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Improving the Robustness of Reinforcement
Learning Policies with L1 Adaptive Control

Yikun Cheng⋆1, Pan Zhao⋆1, Fanxin Wang1, Daniel J. Block2, Naira Hovakimyan1

Abstract—A reinforcement learning (RL) control policy could
fail in a new/perturbed environment that is different from the
training environment, due to the presence of dynamic variations.
For controlling systems with continuous state and action spaces,
we propose an add-on approach to robustifying a pre-trained
RL policy by augmenting it with an L1 adaptive controller
(L1AC). Leveraging the capability of an L1AC for fast estimation
and active compensation of dynamic variations, the proposed
approach can improve the robustness of an RL policy which
is trained either in a simulator or in the real world without
consideration of a broad class of dynamic variations. Numerical
and real-world experiments empirically demonstrate the efficacy
of the proposed approach in robustifying RL policies trained
using both model-free and model-based methods.

Index Terms—Reinforcement learning, machine Learning for
robot control, robust/adaptive control, robot safety

I. INTRODUCTION

REINFORCEMENT learning (RL) is a promising way
to solve sequential decision-making problems [1]. In

the recent years, RL has shown impressive or superhuman
performance in control of complex robotic systems [2], [3]. An
RL policy is often trained in a simulator and deployed in the
real world. However, the discrepancy between the simulated
and the real environment, known as the sim-to-real (S2R)
gap, often causes the RL policy to fail in the real world.
An RL policy may also be directly trained in a real-world
environment; however, the environment perturbation result-
ing from parameter variations, actuator failures and external
disturbances can still cause the well-trained policy to fail.
Take a delivery drone for example (Fig. 1). We could train
an RL policy to control the drone in a nominal environment
(e.g., nominal load, mild wind disturbances, healthy propellers,
etc.); however, this policy could fail and lead to a crash when
the drone operates in a new environment (e.g., heavier loads,
stronger wind disturbances, loss of propeller efficiency, etc.).
To a certain extent, the S2R gap issue can be considered
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Fig. 1: Proposed approach to policy robustness improvement
based on L1 adaptive augmentation

as a special case of environment perturbation by treating
the simulated and real environments as the old/nominal and
new/perturbed environments, respectively.

A. Related work

Robust/adversarial training: Domain/dynamics randomiza-
tion was proposed to close the sim-to-real (S2R) gap [4]–
[6] when transferring a policy from a simulator to the real
world. Robust adversarial training addresses the S2R gap and
environment perturbations by formulating a two-player zero-
sum game between the agent and the disturbance [7]. A similar
idea was explored in [8], where Wasserstein distance was
used to characterize the set of dynamics for which a robust
policy was searched via solving a min-max problem. Though
fairly general and applicable to a broad class of systems, these
methods often involve tedious modifications to the training
environment or the dynamics, which can only happen in a
simulator. More importantly, the resulting fixed policies could
overfit to the worst-case scenarios, and thus lead to conserva-
tive or degraded performance in other cases [9]. This issue is
well studied in control community; more specifically, robust
control [10] that aims to provide performance guarantee for
the worst-case scenario, often leads to conservative nominal
performance.
Post-training augmentation: Kim et al. [11] proposed to use
a disturbance observer (DOB) to improve the robustness of
an RL policy, in which the mismatch between the simulated
training environment and the testing environment is estimated
as a disturbance and compensated for. A similar idea was
pursued in [12], which used a model reference adaptive control
(MRAC) scheme to estimate and compensate for parametric
uncertainties. Our objectives are similar to the ones in [11]
and [12], but our approach and end results are different, as
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we address a broader class of dynamic uncertainties (e.g.,
unknown input gain that cannot be handled by [11], and
time-dependent disturbances that cannot be handled by [12]),
and we leverage the L1 adaptive control architecture that
is capable of providing guaranteed transient (instead of just
asymptotic) performance [13]. Additionally, we validate our
approach on real hardware, as opposed to merely in numerical
simulations in [11], [12]. We note that L1 adaptive control
has been combined with model predictive control (MPC) with
application to quadrotors [14], and it has been used for safe
learning and motion planning applicable to a broad class of
nonlinear systems [15]–[17]. To put things into perspective,
this paper is focused on applying the L1 adaptive control
architecture to robustify an RL policy. In terms of technical
details, this paper considers more general scenarios, e.g.,
unmatched disturbances and unknown input gain, which were
not considered in [16], [17].
Learning to adapt: Meta-RL has recently been proposed
to achieve fast adaptation of a pre-trained policy in the
presence of dynamic variations [18]–[22]. Despite impressive
performance mainly in terms of fast adaptation demonstrated
by these methods, the intermediate policies learned during the
adaptation phase will most likely still fail. This is because a
certain amount of information-rich data needs to be collected
in order to learn a good model and/or policy. On the other
hand, rooted in the theory of adaptive control and disturbance
estimation, [13], [23], [24], our proposed method can quickly
estimate the discrepancy between a nominal model and the
actual dynamics, and actively compensate for it in a timely
manner. We envision that our proposed method can be com-
bined with these methods to achieve robust and fast adaptation.

B. Statement of contributions

For controlling systems with continuous state and action
spaces, we propose an add-on approach to robustifying an
RL policy, which can be trained in standard ways without
consideration of a broad class of potential dynamic variations.
The essence of the proposed approach lies in augmenting
it with an L1 adaptive control (L1AC) scheme [13] that
quickly estimates and compensates for the uncertainties so
that the dynamics of the system in the perturbed environment
are close to that in the nominal environment, in which the
RL policy is trained and thus expected to function well.
The idea is illustrated in Fig. 1. Different from most of
existing robust RL methods using domain randomization or
robust/adversarial training [4]–[8], the proposed approach can
be used to robustify an RL policy, which is trained either in
a simulator or in the real world, using both model-free and
model-based methods, without consideration of a broad class
of uncertainties in the training. We empirically validate the
approach on both numerical examples and real hardware.

II. PROBLEM SETTING

We assume that we have access to the system dynamics in
the nominal environment, either simulated or in the real world,
and they are described by a nonlinear control-affine model:

ẋ(t) = f(x(t)) + g(x(t))u(t) ≜ Fnom(x(t), u(t)), (1)

where x(t) ∈ X ⊂ Rn and u(t) ∈ U ⊂ Rm are the state
and input vectors, respectively, X and U are compact sets,
f : Rn → Rn and g : Rm → Rn×m are known and
locally Lipschitz-continuous functions. Moreover, g(x) has
full column rank for any x ∈ X .
Remark 1. Control-affine models are commonly used for
control design and can represent a broad class of mechanical
and robotic systems. In addition, a control non-affine model
can be converted into a control-affine model by introducing
extra state variables (see e.g., [25]). Therefore, the control-
affine assumption is not very restrictive.

The nominal model (1) can be from physics-based model-
ing, data-driven modeling or a combination of both. Methods
exist for maintaining the control affine structure in data-driven
modeling (see e.g., [26]).

Assumption 1. We have access to a nominal control policy,
πo(x), which is trained using the nominal dynamics (1) and
thus functions well under such dynamics. Moreover, π0(x) is
Lipschitz continuous in X with a Lipschitz constant lπ .

The policy πo(x) can be trained either in a simulator or in
the real world in the standard (i.e., non-robust) way, using
either model-based and model-free methods. The Lipschitz
continuity assumption is needed to derive an error bound for
estimating the disturbances in Section III-D. The nominal
policy π0 could fail in the perturbed environment due to
the dynamic variations. We, therefore, propose a method to
improve the robustness of this nominal policy in the presence
of such dynamic variations, by leveraging L1AC [13]. To
achieve this, we further assume that the dynamics of the agent
in the perturbed environment can be represented by

ẋ = f(x) + g(x)Λu+ d(t, x), (2)

where Λ is an unknown input gain matrix, which satisfies
Assumption 2, d(t, x) is an unknown function that can capture
parameter perturbations, unmodeled dynamics and external
disturbances. It is obvious that the perturbed dynamics (2)
can be equivalently written as

ẋ = Fnom(x, u) + σ(t, x, u), (3)
where

σ(t, x, u) ≜ g(x)(Λ− I)u(t) + d(t, x). (4)

Remark 2. Uncertain input gain is very common in real-
world systems. For instance, actuator failures, and variations in
mass or inertia for force- or torque-controlled robotic systems,
normally induce such input gain uncertainty. For a single-
input system, Λ = 0.6 indicates a 40% loss of the control
effectiveness. Our representation of such uncertainty in (2)
is broad enough to capture a large class of scenarios, while
still allowing for effective compensation of such input gain
uncertainty using L1AC (detailed in Section III).

To provide a rigorous treatment, we make the following
assumptions on the perturbed dynamics (2).

Assumption 2. The matrix Λ in (2) is an unknown strictly
row-diagonally dominant matrix with sgn(Λii) known. Fur-
thermore, there exists a compact convex set ≱ such that
Λ ∈ ≱.
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Remark 3. The first statement in Assumption 2 indicates that
Λ is always non-singular with known sign for the diagonal
elements, and is often needed in applying adaptive control
methods to mitigate the effect of uncertain input gain (see
[23, Sections 6 and 7]). Without loss of generality, we further
assume that ≱ in Assumption 2 contains the m by m identity
matrix, I .

The problem we are tackling can be stated as follows.
Problem Statement: Given an RL policy πo(x) well trained in
a nominal environment with the nominal dynamics (1), assum-
ing the dynamics in the perturbed environment are represented
by (2) satisfying Assumption 2, develop an augmentation-
based solution to improve the robustness of the policy πo(x)
in the perturbed environment.

III. L1 ADAPTIVE AUGMENTATION FOR RL POLICY
ROBUSTIFICATION

A. Overview of the proposed approach

The idea of our proposed approach is depicted in Fig. 1.
With our approach, the training phase is standard: the nominal
policy can be trained using almost any RL methods (both
model-free and model-based) in a nominal environment. After
getting a nominal policy that functions well in the nominal
environment, for policy execution, an L1 controller is designed
to augment and work together with the nominal policy. The L1

controller uses the dynamics of the nominal environment (1) as
an internal nominal model, estimates the discrepancy between
the nominal model and the actual dynamics and compensates
for this discrepancy so that the actual dynamics with the
L1 controller (illustrated by the shaded area of Fig. 1) are
close to the nominal dynamics. Since the RL policy is well
trained using the nominal dynamics, it is expected to function
well in the presence of the dynamic variations and the L1

augmentation.

B. RL training for the nominal policy

As mentioned before, the policy can be trained in the
standard way, using almost any RL method including both
model-free and model-based one. The only requirement is
that one has access to the nominal dynamics of the training
environment in the form of (1).

As an illustration of the idea, for the experiments in Sec-
tion IV, we choose PILCO [27], a model-based policy search
method using Gaussian processes, soft actor-critic [28], a state-
of-the-art model-free deep RL method, and a trajectory opti-
mization method based on differential dynamic programming
(DDP) [29] to obtain the nominal policy.

C. L1 adaptive augmentation for policy robustification

In this section, we explain how an L1AC scheme can be
designed to augment and robustify a nominal RL policy. An
L1 controller mainly consists of three components: a state
predictor, an adaptive law, and a low-pass filtered control
law. The state predictor is used to predict the system’s state
evolution, and the prediction error is subsequently used in the
adaptive law to update the disturbance estimates. The control

law aims to compensate for the estimated disturbance. For the
perturbed system (2) with the nominal dynamics (1), the state
predictor is given by

̇̂x(t) = Fnom(x, u) + σ̂(t)− ax̃(t), (5)

where x̃(t) ≜ x̂(t)−x(t) is the prediction error, a is a positive
constant, σ̂(t) is the estimation of the lumped disturbance,
σ(t, x, u), at time t. Following the piecewise-constant (PWC)
adaptive law (which connects with the CPU sampling time)
[13, Section 3.3], the disturbance estimates are updated as

σ̂(t) = σ̂(iT ), t ∈ [iT, (i+ 1)T ),

σ̂(iT ) = − a

eaT − 1
x̃(iT ),

(6)

for i = 0, 1, · · · , where T is the estimation sampling time.
With σ̂(t), we further compute[︃

σ̂m(t)
σ̂um(t)

]︃
=

[︁
g(x) g⊥(x)

]︁−1
σ̂(t), (7)

where σ̂m(t) and σ̂um(t) are the matched and unmatched
disturbance estimates, respectively, g⊥(x) ∈ Rn−m satisfies
g(x)⊤g⊥(x) = 0, and rank

(︁[︁
g(x) g⊥(x)

]︁)︁
= n for any

x ∈ X . From (3) and (5), we see that the total or lumped
disturbance σ(t, x, u), is estimated by σ̂(t) ≜ g(x)σ̂m(t) +
g⊥(x)σ̂um(t). The control law is given by

u(t) = uRL(t) + uL1
(t),

uL1
(s) = −C(s)L[σ̂m(t)],

(8)

where uRL(t) = π0(x(t)) is the control command from the
nominal RL policy, uL1

(s) is the Laplace transform of the L1

control command uL1
(t), L[·] denotes the Laplace transform,

and C(s) ≜ K(sI + K)−1 is an m by m transfer matrix
consisting of low-pass filters with K ∈ Rm×m.
Remark 4. As it can be seen from (5), (6) and (8), in an
L1AC scheme with a PWC adaptive law [13, section 3.3], all
the dynamic uncertainties (such as parametric uncertainties,
unmodeled dynamics and external disturbances) are lumped
together and estimated as a total disturbance. This is different
from most adaptive control schemes [23], which rely on a
parameterization of the uncertainty to design adaptive laws
for updating parameter estimates and usually consider only
stationary uncertainties that do not directly depend on time.

Details on deriving the estimation and control laws can be
found in [30], [31]. The working principle of the L1 controller
can be summarized as follows: the state predictor (5) and the
adaptive law (6) can accurately estimate the lumped distur-
bances, σ̂m(t) and σ̂um(t). In fact, under certain conditions, a
bound on the estimation error, σ̂(t) − d(t, x), can be derived
and is included in [32]. Additionally, the control law (8)
mitigates the effect of disturbances by cancelling those within
the bandwidth of the low-pass filter. Note that unmatched
disturbances (also known as mismatched disturbances in the
disturbance-observer based control literature [24]) cannot be
directly canceled by control signals and are more challenging
to deal with.
Remark 5. In designing the L1 controller consisting of (5),
(6) and (8), we assume that the states are measured without
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TABLE I: Comparison with existing approaches to improving the robustness of RL policies

Robust/Adversarial
Training [4]–[8]

Post-Training Augmentation
MRAC [12] DOB [11] L1AC (ours)

Complexity of training High Low
Training environment Simulated Simulated & Real-world

Restrictions on structure of dynamics Low High (control-affine & continuous)
Control inputs Multiple Single Single Multiple

Restrictions on uncertainties Low High (matched
parametric uncertainties)

High (matched
disturbances)

Medium (matched
uncertainties and disturbances)

Control policy after training Fixed Adapted Online
Validation Sims & Experiments Sims Sims Sims & Experiments

noise. In practice, as long as the estimation sampling time
is not too small and the filter bandwidth is not too large,
moderate measurement noise that always exists in real-world
systems usually does not cause big issues, as demonstrated by
the hardware experiments in Section IV-C.

Remark 6. Variants of the proposed L1AC law (5), (6) and (8)
have been used to augment other baseline controllers (e.g.,
PID, linear quadratic regulator, MPC), as demonstrated in
numerous applications and flight tests, [13].

D. Comparison with existing approaches

The comparison of our proposed approach with existing
approaches is summarized in Table I. Our approach falls into
the category of post-training augmentation (PTA), which does
not require a special training process such as randomizing
parameters and adding disturbances, and allows the training
to be done in both simulated and real-world environments,
as opposed to robust/adversarial training (RAT) methods.
Additionally, RAT methods aim to find a fixed policy for all
possible realizations of uncertainties, which could be infeasible
when the range of uncertainties is large. Compared to existing
PTA methods based on MRAC and DOB, our approach is able
to deal with a broader class of uncertainties, and is validated
on real hardware.

On the other hand, similar to other PTA methods, our
approach needs the dynamics to be continuous and have
a control-affine form, and can only effectively compensate
for the matched disturbance. Dealing with the unmatched
disturbances in the nonlinear setting has been a long-standing
challenging problem for adaptive or DOB-based control meth-
ods, other methods, e.g., those based on robust control [33],
must be considered. As a result, when the unmatched distur-
bance dominates the total disturbance, the performance of the
proposed approach will be limited. This is demonstrated in
Section IV, e.g., in the quadrotor example in the presence of
wind disturbances.

IV. EXPERIMENTS

We now apply the proposed approach to two systems,
namely a Pendubot and a 3-D quadrotor. In particular, for the
Pendubot, experiments on real hardware are also conducted.
Additional computation and simulation results for a cart-pole
system are included in [32]. An overview of the systems and
test settings is given in Table II. The dynamic models for these
systems are included in Appendix B of [32].

TABLE II: An overview of testing systems and settings

System State/input
Dimension

Policy Search
Methods

Test
Environments

W/ Unmatched
Disturbances

Pendubot 4/1 PILCO, SAC
& DR-SAC

Simulation (IV-A)
& Hardware (IV-C) Yes

Quadrotor 12/4 DDP Simulation (IV-B) Yes

TABLE III: Selected training settings for Pendubot

Setting Parameters Input
Limit Policy

I Λ = 1.0, m1 = 0.12 kg, m2 = 0.11 kg 4Nm SAC
II Λ∈ [0.3, 1], m1∈0.12[1, 6] kg, m2∈0.11[1, 6] kg 6Nm DR-SAC1
III Λ∈ [0.3, 1], m1∈0.12[1, 6] kg, m2∈0.11[1, 6] kg 9Nm DR-SAC2
IV Λ∈ [0.5, 1], m1∈0.12[1, 4] kg, m2∈0.11[1, 4] kg 6Nm DR-SAC3
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Fig. 2: Training curves for Pendubot. Shaded areas denote the
variance over five trials.

A. Pendubot swing-up and balance in simulations

As depicted in Fig. 6, the Pendubot is a mechatronic system
consisting of two rigid links interconnected by revolute joints
with the second joint unactuated. The states of the system
include the angles and angular rates of the two links, and the
control input is the torque applied to Link 1. The task is to
swing up the links from initial states [q1, q2] = [π, π] to the
right-up position [q1, q2] = [0, 0] and balance them there, as
illustrated in Fig. 6. The same reward function is used for
training SAC and DR-SAC policies and defined by

r =−3(|sin(q1)|+|cos(q1)− 1|+|sin(q2)|+|cos(q2)−1|). (9)

The nominal RL policies were trained in simulation using
soft actor-critic (SAC) [28] implemented in the MATLAB
Reinforcement Learning Toolbox. For comparison, we also
trained a few robust policies (termed as DR-SAC) with SAC
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Fig. 3: Performance of SAC, DR-SAC3, SAC+L1 and DR-SAC3+L1 for Pendubot under perturbations in m1, m2 and Λ.
Percentage change with respect to the nominal value is used to measure the perturbations in m1 and m2.

and domain randomization [5], [6], in which three parameters,
namely, the input gain (Λ), the mass of Link 1 (m1), and the
mass of Link 2 (m2), were randomly sampled in a variety
of ranges. Additionally, we tried imposing different control
limits (through squashing). When training the SAC and DR-
SAC polices, each agent includes an actor and two critics,
all three of which share the same neural network structure
that has two hidden fully-connected layers with 300 and 400
neurons, respectively. The same hyper-parameters were used
for training all the DR-SAC and SAC policies. We did five
trials for each setting. Table III lists three of many settings that
we tested for training the DR-SAC policies and the setting for
training the vanilla SAC policy. Figure 2 shows the average
episode return (computed using a window of 10 episodes)
during training. The solid curves correspond to the mean and
the shaded region to the minimum and maximum average
return over the five trials. As seen in Fig. 2, it was much
easier and took much less episodes to find a good SAC policy,
compared to training DR-SAC policies. We were able to find

a good DR-SAC policy (i.e., DR-SAC3) under Setting IV,
while further increasing the range of parameter perturbations
associated with Setting IV led to degraded performance of the
resulting DR-SAC policies even with a larger control limit, as
illustrated by the training curves for DR-SAC1 and DR-SAC2.
For subsequent tests, we chose the best DR-SAC3 from all five
trials and compared it with other control policies.

We tested the performance of vanilla SAC, DR-SAC, SAC
with L1 augmentation (SAC+L1) and DR-SAC with L1 aug-
mentation (DR-SAC+L1) under a wide range of perturbations
in m1, m2, and under three input gain settings: Λ = 1.0, 0.5
and 0.3, while the latter two indicate a loss of control effec-
tiveness by 50% and 70%, respectively. For L1 augmentation
design, the parameters in (5), (6) and (8) were chosen to be
a = 10, T = 0.005 second and K = 200, and fixed across all
the tests. The results in terms of the normalized accumulative
reward under each test scenario are shown in Fig. 3. Note
that perturbation in m2 induces unmatched uncertainties that
cannot be compensated by the L1 control law. As one can see,
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Fig. 4: Results under loss of propeller efficiency ((a)), perturbations in quadrotor mass and inertia ((b)), and wind disturbances
((c)). DDP (ideal) denotes the trajectory obtained by applying the policy to the nominal dynamics.

the performance of vanilla SAC drops dramatically when the
perturbations in m1, m2 and Λ increase. DR-SAC3 achieved
acceptable performance under Λ = 0.5 in general, except when
the perturbations in m1 and m2 are near the maximum, which
are beyond the perturbations encountered during training of
DR-SAC3. However, when the control effectiveness further
decreases to 30% of its nominal value, DR-SAC3’s perfor-
mance degrades significantly, while only slight performance
degradation is observed under SAC+L1 and DR-SAC3+L1

when the perturbations increase to the maximum. It is worth
noting that SAC+L1 and DR-SAC3+L1 show comparable
performance under the tested scenarios. We conjecture that
in the case of larger unmatched uncertainties, DR-SAC3+L1

will outperform SAC+L1.

B. 3-D quadrotor navigation in simulations

The states include quadrotor position (x, y, z) and linear
velocities (ẋ, ẏ, ż) in an inertia frame and the roll, pitch, and
yaw angles (ϕ,θ,ψ) of the quadrotor body frame with respect to
the inertial frame, as well as their derivatives. Motor mixing is
also included in the dynamics. The inputs are the total thrusts
fz and three moments along three axes (τϕ,τθ,τψ) generated
by the four propellers.

The nominal value of the key parameters are set to be
[Ix, Iy, Iz] = [0.082, 0.0845, 0.1377] kgm2 (moment of iner-
tia), m = 4.34kg (quadrotor mass), and cpi = 1 (i = 1, 2, 3, 4)
(propeller control coefficients). The mission is to control the
quadrotor to fly from the origin to the target point (4, 4, 2).
To obtain a policy for achieving the mission, we chose
to use trajectory optimization, which, together with model
learning, is commonly used for model-based RL [34], [35].
We further chose to use differential dynamic programming
(DDP) [29], a specific trajectory optimization method. Since
our focus is not on the training but on robustifying a pre-
trained policy, we use the physics-based dynamic model with
the nominal parameter values as the model “learned” in the
nominal environment. This model is used for computing the
DDP policy, and for designing the adaptive augmentation.
For computing the DDP policy, we discretized the nominal
dynamics and applied the method in [29] with the cost
function J = x̃⊤NPN x̃N +

∑︁N−1
i=0

(︁
x̃⊤i Px̃i + u⊤i Qui

)︁
, where

x̃i = xi − xtarget for i = 1, ..., N , N is the control horizon,
and P = diag(2, 2, 2, 0.1, 0.1, 0.3, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),
PN = diag(10, 10, 10, 5, 5, 5, 5, 5, 5, 5, 5, 5) and Q =
diag(20, 4, 4, 4). For L1 augmentation design, the parameters

-2

6 6
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4 4
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2 20 0

Fig. 5: Results under joint perturbations in quadrotor mass,
inertia and propeller efficiencies, and wind disturbances. In
each of the ten scenarios, each type of perturbation was
generated in the same way as was for the results in Figs. 4a–
4c.

in (5), (6) and (8) were chosen to be a = 10, T = 0.001
second and K = 200, and fixed across all the tests.

We tested the performance of the DDP policy with and
without L1 augmentation under three types of dynamic per-
turbations. The first one is loss of propeller efficiency, which
mimics the effect of propeller failures, and is simulated by
adjusting the control coefficients cpi (i = 1, 2, 3, 4). Figure 4a
shows the resulting trajectories under ten scenarios, in each of
which the control coefficients of two propellers were randomly
selected to be in [0.5, 1]. One can see that L1 augmentation
significantly improved the robustness of the DDP policy,
leading to consistent trajectories that are close to the ideal
trajectory obtained by applying the policy to the nominal
dynamics. The second type of dynamic perturbations are the
mass and inertia change, e.g., to mimic the effect of carrying
different packages for a delivery drone. Fig. 4b shows the
results under ten scenarios with randomly increased mass and
inertia through a scale of [2, 5]. Once again, L1 augmentation
significantly improved the policy robustness, leading to close-
to-ideal trajectories. The third type of dynamic variations
is related to wind disturbances in the horizontal plane,
which causes disturbance forces in the x and y directions.
In each of the ten scenarios, the forces were simulated by
stochastic variables with the mean values randomly sampled
from [10, 25]. The results are depicted in Fig. 4c. L1 aug-
mentation improved the robustness, but was not able to yield
close-to-ideal performance. This is mainly because the wind
disturbances induce unmatched disturbances (σ̂um(t) in (5)
and (6)), which are not compensated for in the control law
(8). Finally, Fig. 5 illustrates the simulation results under joint
perturbations in quadrotor mass, inertia and propeller
efficiency and wind disturbances.
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TABLE IV: Test results under different scenarios

Scenario
Policy PILCO PILCO+L1 SAC SAC+L1 DR-SAC DR-SAC+L1

I: Nominal " " " " " "

II: Λ = 0.5 % " % " " "

III: Added Masses of 270g (100% of m2) " " " " " "

IV: Λ = 0.6 plus Added Mass of 90g (33% of m2) % " % " " "

V: Λ = 0.5 plus Added Masses of 450g (167% of m2) % " % % % "

VI: Added disturbances with a rubber band % " % " " "

C. Pendubot swing-up and balance on real hardware

We further tested the performance of those policies used
in Section IV-A on the hardware setup depicted in Fig. 6.
In addition to SAC and DR-SAC, we trained another policy

Link 2

Link 1

Fig. 6: Left: a Pendubot configuration. Middle: stabilization at
the upright position. Right: added masses and a rubber band
used to induce dynamic variations
using PILCO with the same reward function defined by (9).
The ways to introduce dynamic variations include changing
the input gain Λ, adding masses to Link 2, adding disturbance
forces using a rubber band and different combinations of these
three ways. For L1 augmentation design, the parameters in
(5), (6) and (8) were chosen to be a = 150, T = 0.005 s
and K = 150 for most of the policies in most of the test
scenarios. For DR-SAC in Test I, K = 100 (corresponding to
a lower bandwidth for the low-pass filter) was used to avoid
large vibrations at the upright position, due to the fact that
DR-SAC has a relatively high gain to attenuate the effect
of dynamic variations. The test scenarios and results are
summarized in Table IV, where " (%) indicates a success
(failure) in achieving the mission. A video of the experiments
is available at https://youtu.be/xZBcsNMYK3Y.

As one can see, in the nominal case (i.e., without intention-
ally introduced dynamic variations), all the policies with and
without L1 augmentation succeeded in achieving the mission.
This, to a certain extent, indicates that the L1 augmentation
does not adversely affect the performance of RL policies in the
presence of no or minimal dynamic variations. Additionally,
L1 augmentation significantly improves the robustness of
PILCO and vanilla SAC, enabling them to succeed under all
the tested scenarios except Scenario V for SAC, due to the
extreme dynamic variations induced by the the largest pertur-
bations in input gain and added masses. DR-SAC displayed
much more robustness compared to vanilla SAC as expected,
and only failed under Scenario V. It’s worth noting that L1

augmentation also further enhanced the robustness to DR-SAC

and made it succeed under Scenario V. In Scenario VI, a rubber
band was attached to the joint connecting the two links to
exert a disturbance force. The disturbance force applied by
the rubber band changed quite rapidly and peaked when Link
1 reached the upright position. This caused great challenges
for the RL policies, as evidenced by the struggling of PILCO
and SAC in the video, since, by training, these policies are
not expected to produce large control inputs near the upright
position. Nevertheless, with the help of L1 compensation,
PILCO and SAC were able to deal with this challenging
scenario.

V. CONCLUSION

This paper presents an add-on scheme to improve the
robustness of a reinforcement learning (RL) policy for con-
trolling systems with continuous state and action spaces, by
augmenting it with an L1 adaptive controller (L1AC) that
can quickly estimate and actively compensate for potential
dynamic variations during execution of this policy. Our ap-
proach is easy to implement and allows for the policy to be
trained or computed using almost any RL method (model-free
or model-based), either in a simulator or in the real world,
as long as a control-affine model to describe the dynamics of
the nominal environment is available for the L1AC design.
Experiments on different systems in both simulations and on
real hardware demonstrate the general applicability of the pro-
posed approach and its capability in improving the robustness
of RL policies including those trained robustly, e.g., using
domain/dynamics randomization (DR). Future work includes
incorporating mechanisms, e.g., based on robust control [31],
[33], to mitigate the effect of unmatched disturbance, and
model learning to safely and robustly learn the unknown
dynamics.

The proposed approach and existing robust RL methods
e.g., based on DR, do not necessarily replace each other.
Instead, they can complement each other, as demonstrated
by the experimental results in Section IV-C. As mentioned
before, existing robust RL methods aim to find a fixed policy
for all possible realizations of uncertainties, which could be
infeasible when the range of uncertainties is large. On the
other hand, the proposed adaptive augmentation approach can
deal with significant amount of matched uncertainties by using
additional control effort to actively compensate for those, but
cannot handle unmatched uncertainties in its current form.
For systems subject to both matched and unmatched distur-
bances, a compelling solution will be to combine the strength
of both by (1) (partially) ignoring matched disturbances in

https://youtu.be/xZBcsNMYK3Y
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training a policy using existing robust RL methods to reduce
conservativeness, and (2) augmenting the trained policy with
the proposed L1 scheme during execution of this policy to
compensate for matched disturbances.
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