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Abstract
Understanding the spatial patterns of soil microbial communities and influencing factors 
is a prerequisite for soil health assessments and site-specific management to improve crop 
production. However, soil microbial community structure at the field scale is complicated 
by the interactions among topography and soil properties. The objectives of this study 
were to (1) characterize the spatial variability patterns of soil microbial communities at 
the field scale; (2) assess the influence of soil physico-chemical properties, topography 
and management on soil microbial biomass spatial variability. This study was conducted 
in a 194-ha commercially-managed field in Hale County, Texas, in 2017. A total of 212 
composite soil samples were collected at 0–0.15 m depth and analyzed via the ester-linked 
fatty acid methyl ester (EL-FAME) method to characterize the microbial community struc-
ture and biomass. Soil electrical conductivity (EC), pH, soil texture, soil water content 
(SWC), soil organic carbon (SOC) and total nitrogen (TN) were determined for each soil 
sample. Topographic attributes, including elevation and slope, were derived from real-time 
kinematic (RTK) point elevation data. Interpolated microbial community maps at this 
scale revealed a spatially structured distribution of microbial biomass and diversity with 
patches of several hundred meters in different directions corresponding to the distribution 
of soil types and topography. Most of the microbial communities were autocorrelated at 
greater ranges within the same soil types than across different soils. The distribution of 
total soil microbial biomass was mainly affected by SOC and SWC. Soil pH and C:N 
ratio had a negative impact on the biomass of bacterial communities. Biomass of fungal 
communities was negatively influenced by slope and elevation. The results of this study 
have the potential to provide a basis for designing soil sampling plans in characterizing 
microbial community distribution and site-specific soil health management.
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Introduction

Soil micro-organisms are an essential component of soil ecosystems that perform functions 
related to soil health and plant growth (Cano et al., 2018; Le Guillou et al., 2019). Although 
soil biota typically represents less than 0.05% of dry soil weight, they have the greatest 
diversity among all ecosystems. They are responsible for organic matter decomposition, 
carbon sequestration, nutrient cycling, water availability and other ecosystem services in 
soils (Lehman et al., 2015). These micro-organisms, in interaction with other environmental 
variables, can influence crop growth and production (Lehman et al., 2015). They contribute 
to healthy crop production by enhancing water acquisition by plants, suppressing diseases 
and weeds, increasing aeration, reducing soil compaction for proper root growth and exud-
ing enzymes that recycle plant nutrients (Brussaard, 1997; Parkin, 1993; Wall et al., 2004).

An in-depth understanding of the effects of management practices, soil physico-chemical 
properties and topography on soil microbial community size, composition and activity can 
help the precision management of soil micro-organisms in the field (Bhandari et al., 2018; 
Le Guillou et al., 2019). Various management practices can influence soil biological com-
ponents that affect the efficiency of other agricultural inputs (Ryan & Peigné, 2017). For 
example, tillage affects soil physico-chemical properties such as soil moisture and nutrient 
distribution, which influences the size and distribution of soil micro-organisms (Le Guillou 
et al., 2019). The spatial and temporal distribution of micro-organisms at the landscape scale 
is also complicated by the interactions among topography, soil type and SWC (Cavigelli et 
al., 2005; Constancias et al., 2015). The soil properties, such as texture, organic matter and 
management-derived compaction, influences soil pore characteristics that, in turn, affect the 
spatio-temporal distribution of soil microbial biomass (Rasiah & Kay, 1999).

Recent studies have shown that the spatial distribution of soil organisms influences plant 
growth and possibly yield (Liu et al., 2020; Tautges et al., 2016). Geostatistical analysis of 
soil microbial community composition can reveal the underlying soil processes that fully 
or partially contribute to crop growth and yield variability. This is especially important in 
field-scale studies where intensive soil sampling is challenging and various factors such as 
soil properties and topography complicate the analysis (Piotrowska-Długosz et al., 2012, 
2019; Robertson, 1987). As a result, few field studies have evaluated the spatial variability 
patterns of soil microbial groups (Piotrowska-Długosz et al., 2019; Powell et al., 2015; 
Shi et al., 2018). A study conducted in France showed that microbial indicators exhibited 
a high spatial heterogeneity at a field level that masked the effect of soil and crop manage-
ment treatments (Peigné et al., 2009). This study also showed that the biological variables 
exhibited spatial variability of the same order of magnitude as physico-chemical param-
eters. Several studies indicated the presence of autocorrelation among selected microbial 
variables at different spatial scales (Constancias et al., 2015; Franklin & Mills, 2003; Nav-
eed et al., 2016; Piotrowska & Długosz, 2012; Serna-Chavez et al., 2013). The variations 
in microbial community and its turnover could be due to environmental factors (Karimi et 
al., 2018; Le Guillou et al., 2019; Powell et al., 2015; Ranjard et al., 2013). Such informa-
tion can facilitate site-specific management of crop inputs based on the spatial variability 
of organisms, such as earthworms, nematodes, protozoa, fungi, bacteria and arthropods 
(Osman, 2013). However, most of the studies on spatial variability of soil microbes are 
conducted either at a small or global scale that might not represent the field-scale soil 
microbiological processes.
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Despite their critical roles in soil productivity and plant growth, the spatial variability 
of soil organisms is not considered in most site-specific studies because the measurements 
of soil microbial communities are complex, time-consuming, labor-intensive and cost-
prohibitive. However, it is imperative to evaluate the spatial patterns of soil microbes and 
associated influencing factors for assessing soil health and site-specific management. The 
hypotheses were (a) soil microbial communities have significant spatial variability and (b) 
the variability structures are affected by soil properties, such as SWC, soil texture, organic 
matter pH and topography at the field scale. Hence, the objectives of this study were to (1) 
characterize the spatial variability patterns of soil microbial communities at the field scale; 
(2) assess the effects of soil physico-chemical properties and topography on soil microbial 
spatial variability.

Materials and methods

Study field and management

The study was conducted in a 194-ha field (33°57’26.31” N, 101°47’20.31” W) in the 
Southern High Plains of Texas in 2017 (Fig. 1). This semi-arid area has an annual rainfall 
ranging from 260 mm to 600 mm, with a median summer rainfall of 292 mm, about one-
third of the potential crop evapotranspiration of 846 mm (Mauget et al., 2017). Continuous 
cotton cropping was practiced for more than five years before the study. The soils in this 
area are characterized by well-developed deep soils with increasing clay and accumulations 
of calcium carbonate in subsoil horizons (NRCS, 2008; Steiner et al., 2018). The surface 
soil texture of the field varies from sand to sandy loam, which is representative of the soils 
in this region (USDA-NRCS, 2018). The soil types are mainly Pullman clay loam (Fine, 
mixed, superactive, thermic Torrertic Paleustolls) and Olton loam (Fine, mixed, superactive, 
thermic Aridic Paleustolls), as indicated by the soil map units from the NRCS Soil Survey 
Geographic Database (SSURGO) (Fig. 1). The Pullman soils occur on nearly level to very 
gently sloping plains or playa slopes, consisting of very deep, well-drained, slowly perme-
able soils formed in clayey eolian deposits from the Blackwater Draw Formation. It typi-
cally contains a profile of Ap and several Bt and Btk horizons that extends up to 2 m depth. 
The Olton loam occurs on plains with low slopes and upper side slopes of playas and draws. 
This soil consists of very deep, well-drained, moderately slowly permeable soils formed in 
clayey, calcareous eolian sediments in the Blackwater Draw Formation. An Olton loam typi-
cally contains a profile of A and several Bt and Btk horizons that extends up to 2.5 m depth 
(Soil Survey Staff, 1974). The playa lake area with Randall clay (Fine, smectitic, thermic 
Ustic Epiaquerts) on the southeast side of the field was not cultivated.

Soil sampling

A total of 212 core soil samples were collected in April 2017 from eight circular transects 
spaced 100  m apart (Fig.  1). The sample spacing was 100 ± 30  m along each transect, 
depending on its distance from the field center. The sampling locations were determined 
using a real-time kinematic (RTK) GNSS receiver (AgGPS 214, Trimble, Sunnyvale, CA, 
USA). Composite soil samples, each with three cores within 2 m from the target location, 
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were collected at 0–0.15 m depth. The south half of the field was tilled two months before 
soil sampling. No samples were collected in or around the playa lake.

Soil physical and chemical analyses

Soil particle size analysis was performed using the hydrometer method (Gee & Bauder, 
1986) with an ASTM 152-H hydrometer (Thermo Fisher Scientific, Waltham, WA, USA). 
Soil pH was measured using a pH meter (Model 89231-582, VWR, Radnor, PA, USA) at a 
soil to water ratio of 1:1 (w/v) and electrical conductivity (EC) was measured using an EC 
meter (Model 89231-614, VWR, Radnor, PA, USA) at a soil to water ratio of 1:5 (w/v). The 
SWC was determined using the gravimetric method. Each soil sample of approximately 
50 g was oven-dried at 105 °C for 24 h for computing gravimetric water content. The total 

Fig. 1  Study site with soil sample locations and soil map units for a 194-ha field in Hale County, Texas in 
2017 1

1 (Basemap source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, 
IGN, IGP, swisstopoand the GIS User Community) [EsB: Estacado loam, 1–3% slopes (Fine-loamy, mixed, 
superactive, thermic Aridic Paleustolls); MkB: Mansker loam, 0–3% slopes (Coarse-loamy, carbonatic, ther-
mic Calcidic Paleustolls); Lo: Lofton clay loam: 0.5% slopes (Fine, mixed, superactive, thermic Vertic Argi-
ustolls); OtA: Olton loam, 0–1% slopes (Fine, mixed, superactive, thermic Aridic Paleustolls); OtB: Olton 
loam, 1–2% slopes (Fine, mixed, superactive, thermic Aridic Paleustolls); PuA: Pullman clay loam, 0–1% 
slopes (Fine, mixed, superactive, thermic Torrertic Paleustolls); Ra: Randall clay (Fine, smectitic, thermic 
Ustic Epiaquerts) (Soil Survey Staff, 1974)]
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nitrogen (TN) and total SOC were measured via dry combustion using a TruSpec CN ana-
lyzer (LECO Corporation, St. Joseph, MI, USA).

Soil microbial analyses

Soil microbial community size and biomass were characterized using the ester-linked fatty 
acid methyl ester (EL-FAME) method (Schutter & Dick, 2000). This analysis provides 
information on microbial community size and composition (Cano et al., 2018). In the EL-
FAME method, each soil sample of 3 g was analyzed in four steps. First, the release and 
methylation of ester-linked fatty acids were conducted at 37 °C by adding 15 ml of 0.2 KOH 
in methanol for 60 min. Second, the neutralization was performed with 3 ml of 1.0 M acetic 
acid. Third, hexane layer evaporation under N2 was carried out. Finally, 100 µL of hexane 
containing the 19:0 internal standard (150 nmol g−1 soil) was used to redissolve the FAMEs, 
which was transferred to 250 µL glass inserts in 2 mL GC vials. The FAMEs were ana-
lyzed using an Agilent 6890 N gas chromatograph equipped with a 25 mm × 0.20 mm (5% 
phenyl)—methylpolysiloxane Agilent HP-5 fused silica capillary column (Agilent, Santa 
Clara, CA, USA) and flame ionization detector (Hewlett Packard, Palo Alto, CA, USA) with 
ultra-high-purity nitrogen as the carrier gas. Peak identification and area calculation were 
performed using the Phospholipid Fatty Acid calibration method from MIDI (Microbial ID, 
Inc., Newark, DE, USA). Selected FAMEs were used as microbial markers according to 
previous research (Zelles, 1999). Bacterial markers included gram-positive bacteria (i15:0, 
a15:0, i17:0, a17:0), gram-negative bacteria (cy17:0, cy19:0)and actinobacteria (10Me16:0, 
10Me17:0, 10Me18:0); fungal markers included saprophytic fungi (18:1ω9c, 18:2ω6c) 
and arbuscular mycorrhizal fungi (AMF) (16:1ω5c); one marker was used for protozoa 
(20:4ω6c) (Li et al., 2020). The bacterial sum was calculated using the gram-positive (G+) 
bacteria, gram-negative (G−) bacteria and actinobacteria markers. The fungal sum was cal-
culated using saprophytic and AMF fungal markers listed above. The fungal to bacterial 
ratio was calculated by dividing total fungi by total bacteria. Soil microbial community 
size was estimated as a sum of all the biomarker fatty acids associated with bacteria, fungi 
andand protozoa.

Topographic data collection and analysis

Point elevation data were collected using a real-time kinematic (RTK) GNSS receiver with 
an accuracy of 10 mm (Gan-Mor et al., 2007). The elevation data were collected during 
planting on transects spaced ~15 m, resulting in one data point every 15 m. The elevation 
point data were converted to a digital elevation model (DEM) using the Spatial Analyst tool 
of ArcGIS (Version 10.5.1, ESRI, Redlands, CA, USA) by interpolating the point datasets 
to 4 m raster grids. The slope was then derived from this DEM using the Slope routine of 
the Spatial Analyst tool of ArcGIS.

Data Aggregation

The soil sample locations were used to spatially coincide all the data layers for sand con-
tent, clay content, silt content, SOC, TN, C:N ratio, elevation, slope, pH, EC, G+ bacteria, 
G − bacteria, actinobacteria, AMF, saprophytic fungi, total bacteria, total fungi, protozoa 
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and total biomass. Except for elevation and slope, all the aforementioned variables were 
measured on the collected soil samples. The means of elevation and slope were calculated 
for each sampling location using the Zonal Statistics as a Table routine in the Spatial Analyst 
extension of ArcGIS. The variability map for each layer was created using ordinary kriging 
of ArcGIS.

Statistical and geostatistical analyses

Summary statistics, including minimum, maximum, mean, median, range, standard devia-
tion and coefficient of variation (CV), were determined for the response and explanatory 
variables using the R software (R Core Team, 2017). Pearson correlation between soil 
microbes and other variables was performed using the cor function. Data normality for 
each microbial type was evaluated using the Shapiro Wilk test and heteroskedasticity was 
assessed using the Breusch Pagan test (Breusch & Pagan, 1979; Shapiro & Wilk, 1965). 
Biomass of soil microbial communities showed the presence of non-normality and global 
trends. Hence, a log-transformation was performed for each microbial community and a 
first-order trend was removed before the analysis for spatial autocorrelation of each micro-
bial community.

A multiple regression model was used to explore the relationship between the biomass 
of soil microbial communities as a function of soil physico-chemical properties and topog-
raphy. The explanatory variables for this model were selected by performing the backward 
stepwise regression at α = 0.05 significance level for each microbial community resulting 
in multiple models. The spatial ecological data typically contain spatially autocorrelated 
model residuals that violate the assumption of independence and hence need to be addressed 
(Davis, 2002; Webster & Oliver, 2007). The residual of the model for each microbial com-
munity was tested for spatial autocorrelation using Moran’s I test (Cliff & Ord, 1981). The 
model was adjusted for spatial autocorrelation using the SAR models based on the Lagrange 
multiplier test (Anselin, 1988).

Results

Variability in elevation and slope

The field exhibited large variability in topography, with elevation ranging from 1005.51 
to 1014.02 m, the lowest around the playa lake in the southeast part (Fig. 2). Two depres-

Fig. 2  Variation of elevation and 
slope in a 194-ha field in Hale 
County, Texas
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sions were evident in the northwest part of the field. The slope varied from 0 to 4.31%, with 
higher slopes in the areas leading to the playa lake and depressions with rapid elevation 
changes. The slope appeared to be associated with soil types. For instance, the slope was 
low in Pullman clay loam but high in Mansker loam and Estacado loam close to the playa 
lake or depression areas. In general, there was higher variability in elevation and slope in 
the southern part of the field.

Variability in soil physical properties

The clay content of the 0–0.15 m depth was generally higher in the northern part with a 
maximum of 38.7%, especially in depression areas with Lofton clay soils (Figs. 1 and 3; 
Table 1). Sand content was higher in areas with low clay and silt contents both in the north 
and south. However, the CV was higher for silt (23.59%) as compared to sand (17.36%) and 
clay (12.78%), indicating higher variability in silt content across the field.

Variability in soil chemical properties

Higher soil pH values were observed in the south part of the field (Fig. 4). These areas also 
corresponded to lower EC. This was especially evident in the areas leading to the playa lake 
where the slope was higher. Field observations indicated these areas had experienced some 

Fig. 3  Soil particle size and soil water content (SWC) at a depth of 0–0.15 m for a 194-ha field in Hale 
County, Texas, in 2017
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water and wind erosion, which exposed some calcareous layers with carbonates, leading to 
higher pH values. In addition, soils in these areas were low in water content and organic 
matter. Soils with high organic matter are associated with lower soil pH due to the release of 
hydrogen ions from organic matter or by nitrification in an open system (Ritchie & Dolling, 
1985). Soil organic carbon was lower in the south part of the field in areas leading to the 
playa lake, which might be the cause for the lower C:N ratio in these areas. However, TN 
ranged from 0.056 to 0.098%, with a mean of 0.067% and was higher in the north part of the 
field. This might explain the overall lower C:N ratios in most of the north part.

Variability in biomass of soil microbial communities

Total microbial biomass (estimated by FAME) ranged from 40 nmol g−1 to 93.57 nmol g−1 
with a mean of 64.51 nmol g−1 (Table 1). The soil microbial biomass was greater in the 
north part of the field compared to the south (Fig. 5). Most of the microbial communities 
showed similar spatial distribution patterns for biomass except for protozoa, which had 
lower biomass towards the center and higher concentrations towards the edge of the field. 
Fungal communities contributed the greatest to the total FAME biomass with a mean of 
34.43 nmol g−1 and median of 30.79 nmol g−1. Among fungal communities, saprophytic 
fungi were most abundant, with a mean biomass of 30.35 nmol g−1. AMF biomass ranged 

Table 1  Summary statistics of soil microbial biomass (0–0.15 m depth), soil physico-chemical properties and 
topography for a 194-ha field in Hale County, Texas, in 2017
Variable Min Max Range Median Mean Stdev CV 

%
G+ bacteria 6.29 40.07 33.78 13.75 15.02 5.63 37.47
G − bacteria 0.77 12.65 11.88 3.53 3.66 2.01 55.02
Actinobacteria 5.04 28.94 23.90 9.41 10.38 3.93 37.88
AMF 0.74 13.43 12.69 3.66 4.08 1.73 42.41
SF 10.90 89.07 78.18 26.88 30.35 14.10 46.44
Protozoa 0.00 2.92 2.92 0.88 0.97 0.55 57.29
Bacteria 13.55 80.35 66.79 26.50 29.05 11.01 37.91
Fungi 13.22 94.58 81.35 30.79 34.43 14.54 42.21
Total microbes 28.87 165.57 136.70 58.38 64.51 24.84 38.51
Clay 13.20 38.70 25.50 28.05 28.37 3.63 12.78
Silt 10.50 51.50 41.00 25.90 26.12 6.16 23.59
Sand 23.80 65.90 42.10 45.05 45.51 7.90 17.36
SWC 7.00 27.00 20.00 15.00 15.20 3.29 21.63
SOC 0.41 3.20 2.79 0.87 0.97 0.38 39.65
TN 0.03 0.14 0.11 0.07 0.07 0.02 25.36
EC 18.8 65.5 46.7 27.4 30.0 8.46 28.21
pH 7.45 9.04 1.59 8.32 8.27 0.32 3.82
Elevation 1006.8 1014.0 7.2 1010.5 1010.7 1.43 1.14
Slope 0.04 3.41 3.37 0.58 0.81 0.70 85.63
Bacteria is the sum of FAME markers for G+ (gram-positive bacteria), G − (gram-negative bacteria) and 
ACT (Actinobacteria) in nmol g−1; Fungi is the sum of FAME markers for SF (Saprophytic fungi) and AMF 
(arbuscular mycorrhizal fungi) nmol g−1; Elevation (m); EC = Electrical conductivity (µS mm−1); Clay, silt, 
sand, slope, SWC (soil water content), TN (Total Nitrogen), and SOC (soil organic carbon) are in %
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from 2.57 to 6.62 nmol g−1 with a mean of 4.08 nmol g−1. Among bacterial groups, G+ 
bacteria contributed the highest to the total microbial biomass with a mean of 15.02 nmol 
g−1. The actinobacteria had a mean biomass of 10.38 nmol g−1. The biomass of total bacte-
rial (G+ > actinobacteria > G−) ranged from 13.55 to 80.35 nmol g−1 with a mean of 29.05 
nmol g−1. Overall, the fungal biomass was greater than that of bacteria, as reflected in the 
fungi:bacteria ratio ranging from 0.98 to 1.37. Protozoa exhibited the highest variation 
(CV = 57.29%) and G+ bacteria had the lowest variation (CV = 37.47%) in biomass. Both 
AMF and Saprophytic fungi had relatively high variations in biomass, with CV values of 
42.41% and 46.44%, respectively.

Relationship between soil microbial properties, soil physico-chemical properties 
and topography

Total microbial biomass had a significant positive correlation (p < 0.001) with silt content, 
EC, SWC and TN and a significant negative correlation with elevation (Table  2). Total 
bacteria were positively correlated with silt content, EC, SWC and TN of soil, but nega-
tively correlated to sand content, elevation and pH. The biomass of G+ and G − bacteria was 
negatively correlated with sand content, elevation and pH but positively correlated with silt 
content, EC, SWC and TN. The biomass of actinobacteria was negatively correlated with 
sand content and elevation and positively correlated with silt content, EC, SWC and TN. 

Fig. 4  Soil chemical properties at 0–0.15 m depth for a 194-ha field in Hale County, Texas, in 2017
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The fungal biomass was significantly positively correlated with SWC and TN, but nega-
tively correlated with elevation. AMF biomass was positively correlated with slope, SOC 
and C:N ratio. Biomass of saprophytic fungi was positively correlated to SWC and TN but 
negatively correlated to elevation. Protozoa biomass was not significantly correlated with 
any variables under study.

Table 2  Correlation between soil microbial biomass, soil physico-chemical properties (0–0.15 m depth) and 
topography for a 194-ha field in Hale County, Texas, in 2017
Variable G+ G− ACT AMF SF Bacteria Fungi Total FAMEs
Silt 0.23 0.25 0.25 0.25 0.23
Sand − 0.21 − 0.21 − 0.22 − 0.22
EC 0.22 0.34 0.22 0.25 0.21
Elevation − 0.27 − 0.32 − 0.25 − 0.25 − 0.29 − 0.26 − 0.28
Slope 0.33
SWC 0.38 0.38 0.35 0.24 0.39 0.24 0.31
pH − 0.24 − 0.27 − 0.23
TN 0.37 0.36 0.32 0.28 0.37 0.28 0.33
SOC 0.42
C:N 0.37
Correlation coefficients are significant at p < 0.001; C:N = Ratio of SOC and TN; F:B = ratio of fungi and 
bacteria; Bacteria is the sum of FAME markers for G+ (gram-positive bacteria), G − (gram-negative 
bacteria) and ACT (Actinobacteria); Fungi is the sum of FAME markers for SF (Saprophytic fungi) and 
AMF (arbuscular mycorrhizal fungi); Elevation (m), EC = Electrical conductivity (µS mm−1)

Fig. 5  Variability of soil microbial biomass at 0–0.15 m depth for a 194-ha field in Hale County, Texas, in 
2017
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Spatial variability of soil microbial groups

All of the soil microbial communities except protozoa exhibited spatially autocorrelated 
variation in their biomass. A spherical semivariogram model was fit for the rest of the micro-
bial communities (Table 3). The nugget:sill ratio for most of the microbial communities 
was greater than 0.55, indicating moderate spatial dependency (Cambardella et al., 1994). 
Except for G − bacteria, all of the microbial communities showed an anisotropic variation 
in their biomass with the major range along the northeast-southwest direction (around 50 
degrees). The orientation of the minor range was approximately perpendicular to this direc-
tion. This anisotropic pattern was consistent with the distribution of soil types, i.e., greater 
variability in soil type and properties in the northwest-southeast direction. The anisotropic 
ratio, the ratio of the major range to the minor range, was highest for gram-positive bacteria, 
followed by saprophytic fungi. The total microbial biomass was distributed spatially with 
an anisotropic ratio of 2.66. The range of semivariogram represents the distance of spatial 
influence or the maximum distance up to which the property of the variable is spatially auto-
correlated (Gooaverts, 1997). The major range was 743 mand the minor range was 279 m 
for total microbes. This result is consistent with the results from a study conducted across 
an agricultural landscape in France (Constancias et al., 2015), which showed that the spatial 
variation of soil microbes ranged up to hundreds of meters at the landscape scale.

Soil microbial community as affected by topography and soil properties

Topography and soil physico-chemical properties influenced the distribution of soil micro-
bial communities and their biomass (Table 4). The results from multiple regression analy-
sis for each microbial community indicate that SWC, clay content and SOC were the most 
important factors influencing the variability of total microbial biomass (Table 4). Besides 
these factors, the distribution of total bacterial biomass was also influenced by soil pH. The 
negative coefficients for soil pH indicate that areas with high pH had a lower distribution of 
bacterial communities. The C:N ratio also had a significant negative influence on the biomass 

Table 3  Semivariogram models for soil microbial biomass at a depth of 0–0.15 m for a 194-ha field in Hale 
County, Texas, in 2017 (Lag size = 70 m, number of lags = 12)
Variable Model Nugget Sill Nug-

get
:Sill

Major 
range 
(m)

Minor 
range 
(m)

Anisot-
ropy
direc-
tion (°)

An-
isot-
ropy
ratio

Total FAMEs Spherical 0.08 0.12 0.67 743 279 51 2.66
G+ Spherical 0.07 0.11 0.64 748 250 48 2.99
G− Spherical 0.21 0.29 0.72 840 510 144 1.65
Act Spherical 0.07 0.11 0.63 601 383 58 1.56
Bacteria Spherical 0.07 0.11 0.63 694 269 50 2.57
AMF Spherical 0.10 0.14 0.71 840 430 50 1.95
SF Spherical 0.12 0.17 0.70 689 231 57 2.98
Fungi Spherical 0.11 0.15 0.73 840 305 49 2.75
Bacteria is the sum of FAME markers for G+ (gram-positive bacteria), G − (gram-negative bacteria) and 
Act (Actinobacteria); Fungi is the sum of FAME markers for SF (Saprophytic fungi) and AMF (arbuscular 
mycorrhizal fungi); Anisotropy ratio is the ratio of major range to minor range at the direction of anisotropy
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distribution of G+ and Actinobacteria. Soil EC had no significant effect on soil microbial 
biomass distribution. Specifically, clay content, SWC, pH, C:N ratio and SOC influenced the 
distribution of biomass of G+ bacteria. However, elevation had a significant effect only on the 
distribution of biomass of G − bacteria among bacterial communities. For fungal communi-
ties, SWC, elevation and slope were important factors influencing the total fungal biomass 
distribution. The variation in AMF biomass was mainly influenced by SOC and slope. The 
biomass of saprophytic fungi was primarily influenced by topographic attributes, including 
elevation and slope. The protozoa biomass was mainly affected by the distribution of SWC 
across the field. Overall, SOC and SWC had a significant positive effect on the biomass of 
most of the microbial communities. Contrarily, pH, elevation, slope and clay content had a 
significant negative effect on the biomass of most of the microbial communities.

The regression model for biomass of each soil microbial community as a function of soil 
and topographical properties showed no presence of spatial autocorrelation except for the 
AMF case. A Gaussian model was found as the best fitting model for AMF. The nugget:sill 
ratio for this model was greater than 0.55, indicating moderate spatial dependency. The 
range of autocorrelation was 662 m. The LM test indicated that the spatial lag model fitted 
the data better for AMF.

Table 4  Summary of multiple regression analysis for soil properties and topography predicting soil microbial 
biomass for a 194-ha field in Hale County, Texas, in 2017
Variable Coefficient p-value Variable Coefficient p-value
Total FAMEs Actinobacteria
Clay − 1.11 0.03 Clay − 0.18 0.02
SOC 18.21 0.03 SOC 3.58 < 0.01
SWC 1.88 < 0.01 SWC 0.40 < 0.01
Total bacteria C:N ratio − 0.15 0.02
Clay − 0.58 < 0.01 Total fungi
SOC 10.59 < 0.01 SWC 0.78 0.03
pH − 4.88 0.03 Elevation − 2.18 < 0.01
SWC 1.16 < 0.01 Slope − 3.18 0.05
C:N ratio − 0.47 < 0.01 AMF
G+ bacteria Clay − 0.01 0.05
Clay − 0.27 0.01 SOC 0.30 < 0.01
SOC 5.28 < 0.01 Slope − 0.11 < 0.01
pH − 2.66 0.02 Saprophytic 

fungi
SWC 0.55 < 0.01 Elevation − 2.31 < 0.01
C:N ratio − 0.26 < 0.01 Slope − 3.19 0.02
G − bacteria Protozoa
Clay − 0.11 < 0.01 SWC 0.03 0.02
SOC 0.85 0.01
pH − 1.08 0.01
SWC 0.19 < 0.01
Elevation − 0.26 < 0.01
Bacteria is the sum of FAME markers for G+ (gram-positive bacteria), G − (gram-negative bacteria) and 
Act (Actinobacteria); Fungi is the sum of FAME markers for SF (Saprophytic fungi) and AMF (arbuscular 
mycorrhizal fungi); C:N = Ratio of SOC and TN, F:B = ratio of fungi and bacteria, EC = Electrical 
conductivity
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Discussion

Soil microbial distribution and influencing factors

The effects of environmental factors on soil microbes varied with the microbial type. While 
all the microbial variables were related to soil properties and topography, protozoa were 
only significantly correlated to SWC content. Tajik et al. (2020) also found that protozoa 
behaved differently than other microbial groups, possibly due to the grazing behavior and 
unicellular nature of protozoa. Soil particle size had a significant effect on the distribu-
tion of bacterial groups. Clay content had a significant negative effect on the biomass of 
G+ bacteria, G − bacteria, Actinobacteria and total bacteria. Contrarily, most studies have 
shown that clay particles have a beneficial impact on the soil microbial community. Soil 
micro-organisms are primarily attached to soil particles with small pore sizes and more 
water holding capacity could protect from predators and suitable growth environment (Bach 
et al., 2010; Tajik et al., 2020). The association of a low microbial community with high 
clay content in this study might be due to some management-induced environments in some 
areas of the field.

Although topography was correlated to all microbes, elevation and slope had no sig-
nificant influence on total FAME distribution. Specific microbial groups such as G − bacte-
ria, total fungi, AMF and saprophytic fungi were negatively influenced by elevation and/or 
slope. This could be due to erosion and deposition of finer particles from higher areas to the 
low-lying areas that could foster favorable conditions for microbial growth (Constancias et 
al., 2015; Naveed et al., 2016). The effect of topography, including slope and elevation, on 
soil microbial distribution might be through its impact on the distribution of soil properties, 
especially SWC and SOC, which influence total FAMEs.

The SWC and SOC are sources of nutrition and cell structure maintenance for microbes 
and control their activity and growth (Sorensen et al., 2013; Yan et al., 2015). Interestingly, 
SWC had no significant effect on the distribution of saprophytic fungi and AMF, possibly 
due to their high tolerance to matric potential because of the stronger cell walls as compared 
to other microbial groups (Schimel et al., 2007). Higher C:N ratios tend to indicate low 
organic matter decomposability (Dequiedt et al., 2011) and hence had a negative relation-
ship with the microbial variables, especially bacteria. TN, which is essential for microbial 
survival, was significantly and positively correlated with most of the microbial variables. 
However, TN was not included in the regression model during stepwise selection, probably 
because SOC is a keystone driver of micro-organisms compared to TN (Table 5, Appendix).

Generally, pH is regarded as one of the main predictors of variation in soil microbial 
communities and biomass (Cao et al., 2016; Constancias et al., 2015). In this study, how-
ever, only soil bacterial communities were significantly and negatively correlated to soil pH. 
This is consistent with previous studies that suggested that soil pH could either impose a 
physiological constraint on bacteria or influence microbial growth conditions, such as salin-
ity and nutrient availability, which affect bacterial distribution (Cao et al., 2016; Lauber et 
al., 2009; Rousk et al., 2010). Contrarily, fungal communities were found to survive in a 
wide range of soil pH, which might be due to the multicellular nature of most of the fungal 
communities as compared to unicellular bacterial communities (Lauber et al., 2009; Tajik 
et al., 2020).
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Implications for site-specific management and research

Knowledge about the spatial variability of soil microbes and influencing factors can help 
researchers to design strategies for site-specific soil management. The results in the spatial 
variability of soil microbes, including the magnitude and potential causes, have implica-
tions for relevant research and site-specific soil management at the field scale. While SWC 
and SOC were two important factors influencing soil microbial biomass distribution, in 
general, areas with high slope, high pH, low SOC, low TN, low EC and low SWC showed 
a lower abundance of soil microbes. This implies that management activities, such as irriga-
tion, fertilization and manure application, could be managed site-specifically to improve 
the microbial communities, especially in sloped areas. Studies showed that adding organic 
amendments such as manure resulted in increased microbial biomass (soil bacteria and fungi) 
and higher microbial activity (Graham et al., 2012; Watts et al., 2010). This can ultimately 
contribute to promoting agricultural practices to maximize the benefits from soil microbes 
and at the same time preserve financial and environmental resources (Cano et al., 2018; Le 
Guillou et al., 2019; Lehman et al., 2015). Further, saprophytic fungi and AMF have been 
found to improve soil aggregate formation to protect against erosion, increase water and 
nutrient uptake by plant roots attributed to hyphal extension, especially in this semi-arid 
region (Davinic et al., 2013). Therefore, field management practices, such as cover cropping 
and mulching, could be implemented to improve fungal biomass where needed in the field. 
The F:B ratio is a good indicator of shifts in the microbial community in extreme weather 
conditions such as drought (Wardle & Parkinson, 1990) and tillage (Frey et al., 1999). This 
information can be used in implementing several soil and crop management strategies, such 
as crop selection, fertilizer application and irrigation (Acosta-Martínez et al., 2014).

This study showed an anisotropic spatial variation of microbes across the field and the 
spatial patterns were mainly corresponding to the distribution of soil types. Most of the 
microbial communities showed less spatial variability of biomass within the soil type, but 
exhibited greater spatial variability across different soil types. Studies have shown that spa-
tial descriptors vary with ecological context and spatial extent (Constancias et al., 2015; 
Dequiedt et al., 2011; Naveed et al., 2016). Therefore, the spatial variability of microbial 
communities and biomass provides valuable information for designing soil sampling plans 
in fields with diverse soil types and topographic properties. For example, in areas with 
similar soil types and topographic properties, fewer samples at greater distances could 
be collected to understand the spatial variability of certain micro-organisms. However, in 
areas with varying soil types, sampling should be performed at shorter distances since the 
range of spatial autocorrelation is lower. Further, the information of spatial variability of 
soil microbes can help create management zones or experimental plots across the field and 
evaluate the effects of various treatments (Cassel et al., 2000; Peigné et al., 2009). This 
ability to differentiate the effects due to the initial spatial variability of the field from those 
related to soil management techniques can ultimately provide a base for long-term site-
specific management of crop inputs.

Limitations and future research

The study unveils several important factors related to soil microbiology and underlying soil 
properties. A grid-based sampling scheme, commonly used in precision agriculture, was 



Precision Agriculture (2022) 23:1008–10261022

1 3

adopted to investigate the spatial patterns of soil properties (Van Groenigen et al., 1999; 
Yfantis et al., 1987; Zimmerman, 2006). However, the sampling distance and sampling 
depth are limited due to the cost and time constraints of soil sampling and microbial analy-
ses. Sampling distance and depth could influence the output of the spatial analysis of soil 
microbial properties (Bhattarai et al., 2015; Cavigelli et al., 2005; McBratney & Webster, 
1983; Turner et al., 2017; Warrick & Myers, 1987). Studies have also shown that about 
65% of soil microbial density is present at the top 0.25 m layer of soil and has high spatial 
variability (Fierer et al., 2003; Nunan et al., 2002). Although most soil microbial studies 
use 0–0.20 m depth as representative for soil microbial activities (Constancias et al., 2015; 
Piotrowska-Długosz et al., 2019), sampling depth at 0–0.15 m was used to create uniformity 
among other soil properties analyzed in this study.

The main focus of this study lies in the understanding of various factors influencing soil 
microbes and how this information can be applied in precision soil management. Hence, 
given the scenario where there is limited prior information about soil microbial character-
istics in this 194-ha field and limited studies conducted to understand the spatial variability 
of soil microbes at this scale, sampling at a distance of 70–100 m and depth 0–0.15 m depth 
is appropriate for these two purposes. However, additional sampling schemes at shorter 
distances (e.g., nested with the current regular grids) and varied sampling depths would 
provide information on the spatial structure at finer scales, which may be warranted in the 
future. Temporal analyses of soil microbial distribution could also help in implementing 
site-specific as well as time-specific management decisions since seasonal variation has 
a huge influence on soil microbes (Cavigelli et al., 2005; Piotrowska & Długosz, 2012). 
Future research in multiple years is necessary to provide a more comprehensive character-
ization of the spatial and temporal variability of soil microbial properties for site-specific 
management of soil health.

Conclusions

In this study, the effects of soil physico-chemical properties and topography on the spatial 
variability of soil microbial communities were evaluated at the field scale. Given the scale of 
soil sampling distance and depth, soil texture, SOC and SWC were the main factors influenc-
ing the spatial variability of total soil microbial biomass. The effect of topography on soil 
microbial biomass is likely through its impact on the distribution of soil properties, especially 
SWC and SOC. The fungal communities were significantly influenced by topographical 
properties such as elevation and slope and soil texture had a significant influence on bacte-
rial communities. The information on soil microbes as affected by soil physico-chemical 
properties and topography could be used to develop strategies for site-specific management 
to enhance soil health. For example, microbial communities in areas with high slopes and 
high sand content could be enhanced by applying more crop residue as organic material for 
SOC development. The spatial analysis of soil microbial properties could be utilized to assist 
in designing soil sampling strategies for microbial analysis. Overall, the results of spatial 
patterns of soil microbes and associated influencing soil properties from this study extend 
understanding of site-specific soil health management research and application, especially 
in semi-arid crop production systems. Further studies are required to evaluate the sampling 
scales in multiple years and multiple fields for site-specific soil microbial management.
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Appendix

Table 5  Correlation between soil physico-chemical properties (0–0.15 m depth) and topography for a 194-ha 
field in Hale County, Texas, in 2017

Clay Silt Sand EC Ele Slope SWC pH TN SOC
Silt (%) 0.25
Sand (%) − 0.66 − 0.90
EC (µS mm−1) 0.28 − 0.30
Elevation (m) − 0.24 0.22
Slope (%) − 0.30 0.32 − 0.21
SWC (%) 0.46 0.52 − 0.62 0.28 − 0.33 − 0.31
pH − 0.21 0.23 − 0.51 0.33 − 0.24
TN (%) 0.39 0.56 − 0.62 0.38 − 0.45 − 0.32 0.59 − 0.29
SOC (%) 0.23 − 0.24 0.34 0.29
C:N 0.50 − 0.29 0.29 − 0.30 0.79
Correlation coefficients significant at p < 0.001; C:N = Ratio of SOC to TN, EC = Electrical conductivity
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