,ωI). We use two different multivariate normal base distributions
for p(z) in the two different models. To estimate the masses of the binary components, the mean and
covariance matrix (µ,Σ) are: µ= (30,30),Σ= diag(5,5); whereas for the final spin and QNMs model we
use: µ= (0.5,0.55,0.07),Σ= diag(0.05,0.03,0.002). ‘diag(·)’ refers to the diagonal matrix with ‘·’ being
the diagonal elements. The number of normalizing flow layers also varies for the two models. We use a
3-layer normalizing flow module for masses prediction, and an 8-layer module for the predictions of final
spin and QNMs.

Our first set of results is presented in figures 3–5. These figures provide the median, and the 50% and
90% confidence intervals, which we computed using Gaussian KDE estimation with 9000 samples drawn
from the estimated posteriors. In tables 1 and 2 we also present a summary of our data-driven median results
and 90% confidence intervals, along with those obtained with traditional Bayesian algorithms in [4, 79].
Before we present the main highlights of these results, it is important to emphasize that our results are
entirely data-driven. We have not attempted to use deep learning as a fast interpolator that learns the
properties of traditional Bayesian posterior distributions. Rather, we have allowed deep learning to figure out
the physical correlations among different parameters that describe the physics of black hole mergers.
Furthermore, we have quantified the statistical consistency of our approach by validating it against a well
known model. This is of paramount importance, since deep learning models may be constructed to
reproduce the properties of traditional Bayesian distributions, but that fact does not provide enough
evidence of their statistical validity or consistency. Finally, given the nature of the signal processing tools and
computing approaches we use in this study, we do not expect our data-driven results to exactly reproduce the
traditional Bayesian results reported in [4, 79].

Our results may be summarized as follows. Figures 3–5 show that our data-driven posterior distributions
encode expected physical correlations for the masses of the binary components, (m1,m2), and the parameters
of the remnant: (af,ωR) and (af,ωI). We also learn that these posterior distributions are determined by the
properties of the noise and loudness of the signal that describes these events. Figure 3 presents a direct
comparison between the posterior distributions predicted by our deep learning models and those produced
with PyCBC Inference—marked with dashed lines. These results show that our deep learning models
provide real-time, reliable information about the astrophysical properties of binary black hole mergers that
were detected in three different observing runs, and which span a broad SNR range.
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Table 2. Data-driven and Bayesian results [4, 79] for the median and 90% confidence intervals of the final spin of five binary black hole
mergers. Results for the frequencies of the ringdown oscillations, (ωI,ωR), are directly measure by our model from advanced LIGO’s
strain data, whereas the results quoted for LIGO are estimated using af values from [4, 79] and equation (5) [80].

Event
name

Our model LIGO [4, 79]

af ωR ωI af ωR ωI

GW150914 0.71+0.06
−0.07 0.536+0.028

−0.029 0.0805+0.0023
−0.0026 0.69+0.05

−0.04 0.528+0.016
−0.023 0.0811+0.0021

−0.0013

GW170104 0.69+0.06
−0.07 0.530+0.028

−0.030 0.0810+0.0023
−0.0025 0.66+0.08

−0.11 0.515+0.036
−0.033 0.0821+0.0026

−0.0030

GW170814 0.68+0.06
−0.09 0.525+0.028

−0.032 0.0815+0.0024
−0.0024 0.72+0.07

−0.05 0.541+0.037
−0.022 0.0800+0.0018

−0.0037

GW190521 0.73+0.05
−0.06 0.548+0.029

−0.028 0.0795+0.0024
−0.0029 0.72+0.05

−0.07 0.552+0.026
−0.030 0.0800+0.0025

−0.0025

GW190630 0.71+0.06
−0.07 0.535+0.028

−0.030 0.0806+0.0024
−0.0026 0.70+0.06

−0.07 0.532+0.030
−0.028 0.0808+0.0037

−0.0022

Figure 6. P-P plot comparing the posterior distributions estimated by the neural network model for five astrophysical parameters
(m1,m2,af,ωR,ωI).

On the other hand, tables 1 and 2 show that our median and 90% confidence intervals are better, similar
and in some cases slightly larger than those obtained with Bayesian algorithms. In these tables, Bayesian
LIGO results for af are directly taken from [4, 79], while (ωR,ωI) results are computed using their Bayesian
results for af and the tables available at [81]. These results indicate that deep learning methods can learn
physical correlations in the data, and provide reliable estimates of the parameters of gravitational wave
sources. To demonstrate that our model represents true statistical properties of the posterior distribution, we
tested the posterior estimation on simulated noisy gravitational waveforms. We calculate the empirical
cumulative distribution function (CDF) of the number of times the true value for each parameter was found
within a given confidence interval p, as a function of p. We compare the empirical CDF with the true CDF of
p in the P-P plot in figure 6. To obtain the empirical CDF, for each test waveform (1000 waveforms in total)
and one-dimensional estimated posterior distribution generated from the network with 9000 samples, we
record the count of the confidence intervals p (p = 1% ,…, 100%) where the true parameters fall. The
empirical CDF is based on the frequency of such counts with the 1000 waveforms randomly drawn from the
test dataset. Since the empirical CDFs lie close to the diagonal, we conclude that the networks generate close
approximation of the posteriors. Furthermore, our data-driven results, including medians and posterior
distributions, can be produced within 2 milliseconds per event using a single NVIDIA V100 GPU. We expect
that these tools will provide the means to assess in real-time whether the inferred astrophysical parameters of
the binary components and the post-merger remnant adhere to general relativistic predictions. If not, these
results may prompt follow up analyses to investigate whether apparent discrepancies are due to poor data
quality or other astrophysical effects [82].

The reliable astrophysical information inferred in low-latency by deep learning algorithm warrants the
extension of this framework to characterize other sources, including eccentric compact binary mergers, and
sources that require the inclusion of higher-order waveform modes. Furthermore, the use of physics-inspired
deep learning architectures and optimization schemes [29] may enable an accurate measurement of the spin
of binary components. These studies should be pursued in the future.

11



Mach. Learn.: Sci. Technol. 3 (2022) 015007 H Shen et al

5. Conclusion

We designed neural networks to estimate five parameters that describe the astrophysical properties of binary
black holes before and after the merger event. The first two parameters constrain the masses of the binary
components, while the others estimate the properties of the black hole remnant, namely (m1,m2,af,ωR,ωI).
These models combine a WaveNet architecture with normalizing flow and contrastive learning to provide
statistically consistent estimates for both simulated distributions, and real gravitational wave sources.

Our findings indicate that deep learning can abstract physical correlations in complex data, and then
provide reliable predictions for the median and 90% confidence intervals for binary black holes that span a
broad SNR range. Furthermore, while these models were trained using only advanced LIGO noise from the
first observing run, they were capable of generalizing to binary black holes that were reported during the
first, second and third observing runs.

These models will be extended in future work to provide informative estimates for the spin of the binary
components, including higher-order waveform modes to better model the physics of highly spinning and
asymmetric mass-ratio black hole systems.
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