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Abstract

Transposable elements (TEs) are responsible for significant
genomic variation in plants. Our understanding of the evolu-
tionary forces shaping TE polymorphism has lagged behind
other mutations because of the difficulty of accurately identi-
fying TE polymorphism in short-read population genomic data.
However, new approaches allow us to quantify TE poly-
morphisms in population datasets and address fundamental
questions about the evolution of these polymorphisms. Here,
we discuss how insertional biases shape where, when, and
how often TEs insert throughout the genome. Next, we
examine mechanisms by which TEs can affect phenotype.
Finally, we evaluate current evidence for selection on TE
polymorphisms. All together, it is clear that TEs are important,
but underappreciated, contributors to intraspecific phenotypic
variation, and that understanding the dynamics governing TE
polymorphism is crucial for evolutionary biologists interested in
the maintenance of variation.
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Introduction
Determining the evolutionary forces that shape genetic
variation is a key goal of evolutionary biology. The field
has developed a theoretical and empirical understanding

of how genetic variation from single-nucleotide poly-
morphisms (SNPs) shapes variation in traits and then
how these traits are acted on by selection [1]. However,
there is still a gap in our understanding of how different
types of mutations might shape the creation and main-
tenance of variation in response to selection. Here, we
focus on transposable elements (TEs) because TEs are
responsible for a great deal of genomic variability be-
tween and within species [2e5] and have the potential
to contribute to adaptation through a variety of mech-
anisms [6]. Determining the effect of TEs on trait
variation will be crucial for fully understanding how
genomic variation is created and selected on.

Since Barbara McClintock first described TEs in maize
[7], it has been difficult to both characterize TE varia-
tion and understand the contribution of TE variation to
evolution. The recent development of sophisticated
bioinformatics methods that can identify TE insertions
and deletions in short-read sequencing data [4,8e10]
along with cheaper long-read sequencing allowing the
creation of pangenomes (see studies reported by Gao
et al, Shahid and Slotkin, and Hufford et al. [11e13])
has made it possible to reliably detect TE poly-
morphisms genome-wide. These advances now allow
the field to address how TEs contribute to genomic and
phenotypic variation and how evolutionary processes,
such as drift and selection, act on this variation. In this
piece, we will discuss how the biology of TEs can shape
their dynamics within populations, the ways that TEs
can affect phenotypes, and how selection acts on TE
polymorphisms based on their phenotypic effects.

Complex dynamics of transposable element
insertions
TEs are demarcated into different classes depending on
their replication strategy and insertion mechanism (see
studies reported by Lisch [6] Wicker et al. [14], and
Bourque et al. [15]). TE integration machinery can
shape where, when, and how TEs insert into genomes,
and these insertion dynamics may have important con-
sequences for how TEs shape phenotypic variation.
Some TEs, such as P elements in Drosophila melanogaster
[16e18], and transpositionally active long terminal
repeat (LTR) and DNA transposon families in Arabi-
dopsis thaliana preferentially insert in open, euchromatic
regions adjacent to genes [19]. In yeast and slime mold,
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retrotransposons tend to insert upstream of genes,
particularly genes that encode RNA polymerase III,
which can help TEs proliferate further [20e22]. Maize
also contains TE families that show location insertion
bias in open chromatin, although there are differences in
insertion site characteristics between the families
[23e26].

Not all TEs are more likely to insert in euchromatic
regions. Some TEs preferentially insert in heterochro-
matic regions in yeast [27,28] and in centromeric and
pericentromeric regions in Arabidopsis lyrata and
A. thaliana, respectively [8]. In addition to insertion
preferences based on chromatin features, there is evi-
dence that recent TE insertions in A. thaliana genes are
enriched in genes with gene ontology (GO) terms
consistent with environmental response [29]. These
various insertional preferences may shape the likeli-
hood that new TE polymoporphisms affect spe-
cific phenotypes.

The rate at which TEs are inserted throughout the
genome can also vary over time, and TEs can insert in
episodic bursts [2,30e32]. These bursts may result from
external forces such as environmental irregularities,
climate change, ionizing radiation, and pollution
[29,33e35]. Polyploidy can also trigger a burst of TE
activity from genome shock, TE activation in hybrids
(reviewed in [36]), or relaxed selective pressures on
redundant duplicate sequences [37,38], although these
bursts do not happen in all polyploids [39]. If stressful
environments spur TE proliferation, TEs could likely
play a role in the adaptation to these stresses [40], but
we lack clear evidence linking stress-related trans-
position to specific adaptations.

There can also be genetic variation for TE insertion
frequency that segregates between populations. For
example, a single locus shapes genetic variation in
recent TE mobilization in A. thaliana [29]. Similarly,
there is genetic variation for mPing activity in domesti-
cated rice [41,42]. Overall, it is clear that a sweeping
categorization of TE insertion dynamics should not be
applied to all types of TEs. Rather, research in under-
standing what, if any, TE insertional biases exist will be
crucial for determining TE effects on phenotype.

The relationship between recombination
and transposable elements
The fate of new mutations in populations is deter-
mined, in part, by recombination, and the relationship
between TEs and recombination rate can be complex.
TE abundance is correlated with recombination rate for
some TE families in plants [43,44]. In addition, LTR
retrotransposons in maize are enriched in regions of
low recombination, whereas non-LTR retrotransposons
are found in regions of highest recombination when

compared with all other TE insertions [45]. There is
also a negative correlation between recombination and
abundance of LTR retrotransposons in soya bean, rice,
and bread wheat [43,44,46]. However, the relationship
between recombination rate and TE abundance may
be TE family and/or species-specific, because this
trend is not observed for all TEs within wheat and
maize [44,47].

TEs themselves can also affect the recombination rate;
in maize, there is evidence that TE insertions, when
heterozygous, can reduce recombination up to five-fold
in adjacent genes [48]. It is unclear if TEs are more
often present in regions of low recombination due to
TEs themselves reducing recombination when poly-
morphic in populations, the reduction of TE deletions
through ectopic recombination [49], recombination
suppression in repetitive regions due to TE silencing
[50e52], or by selection against TE insertions in gene-
dense regions where recombination rates are high and
where TE insertions are more likely to have negative
fitness consequences [53,54]. Regardless of the mech-
anism, associations between TEs and recombination will
affect the potential for TE insertions to affect pheno-
typic variation.

Phenotypic effects on transposable element
polymorphisms
There are a number of different mechanisms through
which TE insertions could affect phenotypes (reviewed
in detail in [6]), and understanding the prevalence of
these different mechanisms is crucial for determining
the role TEs play in shaping phenotypic variation. First,
the process of insertion could affect traits by increasing
genome size [55] which could slow down developmental
time and negatively impact fitness in some environ-
ments [56,57]. Here, the insertion of a single TE is
unlikely to have a large phenotypic effect; instead, we
might expect to see phenotypic effects from large
numbers of insertions. Second, TE insertions can
directly disrupt functional sequence in genes or regu-
latory regions, causing a loss of function. For example,
the wrinkled pea mutation studied by Mendel is the
result of a loss-of-function mutation caused by a TE
insertion [58]. Although many loss-of-function muta-
tions are deleterious, these types of mutations can
contribute to phenotypic variation that can be neutral or
beneficial [59].

Third, TEs can affect gene expression through a number
of mechanisms (reviewed in [60]). TEs can carry regu-
latory elements, which could affect gene regulation of
nearby genes [61]. A classic example of this mechanism
is the hopscotch element responsible for branching
morphology in domesticated maize [62]. Alternatively,
genomic hosts may silence new TEs through methyl-
ation and, if this methylation spills onto nearby genes,
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silence the expression of these genes [63,64]. The
prevalence of this mechanism is supported by evidence
in A. thaliana; genes in genomic regions with high TE
density tend to have lower expression than genes in
regions with few TEs [64] and that across diverse panels
of genotypes, TE insertions are associated with reduced
expression in A. thaliana and C. grandiflora [29,65].
However, in maize, TE insertions are associated with
increases in methylation but can be associated with both
increases or decreases of nearby gene expression [66].
Similarly, in rice, TE insertions are associated with
methylation but not changes in gene expression unless
the insertion is genic [67], and TE insertions can both
increase and decrease expression in tomato [68].
Whatever the mechanism, it is clear that TEs affect the
expression of nearby genes in a number of plant spe-
cies [9,65,68].

There are too many examples of specific TE poly-
morphisms affecting relevant phenotypes to review here
(for example [62,69]). Overall, limited current evidence
suggests that TE polymorphisms are more likely to
affect phenotypes and will have larger effects than
SNPs. For example, common TE insertions are twice as
likely to affect gene expression than SNPs in
C. grandiflora [65], and TE polymorphisms have larger

phenotypic effect sizes than SNPs in tomato [68]. In
addition, the propensity of some TEs to insert in open
chromatin may make them especially likely to have
phenotypic effects, because these regions are important
for phenotypic variation [70e72]. However, more work
is needed to uncover the importance of TEs in shaping
phenotypic variation and the mechanisms through
which they do so.

Selection on transposable element
insertions
Once TEs insert into a new part of the genome, their
allele frequencies and persistence will be shaped by
neutral forces such as drift and, potentially, by selection.
Since selection acts on phenotypes, the types of selec-
tion acting on TE polymorphisms will depend on the
phenotypic effects of these insertions. Recent evidence
suggests that TE polymorphisms often segregate at low
frequencies, a signature of negative selection [29,73]. In
addition, rare TEs are often associated with extreme
expression levels, suggesting that rare TEs have
phenotypic effects that are likely deleterious if gene
expression is under stabilizing selection [9,65]. Along-
side this evidence, new TE insertions are commonly
purged from genomic regions where they are likely to
have functional consequences [8,37], suggesting that

Figure 1

The relationship between TEs and selection. This schematic shows the processes we discuss in this article. First, TEs insert in the genome. Second,
these insertions affect phenotypic variation within a plant species. Third, selection on phenotypic variation shapes the frequencies of TE insertions in the
genome. TE, transposable element.
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these TEs have deleterious effects. Additional evidence
of the general deleterious nature of TEs comes from the
observation that TEs are often lost during selfing of
previously outbred maize lines, suggesting that
increased homozygosity led to the removal of TEs by
negative selection [74].

However, TEs can also be positively selected, and a
number of well-known examples of TEs affecting phe-
notypes are linked to adaptation. For example, TEs have
independently inserted into FLOWERING LOCUS C in
Capsella rubella, Arabidopsis arenosa, and A. thaliana,
suggesting a role in phenological adaptation to climate
[29,37,69]. In addition, TE insertion polymorphisms in
A. thaliana are often associated with environmental
clines and are overrepresented in genes with GO terms
associated with defense response, consistent with a
potential contribution of TE polymorphisms to local
adaptation [29]. A similar pattern of overrepresentation
has also been found in tomato [68]. There are additional
examples of TEs identified in selective sweeps, which
would also be expected if TEs are associated with
adaptation [75].

Although recent population genetic work has identified
negative and positive selection acting on TEs, we still
lack a comprehensive view of selection on TEs, in
general, and how these selective pressures might differ
from those acting on other types of sequence variation,
such as SNPs. In addition, it would be useful to know
how the types of selection on TEs differ across species
d for example, we might expect different types of se-
lection pressures on TE insertions in small genomes
than in large genomes [76] or in selfers compared with
outcrossers [55]d or across different types of TEs [45].

Conclusion
Our current understanding of TEs suggests that they
play an important role in shaping phenotypic variation
and the response to selection. As we have described
here, TEs contribute to large amounts of genomic
sequence variation and the dynamics of when and where
they insert are complex. TE polymorphisms affect
phenotype through a number of mechanisms and, as
expected if TEs tend to affect phenotypes, there is
evidence that the frequencies of TE insertions are
shaped by negative and positive selection. However, we
still lack comprehensive links between all of these
processes to fully understand the role that TEs play in
shaping variation for traits.

One promising path forward is to expand the research
program linking TE polymorphism to phenotypic varia-
tion through GWAS and other quantitative genetic ap-
proaches. Quantifying the contribution of TEs to trait
variation, especially for ecologically relevant traits, will
provide crucial information about their importance for

trait evolution. These approaches could also compare
different types or ages of TEs and incorporate infor-
mation about the epigenomic properties of these in-
sertions to provide hypotheses for the mechanisms by
which TEs affect phenotypes. All together, this type of
approach has the potential to build a clear understand-
ing of TEs’ role in evolutionary processes.
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