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Spiking Neural Networks (SNN) are fast emerging as an alternative option to Deep Neural
Networks (DNN). They are computationally more powerful and provide higher energy-
efficiency than DNNs. While exciting at first glance, SNNs contain security-sensitive assets
(e.g., neuron threshold voltage) and vulnerabilities (e.g., sensitivity of classification
accuracy to neuron threshold voltage change) that can be exploited by the
adversaries. We explore global fault injection attacks using external power supply and
laser-induced local power glitches on SNN designed using common analog neurons to
corrupt critical training parameters such as spike amplitude and neuron’s membrane
threshold potential. We also analyze the impact of power-based attacks on the SNN for
digit classification task and observe a worst-case classification accuracy degradation of
−85.65%. We explore the impact of various design parameters of SNN (e.g., learning rate,
spike trace decay constant, and number of neurons) and identify design choices for robust
implementation of SNN. We recover classification accuracy degradation by 30–47% for a
subset of power-based attacks by modifying SNN training parameters such as learning
rate, trace decay constant, and neurons per layer. We also propose hardware-level
defenses, e.g., a robust current driver design that is immune to power-oriented
attacks, improved circuit sizing of neuron components to reduce/recover the
adversarial accuracy degradation at the cost of negligible area, and 25% power
overhead. We also propose a dummy neuron-based detection of voltage fault injection
at ∼1% power and area overhead each.
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1 INTRODUCTION

Artificial Neural Networks (ANNs or NNs) that are inspired by the functionality of human brains
consist of layers of neurons that are interconnected through synapses and can be used to approximate
any computable function. The advent of neural networks in safety-critical domains such as
autonomous driving (Kaiser et al., 2016), healthcare (Azghadi et al., 2020), Internet of Things
(Whatmough et al., 2018), and security (Cao et al., 2015) warrants the need to investigate their
security vulnerabilities and threats. An attack on a neural network can lead to undesirable or unsafe
decisions in real-world applications (e.g., reduced accuracy or confidence in road sign identification
during autonomous driving). These attacks can be initiated at either the production, training, or final
application phases.
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Spiking Neural Networks (SNNs) (Maass, 1997) are the third
generation of neural networks. SNNs are emerging as an
alternative to Deep Neural Networks (DNNs) since they are
biologically plausible, computationally powerful (Heiberg et al.,
2018), and energy-efficient (Merolla et al., 2014; Davies et al.,
2018; Tavanaei et al., 2019). However, very limited research exists
on the security of SNNs against adversarial attacks. Broadly, the
attacks could be classified as (1) white box attacks where an
attacker has complete knowledge of the SNN architecture, and (2)
black box attacks where the attacker does not know the SNN
architecture, network parameters, or training data.

Multiple prior works such as (Goodfellow et al., 2014; Kurakin
et al., 2016), and (Madry et al., 2017) investigate adversarial
attacks on DNN, e.g., non-detectable changes to input data
causing a classifier to mispredict with a higher probability and
suggest countermeasures. The vulnerabilities/attacks of SNNs
under a white box scenario, e.g., sensitivity to adversarial
examples and a robust training mechanism for defense is
proposed (Bagheri et al., 2018). A white box fault injection
attack is proposed (Venceslai et al., 2020) in SNNs through
adversarial input noise. A black box attack to generate
adversarial input examples for SNNs to cause misprediction is
proposed in (Marchisio et al., 2020). However, these white and
black box attacks on SNN do not study the effects of voltage/
power-based fault injection attacks.

Prior works have shown that voltage fault injection (VFI)
techniques can be used as an effective side channel attack to
disrupt the execution flow of a system. In (Barenghi et al., 2012), a
fault injection technique is proposed for cryptographic devices
that underpowers the device to introduce bit errors. In (Bozzato
et al., 2019), novel VFI techniques are proposed to inject glitches
in popular microcontrollers from manufacturers such as
STMicroelectronics and Texas Instruments. In (Zussa et al.,
2013), negative power supply glitch attack has been introduced
on FPGA to cause timing constraint violations. Local voltage and
clock glitching attacks have also been proposed using laser
exposure. However, such studies are not performed for SNN.

Proposed Threat Model
There is a limited amount of research on SNN attacks (except
adversarial input-based attacks). Similar to classical systems, the
adversary can manipulate the supply voltage or inject voltage
glitches in the SNN systems. This is likely for (1) an external
adversary who has physical possession of the device or the power
port, (2) an insider adversary with access to a power port or laser
gun to inject the fault. In this paper, we study seven attacks under
black box and white box scenarios.

Black Box Attack
In this scenario (Attack 7 in Section 4.4), the adversary
affects the power supply of the entire system to (1)
corrupt spiking amplitude of SNN neuron input and (2)
disrupt SNN neuron’s membrane functionality. The
adversary does not need to know the SNN architecture but
needs to control the external power supply (VDD) to launch
this attack. Figure 1 shows a high-level schematic of the
proposed threat model against an SNN, where an input image
to be classified is converted to spike trains and fed to the
neuron layers. The objective is to degrade accuracy of the
classified digit. Note that the neuron layers, neurons, and
their interconnections shown in Figure 1 just illustrate the
proposed threat model. The SNN architecture actually
implemented in this paper is explained in Section 4.1.

White Box Attacks
In this scenario, we consider the following cases (details in
Section 4.2) where the adversary is able to individually attack
SNN layers and peripherals through localized laser-based power
fault injection 1) Attack 1 where only peripherals, e.g., input
current drivers are attacked, 2) Attack 2, 3, and 4 where individual
SNN layers attacked partially to fully, i.e., 0–100%, 3) Attack 5
where all SNN layers affected (no peripherals), and 4) Attack 6
where the timing of the attacks on individual layers varies from 0
to 100% of training/inference phase.

Contributions: In summary, we.

•Present detailed analysis of two neuron models, namely,
Axon Hillock neuron and voltage I&F amplifier neuron
under global, local and fine-grain supply voltage variation
•Propose seven power-based attack models against SNN
designs under black box and white box settings
•Analyze the impact of proposed attacks for digit
classification tasks
•Analyze the sensitivity of various design parameters of SNN
learning algorithm (STDP) to fault injection attack
•Propose hardware defenses and a novel detection technique

In the remainder of the paper, Section 2 presents background
on SNNs and neuron design, Section 3 proposes the attack
models, Sections 4 and 5 present the analysis of the attack and
countermeasures, respectively, Section 6 presents some
discussion and, finally, Section 7 draws the conclusion.

FIGURE 1 | Threat model for power-based attacks on SNN.
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2 BACKGROUND

In this section, we present the overview of SNN and neuron
designs (Indiveri et al., 2011) that have been used in this paper.

2.1 Overview of Spiking Neural Network
SNNs consist of layers of spiking neurons that are connected to
adjacent neurons using synaptic weights (Figure 1). The neurons
between adjacent layers exchange information in the form of
spike trains. The critical parameters for SNN operation include
the timing of the spikes and the strengths of the synaptic weights
between neurons. Each neuron includes a membrane, whose
potential increases when the neuron received an input spike.
When this membrane potential reaches a pre-designed threshold,
the neuron fires an output spike. Various neuron models such as
I&F, Hodgkin-Huxley, and spike response exist with different
membrane and spike-generation operations. In this work, we
have implemented two flavors of I&F neuron to showcase the
power-based attacks.

2.2 Neuron Model
In this work, we have used Leaky Integrate and Fire (LIF) neuron
models where the temporal dynamics are represented by:

τmem
zv t( )
zt

� −v t( ) + vrest + I t( ) (1)

Here, v(t) is the membrane potential, τmem is the membrane
time constant, vrest is the resting potential and I(t) represents the
summation of inputs from all synaptic inputs to the neuron.
When the membrane voltage reaches a pre-designed vth(t), it fires
an output spike and its membrane potential resets to vreset. The
neuron’s membrane potential is fixed for a refractory period of
δref. For neural network implementation, we have used the (Diehl
et al., 2015) LIF neuron feature of adaptive thresholding scheme
where each neuron follows these temporal dynamics:

vth t( ) � θ0 + θ t( )
τtheta

zθ t( )
zt

� −θ t( ) (2)

Here, the constant θ0 > vrest, vreset and τtheta is the adaptive
threshold time constant. When a neuron receives a spike, θ(t) is
increased by a constant value of θ+ and then decays exponentially
as shown in Eq. 2.

2.3 Synaptic Learning Model
Hebbian Learning: In Hebbian learning (Hebb, 2005), correlated
activation of pre- and post-synaptic neurons leads to the
strengthening of synaptic weights between two neurons. The
basic Hebbian learning rule is expressed as:

Δw � η × y x,w( ) × x (3)

Here Δw denotes the change in synaptic weight, x refers to the
array of input spikes on the neuron’s synapses, η is the learning
rate, and w is the synaptic weight associated with the neuron.
Term y (x, w) denotes the post-synaptic activation of the neuron
which is a function of the input and the weights.

Spike Time Dependent Plasticity
Hebbian learning is often implemented as STDP (a more
quantitative form). STDP is adopted as a learning rule where
the synaptic strengths between two neurons are determined by
their relative timing of spiking. The change in synaptic weight
(Δw) is represented by:

Δw �
ηpost × exp

Δt
τt

( ) if Δt> 0

−ηpre × exp
−Δt
τt

( ) if Δt< 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(4)

Here, ηpre and ηpost represent the pre- and post-synaptic learning
rates, τt denotes the spike trace decay time constant, and Δt
represents the relative spike timing difference between connected
neurons. When Δt is close to 0, the exponential part of the
equation is set very close to 1 and decays exponentially to 0 with
spike trace decay time constant (τt).

2.4 Neuron Design and Implementation
In this work, all neuron models are implemented and analyzed on
HSPICE using PTM 65 nm technology.

2.4.1 Axon Hillock Spiking Neuron Design
The Axon Hillock circuit (Mead and Ismail, 2012)
(Figure 2A) consists of an amplifier block implemented
using two inverters in series (shown in dotted gray box).
The input current (Iin) is integrated at the neuron membrane
capacitance (Cmem), and the analog membrane voltage
(Vmem) rises linearly until it crosses the amplifier’s
threshold. Once it reaches this point, the output (Vout)
switches from “0” to VDD. This Vout is fed back into a
reset transistor (MN1) and activates a positive feedback
through the capacitor divider (Cfb). Another transistor
(MN2), controlled by Vpw, determines the reset current. If
reset current > Iin, Cmem is discharged until it falls to the
amplifier’s threshold. This causes Vout to switch from VDD to
“0”. The output remains “0” until the entire cycle
repeats. Figure 2C depicts the expected results of Vmem

and Vout.
In this paper, the value of the membrane capacitance

(Cmem) and the feedback capacitance (Cfb) of 1pF are used.
For experimental purposes, the input current spikes with an
amplitude of 200 nA, a spike width of 25 ns, and a spike rate
of 40 MHz are generated through the current source (Iin).
The VDD of the design is set to 1 V. Figure 3A shows
the simulation results of the input current spikes (Iin)
and the corresponding membrane and the output voltage
(Vout).

2.4.2 Voltage Amplifier I&F Neuron Design
The voltage amplifier I&F circuit (Van Schaik, 2001) (Figure 2B)
employs a 5-transistor amplifier that offers better control over the
threshold voltage of the neuron. This design allows the designer
to determine an explicit threshold and an explicit refractory
period. The threshold voltage (Vthr) of the amplifier employed
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is set to 0.5 V and the VDD is set to 1 V. The neuron membrane is
modeled using a 10-pF capacitance (Cmem) and the membrane
leakage is controlled by transistorMN4 with a gate (Vlk) voltage of
0.2 V. The excitatory input current spikes (Iin) integrate charge
over Cmem and the node voltage at Vmem rises linearly. Once Vmem

crosses Vthr, the comparator output switches from “0” to VDD.
This output is fed into 2 inverters in series, where the output of
the first inverter is used to pull up Vmem to VDD and the output of
the second inverter is used to charge a second capacitor (Ck) of
20 pF. The node voltage of Ck is fed back to a reset transistorMN1.
When this node voltage is high enough, MN1 is activated and
Vmem is pulled down to “0” and remains LOW until Ck discharges
below the activation voltage of MN1. For experimental purposes,
the input current spikes with an amplitude of 200 nA, a spike
width of 25 ns, and a time interval of 25 ns between consecutive
spikes is generated through the current source (Iin). Figure 2D
depicts the expected results of Vmem. Figure 3B shows the
simulation results of input current spikes (Iin) and
corresponding membrane voltage (Vout).

2.4.3 SNN Current Driver Design
A current driver provides the input current spikes to the neuron,
e.g., image input converted to current spike train. We have
designed a current source based on a current mirror
(Figure 4A) where VGS of MN2 and MN3 are equal causing
both transistors to pass the same current. The sizes of the MN2

and MN3 transistors and the resistor (R1) are chosen to provide a
current of amplitude 200 nA. Since the input current of the
neuron is modeled as spikes, we have added the MN1

transistor to act as a switch that is controlled by incoming
voltage spikes (Vctr) from other neurons.

3 NEURON ATTACK MODELS

In this section we describe the power-based attacks and
analyze the effect of VDD manipulation on various critical
circuit components and parameters of the previously
described SNNs.

FIGURE 2 | (A) Axon Hillock circuit; (B) voltage amplifier I&F circuit; (C) expected membrane voltage and output voltage of Axon Hillock neuron; (D) expected
membrane voltage of I&F neuron.

FIGURE 3 | Simulation result of (A) Axon Hillock spike generation showing input current (Iin) (top plot), the membrane voltage (Vmem), and the output voltage (Vout)
(bottom plot); and (B) voltage amplifier I&F neuron spike generation showing input current (Iin) (top plot and zoomed-in), and the membrane voltage (Vmem) (bottom plot).
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3.1 Attack Assumptions
We have investigated the power attacks under the following cases:

3.1.1 Case 1: Separate Power Domains
We assume that the current drivers and neurons (of whole SNN)
are operated on separate VDD domains. This is possible if the
supply voltage of neurons, synapses, and peripherals are distinct,
e.g., if the neuron and peripherals are CMOS and the synapses are
based on memristors. This case enables us to study the effect of
VDD modulation on individual components.

3.1.2 Case 2 Single Power Domain
The entire SNN system, including current drivers and neurons,
share the same VDD. This situation is likely if the whole circuit is
based on CMOS.

3.1.3 Case 3: Local Power Glitching
The adversary has fine grain control of the VDD inside a voltage
domain for both separate and single power domain. For example,
adversary can cause local voltage glitching using a focused
laser beam.

3.1.4 Case 4: Timed Power Glitching
The adversary controls the time duration of voltage glitching for
both separate and single power domains. For example, the
adversary modulates the VDD only for a part of the SNN
training period. This is a likely scenario for a black box attack
where the adversary may not know the internal state of the SNN.

3.2 SNN Input Spike Corruption
The input current spikes of each neuron are fed using a current
driver as described in Section 2.4.3. The driver is designed with
VDD � 1 V and outputs SNN input current spikes of 200 nA
amplitude and 25 ns spike width. An adversary can attack a
normal driver operation by modulating the VDD.

Figure 4B shows the effect of modulating the VDD from 0.8 to
1.2 V (corresponding to a −/+ 20% change). The corresponding
output spike amplitude ranges from 136 nA for 0.8VDD (−32%
change) to 264 nA for 1.2VDD (+32% change). We subjected our
neuron designs under these input spike amplitude modulations
while keeping the input spiking rate constant at 40 MHz.
Figure 4C shows the effect on output spike rate for the Axon

Hillock neuron where the time-to-spike (Vout) becomes faster by
24.7% underVDD � 1.2 V and Iin � 264 nA and becomes slower by
53.7% under VDD � 0.8 V and Iin � 136 nA. Similarly, Figure 4C
also shows the effect on output spike rate for the voltage amplifier
I&F neuron where the time-to-spike (Vout) becomes faster by
6.7% under VDD � 1.2 V and Iin � 264 nA and becomes slower by
14.5% under VDD � 0.8 V and Iin � 136 nA.

3.3 SNN Threshold Manipulation
The adversary can also corrupt normal SNN operation using the
externally supplied VDD which can modulate the SNN’s
membrane threshold voltage. In the ideal condition, the VDD

is 1 V and the threshold voltage of both the Axon Hillock neuron
and the I&F neuron are designed to be 0.5 V. Figure 5A shows
that the membrane threshold voltage changes with VDD. In the
case of the Axon Hillock neuron the change in threshold ranges
from −17.91% for VDD � 0.8V to +16.76% for VDD � 1.2V. When
VDD is modified, the switching threshold of the inverters in the
Axon Hillock neuron is also proportionally affected. A lower
(higher) VDD lowers (increases) the switching threshold of the
inverters and leads to a faster (slower) output spike. Similarly, the
change in threshold ranges from −18.01% to +17.14% when VDD

is swept from 0.8 to 1.2 V for the voltage amplifier I&F neuron.
Note that the change in threshold for the I&F neuron is due to
Vthr signal (Figure 5A) which is derived using a simple resistor-
based voltage division of VDD. Therefore, Vthr scales linearly
with VDD.

The change in membrane threshold modulates the output
spike rate of the affected SNN neurons. Figures 5B,C show the
change in time-to-spike under VDD manipulation while the input
spikes (Iin) to the neuron are held at a constant amplitude of
200 nA and a rate of 40 MHz. The time-to-spike for the Axon
Hillock ranges from 17.91% faster to 16.76% slower. Similarly, the
time-to-spike for I&F neuron ranges from 17.05% faster to
23.53% slower.

4 ANALYSIS OF POWER ATTACKS ON SNN

This section describes the effect of power-oriented attacks on the
image classification accuracy under the attack assumptions from
Section 3.1.

FIGURE 4 | (A) Current driver circuit of the SNN neurons with design details; (B) change in current driver output spike (Iin) amplitude with change in VDD; and (C)
effect of input spike amplitude on SNN output time-to-spike for Axon Hillock neuron and voltage amplifier I&F neuron.
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4.1 Experimental Setup
We have implemented the Diehl and Cook SNN (Diehl et al.,
2015) using the BindsNET (Hazan et al., 2018) network library
with PyTorch Tensor to test the effect of power-based attacks.
The SNN is implemented with 3 neuron layers (Figure 6), namely
input layer, excitatory layer (EL), and inhibitory layer (IL). We
employ this SNN for digit classification of the MNIST dataset
which consists of digit images of pixel dimension 28 × 28. Each
input image is converted to Poisson-spike trains and fed to the
excitatory neurons in an all-to-all connection, where each input
spike is fed to each excitatory neuron. The excitatory neurons are
1-to-1 connected with the inhibitory neurons (Figure 6). Each
neuron in the IL is in turn connected to all the neurons in the EL,

except the one it received a connection from. The architecture
performs supervised learning. For our experiments, the EL and IL
have 100 neurons each and all experiments are conducted on
1,000 Poisson-encoded training images with fixed learning rates

FIGURE 5 | (A)Change in SNNmembrane threshold with change in VDD; effect of VDD change on SNN output time-to-spike for (B) Axon Hillock neuron; (C) voltage
amplifier I&F neuron.

FIGURE 6 | Implemented 3-layer SNN (Diehl et al., 2015).

TABLE 1 | SNN simulation parameters.

Parameters Value

Spike trace decay time constant, τtrace 20 mS
Resting potential, Vrest −65 mV (EL), −60 mV (IL)
Threshold voltage potential, Vthr −52 mV (EL), −40 mV (IL)
Membrane reset potential, Vreset −60 mV (EL), −45 mV (IL)
Refractory period, δref 5 mS
Adaptive threshold time constant, τtheta 107 ms
Adaptive threshold voltage increment, θ 0.05
Post-synaptic learning rate, ηpost 10–2

Pre-synaptic learning rate, ηpre 10–4

Number of neurons (n) 100 (EL), 100 (IL)

FIGURE 7 | Effect of current driver corruption (Attack 1) on MNIST
classification accuracy.
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of 0.000 1 and 0.01 for pre-synaptic and post-synaptic events,
respectively. The batch size is set to 32 and training samples are
iterated only once as configured in (Hazan et al., 2018). Other key
design parameters for the implemented SNN are shown in
Table 1. Additional details on the neuron layers, learning
method, and SNN parameters can be found in (Hazan et al.,
2018). The baseline classification accuracy for attack-free SNN is
75.92% with 60 K training images.

4.2 Input Spike Corruption
In Section 3.2, it is shown that the adversary can manipulate the
input spike amplitudes for the SNN neurons. This in turn changes
the membrane voltage by a different rate for the same number of
input spikes. This manipulation of the rate of change of
membrane voltage changes the time-to-spike for the neuron
(as shown in Figure 4C).

Attack 1
In order to translate this effect to our BindsNET SNN
implementation, we have modified the rate of change of the
neuron’s membrane voltage using variable theta which specifies
the voltage change in the neuron membrane for each input spike.
Figure 7 shows the corresponding change in MNIST digit
classification accuracy. Under the worst case theta change of
−30%, classification accuracy decreases by 1.9%. Note that this is a
white box attack since the adversary requires the location of the
current drivers within the SNN (possible by invasive reverse
engineering of a chip) to induce the localized fault.

4.3 SNN Threshold Manipulation
The key parameters that are used for threshold manipulation are
threshold voltage potential (θ0) and membrane reset potential
(Vreset). Using our power-based attacks the threshold can be
manipulated in two possible ways:

Method 1 (Threshold Range Manipulation)
Table 1 shows that Vthr � −52 mV (EL), −40 mV (IL) and Vreset �
−60 mV (EL), −45 (IL). From these values we can calculate that
the baseline threshold ranges are 8 mV (EL) and 5 mV (IL),
respectively. Using VDD manipulation it is possible to manipulate
this threshold range. In Method 1, we manipulate the threshold
range of neurons in each layer from −50% to +50% to thoroughly
analyze the effects of power attacks in SNN classification tasks.

Method 2 (Threshold Value Manipulation)
Here we leverage the power-based attacks to manipulate only the
value of the threshold voltage potential (Vthr). In Section 3.3, it is
shown that the adversary can manipulate the membrane
threshold voltages of the SNN neurons from −20% to +20%
which can affect classification accuracy. The change in threshold
value has different effects on neurons from the EL vs. IL.
Therefore, we analyze the individual effect of each neuron
layer’s on classification accuracy. Finally, we analyze the
response for all the layers on the classification accuracy. Note,
Attacks 2 to 6 are white box attacks since the adversary requires
the location of the individual SNN layers (can be obtained from
the layout) to induce the localized faults.

Attack 2
In this attack, we implement Method 1 and subject all the
layers of neurons to the same membrane threshold range
change. Figure 8A shows the variation in accuracy as 60 K
samples are trained with the neuron threshold manipulation.
It is seen that the classification accuracy falls as the
membrane threshold range of both the layers hits +30%
for all periods of training progression. Figure 8A depicts
the final average classification accuracy after training 60 K
samples under threshold range manipulation. A worst case
accuracy degradation of −2.7% below baseline accuracy is
observed when the membrane threshold is increased by 30%.
The increased threshold range causes a neuron to take longer
to build up the membrane potential to fire an output spike.
Therefore, the relative spiking time difference (Δt) between 2
connected neurons increases and the corresponding change
in synaptic weight (Δw) during each update proportionally
decreases. This, in turn, means that SNN with higher
threshold ranges would require longer (more training) to
achieve the same accuracy as SNN with smaller threshold
ranges.

Attack 3
In this case, we subject only the EL to membrane Method 2
threshold variation to study its individual effect on
classification accuracy. This attack is possible when (1) each
neuron layer has their own voltage domain and the adversary
injects a laser-induced fault, (2) neuron layers share voltage
domain but the local fault injection in one layer does not
propagate to other layers due to the capacitance of the power
rail. Various fraction of neurons in this layer, ranging from 0 to
100% are subject to -20% to +20% threshold change This
analysis is performed to model the situation when an
adversary has fine grain control of the VDD inside a voltage
domain, e.g., using local voltage glitching attack that affects
only a section of neurons. This is possible in systems that have
thousands of neurons per layer that may be physically isolated
due to interleaving synapse arrays. Figure 9A shows the
corresponding change in the classification accuracy. It is
noted that classification accuracy is equal to or better than
the baseline accuracy for threshold changes as long as ≤ 90% of
the layer is affected. For the worst case threshold change of
−20%, the classification accuracy degrades by 7.32% when
100% of the EL is affected. In summary, attacking the EL
alone has a relatively low impact on the output accuracy. This
is intuitive since the effect of any corruption in the EL can be
recovered in the following IL.

Attack 4
In this attack, we subject only the IL to the membrane
threshold change. Various fraction of neurons in this layer
ranging from 0 to 100% are subject to −20% to +20%
threshold change. Figure 9B shows the corresponding
change in classification accuracy. It is noted that
classification accuracy degrades below the baseline
accuracy for 3 out of 4 cases of threshold change and for
all fractions of IL affected. A worst-case degradation of
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84.52% below the baseline accuracy (observed at −20%
threshold change at 100% of IL affected) is noted. In
summary, attacking the IL has a more significant effect on
output accuracy compared to attacking the EL alone. This is
understandable since IL is the final layer before the output.
Therefore, any loss in learning cannot be recovered.

Attack 5
In this attack, we subject 100% of both the EL and the IL to the
samemembrane threshold change. Figure 9C shows the variation
in accuracy with the threshold for both the layers of neurons. It is
seen that the classification accuracy falls sharply as the membrane
threshold of both the layers decreases below the baseline. A worst

FIGURE 8 | (A) Progression of classification accuracy for 60 K training samples under threshold range variation; and (B) final classification accuracy for various Vth
showing worst-case degradation (Attack 2).

FIGURE 9 | Classification accuracy trend with SNN membrane threshold for (A) excitatory layer only (Attack 3); (B) inhibitory layer only (Attack 4); and (C) both
excitatory layer and inhibitory layer (Attack 5).

FIGURE 10 |Classification accuracy trend during timed thresholdmanipulation (Attack 6) of (A) excitatory layer only; (B) inhibitory layer only; and (C) both excitatory
layer and inhibitory layer.
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case accuracy degradation of −85.65% below baseline accuracy is
observed when the membrane threshold is reduced by 20%.

Attack 6
In this attack, we vary the timing of threshold manipulation.
We consider the worst-case threshold corruption for the
three cases of EL only, IL only, and EL + IL for various
time duration ranging from 0 to 100% of the training phase.
Figures 10A–C show the corresponding effect on the
classification accuracy. While maximum accuracy
degradation is observed when 100% of the training phase
is affected, timed attacks for even 25% of the training phase
show accuracy degradation of 32% (EL + IL), 30% (IL only),
and 28% (EL only).

4.4 Input Spike Corruption and Threshold
Manipulation
Attack 7
This is a black box attack where the adversary does not need to
know the internal architecture of the current driver or the SNN
neurons. Here we assume that the power supply is shared among
all the components of the SNN system, including the current
drivers and all of the neuron layers. Manipulating the VDD

changes both membrane voltage per spike (theta) and the
threshold voltages (Vthr) (Method 1) of the SNN neurons.
Figure 11 shows that the worst case accuracy degradation is
−84.93%.

4.5 Summary of Power Attack Analysis
From our analysis, we conclude following:

4.5.1 SNN Assets
These include: (1) spike rate and amplitude, (2) neuron
membrane threshold, and (3) membrane voltage change per

spike. Other assets (not studied in this paper) are strength of
synaptic weights between neurons and the SNN learning rate.

4.5.2 SNN Vulnerabilities
VDD manipulation (1) generation of spikes of lower/higher
amplitude than nominal value by the neuron’s input current
driver, (2) lowers/increases neuron’s membrane threshold. Both
vulnerabilities cause affected neurons to spike faster/slower.

4.5.3 Attack Models
Manipulation of global and local fine-grained power supply
corrupts critical training parameters. Attacks not covered in
this paper are (1) generation of adversarial input samples to
cause misclassification, (2) fault injection into synaptic weights,
and (3) noise injection in input samples to attack specific
neurons.

5 DEFENSES AGAINST POWER-BASED
SNN ATTACKS

In Section 2.3, the learning rule for the implemented architecture
is explained. The three key designer-controlled parameters
include the post- and pre-synaptic learning rates (ηpre/ηpost),
the spike trace decay time constant (τt), and the number of
neurons (n) used per layer. In this section, we analyze the effect of
these parameters on SNN classification accuracy under the fault-
free (i.e., baseline) and faulty conditions. The STDP parameters
can be tuned bymodifying the shape of the pre- and post-synaptic
spikes as shown in (Saudargiene et al., 2004). These defenses that
use design choices (in section 5.1–5.3) are effective against
Attack 1 and Attack 2 where the accuracy degradation is
caused due to input spike corruption and threshold range
manipulation. Furthermore, we propose multiple circuit-level
modifications and logic additions (in Section 5.4–5.6) that
defend against all proposed attacks (Attack 1–7).

5.1 Impact of STDP Synaptic Learning Rate
The baseline synaptic learning rates of the SNN implemented
(shown in Table 1) are 10–2 and 10–4 for ηpost and ηpre,
respectively. We subject the neurons in the implemented SNN
with adversarial threshold range variation of −50% to +50%. The
learning rates of the SNN is varied by 1

8X to 2X under the
adversarial attack to determine its effect on classification
accuracy. Figure 12A depicts the change in STDP learning
curve with learning rate. It is seen that increasing (decreasing)
η causes a greater (lower) change in synaptic weight (Δw) for the
same spike timing difference (Δt). Figure 13 depicts the final
average classification accuracy after training the SNN with 60 K
samples under different η and threshold (Vth) values. The highest
accuracy is observed for SNN with learning rate as 0.5η which
recovers the baseline accuracy by 0.83%. The lowest accuracy is
observed for SNN with learning rate as 2η which further degrades
the accuracy by 3.61%. Lowering the learning rate proportionally
reduces the change in weight (Δw) per synaptic update
minimizing the effect of adversarial power-based attacks on
STDP learning. Similarly, increasing η causes a higher Δw and

FIGURE 11 | Change in classification accuracy with VDD change for
entire system (neurons and peripherals) (Attack 7).
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leads to a more pronounced effect on the final classification
accuracy. For Attacks 1 and 2, where accuracy loss of 1.9 and 2.7%
was observed, this method recovers accuracy degradation by 43
and 31%, respectively.

5.2 Impact of STDP Synaptic Trace Decay
Constant
The baseline synaptic trace decay constant (τ) (Table 1) is 20 ms.
We vary τ from 0.25X to 1.5X under our adversarial power attack
to determine its effect on classification accuracy. Figure 12B
shows that increasing (decreasing) τ causes a shallower (steeper)

slope to the STDP curve and correspondingly a lower (higher)
change in synaptic weight (Δw) for the same spike timing
difference (Δt). Figure 14 shows the final average classification
accuracy after training the SNN with 60 K samples under
different τ and threshold (Vth) values. It is seen that the
highest accuracy is observed for SNN with trace decay
constant of 0.25τ which improves average classification
accuracy by 0.81%. The lowest accuracy is observed for SNN
with trace decay constant of 1.25τ which further degrades
classification accuracy by −0.26%. Lowering the trace decay
constant causes a steeper STDP curve and effectively
reduces the window of spike timing difference (Δt) within
which the synaptic weights are updated. Therefore, lowering
the frequency of updates correspondingly minimizes the
effect of power-based attacks on STDP learning. Similarly,
increasing τ causes a wider update window and leads to a
more pronounced effect on final classification accuracy. For
Attack 1 and 2, where accuracy loss of 1.9 and 2.7% is
observed, this method recovers accuracy degradation by 42
and 30%, respectively.

5.3 Impact of Number of Neurons per Layer
In the baseline SNN implementation, we utilized 100 neurons (n)
in the IL and EL each. We increase the range of neurons per layer
to include n � 50, 150, 225, and 400 to study its effect on
classification accuracy under adversarial threshold variation.

FIGURE 12 | Change in STDP learning curve with (A) learning rate (η); and (B) trace decay constant (τ).

FIGURE 13 | Effect of learning rate (η) on MNIST classification accuracy
after training 60 K samples under adversarial threshold variation.

FIGURE 14 | Change in STDP learning curve with trace decay
constant (τ).

FIGURE 15 | Impact on number of neurons per SNN layer on
classification accuracy under adversarial Vth manipulation.
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Figure 15 shows the final classification accuracy observed under
different n and Vth. Ideally, a greater number of neurons
increases the classification accuracy. Here we see that n � 150
maximizes the accuracy under most of the Vth cases and
improves average classification accuracy by 0.94%. Further
increasing n to 225 and 400 leads to a degradation in
accuracy. The worst case is observed when n � 400, where the
average accuracy degrades by 17.18%. This can be attributed to
the fact that a higher number of neurons under attack have a
more pronounced negative effect on SNN training. Ideally, the
designer should increase n only up to a point where the increase
in output accuracy caused by a higher n is greater than the
accuracy degradation faced by a greater number of neurons under
attack. For Attack 1 and 2, where accuracy loss of 1.9 and 2.7% is
observed, this method recovers accuracy degradation by 47 and
34%, respectively.

5.4 Robust Current Driver Design
We propose a current driver that produces neuron input spikes of
constant amplitude (Figure 16A). Here the negative input
terminal of the op-amp is forced to a reference voltage that
leads the positive terminal to be virtually connected to the
reference voltage (VRef). The current through MP1 transistor is
VRef/R1 and the negative feedback of the amplifier forces the gate
voltage of MP1 to satisfy the current equation of the transistor.
Since VGS and Vth of MP1 and MP2 transistors are the same, MP2

passes the same current asMP1. Note, we have used long channel
transistors to reduce the effect of channel length modulation. The
power overhead incurred for the proposed robust current driver
compared to the unsecured version is 3%. Note that the area
overhead of the robust driver is negligible compared to the area of
unsecured driver since the neuron capacitors occupy the majority
of the area.

5.5 Resiliency to Threshold Voltage
Variation
5.5.1 Voltage Amplifier I&F Neuron
In order to prevent Vthr from being corrupted due to VDD change,
it can be generated using a bandgap voltage reference that

produces a constant voltage irrespective of power and
temperature variations. A bandgap circuit is proposed in
(Sanborn et al., 2007) that generates a constant Vref signal
with an output variation of ± 0.56% for supply voltages
ranging from 0.85 to 1 V at room temperature. A similar
design can be used for our proposed I&F neuron that requires
a constant external Vthr signal. Since the Vthr variation (±0.56%)
under VDD manipulation is negligible, the classification accuracy
degradation reduces to ∼0%. For our experimental 100-neuron
(per layer) implementation, the area overhead incurred by the
bandgap circuit is 65%. But this can be significantly reduced if the
bandgap circuit is shared with other components of the chip and
if the SNNs are implemented with tens of thousands of neurons as
required by various applications.

5.5.2 Axon Hillock Neuron
Comparator implementation
We replace the first inverter in the Axon Hillock neuron with a
comparator that employs Vthr generated by a bandgap circuit
(Sanborn et al., 2007) as the reference voltage to eliminate the
effect of VDD variation on the inverter switching threshold. The
rest of the design remains the same. Figure 16B shows the
implemented comparator which ensures that the threshold
voltage is not determined by the sizing of the inverter
transistors or the VDD. Instead, it depends on the input
biasing of the proposed design. The IN+ and IN- bias is set to
600 mV and VB is set to 400 mV. The power overhead incurred is
11% and the area overhead is negligible since the 1 pF capacitors
occupy a majority of the neuron area.

Neuron transistor sizing
In the case of the Axon Hillock neuron (Figure 2A), the
membrane threshold is determined by the VDD and the design
of the first inverter (transistors MP1 and MN3). Simulations
indicate that classification accuracy is affected mostly by
lowering the membrane threshold as shown in Figure 9C. We
increased the sizing of the PMOS transistor MP1 to limit the
threshold change due to VDD. Figure 16C shows that increasing
the W/L ratio mitigates the reduction in threshold changes under
lower VDD. At 0.8 V, the threshold change observed for W/L ratio

FIGURE 16 | (A) Robust SNN current driver (constant output spike amplitude); (B) comparator designed and implemented in the Axon Hillock neuron to mitigate
threshold variation.
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of 32:1 is −5.23% compared to −18.01% for the baseline sizing.
The corresponding degradation in classification accuracy at VDD

� 0.8V is only 3.49% which is a significant improvement
compared to the 85.65% degradation observed previously. At
VDD � 1.2V, the threshold change increases by 3.2% forW/L ratio
of 32:1 and the corresponding accuracy degradation only
increases by 1.4%. For the upsized neuron, the power
overhead observed is 25% while the area overhead is negligible
since the majority of the neuron area is occupied by the two 1 pF
capacitors that remain unchanged in the new design.

5.6 Detection of VDD Manipulation
In addition to robust neuron design, we also propose a technique
to voltage glitching attack directed at an individual neuron layer.
This is done by introducing a dummy neuron within each neuron
layer (shown in Figure 17A). In our design, the input of the
dummy neuron is connected to a current driver that constantly
drives spiking inputs of 200 nA amplitude and spike width of
100 ns. The spikes repeat every 200 ns and do not depend on the
spiking of the neurons from the previous layer. Under ideal
conditions, the number of output spikes for a fixed sampling
period for each dummy neuron should be identical. Figure 17B
shows the effect of VDD change on the dummy neuron’s output
for both the I&F and AH neurons over a sampling period of
100 ms. It is seen that for both neurons, the number of dummy
output spikes differs by ≥ 10% as compared to the baseline. Note
that this method is only effective against localized VDD change.
For the SNN implemented in Section 4, the area and power
overhead for the proposed dummy neuron detection mechanism
is ∼1% each.

6 DISCUSSION

6.1 Extension to Other Neuromorphic
Materials
In this study, we have analyzed the impact of power-based attacks
on integrate-and-fire CMOS-based neurons, that are most
commonly employed for contemporary SNN architectures. But
each CMOS-based neuron requires tens of transistors and
therefore incurs a large area and a high power consumption.
Neurons based on emerging technology such as memristors,
ferroelectric devices, and phase change memories can address

the above challenges. Integrate-and-fire neurons using
memristors have been proposed (Mehonic and Kenyon, 2016)
and (Lashkare et al., 2018) where short voltage pulses (input
spikes) are employed to increase the conductance of the
memristor device. When the conductance reaches a critical
value (threshold), the neuron fires a spike, and the
conductance is reset. Varying the supply voltage would cause
the amplitude of the input spikes to increase/decrease and
correspondingly cause the neuron to fire faster/slower. Once
the neuron fires, the conductance is reset using a reset pulse
that is alsoVDD dependent. Varying the supply voltage would also
lead to improper reset operation. Multiple works
(Mulaosmanovic et al., 2018; Chen et al., 2019; Dutta et al.,
2019) have proposed ferroelectric devices for neuromorphic
computing. In (Mulaosmanovic et al., 2018) a controlled
electric field is applied to reversibly tune the polarization state
of the ferroelectric material. When a series of short voltage pulses
are applied consecutively, it causes an incremental nucleation of
nanodomains in the ferroelectric layer. When a critical number of
nanodomains are nucleated, it leads to an abrupt polarization
reversal which corresponds to the neuron firing. It is shown that
the rate of nucleation depends on the amplitude and duration of
the input voltage pulses. Therefore, the proposed power-based
attacks can corrupt the spiking rate and inject faults in
ferroelectric neurons as well. In the case of phase change
memories (PCM), the effective thickness of the amorphous
region of the chalcogenide can be considered equivalent to the
membrane potential of a neuron. In (Sebastian et al., 2014; Tuma
et al., 2016), it is shown that the amorphous region can be grown
precisely by controlling the input voltage pulse. Consecutive
voltage pulses can allow controlled crystallization and
ultimately leads to an abrupt change in PCM conductance
which corresponds to the neuron firing. It is also shown that
the firing rate of the PCM neurons can be controlled by
manipulating the amplitude of the voltage pulses. Therefore,
our power-based attacks can corrupt the spiking rate and
inject faults in PCM-based neurons as well.

6.2 Extension to Other Neural Network
Architectures
Although this work analyzes the impact of power-based fault
injection attacks on SNNs, these attacks can be extended to other

FIGURE 17 | (A) VDD change detection using dummy neuron; and (B) effect of VDD on dummy neuron output.
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NNAs as well. Very limited research has been conducted on
physical attacks (i.e., power-based) on traditional NNAs res such
as DNNs. In (Breier et al., 2018) and (Hou et al., 2020), the
authors study physical fault injection attacks into the hidden
layers of DNNs using laser injection techniques to demonstrate
image misclassification. In (Benevenuti et al., 2018), the authors
characterize each network layer of an ANN under a laser beam by
placing them separately on an FPGA floorplan. The authors
demonstrate significant degradation in classification accuracy
under these laser-based attacks. The proposed power-based
attacks can be extended to other types of ANNs by analyzing
the effect of VDD variation on the operation of neurons. The ANN
can then be implemented with these neurons under attack and the
corresponding accuracy change due to their faulty behavior can
be determined. This analysis can be the subject of future study.

7 CONCLUSION

We propose one black box and six white box attacks against
commonly implemented SNN neuron circuits by manipulating
its external power supply or inducing localized power glitches.
We have demonstrated power-oriented corruption of critical
SNN training parameters. We introduced the attacks for SNN-
based digit classification tasks as test cases and observed
significant degradation in classification accuracy. We analyzed
defenses techniques that leverage various SNN design parameters
(such as learning rate, trace decay constant, and number of
neurons) to mitigate accuracy degradation due to power-based
attacks. Finally, we also proposed hardware modifications and

additions to SNNs (such as robust current driver design and VDD

manipulation detection) as countermeasures to our proposed
power-based attacks.
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