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Abstract

We present the delay time distribution (DTD) estimates of Type Ia supernovae (SNe Ia) using spatially resolved
SN Ia host galaxy spectra from MUSE and MaNGA. By employing a grouping algorithm based on k-means and
earth mover’s distances (EMDs), we separated the host galaxy stellar population age distributions (SPADs) into
spatially distinct regions and used maximum likelihood method to constrain the DTD of SN Ia progenitors. When a
power-law model of the form DTD(t)∝ t s(t> τ) is used, we find an SN rate decay slope = - -

+s 1.41 0.33
0.32 and a

delay time t = -
+120 Myr83

142 . Moreover, we tested other DTD models, such as a broken power-law model and a
two-component power-law model, and found no statistically significant support for these alternative models.

Unified Astronomy Thesaurus concepts: Type Ia supernovae (1728)

1. Introduction

Type Ia supernovae (SNe Ia) are produced by the explosion
of white dwarfs (WDs) in binary systems (see, e.g.,
Maguire 2016; Branch & Wheeler 2017, for reviews).
However, the configuration of the binary system remains
unknown, and there are two leading scenarios. In the single-
degenerate (SD) scenario, the progenitor WD accretes matter
from a nondegenerate companion star to reach a critical mass
∼1.37 Me before SN explosion (Whelan & Iben 1973;
Nomoto 1982). In the double-degenerate (DD) scenario,
the explosion is triggered by the merging of two WDs
(Webbink 1984; Iben & Tutukov 1984).

The delay time distribution (DTD), which describes the
SN Ia rate per unit stellar mass as a function of the time after a
burst of star formation activity, is scrutinized in the researches
to investigate the SD and DD scenarios and the observed SN
event statistics (e.g., Maoz & Mannucci 2012; Maoz et al.
2014). In binary population synthesis (BPS) simulations of
carbon–oxygen WD (CO WD) and helium WD (He WD)
merger (Meng & Han 2015; Liu et al. 2018), the delay time
(denoted as τ) from the star formation activity to the first SN Ia
is typically ∼108.5–109 yr, and the SN rate follows a t−1 decay
with time. Similarly, the BPS simulations of binary CO WD
merger also show a t−1 relation, but the delay time of the first
SN Ia is around ∼108–108.5 yr (Liu et al. 2018; Chen et al.
2012). In contrast, simulations for the SD scenario show
different delay times for different channels. Claeys et al. (2014)
and Wang et al. (2015) simulated the CO WD and main-
sequence star (CO WD+MS) channel and found that most of
the SNe Ia are produced in ∼108–109 yr after star formation.
Liu et al. (2019) simulated the CO WD and red giant star (CO
WD+RG) channel and found the delay time to be ∼108.6–108.7

yr but with a steeper delay time relation than that of the DD
scenario. Apart from MS or RG serving as the companion star,
Wang et al. (2017) simulated CO WD + He star as an SN Ia
progenitor system, which shows a peak of the event rate around
108 yr. In addition, Denissenkov et al. (2013) proposed a new
channel with a carbon–oxygen–neon (CONe) WD serving as
an SN Ia progenitor. In both the CONe WD+He star channel

(Wang et al. 2014) and CONe WD+MS channel (Meng &
Podsiadlowski 2014), the delay times are ∼107.5–109 yr and
do not show the t−1 decaying rate. Although different BPS
simulations of the DD scenario show SN rates in agreement
with observations (e.g., Toonen et al. 2012; Ruiter et al. 2009;
Claeys et al. 2014; Liu et al. 2018), the observed SN population
can still originate from a combination of multiple channels
(Nelemans et al. 2013).
A few major observational measurements of the DTDs are

provided by the SN Ia rates in different redshift bins in galaxy
clusters (e.g., Friedmann & Maoz 2018; Freundlich &
Maoz 2021) and from large untargeted SN survey projects
(e.g., Madgwick et al. 2003; Perrett et al. 2012; Graur &
Maoz 2013; Rodney et al. 2014; Frohmaier et al. 2019).
Alternatively, SN remnants can be used to measure the SN rate
(Maoz & Badenes 2010). Although the measured results show
a t−1 SN rate decay that is consistent with the DD scenario, the
exact parameters of the relation are strongly dependent on the
details of the cosmic star formation history (CSFH; Gal-Yam &
Maoz 2004). Furthermore, due to the incompleteness of high-
redshift SN Ia discoveries in high-redshift SN surveys, the
delay time τ is still not very strongly constrained.
In the quest for an independent estimate of the SN Ia delay

time, Maoz et al. (2012) and Heringer et al. (2019) used the
host galaxy stellar population as a proxy to estimate the DTD
assuming that SN progenitors share the same formation history
with the other stars in the host galaxy. Based on such an
assumption, Takaro et al. (2020) utilized Hubble Space
Telescope (HST) to directly observe the stars close to nine
Type Iax SNe and constrained the delay time using their nearby
stellar ages as proxies. Furthermore, Panther et al. (2019)
utilized Integral Field Unit (IFU) facilities to acquire the host
galaxy spectra of 17 SN 1991bg-like SNe at the sites of the SN
explosions, calculated the stellar populations within ∼1 kpc of
the SNe, and concluded that SN 1991bg-like SNe originate
from an older stellar population than normal SNe Ia. Notably,
as core-collapse SNe originate from younger stellar popula-
tions, their local stellar population distributions show distinc-
tively younger stellar populations than those for SNe Ia and set
strong constraints on the ages of Type II, Ib, Ic, IIb and IIn SN
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progenitors (Kuncarayakti et al. 2018). In addition to the
correlation between the SN rates and the local stellar
population, Galbany (2017) proposed to use the distance
between the SNe and H II regions as an SN progenitor age
indicator, and Maoz & Graur (2017) discussed the relation
between DTD and galactic iron accumulation history. The SN
host galaxy star-forming region (Galbany et al. 2014), SN
environmental metallicity (Galbany et al. 2016), and galaxy
velocity field (Zhou et al. 2019) are also discussed for their
potential influences on the SN Ia rate.

The current research uses the spectra at the SN coordinates
as the SN progenitor age indicator. We introduced two
additional assumptions in our analysis: (1) there is no bias
against any types of SN host galaxies in any SN survey
projects, and (2) the group of stars at the site of the SN
explosion statistically exhibits a higher probability of produ-
cing an SN at the present time than the other groups of the stars
in the galaxies. To quantify the probability differences among
different groups of stars in the SN host galaxies, we developed
a novel algorithm to spatially separate the star formation
histories (SFHs) of a host galaxy into different subgroups based
on their stellar population age distribution (SPAD) profiles. We
used the maximum likelihood method to constrain the DTD
model parameters, which takes into account the relations
between different groups of stars and the SN events.

In Section 2, we introduce our SN host galaxy sample
selection criteria and the calculation of the SPADs. In
Section 3, we present the algorithm on the separation of
SPADs of the host galaxies spatially into subgroups and the
maximum likelihood estimations of the DTD models. In
Section 4, we show the results on the constraints on the DTD
model parameters. Conclusions and discussions are given in
Section 5.

2. Data Reduction

2.1. Sample Selection

Most of the data used in our research were taken by the
Multi-Unit Spectrograph Explorer (MUSE), an IFU facility
mounted on the 8.4 m telescope Yepun (UT4) at the Very
Large Telescope (VLT). We used all publicly available SNe Ia
listed on Transient Name Server (TNS)3 and cross-matched
them with available MUSE data. For the matched SN host
pairs, the following selection criteria were applied:

1. The time difference between SN discovery and IFU
observation is at least 100 days to avoid SN light from
contaminating the host galaxy’s spectra.

2. The spectral type of the SN is normal SN Ia according to
both TNS and SIMBAD.4

3. More than 70% of the flux of the host galaxy is covered
by the MUSE field of view (FOV).

4. After binning the spectral data cube by 3× 3 spatial
pixels, the signal-to-noise ratio (S/N) at the position of
the SN is at least 0.8 per Å.

5. The host galaxy has at least 200 spatial pixels with
S/N >̃ 0.8 per Å in the data spatially binned by 3× 3.

We found 100 SNe Ia in 96 host galaxies (four galaxies host
two SNe in each) satisfying the above criteria; they were

observed by 37 VLT observation programs. The list of all SNe
and host galaxies is given in Appendix C. Among all these
observations, four of them (SN 2011iv, SN 2011is, SN 2009ev,
SN 1992A) employed the extended wavelength coverage from
465 to 930 nm using the WFM-NOAO-E instrumentation mode,
one (SN 2000do) employed the adaptive optics (AO) technique
using the WFM-AO-N instrumentation mode, and the rest were
observed in natural seeing with a nominal wavelength range
from 480 to 930 nm using the WFM-NOAO-N instrumentation
mode. The spectral resolving power for both extended
wavelength coverage and nominal coverage varies with
wavelength, with resolving power R= 2000–4000, and all
the observations used the wide field mode (WFM) with 1 square
arcminute FOV. In Figure 1, we show the histogram of the
seeing distribution.
We downloaded the data product, which was reduced by the

MUSE data reduction pipeline (Weilbacher et al. 2012), from
ESO Science Archive.5 During the multiyear observation
period, the version of the data reduction pipeline had changed
from v1.4 to v2.8, and we did not attempt to reduce the data
again with the latest version of the pipeline. Moreover, some
data cubes are stacks of multiple observations, which makes the
spatial coverage of some data cubes larger than the FOV of the
instruments.
In addition to the MUSE data, the Mapping Nearby Galaxies

at APO (MaNGA; Bundy et al. 2015) is a spectroscopic survey
of galaxies using the 2.5 m telescope at Apache Point
Observatory (APO), which also provides observations of SN
host galaxies. The survey has a hexagonal FOV with a diameter
varying from 12″ to 32″ covering the wavelength range
3600–10300Å with a resolving power R∼ 2000 and a spatial
pixel scale of 0 5. We applied the same selection criteria
(except binning of the spectral data cube) as used for the
MUSE data set and found 30 SN Ia host galaxies among 4824
galaxies in Sloan Digital Sky Survey (SDSS) DR15 (Westfall
et al. 2019); the information on the SNe and host galaxies is
tabulated in Appendix C. The fully reduced data cubes,
downloaded via marvin (Cherinka et al. 2019), were used to
calculate the spatially resolved SPADs.

Figure 1. The histogram of the seeings of the data used in our research. The
blue histogram is for the MUSE data set, and the orange histogram is for the
MaNGA data set.

3 https://wis-tns.weizmann.ac.il
4 http://simbad.u-strasbg.fr/simbad/ 5 http://archive.eso.org/
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2.2. Spatially Resolved SPAD Calculation

As mentioned above, the original MUSE data cubes were
binned by 3× 3 spatial pixels to increase the S/N of each
spectral element. The software Source Extractor (Bertin &
Arnouts 1996) is used to identify the sky background close to
the host galaxy and filter out the foreground stars. The pixels
with spectral S/N above 0.8 per Å of the SN host galaxies were
used to calculate the SPADs. Note that some recent studies
(e.g., Guérou et al. 2016) on the stellar population with MUSE
data employed Voronoi tessellation to build adaptive grids to
spatially bin the spectra with lower S/Ns. We did not adopt this
method because it will mutilate spatial information, which is
important in our research. The MaNGA data cubes were not
binned, and we used the mask provided in marvin to remove
foreground stars and bad pixels. In all of the MaNGA survey
targets, the galaxy covers the entire or most of the FOV, and
the foreground stars were identified in marvin program, so we
did not use Source Extractor on these galaxies.

Penalized Pixel-Fitting (ppxf; Cappellari 2017), which
solves for a linear combination of simple stellar population
(SSP) models from a stellar spectral library to fit the observed
spectra, is used in our research to calculate the host galaxies’
SPADs. We used the E-MILES stellar spectral library and
assume Padova stellar evolutionary tracks and isochrones
(Salasnich et al. 2000), Kroupa (2002) initial mass function
(IMF), and [α/Fe]= 0 for all the galaxies. The model spectral
library consists of 50 age grids ranging from 63.10Myr to
17.78 Gyr and seven metallicity grids ranging from [M/H]=
−2.32 to [M/H]= 0.22. We used a 10-order multiplicative
polynomial and no additive polynomial to fit the spectral
continuum in the spectral fitting process.

In ppxf, the smoothness of the SPAD is controlled by the
regularization parameter regul. We adopted the method
introduced in McDermid et al. (2015) and Guérou et al.
(2015) to modify the regul parameter. For the SPAD
calculation of one spectrum, we first calculated a series of
fitting spectra with regul changing from 210 to 2−8 as a
geometric sequence with common ratio 1/2. Fitting spectra with
regul= 0 is also calculated as the unregularized case. Then, we
multiplied the flux level and set the χ2(regul= 0)/N statistic for
regul= 0 model to be 1, where N is the number of pixels
for the observed spectra. Finally, the regul value when
χ2(regul)−χ2(regul= 0) of the corresponding fitting is equal to
or close to N2 is chosen for the spectral fitting, as suggested in
Press et al. (1992). Considering that there are 96 data cubes and
each data cube typically consists of ∼3000 spectra of the SN
host galaxy, searching for the optimal regul parameter for each
individual spectrum is computationally prohibitive. Accordingly,
for each galaxy we only searched for regul using the spectrum
with the highest S/N and then applied the regul value to the
SPAD calculation of the entire data cube. Note that while the
intrinsic SPADs may be stochastic and discrete, the smoothed
SPADs from our method may not precisely be
the true SPADs of the galaxy. Smoothing can reduce the
degeneracy between age and metallicity from bin to bin and
enable the differential comparison of SPADs within each galaxy.

3. Methodology

In this study, a galaxy is spatially separated into stellar
groups based on the SPADs we had deduced. Accordingly, we
applied theoretical DTD models to calculate the SN rates of the

stellar groups. Subsequently, we used the maximum likelihood
method to derive the optimal parameters of the DTD models to
maximize the SN rates of the SN-related groups and minimize
the SN rates of the stellar groups unrelated to the SNe Ia for all
of the selected galaxies. In Section 3.1, we describe the earth
mover’s distance (EMD) and show how that can be used as a
method to calculate the difference between two SPADs. In
Section 3.2, we present our algorithm of spatially separating a
galaxy into different groups. In Section 3.3, we present the four
DTD models used in our research. In Section 3.4, we present
the likelihood function we have used for the maximize
likelihood estimation.

3.1. Earth Mover’s Distance

EMD, also known as Wasserstein distance, was developed to
evaluate the similarity among distributions and has been widely
used in image recognition (Rubner et al. 2000) and deep
learning (Arjovsky et al. 2017). By definition, EMD measures
the minimum amount of work required to change one
distribution into the other.
For P= {(x1, p1),K,(xi, pi),...,(xm, pm)} and Q= {(y1,

q1),...,(yj, qj),...,(yn, qn)} as two distributions, where (xi, yj)
are the centers of data groups (i,j) and (pi, qj) are the
probabilities of the groups, we can define a flow F= [fij]
between x and y that represents moving the probability in xi to
yj. The flow is a feasible flow between P and Q when

( )    f i m j n0, 1 , 1 1ij
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For a feasible flow F(x, y), the work done by the flow in
matching P and Q distribution is

( ) ( )åå=
= =
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m

j

n

ij ij
1 1

where dij is the distance between xi and yj. When a flow is an
optimal flow F*(P, Q)= [f*ij](P, Q), which minimizes W(F, P,
Q), the EMD is defined as the work normalized by the optimal
flow:
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As mentioned in Section 2.2, the spectral isochrone (Salasnich
et al. 2000) used in our research is evenly sampled in ( )tlog10
space with 50 grids between 63.10Myr and 17.78 Gyr;
therefore, we use ( ) ( )-t tlog logi j10 10 for the distance dij.

Moreover, all the SPADs are normalized so that å == pi i1
50

å == q 1j j1
50 and ( ) = å å= =P Q f dEMD , i j ij ij1

50
1

50 .

3.2. k-means Clustering

In the conventional k-means clustering algorithm, the
distances are measured in Euclidean space. Given a data set
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and a target number (k) of groups, the k-means algorithm first
generates k “initial” centroids and then assigns data points into
k groups according to the nearest centroids in Euclidean metric.
The means are then updated using the centroids of the groups,
and data points are iteratively reassigned into new groups.

A combination of EMD and k-means or k-medians algorithm
has been used in the sparse signal recovery problem (Indyk &
Price 2011; Mo & Duarte 2013). In our algorithm to separate a
galaxy into different groups, an SPAD profile in a spatial pixel
serves as a data point similar to the original k-means clustering
algorithm, the mass-averaged SPAD of all data points in a
group serves as the centroid in the original k-means clustering
algorithm, and the EMD between an SPAD profile in a spatial
pixel and the mass-averaged SPAD replaces the Euclidean
distance in the original k-means algorithm. The algorithm is
shown in Algorithm 1. The objective of this algorithm is to
derive a map ( ) x y, that records the group assignment of the
stellar population at the pixel (x, y), with the inputs being the
SPAD data cube and the total number of groups K. We
introduced an extra operation; a group with only one pixel will
be eliminated, and the data will be merged into the closest
group.

Algorithm 1. k-Means Based on EMD

input : Grouping number K
input : SPAD data cube

1 initialize ( ) [ ]¬ ¼ x y Rand K, 1, 2, ,0 ;
2 initialize ¬i 1;
3 while ( ) ( )$ ¹- x y x y, ,i i1 do
4 if [ ]$ Î ¼n K1, 2, ,0 , ( ) ( )= " ¹ x y n x y, & ,i0 0 0

( ) ( ) ¹x y x y n, , , i0 0 0 then
5 ¬ -K K 1;
6 end
7 ¬MSPADn stellar-mass-averaged SPAD for the

nth group, [ ]Î ¼n K1, 2, , ;
8 for SPAD(x,y) in SPAD data cube do
9 ( ( ) )¬D EMD SPAD x y MSPAD, ,n n ;
10 ( ) ¬+ x y arg min D, i n n1 ;
11 end
12 ¬ +i i 1
13 end

We chose NGC 1516, the host galaxy of SN 2018ezx, to test
the algorithm. The S/N of the MUSE observations of
NGC 1516 is high, and there are 8682 spatial pixels satisfying
our spectral selection limit (Section 2). It is an interacting
galaxy with both galaxies inside the FOV of MUSE, which can
potentially have two or more groups of SPADs in the data
cube. We chose the total number of groups to be 2, 5, and 10 to
test the algorithm, and we changed the initial ( ) x y, 0 multiple
times to test the robustness of the results. Typical computa-
tional costs are 24, 98, and 351 s for 2, 5, and 10 groups,
respectively, using one core of Intel Xeon E5-2670 v2. Also,
with different random seeds for the initial ( ) x y, 0 maps, the
final results are not affected. This test verifies that the algorithm
can produce stable results for different initial ( ) x y, 0.

In Figure 2, we show the final group maps ( ) x y, of
NGC 1516 with group numbers K= 2, 5, 10. The mean ages of
the stellar populations are color encoded, with the ages
increasing from purple to yellow. The center of the upper
right galaxy and the southern part of the lower left galaxy are
classified as the oldest stellar group in all cases. The outskirts
of the galaxies show a mixture of young and old SPAD groups

and could affect the group of the SN if the SN coordinate is in
such a region. We surmise that this phenomenon could due to
the uncertainties in SPAD calculation introduced by the low
S/N of the data. In Equation (14) of Section 3.4, we will
discuss the effect of observational seeing on the SN probability
calculation to mitigate this problem.
We present the mass-averaged SPADs of each group in

Figure 3; the ages are encoded in the colors of the curves. We
notice that for the two-group and the five-group separations, the
averages of the SN-related groups peak at 109.1 yr; for the
separation with 10 groups, most of the pixels close to the SN
coordinate belong to group 3, the SFH of which also shows a
peak at 109.1 yr.
These exercises suggest that the ages of the SN progenitors

can be estimated by comparing the SPADs of the host galaxies
at the locations of the SNe with those away from them.
However, not all the SN host galaxies show such a distinct
signal, and maximum likelihood estimation is necessary to
estimate the DTD.

3.3. Delay Time Distribution Models

DTD describes the SN rate of a burst of star formation
activity after a given time t. In our research, we used four
candidate DTD models. The first model (denoted as MDA) is a
simple power-law DTD model with two parameters to be
constrained. The SN Ia rate evolution with time in MDA is in
the following form:

⎧
⎨⎩

( ) ( )t
t

=
<

´ ´ 
t

t
A B t t

DTD
0,

,
7s

where τ is the delay time, s is the slope index, A is the
normalization factor for the absolute SN rate that can be
calibrated by the SN rates derived from SN surveys, and B is
the normalization factor as defined below in Equation (11). In
our calculations, τ and s are constrained using the maximum
likelihood estimate. In the maximum likelihood estimate, we
choose a plain prior for (tlog ) and s: ( ) [ ]t Îlog 7.3, 10 ;10
sä [−6, 0].
The second model (denoted as MDB) is a broken power-law

DTD model with four parameters. The SN Ia rate is

⎧
⎨
⎩

( ) ( )
t

t=
<

´ ´
´ ´ -

 


t
t

A B t t t
A B t t t t

DTD
0,

,
,

8s
c

c
s s s

c

1

1 2 2

where the symbols A, B, and τ have the same meanings as in
Equation (7); tc is the critical time; and s1 and s2 are the slopes
for the two power-law components. Parameters τ, s1, s2, and
tc will be constrained in our calculation. In the maximum
likelihood estimates, the priors are ( ) [ ]t Îlog 7.3, 10 ;10
s1ä [−6, 0]; s2ä [−6, 0]; ( ) [ ]Îtlog 9.25, 10.1c10 .
The third model (denoted as MDC) is the sum of two power-

law relations with the same slope. There are four parameters to
be constrained. The SN Ia rate is given by

⎧
⎨
⎩

( ) ( )
t

t=
<

´ ´
´ ´ ´

 


t
t

A B t t t
A B r t t t

DTD
0,

,
,

9s
c

s
c

where the symbols A, B, s, and τ have the same meanings
as in Equation (7); tc is the critical time; and r is the ratio
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between the two components. In the maximum likelihood
method, the priors are ( ) [ ]t Îlog 7.3, 10 ;10 s ä [−6, 0];

( ) [ ]Îtlog 9.25, 10.1 ;c10 ( ) [ ]Î -rlog 3, 310 .
The fourth model (denoted as MDD) is also a combination of

two power-law relations, but the slopes are different, so the
model contains five parameters to be constrained. The SN Ia
rate is

⎧
⎨
⎩

( ) ( )
t

t=
<

´ ´
´ ´ ´ -

 


t
t

A B t t t
A B r t t t t

DTD
0,

,
,

10s
c

c
s s s

c

1

1 2 2

where s1 and s2 are the slopes for the two components.
In the maximum likelihood estimate, the priors are ( )t Îlog10
[ ]7.3, 9 ; s1ä [−6, 0]; s2ä [−6, 0]; ( ) [ ]Îtlog 9.25, 10.1 ;c10

( )Îrlog10 [ ]-3, 3 .
The normalization factors B in all four DTD models satisfy

( ) ( )ò =t dt ADTD , 11
T

0

cosmic

where Tcosmic is the cosmic age. We set Tcosmic= 17.78 Gyr to
conform with the stellar population grid used in ppxf. B is
effectively a normalization factor such that the coefficient A is
directly determined from observed cosmic SN rates.

3.4. Maximum Likelihood Estimate

The probability of finding an SN at position (x0, y0) at the
present time can be obtained by integrating the contributions
from all stars in the host galaxy and through the cosmic times
of their evolution,

( ) ( )

( ) ( ) ( ) ( )
ò ò òµ ¢ W - -

* ¢ * ¢

P x y dt dxdy x x y y

R x y SPAD t x y DTD t

, ,

, , , , 12

t

SN 0 0
0

0 0

max

where ¢t is the look-back time, tmax is the age of the universe, R
(x, y) is a scaling factor that accounts for the total number of
stars formed at position (x,y) and is given by the ratio of the
observed and the model ppxf spectrum at the position (x, y),
Ω(x− x0, y− y0) is a window function accounting for the
probability that the SN at (x0, y0) can be related to the stellar
groups located at any given (x, y), and ( )¢t x ySPAD , , is the
SPAD at position (x,y).
The conditional probability that an SN occurs at position (x0,

y0) knowing that there is an SN from the host galaxy is

( )
( )

( ) ( ) ( )

( )
ò ò ò

=
¢ ¢ * ¢

P x y

P x y

dt dxdyR x y t x y t

,

,

, SPAD , , DTD .

13

R

t

0 0

SN 0 0

0

max

Figure 2. Top left: image of NGC 1516, with the coordinate of SN 2018ezx marked by the red star. Top right: the grouping map ( ) x y, of two total groups for
NGC 1516. Bottom left: the grouping map ( ) x y, of five total groups for NGC 1516. Bottom right: the grouping map ( ) x y, of 10 total groups for NGC 1516. The
mean ages of the SPAD groups are encoded in different colors and are labeled in the color bars.
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We adopt a simple Gaussian window function of the form
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where σD is the Gaussian width whose minimum value is given
by the seeing of the observations.

The joint likelihood function for all of the selected SNe
(NSN) is

( )=
=

L P , 15k
l

N

R l
1

,

SN

where PR,l is the conditional probability of the lth SN in the
sample calculated using Equations (12).

In our research, we replace the SPAD at each pixel
( ( )¢t x ySPAD , , ) with the SPAD of the relating group, denoted
as ( )¢ t x ySPAD , , , where  is the number of the K subgroups
as defined in Section (3). Therefore, Equations (12) and 13 are
rewritten as
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In Section 4.2, we discuss the difference between the DTD
estimate results from Equations (12)–(13) and from
Equations (16)–(17) and the impact of Equation (14)ʼs σD
parameter on the results.
We use the Markov Chain Monte Carlo based code emcee

(Foreman-Mackey et al. 2013) for maximum likelihood
estimation of the DTD parameters. In Appendix A, we use
the MUSE data to simulate artificial SN explosion positions
from a given DTD model and then test whether our EMD-
based algorithm can reproduce the injected DTD model. We
found that our algorithm can reproduce the DTD model with
reasonable accuracy, and we did not observe any bias in the
results.

4. Results

The MUSE data set is larger than the MaNGA data set and
has much higher quality; we focus our research on the MUSE
data but also provide the results from MaNGA for compar-
isons. In Section 4.1, we show the results of the DTD estimates
after applying different numbers of groups K to the MUSE
data. In Section 4.2, we discuss the effect of separating galaxies
into groups. In Section 4.3, we discuss the DTD estimates
using the MaNGA data. In Section 4.4, we apply four different
DTD models to the MUSE data and compare the model
performances using the Bayesian information criterion (BIC).

4.1. The Total Number of SPAD Groups

In this section, we investigate the effect of the number of
SPAD groups on the constraints of the DTD parameters. In
Equation (14), σD is set to be the seeing profiles of the
observations. In Figure 4, we present the posterior probability
distribution of the MDA model with K= 2, 7, 15. We notice
that the maximum likelihoods for all the posterior probability
distributions are around ( )t =log 8.210 and s=−1.2, and the
1σ intervals for both τ and s parameters are more tightly
constrained with larger values of K.
In Figure 5, we show the 1σ limits, the median absolute

deviations, and the median values of ( )tlog10 and s estimated
with different grouping numbers. The results using K from 2 to
15 are consistent with each other, but with larger fluctuations
when K is smaller than 4. It is encouraging that the fluctuations
decrease with increasing K values and converge at the higher
end. For K= 15, the MDA model parameter median and 1σ
limit estimates are t = -

+120 Myr83
142 , = - -

+s 1.41 0.33
0.32.

Figure 3. From top to bottom, the mass-weighted SPADs of the host galaxy of
SN 2018ezx grouped into 2, 5, and 10 total groups, respectively. The groups
associated with the SN location are 1, 1, and 7 from top to bottom. The colors
of the lines are matched with the colors of the groups in Figure 2.
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4.2. The Effect of Grouping

In Equation (14), we use a two-dimensional Gaussian
function to emulate the contribution of SN probability from
nearby stellar populations, and the choice of σD refers to the
seeing profile. In this section, we consider the scenario that the
SN progenitor is dynamically segregate from its parent

population. Thus, σD is written as

( )s s s= + , 18D seeing
2

drift
2

where σseeing is the Gaussian width of the seeing of the
observation and σdrift is the projected angular distance between
the SN and the progenitor’s parent stellar population. We
consider σdrift to be 0, 1, or 5 kpc, and σseeing comes from the
seeing profile. Moreover, we consider an extreme case that
σD= 0, which means that Ω becomes a delta function, to
further probe the impact of σD on the DTD parameter estimate
results.
In Figure 6, we show the effect of σD on the DTD parameter

estimate results; the SPAD without grouping (Equations (12)
and (13)) or the grouped SPAD with K= 15 (Equations (16)
and (17)) is used. We notice that when the SPADs are grouped,
the estimates for ( )tlog10 vary between 8.01 and 8.42, and the
estimates for s vary between −1.37 and −1.52. In contrast,
when the SPADs are not grouped, the estimates for ( )tlog10
vary between 7.74 and 8.54, and the estimates for s vary
between −1.03 and −2.11. It is not clear whether the change of
σD can be a good test for the DTD parameter estimates, but we
notice that the DTD parameters show smaller variations when
the grouping method is adopted.

4.3. Results from MaNGA

The posterior probability distribution for the DTD model
MDA is shown in Figure 7. The number of groups is set to 15,
and σD is the observational seeing. We found the delay time to
be -

+832 Myr734
240 and the slope = - -

+s 1.77 1.75
0.80, which are in

broad agreement with the values deduced from the MUSE data.
We hypothesize that the large uncertainties of the DTD
parameters derived from MaNGA data are due to the available
SN sample being smaller than that in the MUSE data set, and
the available spectra in one MaNGA data cube is less than
MUSE’s. In Appendix B, we use the SPAD calculated by
Pipe3D to estimate the DTD parameters and found the delay
time to be -

+407 341
1252 and the slope to be = - -

+s 1.55 1.01
0.61, which

is consistent with the values using ppxf to calculate SPAD.
Note that, according to the DTD estimate simulations in
Castrillo et al. (2021) and the large error shown in our τ and s
estimates, the result based on 30 MaNGA data cubes may not
be reliable, and more observations are necessary.

Figure 4. From left to right, the posterior probability distributions of the MDA model parameters using k = 2, 7, and 15 groups for the MUSE data.

Figure 5. Top panel: the 1σ upper limit, median, and 1σ lower limit of ( )tlog10
with different number of groups K. Bottom panel: the 1σ upper limit, median,
and 1σ lower limit of s with different number of groups K. The error bar is the
median absolute deviation.
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4.4. Model Comparison

Based on Section 4.1, we use Equation (15) as the likelihood
function and set K= 15 for the parameter constraints of DTD
models MDB, MDC, and MDD. The results are shown in
Figures 8, 9, and 10, respectively.

Comparing to the results using the MDA model, the
parameters in the MDB, MDC, and MDD models are less
constrained but still show a maximum likelihood at around

( )t =log 8.210 . In the posterior probability distribution of
MDB, the two slope parameters s1 and s2 are close to the slope
s in MDA. Moreover, the critical time tc for MDB is close to
the age of universe, which questions the necessity of the second

Figure 6. The top panel shows the posterior probability distributions of the MDA model with the SPAD grouping method (Equations (16)–((17) are used)); the
number of group is K = 15. The bottom panel shows that without SPAD grouping (Equations (12)–(13) are used). From left to right, the σD parameters are (1) σD = 0,

(2) σD = σseeing, (3) ( )s s= + 1 kpcD seeing
2 2 , (4) ( )s s= + 5 kpcD seeing

2 2 .

Figure 7. The posterior probability distribution of the MDA model parameters
using K = 15 groups for the MaNGA data.

Figure 8. The posterior probability distribution of MDB model parameters
using K = 15 for the MUSE data.
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component employed in MDB. The parameters in MDC and
MDD (s in MDC and s1 and s2 in MDD, r in MDC and MDD,
tc in MDC and MDD) are all in agreement to within the
statistical errors. In all these models, tc was found to be around
109.5 yr. Both MDC and MDD give a value for the ratio r larger
than 1, which suggests that a population of SNe Ia descend
from old stellar populations at around 109.6 yr albeit with large
errors.
To investigate further whether the data can set constraints on

progenitor systems with drastically different DTDs, we adopted
the BIC (Wit et al. 2012) to assess the goodness of the fits using
the different DTD models. The BIC is defined as

( ) ( ) ( )= -k ln n ln LBIC 2 , 19dof

where kdof is the degree of freedom, n is the size of data sample,
and L is the maximized likelihood function. In our research,
n= 100 as we have 100 SN Ia coordinates, L is calculated from
Equation (15), and kdof are 2, 4, 4, and 5 for MDA, MDB,
MDC, and MDD, respectively. In Table 1, we show the DTD
model parameters that maximize the likelihood and their BIC
values. The DTD profiles for these models are shown in
Figure 11.
The one-component model MDA shows the smallest BIC

value, while all the two-component models show larger BIC
values. According to Kass & Raftery (1995), the model with a
smaller BIC value is preferred when the BIC value difference
of the two models is larger than 2. From this test, we conclude
that, given the current data set, we cannot establish the
existence of multiple components in the progenitors of SNe Ia.

Figure 9. The posterior probability distribution of MDC model parameters
using K = 15 for the MUSE data.

Figure 10. The posterior probability distribution of MDD model parameters
using K = 15 for the MUSE data.

Table 1
The BIC Values for the Four DTD Models

Model Name τ s or s1 s2 r tc kdof BIC

MDA 108.275 −1.648 None None None 2 495.49
MDB 108.320 −2.363 −1.167 None 109.263 4 503.68
MDC 108.385 −2.566 None 101.069 109.633 4 502.77
MDD 108.409 −3.026 −2.061 101.268 109.577 5 507.14

Figure 11. The SN Ia rate for the DTD models MDA (ultramarine), MDB
(red), MDC (black), and MDD (green). All the DTDs are normalized so that
their time integral is equal to 1. The parameters are shown in Table 1.

9

The Astrophysical Journal, 922:15 (18pp), 2021 November 20 Chen, Hu, & Wang



5. Conclusion

We selected 96 host galaxies of SNe Ia, most of which are
observed by the VLT+MUSE under the AMUSING program,6

to calculate the spatially resolved host galaxy SPADs and to
constrain the DTD of the SN progenitors. A statistical method
to spatially separate the SFH of a galaxy into multiple groups is
developed and applied to constrain the model parameters of the
DTD models of SNe Ia. We found that the simple power-law
model MDA provides the best fit to the data, with the delay
time t = -

+120 Myr83
142 and the SN rate decay slope

= - -
+s 1.41 0.33

0.32. We have not found significant evidence for
the multicomponent model of SN progenitors based on our
analyses.

The slope parameter has been measured in previous studies.
For example, Maoz & Graur (2017) used a revised CSFH and
derived SN Ia rates at different redshift bins up to z∼ 2.25 and
constrained the slope to = - -

+s 1.1 0.1
0.1. Freundlich & Maoz

(2021) used the HST to search for SNe Ia in 12 massive galaxy
clusters at z∼ 1.13–1.75 and measured the slope to be
= - -

+s 1.09 0.12
0.15. Maoz et al. (2012) derived s=−1.07± 0.07

from the SDSS image survey data. However, Heringer et al.
(2019) used a color–luminosity method and an SFH recon-
struction method on the same data set and constrained the slope
to be = - -

+s 1.34 0.17
0.19. In contrast, the delay time τ was

measured with large uncertainties in previous studies. Maoz &
Badenes (2010) analyzed SN Ia remnants in the Magellanic
Clouds and found a “prompt” SN Ia population, which
explodes within 330Myr of star formation. Our result on s is
consistent with previous researches, although with larger
uncertainties, while our constraints on τ show a higher
confidence level than previous studies. Note also that, during
the process of this paper, Castrillo et al. (2021) showed DTD
constraints based on mean stellar age maps from Pipe3D
(Sánchez et al. 2016) using the same MUSE data set. The
results are t = -

+50 Myr35
100 and s=−1.1± 0.3 (with 50%

confidence interval), which is consistent with our result to
within the errors.

When compared to the theoretical models of SNe Ia, our
DTD results prefer a DD scenario with CO WD+CO WD as
the progenitor system (e.g., Chen et al. 2012; Liu et al. 2018),
which shows a delay time τ∼ 108–108.5 yr and s∼−1.
However, Ruiter et al. (2009) and Mennekens et al. (2010)
predict that a small (∼5%, in Ruiter et al. 2009) fraction of
“prompt” SN Ia population is formed in less than 100Myr after
star formation for the DD scenario. Due to the limitation of the
stellar population calculation code, which can only calculate
the stellar population above 63Myr, we did not attempt to
introduce extra structure in our DTD models to accommodate
this prompt population. Moreover, as discussed in several
previous studies (e.g., Mennekens et al. 2010; Liu et al. 2018),
the observed SN Ia rates are most likely explained by a
combination of two or more channels in the context of the BPS.
Although our result indicates a high confidence of τ∼ 120
Myr, we cannot firmly establish or eliminate the dominant
channels of SN Ia progenitors.

We failed to derive any strong constraints using the data
from MaNGA. However, with the future data releases of the
SDSS-MaNGA survey program, a detailed analysis on the
DTD may be worthwhile using the increased sample size.

In summary, we have developed a new method to estimate
the DTD of SNe Ia that allows us to set constraints on the DTD
model parameters. With data that we can expect from future
observation programs with LSST (Ivezić et al. 2019), DESI
(DESI Collaboration et al. 2016), and HETDEX (Hill et al.
2008), we may expect this method to be applicable to other
subtypes of SNe Ia and core-collapse SNe to set strong
constraints on the SN progenitors.
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Appendix A
Algorithm Performance on the Simulated Data

To test the performance of our algorithm on the DTD
parameter estimate, we designed a test based on the MUSE data
used in this paper. First, the MDA model with a given τ and a
given s value is used as the fiducial model. Using the fiducial
model and the SPAD calculated from ppxf, we calculated the
fiducial SN rate at every pixel of each galaxy. A coordinate is
sampled from each galaxy as the simulated SN explosion site,
and the fiducial SN rate is used as the probability of the random
sampling.
We used log10(τ)= [7.8, 8.0, 8.2, 8.4, 8.6, 8.8, 9.0, 9.2, 9.4]

and s= [−1.1, −1.2, −1.3, −1.4, −1.5, −1.6, −1.7, −1.8] to
create a grid of fiducial DTD models to test our algorithm. The
grouping number K is set to be 15, and σD is taken from the
seeing profile. In Figure 12, we show the posterior distribution
for τ and s under different fiducial values. In Figure 13, we
show the estimated τ and s values and errors as a function of
the fiducial values.
Castrillo et al. (2021) used K-S statistics to recover the DTD

parameters from a similar MUSE data set, which consists of
116 SNe Ia in 102 host galaxies. Moreover, they tested their
method from a simulated SN data set based on MaNGA
Pipe3D SPAD data (Sánchez et al. 2018). We notice that their
pipeline’s output is biased to τ∼ 100 Myr and s∼−1.1 for
most of the fiducial τ ä [50, 1000]Myr, s ä [−0.6, −1.8], and
the bias is observed in different sample sizes from N= 20 to
N= 500. From our simulation results, the recovered ( )tlog10
value is larger than the fiducial ( )tlog10 by ∼0.2 dex when the6 https://amusing-muse.github.io/
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Figure 12. The DTD parameter estimates from the simulated data. Red plus signs are the fiducial values used to generate the simulated data. Blue shaded regions are
the posterior distribution from the algorithm. The x-axis is ( )tlog10 , and the y-axis is s.
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fiducial value is smaller than 8.6, and the recovered s value is
smaller than the fiducial s value by 0.3 for some of the fiducial
s bins. To conclude, our DTD estimation method based on k-
means and the EMD grouping algorithm did not show
significant bias in the simulation results. In contrast, the
simulations in Castrillo et al. (2021) show larger bias effects;
we surmise that this phenomenon can be attributed to two
reasons: (1) the simulation in Castrillo et al. (2021) is based on
MaNGA, and the data S/N is lower than that from MUSE; and
(2) the DTD estimation method in Castrillo et al. (2021) is
based on the K-S test, which is a nonparametric test with
different assumptions from our maximum likelihood estimate
method.

Appendix B
Results from Pipe3D Data

To further test our algorithm’s performance and the
reliability of ppxf SPAD, we use the SPAD data calculated
by Pipe3D for the MaNGA data, to estimate the DTD
parameters. The Pipe3D pipeline is introduced in Sánchez
et al. (2016) and Sánchez et al. (2016). The implementation of

Pipe3D onto the MaNGA data is discussed in Sánchez et al.
(2018).
In Figure 14, we compared the mass-averaged stellar ages

derived from ppxf and those from Pipe3D for six example
galaxies; the 21× 21 spatial pixels at the center of each data cube
are included. We notice that the correlation between the mass-
averaged stellar ages is weak; this could be due to the low S/N in
most of the pixels in the MaNGA data cube, which introduces
extra uncertainties in calculating the SPADs, and most of the
selected galaxies show a similar age between 109 and 1010 yr.
Sánchez et al. (2016) compared the luminosity-averaged stellar
ages from Pipe3D, Starlight, Steckmap, and absorption-
line indices. They found that the age bias is between −0.06 and
0.06 dex and the age deviation is between 0.15 and 0.22 dex. In
our comparison results, most of the MaNGA galaxies show
similar age deviation and bias; thus, we conclude that the SPADs
from ppxf are consistent with that from Pipe3D.
In Figure 15, we used the SPAD from Pipe3D to estimate

the DTD parameters in the MDA model. The grouping number
is K= 15, and σD is taken from the seeing profile. We notice
that the result is in agreement with that using the SPAD from
ppxf, which is shown in Figure 7.

Figure 13. Left panel: the fiducial τ values used in simulation and the recovered τ values from the maximum likelihood estimate with the galaxies grouped into
K = 15. Right panel: the fiducial s values and the recovered s values. The data used in the figures are from Figure 12. The blue transparent error bars are the 1σ limits.
The violet stars are the means of the recovered parameter values. The red line shows the ideal case of the fiducial value being equal to the recovered value, as a
reference.
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Figure 14. The mass-averaged stellar ages of six MaNGA galaxies, calculated from ppxf and Pipe3D. The x-axis is the logarithmic mean age from ppxf, and the y-
axis is the logarithmic mean age from Pipe3D. The inset of each figure is the histogram of the difference between the two mass-averaged stellar ages. The SN names
in the galaxies are labeled in the titles. The mean age deviation is shown in the title.
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Appendix C
List of All Supernovae and Host Galaxies

Table 2 lists all the SNe and data information for the host
galaxies observed by MUSE. Table 3 lists all the SNe and data
information for the host galaxies observed by MaNGA.

Figure 15. The posterior probability distribution of the MDA model parameters using K = 15 groups for the MaNGA data and Pipe3D SPAD.
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Table 2
SN Host Galaxies Observed by MUSE

SN Name SN R.A. SN Decl. IFU R.A. IFU Decl. SN Time IFU Time Redshift ARCFILE

SN2019fkq 359.1010 −29.0230 359.1016 −29.0238 2019-05-14 2019-09-07 0.0450 ADP.2019-10-07T17:13:49.969
SN2018ezx 62.0326 −8.8313 62.0337 −8.8332 2018-08-12 2016-11-08 0.0329 ADP.2017-01-18T15:19:35.833
SN2018djd 33.6398 −0.7664 33.6410 −0.7658 2018-07-12 2017-10-28 0.0264 ADP.2017-11-20T17:51:27.822
SN2018zz 210.9113 −33.9780 210.9126 −33.9786 2018-03-03 2015-08-08 0.0138 ADP.2016-07-12T07:52:45.162
SN2017hgz 327.0808 −34.9516 327.0838 −34.9529 2017-10-10 2015-10-14 0.0162 ADP.2016-08-08T10:10:02.297
SN2017dps 204.1639 −33.9658 204.1668 −33.9670 2017-05-01 2016-04-11 0.0125 ADP.2017-12-18T14:37:20.881
SN2017cze 167.4450 −13.3807 167.4451 −13.3807 2017-04-11 2016-01-05 0.0149 ADP.2016-07-26T12:48:39.617
SN2016gfk 18.5323 −32.6519 18.5270 −32.6572 2016-09-11 2016-05-20 0.0120 ADP.2016-10-05T16:09:44.597
SN2016aew 212.8595 1.2867 212.8604 1.2860 2016-02-12 2014-06-24 0.0250 ADP.2016-08-02T10:23:14.733
SN2014dm 62.0326 −8.8313 62.0297 −8.8270 2014-09-27 2016-11-08 0.0337 ADP.2017-01-18T15:19:35.833
SN2014at 326.5628 −46.5188 326.5618 −46.5225 2014-04-20 2015-05-30 0.0325 ADP.2016-06-17T18:47:32.957
SN2014ao 128.6391 −2.5461 128.6388 −2.5434 2014-04-17 2019-03-20 0.0139 ADP.2019-04-10T17:46:49.603
SN2013hk 45.5462 15.9276 45.5452 15.9274 2013-12-04 2015-12-27 0.0170 ADP.2016-09-23T00:56:03.893
SN2013fz 65.9446 −51.5998 65.9435 −51.5962 2013-11-02 2015-08-03 0.0206 ADP.2016-07-12T07:27:20.835
SN2013fy 324.3678 −47.0357 324.3630 −47.0319 2013-10-25 2015-06-21 0.0314 ADP.2016-06-25T11:26:36.800
SN2013ef 28.8417 6.6120 28.8363 6.6098 2013-07-04 2015-12-28 0.0172 ADP.2017-06-06T17:14:14.070
SN2013dl 19.6732 −7.4494 19.6740 −7.4444 2013-06-17 2016-01-06 0.0024 ADP.2016-07-26T15:11:37.761
SN2013da 206.4018 −7.3259 206.4009 −7.3257 2013-06-05 2017-04-01 0.0246 ADP.2017-04-11T12:41:12.920
SN2013az 84.9729 −40.5124 84.9672 −40.5078 2013-03-24 2015-09-05 0.0373 ADP.2016-07-25T12:08:30.833
SN2013M 209.9903 −37.8637 209.9862 −37.8637 2013-01-20 2017-04-18 0.0350 ADP.2017-12-12T14:16:55.449
SN2012he 75.2111 −38.6544 75.2086 −38.6532 2012-11-22 2017-08-03 0.0576 ADP.2017-09-22T09:52:40.531
SN2012hd 18.5323 −32.6519 18.5311 −32.6521 2012-11-20 2016-05-20 0.0120 ADP.2016-10-05T16:09:44.597
SN2012gm 349.4017 14.0011 349.4043 14.0025 2012-11-19 2015-06-26 0.0148 ADP.2016-06-25T12:05:07.015
SN2012fw 315.4961 −48.2737 315.4958 −48.2739 2012-08-19 2016-04-13 0.0186 ADP.2016-09-21T13:42:23.565
SN2012et 355.6618 27.0922 355.6618 27.0921 2012-09-12 2016-06-09 0.0249 ADP.2016-09-29T20:36:01.636
SN2011jh 191.8143 −10.0621 191.8101 −10.0631 2011-12-22 2019-02-20 0.0078 ADP.2019-03-07T06:28:16.831
SN2011iy 197.2428 −15.5177 197.2433 −15.5178 2011-12-09 2016-05-12 0.0041 ADP.2016-09-29T05:21:54.104
SN2011iv 54.7145 −35.5881 54.7140 −35.5922 2011-12-02 2017-11-22 0.0065 ADP.2017-12-13T01:47:07.213
SN2010jo 14.3960 −1.3909 14.3982 −1.3926 2010-11-06 2017-07-20 0.0452 ADP.2017-09-11T14:28:03.988
SN2010ev 156.3703 −39.8282 156.3708 −39.8309 2010-06-27 2016-04-13 0.0092 ADP.2016-09-21T13:42:23.507
SN2010dl 323.7516 −0.5111 323.7540 −0.5133 2010-05-24 2017-08-04 0.0302 ADP.2017-09-22T10:41:54.300
SN2010aa 27.1749 −48.6480 27.1800 −48.6502 2010-02-09 2018-05-26 0.0207 ADP.2018-06-02T02:30:18.655
SN2009jr 306.6078 2.9102 306.6085 2.9092 2009-10-08 2017-07-30 0.0166 ADP.2017-09-20T13:08:51.796
SN2009iw 88.8664 −76.9201 88.8568 −76.9211 2009-09-15 2015-09-24 0.0160 ADP.2016-07-28T11:30:23.655
SN2009fk 341.1015 −0.1615 341.0996 −0.1617 2009-05-29 2017-08-04 0.0162 ADP.2017-09-22T10:41:54.308
SN2009ds 177.2708 −9.7303 177.2671 −9.7291 2009-04-28 2016-06-30 0.0192 ADP.2017-10-16T10:25:08.202
SN2009aa 170.9220 −22.2711 170.9262 −22.2707 2009-02-03 2015-04-07 0.0281 ADP.2016-06-09T16:16:30.539
SN2009Y 220.5998 −17.2527 220.5994 −17.2468 2009-02-01 2016-04-03 0.0095 ADP.2016-09-07T10:11:23.531
SN2009I 41.2915 −4.7106 41.2933 −4.7137 2009-01-13 2015-07-21 0.0262 ADP.2016-07-11T15:14:15.422
SN2008ia 132.6464 −61.2779 132.6465 −61.2779 2008-12-07 2016-04-19 0.0217 ADP.2016-09-22T21:00:32.919
SN2008fu 45.6195 −24.4555 45.6188 −24.4560 2008-09-25 2018-07-24 0.0524 ADP.2018-09-11T21:30:28.561
SN2008fl 294.1897 −37.5535 294.1868 −37.5513 2008-09-07 2018-05-27 0.0199 ADP.2018-06-02T03:35:25.145
SN2008ec 345.8151 8.8741 345.8190 8.8722 2008-07-14 2014-08-19 0.0159 ADP.2016-07-14T14:17:17.765
SN2008dh 8.7973 23.2545 8.7972 23.2542 2008-06-08 2016-07-18 0.0368 ADP.2016-10-14T08:21:03.084
SN2008cf 211.8831 −26.5516 211.8857 −26.5518 2008-05-04 2015-05-23 0.0471 ADP.2016-06-17T17:51:10.735
SN2008cc 315.8740 −67.1810 315.8734 −67.1836 2008-04-24 2018-05-27 0.0106 ADP.2018-06-02T03:35:25.161
SN2008bq 100.2658 −38.0356 100.2605 −38.0386 2008-04-02 2018-09-26 0.0346 ADP.2018-10-25T08:36:03.111
SN2008bd 154.5978 −13.1038 154.5972 −13.1031 2008-03-13 2019-03-26 0.0306 ADP.2019-04-17T22:54:16.942
SN2008ar 186.1585 10.8393 186.1580 10.8382 2008-02-27 2015-05-30 0.0262 ADP.2016-06-17T18:47:32.895
SN2007st 27.1749 −48.6480 27.1770 −48.6494 2007-12-22 2018-05-26 0.0214 ADP.2018-06-02T02:30:18.655
SN2007so 41.9318 13.2556 41.9297 13.2541 2007-12-13 2015-07-24 0.0298 ADP.2016-07-11T15:28:11.087
SN2007hx 31.6127 −0.8992 31.6128 −0.8995 2007-09-03 2015-07-23 0.0798 ADP.2016-07-11T15:19:32.583
SN2007cq 333.6697 5.0787 333.6685 5.0803 2007-06-21 2017-08-04 0.0263 ADP.2017-09-22T10:41:54.323
SN2007cg 201.3917 −24.6520 201.3899 −24.6522 2007-05-11 2015-05-28 0.0331 ADP.2016-06-17T18:13:44.235
SN2007bc 169.8142 20.8138 169.8107 20.8090 2007-04-04 2015-05-29 0.0208 ADP.2016-06-17T18:25:05.260
SN2007al 149.8290 −19.4729 149.8270 −19.4738 2007-03-10 2015-05-31 0.0122 ADP.2017-03-28T14:09:36.373
SN2007ai 243.2228 −21.6266 243.2239 −21.6302 2007-03-06 2018-05-26 0.0330 ADP.2018-06-02T02:30:18.663
SN2007S 150.1291 4.4072 150.1302 4.4073 2007-01-29 2015-06-26 0.0139 ADP.2016-06-25T12:12:49.422
SN2006os 43.7525 16.0126 43.7542 16.0097 2006-11-21 2015-07-21 0.0328 ADP.2016-07-11T15:14:15.414
SN2006ob 27.9522 0.2636 27.9505 0.2634 2006-11-13 2015-07-13 0.0592 ADP.2016-07-11T14:04:30.018
SN2006lu 138.8208 −25.5999 138.8235 −25.6001 2006-10-30 2015-04-13 0.0540 ADP.2016-06-14T09:15:58.860
SN2006hx 18.4876 0.3719 18.4888 0.3717 2006-09-28 2015-06-21 0.0454 ADP.2016-06-25T11:26:36.852
SN2006hb 75.5042 −21.1342 75.5053 −21.1320 2006-09-27 2018-08-29 0.0153 ADP.2018-10-17T14:54:22.224
SN2006et 10.6911 −23.5616 10.6909 −23.5584 2006-09-03 2015-06-27 0.0223 ADP.2016-06-25T12:12:49.414
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Table 2
(Continued)

SN Name SN R.A. SN Decl. IFU R.A. IFU Decl. SN Time IFU Time Redshift ARCFILE

SN2006ej 9.7512 −9.0149 9.7490 −9.0157 2006-08-23 2015-06-18 0.0203 ADP.2016-06-24T11:45:22.441
SN2006cm 320.0731 −1.6842 320.0728 −1.6841 2006-05-24 2016-05-19 0.0163 ADP.2016-12-02T09:39:19.087
SN2006br 202.5085 13.4164 202.5075 13.4158 2006-04-25 2015-06-04 0.0247 ADP.2016-06-24T10:20:34.507
SN2006D 193.1445 −9.7772 193.1414 −9.7752 2006-01-11 2015-05-23 0.0086 ADP.2016-06-17T17:51:10.811
SN2005na 105.4042 14.1366 105.4026 14.1332 2005-12-31 2015-04-11 0.0263 ADP.2016-06-21T00:31:05.284
SN2005lu 39.0168 −17.2638 39.0155 −17.2639 2005-12-11 2015-06-18 0.0327 ADP.2016-06-24T11:45:22.429
SN2005ku 344.9251 −0.0134 344.9275 −0.0137 2005-11-10 2015-05-30 0.0454 ADP.2016-06-17T18:47:32.872
SN2005iq 359.6342 −18.7111 359.6354 −18.7092 2005-11-05 2018-07-25 0.0346 ADP.2018-09-13T01:03:07.237
SN2005hc 29.2022 −0.2122 29.1998 −0.2137 2005-10-12 2015-08-02 0.0459 ADP.2016-07-12T07:19:14.082
SN2005bs 302.5615 −56.6390 302.5588 −56.6454 2005-04-19 2016-05-13 0.0552 ADP.2016-09-29T08:33:33.612
SN2005bg 184.3220 16.3717 184.3216 16.3716 2005-03-28 2015-05-29 0.0230 ADP.2016-06-17T18:47:32.927
SN2005be 224.8876 16.6699 224.8863 16.6699 2005-04-05 2015-05-30 0.0336 ADP.2016-06-17T18:47:32.864
SN2005al 207.5037 −30.5772 207.5014 −30.5762 2005-02-24 2018-05-10 0.0124 ADP.2018-05-18T04:03:44.301
SN2005ag 224.1793 9.3286 224.1819 9.3285 2005-02-10 2015-05-29 0.0797 ADP.2016-06-17T18:25:05.248
SN2004gc 80.4543 6.6794 80.4581 6.6760 2004-11-18 2019-02-24 0.0305 ADP.2019-03-08T05:11:20.934
SN2004ey 327.2793 0.4473 327.2825 0.4442 2004-10-14 2015-06-05 0.0158 ADP.2016-06-24T10:28:35.821
SN2004ef 340.5458 19.9971 340.5418 19.9946 2004-09-04 2015-06-05 0.0310 ADP.2016-06-24T10:28:35.837
SN2004do 283.8988 −53.7239 283.8905 −53.7230 2004-08-04 2015-10-07 0.0086 ADP.2016-08-02T05:17:36.565
SN2004cs 267.5579 14.2868 267.5599 14.2832 2004-06-23 2016-03-09 0.0141 ADP.2016-08-17T10:26:59.052
SN2003ic 10.4605 −9.3035 10.4593 −9.3053 2003-09-16 2018-08-10 0.0554 ADP.2018-09-20T04:52:51.377
SN2003gh 116.3256 −71.4095 116.3247 −71.4104 2003-06-29 2017-12-02 0.0179 ADP.2017-12-20T14:19:23.117
SN2002jg 334.8675 29.3897 334.8700 29.3846 2002-11-23 2016-05-25 0.0162 ADP.2016-10-07T07:11:23.283
SN2002fk 50.5283 −15.3994 50.5238 −15.4009 2002-09-17 2015-09-10 0.0071 ADP.2016-07-25T12:56:04.451
SN2001da 358.3843 8.1183 358.3866 8.1174 2001-07-09 2016-05-22 0.0172 ADP.2016-10-05T16:52:03.490
SN2001E 177.2708 −9.7303 177.2708 −9.7364 2001-01-05 2016-06-30 0.0192 ADP.2017-10-16T10:25:08.202
SN2001A 184.8467 5.8251 184.8459 5.8279 2001-01-01 2016-04-17 0.0073 ADP.2016-09-22T13:48:58.454
SN2000fs 47.1098 4.1109 47.1093 4.1111 2000-09-06 2018-11-03 0.0300 ADP.2018-11-12T14:39:55.596
SN2000do 287.8565 −50.6404 287.8591 −50.6401 2000-09-30 2017-06-18 0.0109 ADP.2018-08-02T18:48:39.520
SN2000A 351.9877 8.7785 351.9954 8.7839 2000-01-01 2017-09-15 0.0296 ADP.2017-10-06T15:09:34.514
SN1999ee 334.0384 −36.8439 334.0417 −36.8444 1999-10-07 2014-10-27 0.0114 ADP.2016-06-23T09:51:35.962
SN1998V 275.6593 15.6966 275.6558 15.7023 1998-03-10 2019-05-06 0.1753 ADP.2019-07-20T08:00:23.865
SN1997dt 345.0154 15.9802 345.0122 15.9808 1997-11-22 2018-06-23 0.0073 ADP.2018-08-09T21:08:02.554
SN1994D 188.5094 7.7007 188.5102 7.7013 1994-03-07 2016-05-26 0.0027 ADP.2016-10-06T16:52:10.915
SN1991S 157.3645 22.0083 157.3658 22.0129 1991-04-10 2017-01-20 0.0544 ADP.2017-03-20T10:48:00.633
SN1989B 170.0563 13.0061 170.0579 13.0053 1989-01-30 2018-05-14 0.0023 ADP.2018-05-29T18:17:29.607
SN1968I 197.2036 −6.7776 197.2054 −6.7778 1968-04-23 2016-06-01 0.0056 ADP.2017-06-14T09:12:09.346

Note. SN Name: the names of SNe Ia. SN R.A.: right ascension of SN coordinates. SN Decl.: decl. of SN coordinates. IFU R.A.: right ascension of IFU data cube
center. IFU DEC: decl. of IFU data cube center. SN Time: SN discovery date. IFU Time: MUSE observation date. Redshift: SN host galaxy redshift. ARCFILE: the
file name of the IFU data cube product stored in the ESO archive; notice that the time stamp is not the IFU observation time.
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SN Host Galaxies Observed by MaNGA

SN Name SN R.A. SN Decl. IFU R.A. IFU Decl. SN Time IFU Time Redshift IFU ID

SN2018ccl 247.0464 39.8201 247.0482 39.8219 2018-05-28 2015-06-23 0.0268 1-569169
SN2018btb 173.6162 46.3625 173.6187 46.3606 2018-05-14 2016-04-25 0.0338 1-279410
SN2018bbz 261.9680 60.0961 261.9689 60.0973 2018-04-26 2015-09-04 0.0278 1-25680
SN2018ats 153.2345 46.4181 153.2319 46.4177 2018-04-10 2015-03-25 0.0382 1-167380
SN2018aej 236.0959 39.5581 236.0961 39.5590 2018-03-08 2015-06-11 0.0479 1-322806
SN2018ddh 184.6835 44.7820 184.6847 44.7812 2018-07-01 2016-02-16 0.0383 1-258653
SN2017ckx 117.0459 28.2303 117.0457 28.2303 2017-03-28 2015-11-12 0.0272 1-556501
SN2012hj 166.8300 46.3795 166.8320 46.3833 2012-12-04 2015-02-14 0.0246 1-277539
SN2012bm 196.4402 46.4647 196.4440 46.4619 2012-03-27 2015-05-08 0.0248 1-284329
SN2007sw 183.4037 46.4934 183.4036 46.4939 2007-12-29 2015-03-15 0.0257 1-575847
SN2007R 116.6564 44.7895 116.6571 44.7905 2007-01-26 2014-10-29 0.0308 1-339041
SN2006iq 324.8906 10.4849 324.8916 10.4835 2006-09-23 2014-08-31 0.0789 1-114465
SN2006cq 201.1046 30.9563 201.1059 30.9593 2006-05-29 2017-06-15 0.0485 1-575232
SN2003an 201.9731 28.5081 201.9719 28.5082 2003-02-09 2017-03-02 0.0370 1-395622
SN2002aw 249.3711 40.8806 249.3720 40.8799 2002-02-15 2016-03-16 0.0264 1-135668
SN2002G 196.9803 34.0851 196.9784 34.0871 2002-01-18 2017-05-18 0.0336 1-415476
SN2004H 173.4990 49.0629 173.4968 49.0620 2004-01-17 2017-04-16 0.0316 1-576106
PTF11bui 198.2350 47.4535 198.2363 47.4566 2011-04-26 2015-04-15 0.0281 1-285004
PTF11mty 323.5217 10.4235 323.5212 10.4219 2011-09-23 2014-08-31 0.0774 1-114129
PTF12izc 355.8932 0.5687 355.8949 0.5678 2012-09-21 2015-09-16 0.0826 1-29726
PTF13f 247.3591 38.4198 247.3615 38.4194 2013-02-01 2015-06-23 0.0305 1-211264
Gaia15abd 205.2830 23.2830 205.2827 23.2821 2015-02-07 2017-03-01 0.0264 1-568584
SN2017frb 317.9036 11.4974 317.9032 11.4969 2017-07-25 2014-07-04 0.0294 1-113540
SN2019pig 225.3894 49.1095 225.3890 49.1124 2019-09-03 2016-04-28 0.0260 1-246549
SN2019omi 57.2491 0.9269 57.2484 0.9260 2019-08-24 2015-11-06 0.0358 1-229060
SN2017fel 322.3057 −0.2947 322.3060 −0.2948 2017-07-05 2015-09-13 0.0305 1-289846
SN2010dl 323.7540 −0.5133 323.7516 −0.5114 2010-05-24 2016-06-15 0.0302 1-180080
SN2007O 224.0216 45.4047 224.0182 45.4053 2007-01-21 2017-03-04 0.0362 1-576436
SN2006np 46.6645 0.0640 46.6649 0.0620 2006-11-10 2016-11-01 0.1074 1-37863
SN2002ci 243.9081 31.3215 243.9074 31.3213 2002-04-19 2016-05-14 0.0222 1-272321
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