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Abstract—Spiking Neural Networks (SNN) are quickly gaining traction
as a viable alternative to Deep Neural Networks (DNN). In comparison to
DNNs, SNNs are more computationally powerful and provide superior en-
ergy efficiency. SNNs, while exciting at first appearance, contain security-
sensitive assets (e.g., neuron threshold voltage) and vulnerabilities (e.g.,
sensitivity of classification accuracy to neuron threshold voltage change)
that adversaries can exploit. We investigate global fault injection attacks
by employing external power supplies and laser-induced local power
glitches to corrupt crucial training parameters such as spike amplitude
and neuron’s membrane threshold potential on SNNs developed using
common analog neurons. We also evaluate the impact of power-based
attacks on individual SNN layers for 0% (i.e., no attack) to 100% (i.e.,
whole layer under attack). We investigate the impact of the attacks
on digit classification tasks and find that in the worst-case scenario,
classification accuracy is reduced by 85.65%. We also propose defenses
e.g., a robust current driver design that is immune to power-oriented
attacks, improved circuit sizing of neuron components to reduce/recover
the adversarial accuracy degradation at the cost of negligible area and
25% power overhead. We also present a dummy neuron-based voltage
fault injection detection system with ∼1% power and area overhead.

I. INTRODUCTION

Artificial Neural Networks (ANNs or NNs), which are inspired by
human brain functionality, are composed of layers of neurons inter-
linked by synapses and can be used to approximate any computable
function. The use of neural networks in safety-critical domains,
such as autonomous driving [1], healthcare [2], Internet of Things
[3] and security [4], necessitates an examination of their security
vulnerabilities and risks. In real-world applications, attacking a neural
network can result in undesirable or dangerous inferences (e.g.,
reduced accuracy or confidence in road sign identification during
autonomous driving). These attacks can be launched during the
training, manufacturing, or final application stages.

Spiking Neural Networks (SNNs) [5] are the third generation of
neural networks. SNNs are emerging as an alternative to Deep Neural
Networks (DNNs) since they are biologically plausible, computa-
tionally powerful [6], and energy-efficient [7][8][9]. However, very
limited research exists on the the security of SNNs against adversarial
attacks. Broadly, the attacks could be classified as: White Box attacks
where an attacker has complete knowledge of the SNN architecture,
and Black Box attacks where the attacker does not know the SNN
architecture, network parameters or training data.

Multiple prior works [10][11][12] investigate adversarial attacks
on DNN e.g., undetectable modifications to input data, causing
a classifier to mispredict with an increased probability and pro-
pose countermeasures. The vulnerabilities/attacks of SNNs under a
white-box scenario e.g., sensitivity to adversarial examples and a
robust training mechanism for defense is proposed [13]. A white-
box fault injection attack is proposed [14] for SNNs by employing
adversarial input noise. In [15], a black-box approach is presented to
generate adversarial input instances to induce misprediction in SNNs.
However, the impact of voltage/power-based fault injection attacks
are not studied in these white- and black-box SNN attack scenarios.

In prior works, Voltage fault injection (VFI) techniques have been
proven to be powerful side channel attacks for disrupting a system’s
execution flow. In [16], a fault injection approach is described that
underpowers cryptographic devices and introduces bit errors. In [17],

Fig. 1: Threat model for power-based attacks on SNN.

novel VFI techniques are proposed to inject glitches in popular
microcontrollers from manufacturers such as, STMicroelectronics
and Texas Instruments. In [18], timing constraint violations were
introduced in FPGAs by using a negative power supply glitch attack.
Laser-based injection has also been proposed for inducing local
voltage and clock glitching attacks. However, such studies are not
performed for SNN.

Proposed Threat Model: There is limited amount of research
on SNN attacks (except adversarial input-based attacks). Similar to
classical systems, the adversary can manipulate the supply voltage
or inject voltage glitches in the SNN systems. This is likely for, (i)
an external adversary who has physical possession of the device or
the power port, (ii) an insider adversary with access to power port
or laser gun to inject the fault. In this paper, we study a total of five
attacks under both black box and white box scenarios.

Black Box Attack: In this scenario (Attack-5 in Section IV-D),
the adversary affects the power supply of the entire system to (i)
corrupt spiking amplitude of SNN neuron input and, (ii) disrupt SNN
neuron’s membrane functionality. To launch this attack, the adversary
does not need to know the SNN architecture but needs the control of
the external power supply (VDD). Fig. 1 shows a high-level schematic
of the proposed threat model against an SNN, where an input image
to be classified is converted to spike trains and fed to the neuron
layers. The objective is to degrade accuracy of the classified digit.
Note that the neuron layers, neurons, and interconnections shown in
Fig. 1 just illustrate the proposed threat model. The SNN architecture
actually implemented in this paper is explained in Section IV-A.

White Box Attacks: In this scenario, we consider following cases
(details in Sections IV-B and IV-C) where the adversary is able to
individually attack SNN layers and peripherals through localized laser
based power fault injection, (i) Attack 1 where only peripherals e.g.,
input current drivers are attacked, (ii) Attack 2 and 3 where individual
SNN layers attacked partially to fully i.e., 0%-100%, and (iii) Attack
4 where all SNN layers affected (no peripherals).

Contributions: In summary, we, (a) present detailed analysis of
two neuron models namely, Axon Hillock neuron and voltage I&F
amplifier neuron under global, local and fine-grain supply voltage
variation; (b) propose five power-based attack models against SNN
designs under black box and white box settings; (c) analyze impact
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Fig. 2: (a) Axon Hillock circuit; (b) Voltage amplifier I&F circuit; (c) Expected membrane voltage and output voltage of Axon Hillock
neuron; (d) Expected membrane voltage voltage of I&F neuron.

of proposed attacks for digit classification tasks; and, (d) propose
defenses and a novel detection technique.

In the remaining of the paper, Section II presents background on
SNNs and neuron design, Section III proposes the attack models,
Sections IV and V present the analysis of the attack and counter-
measures, respectively and finally, Section VI draws the conclusion.

II. BACKGROUND

In this section, we present the overview of SNN and neuron designs
[19] that have been used in this paper.

A. Overview of Spiking Neural Network

SNNs are composed of layers of spiking neurons that are intercon-
nected together by synaptic weights (Fig. 1). The neurons between
adjacent layers exchange information in the form of spike trains.
The timing of the spikes and the strength of the synaptic weights
between neurons are critical parameters in SNN operation. Each
neuron includes a membrane, whose potential increases when the
neuron receives an input spike. The neuron fires an output spike when
this membrane potential crosses a pre-determined threshold. Various
neuron models such as, I&F, Hodgkin-Huxley, and spike response
exist with different membrane and spike-generation operations. In this
work, we have implemented two flavors of I&F neuron to showcase
the power-based attacks.

B. Neuron Design and Implementation

In this work, we implement, simulate, and analyze all neuron
models on HSPICE using PTM 65nm technology.

1) Axon Hillock Spiking Neuron Design: The Axon Hillock circuit
[20] (Fig. 2a) consists of an amplifier block implemented using two
inverters in series (shown in dotted gray box). The input current (Iin)
is integrated at the neuron membrane capacitance (Cmem), and the
analog membrane voltage (Vmem) rises linearly until it crosses the
amplifier’s threshold. Once it reaches this point, the output (Vout)
switches from ‘0’ to VDD . This Vout is fed back into a reset transistor
(MN1) and activates a positive feedback through the capacitor divider
(Cfb). Another transistor (MN2), controlled by Vpw, determines the
reset current. If reset current > Iin, Cmem is discharged until it falls
to the amplifier’s threshold. This causes Vout to switch from VDD

to ‘0’. The output remains ‘0’ until the entire cycle repeats. Fig. 2c
depicts the expected results of Vmem and Vout.

In this paper, the value of membrane capacitance (Cmem) and
the feedback capacitance (Cfb) of 1pF are used. For experimental
purposes, the input current spikes with an amplitude of 200nA, a
spike width of 25ns, and a spike rate of 40MHz are generated through
the current source (Iin). The VDD of the design is set to 1V. Fig. 3
shows the simulation results of the input current spikes (Iin) and the
corresponding membrane and the output voltage (Vout).

Fig. 3: Simulation result of Axon Hillock spike generation showing
input current (Iin) (top plot), the membrane voltage (Vmem) and the
output voltage (Vout) (bottom plot).

Fig. 4: Simulation result of voltage amplifier I&F neuron spike
generation showing input current (Iin) (top plot and zoomed-in), and
the membrane voltage (Vmem) (bottom plot).

2) Voltage Amplifier I&F Neuron Design: The voltage amplifier
I&F circuit [21] (Fig. 2b) employs a 5-transistor amplifier that offers
better control over the threshold voltage of the neuron. This design
allows the designer to determine an explicit threshold and an explicit
refractory period. The threshold voltage (Vthr) of the amplifier
employed is set to 0.5V and the VDD is set to 1V. The neuron
membrane is modeled using a 10pF capacitance (Cmem) and the
membrane leakage is controlled by transistor MN4 with a gate (Vlk)
voltage of 0.2V. The excitatory input current spikes (Iin) integrates
charge over Cmem and the node voltage at Vmem rises linearly. Once
Vmem crosses Vthr , the comparator output switches from ‘0’ to VDD .
This output is fed into 2 inverters in series, where the output of the
first inverter is used to pull up Vmem to VDD and the output of the
second inverter is used to charge a second capacitor (Ck) of 20pF.
The node voltage of Ck is fed back to a reset transistor MN1. When
this node voltage is high enough, MN1 is activated and Vmem is
pulled down to ‘0’ and remains LOW until Ck discharges below
the activation voltage of MN1. For experimental purposes, the input
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(a) (b) (c)

Fig. 5: (a) Current driver circuit of the SNN neurons with design details; (b) Change in current driver output spike (Iin) amplitude with
change in VDD; and (C) Effect of input spike amplitude on SNN output time-to-spike for Axon Hillock neuron and voltage amplifier I&F
neuron.

current spikes with an amplitude of 200nA, a spike width of 25ns,
and a time interval of 25ns between consecutive spikes are generated
through the current source (Iin). Fig. 2d depicts the expected results
of Vmem. Fig. 4 shows the simulation results of input current spikes
(Iin) and corresponding membrane voltage (Vout).

C. SNN Current Driver Design
A current driver provides the input current spikes to the neuron

e.g., image input converted to current spike train. We have designed
a current source based on a current mirror (Fig. 5a) where VGS of
MN2 and MN3 are equal causing both transistors to pass the same
current. The sizes of the MN2 and MN3 transistors and the resistor
(R1) are chosen to provide a current of amplitude 200 nA. Since
the input current of the neuron is modeled as spikes, we have added
the MN1 transistor to act as a switch that is controlled by incoming
voltage spikes (Vctr) from other neurons.

III. NEURON ATTACK MODELS

In this section, we describe the power-based attacks and examine
the impact of VDD manipulation on crucial circuit components and
parameters of the previously explained SNNs.

A. Attack Assumptions
We have investigated the power attacks under the following cases:
1) Case 1: Separate Power Domains:: The current drivers and

neurons (of the entire SNN) are assumed to be operated on separate
VDD domains. This is possible if the neurons, synapses and peripher-
als have distinct supply voltages e.g., if the neuron and peripherals are
CMOS and the synapses are based on memristers. This case enables
us to study the effect of VDD modulation on individual components.

2) Case 2: Single Power Domain:: The entire SNN system,
including current drivers and neurons share the same VDD . This is a
likely scenario if the whole circuit is CMOS based.

3) Case 3: Local Power Glitching:: The adversary has fine grain
control of the VDD inside a voltage domain for both separate and
single power domain cases. For example, adversary can use a focused
laser beam to cause localized voltage glitching.

B. SNN Input Spike Corruption
The input current spikes of each neuron are fed using a current

driver as described in Section II-C. The driver is designed with VDD

= 1V and outputs SNN input current spikes of 200nA amplitude and
25ns spike width. An adversary can attack a normal driver operation
by modulating the VDD .

Fig. 5b shows the effect of modulating the VDD from 0.8V to
1.2V (corresponding to a -/+ 20% change). The corresponding output
spike amplitude ranges from 136nA for 0.8VDD (-32% change) to
264nA for 1.2VDD (+32% change). We subjected our neuron designs
under these input spike amplitude modulations while keeping the
input spiking rate constant at 40MHz. Fig. 5c shows the effect on

output spike rate for the Axon Hillock neuron where the time-to-spike
(Vout) becomes faster by 24.7% under VDD=1.2V and Iin = 264nA
and becomes slower by 53.7% under VDD=0.8V and Iin = 136nA.
Similarly, Fig. 5c also shows the effect on output spike rate for the
voltage amplifier I&F neuron where the time-to-spike (Vout) becomes
faster by 6.7% under VDD=1.2V and Iin = 264nA and becomes
slower by 14.5% under VDD=0.8V and Iin = 136nA.

C. SNN Threshold Manipulation
The adversary can also corrupt normal SNN operation using the

externally supplied VDD which can modulate the SNN’s membrane
threshold voltage. In the ideal condition, the VDD is 1V and the
threshold voltage of both the Axon Hillock neuron and the I&F
neuron are designed to be 0.5V. Fig. 6a shows that the membrane
threshold voltage changes with VDD . In case of the Axon Hillock
neuron the change in threshold ranges from -17.91% for VDD =
0.8V to +16.76% for VDD = 1.2V . When VDD is modified, the
switching threshold of the inverters in the Axon Hillock neuron is
also proportionally affected. A lower (higher) VDD lowers (increases)
the switching threshold of the inverters and leads to a faster (slower)
output spike. Similarly, the change in threshold ranges from -18.01%
to +17.14% when VDD is swept from 0.8V to 1.2V for the voltage
amplifier I&F neuron. Note that the change in threshold for the I&F
neuron is due to Vthr signal (Fig. 6a) which is derived using a
simple resistor-based voltage division of VDD . Therefore, Vthr scales
linearly with VDD .

The change in membrane threshold modulates the output spike rate
of the affected SNN neurons. Fig. 6b and Fig. 6c show the change in
time-to-spike under VDD manipulation while the input spikes (Iin)
to the neuron are held at a constant amplitude of 200nA and a rate
of 40MHz. The time-to-spike for Axon Hillock ranges from 17.91%
faster to 16.76% slower. Similarly, the time-to-spike for I&F neuron
ranges from 17.05% faster to 23.53% slower.

IV. ANALYSIS OF POWER ATTACKS ON SNN
This section describes the effect of power-oriented attacks on

the image classification accuracy under the attack assumptions from
Section III-A.

A. Experimental Setup
We have implemented the Diehl&Cook SNN [22] using the Bind-

sNET [23] network library with PyTorch Tensor to test the effect of
power-based attacks. The SNN is implemented with 3 neuron layers
(Fig. 7a), namely Input layer, Excitatory Layer (EL), and Inhibitory
Layer (IL). We employ this SNN for digit classification of the MNIST
dataset which consists of digit images of pixel dimension 28×28.
Each input image is converted to Poisson-spike trains and fed to the
Excitatory neurons in an all-to-all connection, where each input spike
is fed to each Excitatory neurons. The Excitatory neurons are 1-to-
1 connected with the Inhibitory neurons (Fig. 7a). Each neuron in
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(a) (b) (c)

Fig. 6: (a) Change in SNN membrane threshold with change in VDD; Effect of VDD change on SNN output time-to-spike for (b) Axon
Hillock neuron; (c) Voltage amplifier I&F neuron.

(a) (b)

Fig. 7: (a) Implemented 3 layer SNN [22]; (b) Effect of current driver corruption (Attack 1) on MNIST classification accuracy.

the Inhibitory layer is in turn connected to all the neurons in the
Excitatory layer, except the one it received a connection from. The
architecture performs supervised learning. For our experiments, the
EL and IL have 100 neurons each and all experiments are conducted
on 1000 Poisson-encoded training images with fixed learning rates
of 0.0004 and 0.0002 for pre-synaptic and post-synaptic events,
respectively. The batch size is set to 32 and training samples are
iterated only once as configured in [23]. Additional details on the
neuron layers, learning method, and SNN parameters can be found
in [23]. The baseline classification accuracy for attack-free SNN is
75.92% with 1000 training images.

B. Input Spike Corruption
In Section III-B, it is shown that the adversary can manipulate the

input spike amplitudes for the SNN neurons. This in turn changes the
membrane voltage by a different rate for the same number of input
spikes. This manipulation of the rate of change of membrane voltage
changes the time-to-spike for the neuron (as shown in Fig. 5c).

Attack 1: In order to translate this effect to our BindsNET
SNN implementation, we have modified the rate of change of the
neuron’s membrane voltage using variable theta which specifies the
voltage change in the neuron membrane for each input spike. Fig.
7b shows the corresponding change in MNIST digit classification
accuracy. Under the worst case theta change of -20%, classification
accuracy decreases by 1.5%. It is seen that the classification accuracy
is not adversely affected by increasing/decreasing theta since the
accuracy remains within +/-2% of the baseline accuracy. Note that
this is a white box attack since the adversary requires the location
of the current drivers within the SNN (possible by invasive reverse
engineering of a chip) to induce the localized fault.

C. SNN Threshold Manipulation
In Section III-C, it is shown that the adversary can manipulate the

membrane threshold voltages of the SNN neurons. This manipulation
of the membrane threshold voltage (Vthr) affects classification accu-
racy. We have manipulated the threshold values of neurons in each
layer from -20% to +20% to introduce power attacks in the BindsNET
SNN. This range has been selected in line with the threshold variation
observed in Fig. 6a. The change in threshold has different effects on

neurons from the EL versus IL. Therefore, we analyze individual
effect of each neuron layer’s on classification accuracy. Finally, we
analyze the response for all the layers on the classification accuracy.
Note, Attacks 2 to 5 are white box attacks since the adversary requires
the location of the individual SNN layers (can be obtained from the
layout) to induce the localized faults.

Attack 2: In this case, we subject only the EL to membrane
threshold variation to study its individual effect on classification
accuracy. This attack is possible when, (i) each neuron layer has their
own voltage domain and the adversary injects a laser-induced fault,
(ii) neuron layers share voltage domain but the local fault injection
in one layer does not propagate to other layers due to the capacitance
of the power rail. Various fraction of neurons in this layer, ranging
from 0% to 100% are subject to -20% to +20% threshold change This
analysis is performed to model the situation when adversary has fine
grain control of the VDD inside a voltage domain e.g., using local
voltage glitching attack that affects only a section of neurons. This is
possible in systems which have thousands of neurons per layer that
may be physically isolated due to interleaving synapse arrays. Fig.
8a shows the corresponding change in the classification accuracy. It
is noted that classification accuracy is equal to or better than the
baseline accuracy for threshold changes as long as ≤90% of the
layer is affected. For the worst case threshold change of -20%, the
classification accuracy degrades by 7.32% when 100% of the EL is
affected. In summary, attacking the EL alone has a relatively low
impact on the output accuracy. This is intuitive since the effect of
any corruption in the EL can be recovered in the following IL.

Attack 3: In this attack, we subject only the IL to membrane
threshold change. Various fraction of neurons in this layer ranging
from 0% to 100%, are subject to -20% to +20% threshold change.
Fig. 8b shows the corresponding change in classification accuracy.
It is noted that classification accuracy degrades below the baseline
accuracy for 3 out of 4 cases of threshold change and for all fractions
of IL affected. A worst case degradation of 84.52% below the baseline
accuracy (observed at -20% threshold change at 100% of IL affected)
is noted. In summary, attacking the IL has a more significant effect
on output accuracy compared to attacking the EL alone. This is
understandable since IL is the final layer before the output. Therefore,
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(a) (b) (c)

Fig. 8: Classification accuracy trend with SNN membrane threshold for (a) Excitatory Layer only (Attack 2); (b) Inhibitory Layer only
(Attack 3); and (c) Both Excitatory Layer and Inhibitory Layer (Attack 4);

(a) (b) (c)

Fig. 9: (a) Change in classification accuracy with VDD change for entire system (Neurons and peripherals); (b) Robust SNN current driver
(constant output spike amplitude); and (c) Axon Hillock Neuron: Effect of MP1’s W/L on threshold voltage change during VDD manipulation.

(a) (b) (c)

Fig. 10: (a) Comparator designed and implemented in the Axon Hillock Neuron to mitigate threshold variation.; (b) VDD change detection
using dummy neuron; and (c) Effect of VDD on dummy neuron output.

any loss in learning cannot be recovered.
Attack 4: In this attack, we subject 100% of both the EL and the IL

to the same membrane threshold change. Fig. 8c shows the variation
in accuracy with the threshold for both the layers of neurons. It is
seen that the classification accuracy falls sharply as the membrane
threshold of both the layers decreases below the baseline. A worst
case accuracy degradation of -85.65% below baseline accuracy is
observed when the membrane threshold is reduced by 20%.

D. Input Spike Corruption and Threshold Manipulation

Attack 5: This is a black box attack where the adversary does
not need to know the internal architecture of the current driver or
the SNN neurons. Here we assume that the power supply is shared
among all the components of the SNN system, including the current
drivers and all of the neuron layers. Manipulating the VDD changes
both membrane voltage per spike (theta) and the threshold voltages
(Vthr) of the SNN neurons. Fig. 9a shows that the worst case accuracy
degradation is -84.93%.

E. Summary of Power Attack Analysis

From our analysis, we conclude following:
1) SNN Assets:: These include: (a) spike rate and amplitude, (b)

neuron membrane threshold, (c) membrane voltage change per spike.
Other assets (not studied in this paper) are strength of synaptic
weights between neurons and the SNN learning rate.

2) SNN Vulnerabilities:: VDD manipulation, (a) generation of
spikes of lower/higher amplitude than nominal value by the neu-
ron’s input current driver, (b) lowers/increases neuron’s membrane
threshold. Both these vulnerabilities cause affected neurons to spike
faster/slower.

3) Attack Models:: Manipulation of global and local fine-grained
power supply corrupts critical training parameters.

Attacks not covered in this paper are, (a) generation of adversarial
input samples to cause mis-classification, (b) fault injection into
synaptic weights, (c) noise injection in input samples to attack specific
neurons.

V. DEFENSES

A. Robust Current Driver Design

We propose a current driver that produces neuron input spikes of
constant amplitude (Fig. 9b). Here the negative input terminal of the
op-amp is forced to a reference voltage that leads the positive terminal
to be virtually connected to the reference voltage (VRef ). The current
through MP1 transistor is VRef/R1 and the negative feedback of
the amplifier forces the gate voltage of MP1 to satisfy the current
equation of the transistor. Since VGS and Vth of MP1 and MP2

transistors are same, MP2 passes the same current as MP1. Note,
we have used long channel transistors to reduce the effect of channel
length modulation. The power overhead incurred for the proposed
robust current driver compared to the unsecured version is 3%. Note
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that the area overhead of robust driver is negligible compared to
the area of unsecured driver since the neuron capacitors occupy the
majority of the area.

B. Resiliency to Threshold Voltage Variation
1) Voltage Amplifier I&F Neuron: In order to prevent Vthr from

being corrupted due to VDD change, it can be generated using a
bandgap voltage reference that produces a constant voltage irre-
spective of power and temperature variations. A bandgap circuit is
proposed in [24] that generates a constant Vref signal with a output
variation of +/-0.56% for supply voltages ranging from 0.85V to 1V
at room temperature. A similar design can be used for our proposed
I&F neuron that require a constant external Vthr signal. Since the
Vthr variation (+/-0.56%) under VDD manipulation is negligible,
the classification accuracy degradation reduces to ∼0%. For our
experimental 200-neuron implementation, the area overhead incurred
by the bandgap circuit is 65%. But this can be significantly reduced
if the banggap circuit is shared with other components of the chip
and if the SNNs are implemented with 10s of thousands of neurons
as required by various applications.

2) Axon Hillock Neuron: We propose following approaches,
Neuron transistor sizing: In case of the Axon Hillock neuron
(Fig. 2a), the membrane threshold is determined by the VDD and the
design of the first inverter (transistors MP1 and MN3). Simulations
indicate that classification accuracy is affected mostly by lowering
the membrane threshold as shown in Fig. 8c. We increased the
sizing of the PMOS transistor MP1 to limit the threshold change
due to VDD . Fig. 9c shows that increasing the W/L ratio mitigates
the reduction in threshold changes under lower VDD . At 0.8V, the
threshold change observed for W/L ratio of 32:1 is -5.23% compared
to -18.01 % for the baseline sizing. The corresponding degradation
in classification accuracy at VDD = 0.8V is only 3.49% which
is a significant improvement compared to the 85.65% degradation
observed previously. At VDD = 1.2V , the threshold change increases
by 3.2% for W/L ratio of 32:1 and the corresponding accuracy
degradation only increases by 1.4%. For the upsized neuron, the
power overhead observed is 25% while the area overhead is negligible
since majority of neuron area is occupied by the two 1pF capacitors
that remain unchanged in the new design.

Comparator implementation: We replace the first inverter in the
Axon Hillock neuron with a comparator that employs Vthr generated
by a bandgap circuit [24] as the reference voltage to eliminate the
effect of VDD variation on inverter switching threshold. The rest
of the design remains the same. Fig. 10a shows the implemented
comparator which ensures that the threshold voltage is not determined
by the sizing of the inverter transistors or the VDD . Instead, it depends
on the input biasing of the proposed design. The IN+ and IN- bias is
set to 600mV and VB is set to 400mV. The power overhead incurred
is 11% and the area overhead is negligible since the 1pF capacitors
occupy majority of the neuron area.
dummy output spikes differs by ≥ 10% as compared to the baseline.
C. Detection of VDD Change

In addition to robust neuron design, we also propose a technique
to voltage glitching attack directed at an individual neuron layer.
This is done by introducing a dummy neuron within each neuron
layer (shown in Fig. 10b). In our design, the input of the dummy
neuron is connected to a current driver that constantly drives spiking
inputs of 200nA amplitude and spike width of 100ns. The spikes
repeat every 200ns and does not depend on the spiking of the neurons
from the previous layer. Under ideal conditions, the number of output
spikes for a fixed sampling period for each dummy neuron should be
identical. Fig. 10c shows the effect of of VDD change on the dummy
neuron’s output for both the I&F and AH neurons over a sampling
period of 100ms. It is seen that for both neurons, the number of

Note that this method is only effective against localized VDD change.
For the SNN implemented in Section IV, the area and power overhead
for the proposed dummy neuron detection mechanism is ∼ 1% each.

VI. CONCLUSIONS

We propose one black box and four white box attacks against
commonly implemented SNN neuron circuits by manipulating its
external power supply or inducing localized power glitches. We
have demonstrated power-oriented corruption of critical SNN training
parameters. We introduced the attacks for SNN-based digit classi-
fication tasks as test cases and observed significant degradation in
classification accuracy. Finally, we proposed defenses against the
proposed power-based attacks.
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