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Tube-Certified Trajectory Tracking for Nonlinear Systems
With Robust Control Contraction Metrics
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Abstract—This paper presents an approach towards guar-
anteed trajectory tracking for nonlinear control-affine systems
subject to external disturbances based on robust control con-
traction metrics (CCM) that aims to minimize the L∞ gain from
the disturbances to nominal-actual trajectory deviations. The
guarantee is in the form of invariant tubes, computed offline and
valid for any nominal trajectories, in which the actual states and
inputs of the system are guaranteed to stay despite disturbances.
Under mild assumptions, we prove that the proposed robust CCM
(RCCM) approach yields tighter tubes than an existing approach
based on CCM and input-to-state stability analysis. We show how
the RCCM-based tracking controller together with tubes can
be incorporated into a feedback motion planning framework to
plan safe trajectories for robotic systems. Simulation results il-
lustrate the effectiveness of the proposed method and empirically
demonstrate reduced conservatism compared to the CCM-based
approach.

Index Terms—Planning under uncertainty, robot safety, inte-
grated planning and control, robust control, nonlinear systems

I. INTRODUCTION

Motion planning for robots with nonlinear and underactu-
ated dynamics – with guaranteed safety in the presence of
uncertainties – remains to be a challenging problem. The
uncertainties can cause the robot’s actual state trajectory to
significantly deviate from its nominal behavior, causing colli-
sions, especially when a nominal input trajectory is executed in
an open-loop fashion (see Fig. 1). Feedback motion planning
(FMP) aims to mitigate the effect of uncertainties through the
use of a feedback controller that tracks a nominal (or desired)
trajectory. A common practice in FMP to ensure vehicle safety
with respect to dynamic constraints and collision avoidance
involves design of the tracking controller and computation of
a tube or funnel around the nominal trajectory which is guar-
anteed to contain the actual trajectory despite uncertainties.

Related Work: Various methods have been proposed for
computing and/or optimizing such tubes or funnels in nonlin-
ear setting. For the special case of fully-actuated systems, the
tubes or funnels may be computed and optimized using sliding
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Fig. 1: Planning and control of a planar VTOL vehicle under
wind disturbances. Light blue and green shaded areas denote
the tubes associated with a CCM controller from [3], and the
proposed RCCM controller, respectively. Dashed lines denote
the trajectories planned without using tubes (left) and with
CCM (right) and RCCM (middle) tubes. OL: open loop.

mode control [1]. In [2], the authors used linear analysis
(i.e., propagation of ellipsoids under linearized dynamics) to
compute the size of approximate invariant funnels, and further
leveraged it to optimize the nominal trajectory. However, the
linearity assumption only holds in a small region around the
particular nominal trajectory. Convex programming-based ver-
ification methods such as sum of squares (SOS) programming
have also gained popularity in FMP. For instance, the LQR tree
algorithms in [4], [5] combines local LQR feedback controllers
with funnels to compose a nonlinear feedback policy to cover
reachable areas. However, users are restricted to a fixed set of
trajectories computed offline when applying these algorithms.

The concept of tubes has been explored extensively within
Tube Model Predictive Control (TMPC), where one computes
a tracking feedback (also termed as ancillary) controller that
keeps the state within an invariant tube around the nominal
MPC trajectory despite disturbances. For instance, assum-
ing the existence of a stabilizing feedback controller and
a Lyapunov function, [6] constructed a tube based on a
Lipschitz constant of the dynamics. This approach, however,
becomes very conservative for larger prediction horizons. For
the special case of feedback linearizable systems, [7] used a
boundary layer sliding controller as an auxiliary controller,
which enables the tube to be parameterized as a polytope and
its geometry to be co-optimized in the MPC problem. Re-
cently in [8], for incrementally stabilizable nonlinear systems
subject to state and input dependent disturbances, the authors
leveraged scalar bounds of an incremental Lyapunov function,
computed offline, to online predict the tube size.

Recent work has explored contraction theory for FMP.
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Contraction theory [9] is a method for analyzing nonlinear
systems in a differential framework and is focused on studying
the convergence between pairs of state trajectories towards
each other, i.e., incremental stability. It has recently been
extended for constructive control design via control contrac-
tion metrics (CCM) [10], [11]. Leveraging CCM, the authors
of [3] designed a tracking controller for a nominal nonlinear
system and derived tubes in which the actual states are guaran-
teed to remain despite disturbances via input-to-state stability
(ISS) analysis. For systems with matched uncertainties, the
authors of [12] designed an L1 adaptive controller to augment
a nominal CCM controller and showed that the resulting
tube’s size could be systematically reduced by tuning some
parameters of the adaptive controller, while the method in
[13] – based on robust Riemannian energy conditions and
disturbance estimation – guaranteed exponential convergence
to nominal trajectories despite the uncertainties. Finally, robust
CCM was leveraged in [14] to synthesize nonlinear controllers
that minimize the L2 gain from disturbances to outputs. This
method, however, does not provide tubes to quantify the
transient behavior of states and inputs.

Statement of Contributions: For nonlinear control-affine
systems subject to bounded disturbances, this paper presents a
tracking controller based on robust CCM (RCCM) to minimize
the L∞ gain from disturbances to nominal-actual trajectory de-
viations. By solving convex optimization problems offline, the
proposed RCCM scheme produces a fully nonlinear tracking
controller with explicit disturbance rejection property together
with certificate tubes around nominal trajectories, for both
states and inputs, in which the actual state/input variables
are guaranteed to stay despite disturbances. We further prove,
under mild assumptions, that the proposed RCCM approach
yields tighter tubes than the CCM approach in [3], which
ignores the disturbance in designing the tracking controller
and relies on ISS analysis to derive the tubes. Additionally,
we illustrate how the RCCM controller and the tubes can be
incorporated into an FMP framework to plan safe trajectories,
and verify the proposed scheme on a planar vertical take-off
and landing (VTOL) vehicle and a 3D quadrotor. Compared
to the CCM approach, our RCCM approach demonstrates
improved tracking performance and reduced tube size for
both states and inputs, leading to more aggressive yet safe
trajectories (See Fig. 1).

Notations. Let Rn, R+ and Rm×n denote the n-dimensional
real vector space, the set of non-negative real numbers, and
the set of real m by n matrices, respectively. In and 0 denote
an n × n identity matrix, and a zero matrix of compatible
dimensions, respectively. ∥·∥ denotes the 2-norm of a vec-
tor or a matrix. The space L∞e is the set of signals on
[0,∞) which, truncated to any finite interval [a, b], have finite
amplitude. The L∞- and truncated L∞-norm of a function
x : R+ → Rn are defined as ∥x∥L∞

≜ supt≥0 ∥x(t)∥
and ∥x∥L[0,T ]

∞
≜ sup0≤t≤T ∥x(t)∥, respectively. Let ∂yF (x)

denote the Lie derivative of the matrix-valued function F at x
along the vector y. For symmetric matrices P and Q, P > Q
(P ≥ Q) means P −Q is positive definite (semidefinite). ⟨X⟩
is the shorthand notation of X +X⊤.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a nonlinear control-affine system

ẋ = f(x) +B(x)u+Bw(x)w, z = g(x, u), (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control
input vector, w(t) ∈ Rp is the disturbance vector and z(t) ∈
Rq denotes the variables related to the performance (with z =
x or z = u as a special case), and f(x), B(x) and Bw(x)
are known vector/matrix functions of compatible dimensions.
We use bi and bw,i to represent the ith column of B(x) and
Bw(x), respectively.

For system (1), assume we have a nominal state and input
trajectory, x⋆(·) and u⋆(·), satisfying the nominal dynamics:

ẋ⋆ = f(x⋆) +B(x⋆)u⋆ +Bw(x
⋆)w⋆, z⋆ = g(x⋆, u⋆), (2)

where w⋆ is the vector of nominal disturbances (including
w⋆(t) ≡ 0 as a special case). This paper is focused on
designing a state-feedback controller in the form of

u(t) = k(x(t), x⋆(t)) + u⋆(t) (3)

to minimize the gain from disturbance deviation, w − w⋆, to
output deviation, z − z⋆, of the closed-loop system (obtained
by applying the controller (3) to (1)):

ẋ = f(x) +B(x) (k(x, x⋆) + u⋆) +Bw(x)w,

z = g(x, k(x, x⋆) + u⋆)
(4)

Formally, such gain is quantified using the concept of universal
L∞ gain defined as follows. Hereafter, we use universal
L∞ gain and L∞ gain interchangeably.

Definition 1. (Universal L∞ gain) A control system (4)
achieves a universal L∞-gain bound of α if for any target
trajectory x⋆, w⋆, z⋆ satisfying (4), any initial condition x(0),
and input w such that w − w⋆∈L∞e, the condition

∥z−z⋆∥2L[0,T ]
∞

≤α2∥w−w⋆∥2L[0,T ]
∞

+β(x(0), x⋆(0)), ∀T >0,
(5)

holds for a function β(x1, x2)≥0 with β(x, x)=0 for all x.

Remark 1. The L∞-gain bound α in Definition 1 naturally
gives certificate tubes to quantify how much the actual tra-
jectory z(·) deviates from the nominal trajectory z⋆(·). For
instance, by setting z = x and x(0) = x⋆(0) and using a
worst-case estimate of ∥w − w⋆∥L[0,T ]

∞
, denoted by w̄ (i.e.,

∥w − w⋆∥L[0,T ]
∞

≤ w̄), the inequality (5) implies x∈Ω(x⋆) ≜{︂
y ∈ Rn : ∥y−x⋆∥L[0,T ]

∞
≤αw̄

}︂
for any T > 0.

Remark 2. Definition 1 is inspired by the concept of universal
L2 gain in [14]. However, unlike the L∞ gain in Definition 1,
the L2 gain does not produce tubes to quantify the transient
behavior of the variable z.

A. Preliminaries

CCM is a tool for controller synthesis to ensure incremental
stability of a nonlinear system by studying the variational
system, characterized by the differential dynamics [10]. In
this paper, we propose RCCM to design the controller (3)
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to achieve or minimize an L∞-gain bound. The differential
dynamics associated with (1) are given by

δ̇x = A(x, u, w)δx +B(x)δu +Bw(x)δw,

δz = C(x, u)δx +D(x, u)δu,
(6)

where A(x, u, w) ≜ ∂f
∂x +

m∑︁
i=1

∂bi
∂x ui +

p∑︁
i=1

∂bw,i

∂x wi, C(x, u) ≜
∂g
∂x and D(x, u) ≜ ∂g

∂u .
Defining K(x, x⋆) ≜ ∂k

∂x with k characterizing the control
law (3), we obtain the differential dynamics of the closed-loop
system (4) as

δ̇x = Aδx + Bδw, δz = Cδx +Dδw, (7)
where

A ≜ (A+BK), B = Bw, C ≜ (C +DK), D = 0. (8)

Our solution also involves the differential L∞ gain, defined
as follows.

Definition 2. (Differential L∞ gain) A system with its differ-
ential dynamics represented by (7) has a differential L∞-gain
bound of α > 0, if for all T > 0 one has

∥δz∥2L[0,T ]
∞

≤ α2 ∥δw∥2L[0,T ]
∞

+ β(x(0), δx(0)), (9)

for some function β(x, δx) with β(x, 0) = 0 for all x.

Before moving to the next section, we now introduce some
notations related to Riemannian geometry. A Riemannian
metric on Rn is a symmetric positive-definite matrix function
M(x), smooth in x, which defines a “local Euclidean” struc-
ture for any two tangent vectors δ1 and δ2 through the inner
product ⟨δ1, δ2⟩x ≜ δ⊤1 M(x)δ2 and the norm

√︁
⟨δ1, δ2⟩x. A

metric is called uniformly bounded if a1I ≤ M(x) ≤ a2I
holds ∀x and for some scalars a2 ≥ a1 > 0. Let Γ(a, b) be the
set of smooth paths between two points a and b in Rn, where
each c ∈ Γ(a, b) is a piecewise smooth mapping, c : [0, 1] →
Rn, satisfying c(0) = a, c(1) = b. We use the notation
c(s), s ∈ [0, 1], and cs(s) ≜ ∂c

∂s . Given a metric M(x), the
energy of a path c is defined as E(c) ≜

∫︁ 1

0
c⊤s M(c(s))cs(s)ds.

We also use the notation E(a, b) to denote the minimal energy
of a path joining a and b, i.e., E(a, b) ≜ infc∈Γ(a,b)E(c).

III. ROBUST CCM FOR TUBE-CERTIFIED TRAJECTORY
TRACKING

We first introduce an approach to designing a fully nonlinear
controller in the form of (3) to achieve a given L∞-gain bound
or minimize such a bound, leveraging RCCM. We then present
the derivation and optimization of the certificate tubes around
nominal state and control input trajectories, in which the actual
states and inputs are guaranteed to stay.

A. RCCM for universal L∞ gain guarantee

Existing work, e.g., [15], provides solutions to controller
design for a linear time-invariant (LTI) system for standard
L∞-gain guarantee/minimization using linear matrix inequal-
ity (LMI) techniques. We now extend this result to nonlin-
ear systems for differential L∞-gain guarantee/minimization,

summarized in the following lemma. The proof is similar to
the LTI case and is included in [16] due to space limit.

Lemma 1. The closed-loop system (4) has a differential L∞-
gain bound of α > 0 if there exists a uniformly-bounded
symmetric metric M(x) > 0 and positive constants λ and
µ such that for all x,w, we have[︃

⟨MA⟩+ Ṁ + λM MB
B⊤M −µIp

]︃
≤ 0, (10)⎡⎣ λM 0 C⊤

0 (α− µ)Ip D⊤

C D αIq

⎤⎦ ≥ 0, (11)

where Ṁ ≜
∑︁n

i=1
∂M
∂xi

ẋi with ẋi given by (4).

Remark 3. In case the metric M(x) depends on xi, an element
of x, whose derivative is dependent on the input u (or w), Ṁ
and thus the condition (10) will depend on u (or w). In this
case, a bound on u (or w) needs to be known in order to verify
the conditions (10) and (11).

We term the metric V (x, δx) = δ⊤x M(x)δx as a robust CCM
(RCCM). Given a closed-loop system, Lemma 1 provides
conditions to check whether a constant is a differential L∞-
gain bound of the system. We next address the problem of how
to design a controller to achieve a desired universal L∞-gain
bound given an open-loop plant (1).

Control law construction: Similar to [14], we use M(x) as
a Riemannian metric to choose the path of minimum energy
joining x and x⋆ and construct the control law:

γ(t) = argc∈Γ(x(t),x⋆(t)) minE(c) (12a)

u(t) = u⋆(t) +

∫︂ s

0

K (γ(t, s))
∂γ(t, s)

∂s
ds, (12b)

where E(c) ≜
∫︁ 1

0
c⊤s M(c(s))cs(s)ds and the matrix function

K(·) will be introduced later in (13) and (14). Following [10],
we make the following assumption to simplify the subsequent
analysis.

Assumption 1. For the control system (1), (12), the set of
times t ∈ [0,∞) for which x(t) is in the cut locus of x⋆(t)
has zero measure.

Without this assumption, the main results (Theorem 1) still
hold if the derivative of the Riemannian energy, E(x, x⋆),
used in proof of Theorem 1, is replaced with its upper Dini
derivative, as done in [3]. The main theoretical results for
synthesizing a controller using RCCM to guarantee a universal
L∞-gain bound can now be presented.

Theorem 1. For the plant (1) with differential dynamics (6),
suppose there exists a uniformly-bounded metric W (x) > 0,
a matrix function Y (x), and positive constants λ, µ and α
such that[︃

⟨AW +BY ⟩ − Ẇ + λW Bw

B⊤
w −µIp

]︃
≤ 0, (13)⎡⎣ λW ⋆ ⋆

0 (α− µ)Ip ⋆
CW +DY 0 αIq

⎤⎦ ≥ 0, (14)
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for all x, u, w, where Ẇ ≜
∑︁n

i=1
∂W
∂xi

ẋi. Then for any target
trajectory u⋆, x⋆, w⋆ satisfying (2), if Assumption 1 holds, the
RCCM controller (12) with

K(x) = Y (x)W−1(x), (15)

achieves a universal L∞-gain bound of α for the closed-loop
system.

Proof. See [16].
Remark 4. From the proof of Theorem 1, one can see that
W (x) in (13) and (14) is connected with M(x) in (10)
and (11) by M(x) =W−1(x). This is similar to the LTI case
where a matrix equal to the inverse of a Lyapunov matrix
is introduced for state-feedback control design [15]. We term
W (x) as a dual RCCM.

Removal of synthesis conditions’ dependence on u:
Condition (13) may depend on u and w due to the presence
of terms A and Ẇ . Dependence on w is not a significant
issue as a bound on w can usually be pre-established and
incorporated in solving the optimization problem involving
(13). Since a bound on u is not easy to obtain (before a
controller is synthesized), the dependence of (13) on u is
undesired. To remove such dependence, we need the following
condition:
(C1) For each i = 1, . . . ,m, ∂biW −

⟨︁
∂bi
∂xW

⟩︁
= 0.

Formally, condition (C1) states that bi is a Killing vector for
the metric W [10, Section III.A]. In particular, if B is in the
form of [0, Im1

]⊤, condition (C1) requires that W must not
depend on the last m1 state variables.

B. Offline search of RCCM for L∞ gain minimization

The constant α, which is an upper bound on the universal
L∞ gain, appears linearly in the condition (14) of Theorem 1.
Therefore, one can minimize α when searching for W (x) and
Y (x). To make the optimization problem feasible, one often
needs to limit the states to a compact set, i.e., considering
x ∈ X , where X is a compact set. Additionally, since
calculating the inverse of W (x) is needed for constructing the
control law due to M(x) =W−1(x) (detailed in [16, Section
III.D]), one may also want to enforce a lower bound, β, on the
eigenvalues of W (x). Therefore, in practice, one could solve
the optimization problem OPTRCCM :

OPTRCCM : min
W,Y,λ>0,µ>0

α (16a)

subject to Conditions (13) and (14), (16b)
W (x) ≥ βIn, (16c)

x ∈ X . (16d)

C. Offline optimization for refining state and input tubes

In formulating the optimization problem OPTRCCM to
search for W (x) and Y (x), the z vector often contains
weighted states and inputs to balance the tracking perfor-
mance and control efforts. For instance, we could have
z = [(Qx)⊤, (Ru)⊤]⊤, where Q and R are some weighting
matrices. After obtaining W (x) and Y (x), one can always
derive refined L∞-gain bounds for some specific state and

input variables, ẑ ∈ Rl, by re-deriving the C and D matrices in
(6) for ẑ = ĝ(x, u), and then solving the optimization problem
OPTREF :

OPTREF : min
λ>0,µ>0

α (17a)

subject to Conditions (13) and (14), (17b)
x ∈ X . (17c)

For instance, by solving OPTREF , we get an L∞-gain bound
for the deviation of some states (i.e., ∥xI − x⋆I ∥L∞

, where I
is the index set) with ẑ = xI, and an L∞-gain bound for the
deviation of all inputs (i.e., ∥u− u⋆∥L∞

) with ẑ = u. With an
L∞-gain bound α (from solving OPTREF ) and a bound w̄ on
the disturbances, i.e., ∥w − w⋆∥L∞

≤ w̄, the actual variable
ẑ is guaranteed to stay in a tube around the nominal variable
ẑ⋆, i.e.,

ẑ ∈ Ω(ẑ⋆) ≜ {y ∈ Rl : ∥y − ẑ⋆∥ ≤ αw̄}. (18)

Following this idea, we can easily get the tube for all or part
of the states or inputs.

Remark 5. The tubes obtained through (18) hold for any
trajectory that satisfy the nominal dynamics (2), and are
particularly suitable to be incorporated into online planning
and predictive control schemes, e.g., tube MPC.

Online computation of the control law is detailed in [16],
and omitted here due to space limit.

IV. APPLICATION TO FEEDBACK MOTION PLANNING

Thanks to the certificate tubes in (18), the RCCM controller
presented in Section III can be conveniently incorporated as
a low-level tracking or ancillary controller into a feedback
motion planning or nonlinear tube MPC framework. We
demonstrate an application to the former in this section. The
core idea is to compute nominal motion plans (x⋆, u⋆) using
the nominal dynamics (2) and tightened constraints. Denote
the tubes for x − x⋆ and u − u⋆ obtained through solving
OPTREF in Section III-C as Ω̃x ≜ {x̃ ∈ Rn : ∥x̃∥ ≤ αxw̄}
and Ω̃u ≜ {ũ ∈ Rm : ∥ũ∥ ≤ αuw̄}, where αx and αu

are the universal L∞-gain bounds for the states and control
inputs, respectively, and w̄ is a bound on the disturbances, i.e.,
∥w − w⋆∥L∞

≤ w̄. Then, the tightened constraints are given
by

x⋆(·) ∈ X̄ ≜ X ⊖ Ω̃x, u
⋆(·) ∈ Ū ≜ U ⊖ Ω̃u, (19)

where U is the control constraint set, and ⊖ denotes the
Minkowski set difference. One can simply use the tightened
constraints in (19) and the nominal dynamics (2) to plan
a trajectory. Then, with the proposed RCCM controller, the
actual states and inputs are guaranteed to stay in X and U ,
respectively, in the presence of disturbances bounded by w̄.

V. COMPARISONS WITH AN EXISTING CCM-BASED
APPROACH

In [3], the authors designed a tracking controller based on
CCM without considering disturbances and then derived a tube
where the actual states are guaranteed to stay in the presence
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of disturbances using input-to-state stability (ISS) analysis. In
comparison, our method explicitly incorporates disturbance
rejection in designing the RCCM controller and produces tubes
for both states and inputs together with the controller (if we
include the tube refining process in Section III-C as a part
of the controller design process). Under mild assumptions,
we will prove that the tube yielded by our method is tighter
than that from applying the idea of [3]. To be consistent with
the problem setting in [3], for this section, we set w⋆ ≡ 0
in defining the nominal (i.e., un-disturbed) system (2), which
leads to the nominal dynamics:

ẋ⋆ = f(x⋆) +B(x⋆)u⋆. (20)

Unlike our approach, in [3] the search of the CCM metric
is not jointly done with search of a matrix function (i.e.,
Y (x) in Theorem 1, used to construct a differential feedback
controller). Instead, [3] uses a min-norm type control law
computed using only the CCM metric. To facilitate a rigorous
comparison, we slightly modify the condition for the CCM
metric search to include another matrix function (analogous to
Y (x) in Theorem 1). Indeed, a joint search of a CCM metric
W (x) and a matrix function Y (x) is adopted in [10], which
[3] builds upon. Such modification only influences the control
signal determination, and does not change the essential ideas
of [3]. With such modifications, the main results of [3] can be
summarized as follows.

Lemma 2. ([3]) For the nominal system (20), assume there
exists a metric Ŵ (x⋆), a matrix function Ŷ (x⋆) and a constant
λ̂ > 0 satisfying

− ̇̂
W + ⟨ÂŴ +BŶ ⟩+ 2λ̂Ŵ ≤ 0, (21)

where Â ≜ ∂f
∂x⋆ +

m∑︁
i=1

∂bi
∂x u

⋆
i , ̇̂
W =

∑︁n
i=1

∂Ŵ (x⋆)
∂x⋆

i
ẋ⋆i . Further-

more, Ŵ (x⋆) is uniformly bounded, i.e.
¯
βIn ≤ Ŵ (x⋆) ≤ β̄In

with β̄ ≥
¯
β > 0, for all x⋆ ∈ X . Then, for the perturbed

system (1) under the controller (12) with W = Ŵ and Y = Ŷ ,
if x(0) = x⋆(0), we have

∥x− x⋆∥2L[0,T ]
∞

≤ α̂2 ∥w∥L[0,T ]
∞

, (22)

where
α̂ ≜

1

λ̂

√︂
β̄/

¯
β sup

x∈X
σ̄(Bw(x)), (23)

with σ̄(·) denoting the largest singular value.

We also need the following assumption.

Assumption 2. The metric Ŵ in (21) satisfies both of the
following conditions:

(C2) For each i = 1, . . . ,m, ∂biŴ −
⟨︂

∂bi
∂x Ŵ

⟩︂
= 0.

(C3) For each i = 1, . . . , p, ∂bw,iŴ −
⟨︂

∂bw,i

∂x Ŵ
⟩︂
= 0.

Condition (C2) is similar to condition (C1), and is also
imposed in [3] to simplify the verification of (21) and get a
controller with a simple differential feedback form (see [10,
III.A]). Condition (C3) states that each bw,i forms a Killing
vector for Ŵ , which essentially ensures that the condition (21),
evaluated using the perturbed dynamics (i.e., replacing Â in

(21) with A below (6)), does not depend on w. Now we are
ready to build a connection between the CCM-based approach
in [3] and our approach.

Lemma 3. Assume there exists a metric Ŵ (x), a matrix
function Ŷ (x), and a constant λ̂ > 0 satisfying (21) and
Assumption 2. Then, (13) and (14) with C = In and D = 0
(corresponding to g(x, u) = x) can be satisfied with

W (x) = aŴ (x), Y (x) = aŶ (x), λ = λ̂, α = µ = α̂, (24)

where a≜supx∈X σ̄(Bw(x))/
√︂
β̄
¯
β, and α̂ is defined in (23).

Proof. See [16].
According to Lemma 3, if we can find matrices Ŵ and Ŷ

and constants λ̂ satisfying the inequality (21)that guarantees
the contraction of the nominal closed-loop system and ensures
an L∞-gain bound α̂ from disturbances to states, we can ob-
tain the same L∞-gain bound using our approach (Theorem 1)
if we choose W (x) and Y (x) in (13) and (14) to be the
scaled versions of Ŵ (x) and Ŷ (x) in (21), i.e., enforcing the
constraints in (24). However, if we relax such constraints in the
optimization problem OPTRCCM , we are guaranteed to obtain
a less conservative bound α, i.e., α ≤ α̂. This observation is
summarized in the following theorem with the straightforward
proof omitted.

Theorem 2. Assume there exists a metric Ŵ (x), a matrix
function Ŷ (x), and a constant λ̂ > 0 satisfying (21) and
Assumption 2. Then, we can always find W (x), Y (x), λ > 0,
µ > 0 and α ≤ α̂ satisfying (13) and (14) with C = In and
D = 0, where α̂ is defined in (23).

Remark 6. Theorem 2 indicates that our proposed RCCM
approach is guaranteed to yield a tighter tube for the actual
states than the CCM approach in [3], under Assumption 2.

VI. SIMULATION RESULTS

In this section, we apply the proposed approach to a planar
VTOL vehicle (illustrated in Fig. 1) and a 3D quadrotor and
perform extensive comparisons with the CCM-based approach
in [3]. All the subsequent computations and simulations were
done in Matlab R2021a. Matlab codes are available at github.
com/boranzhao/robust ccm tube. Animations to visualize the
simulation results are included in the attached video, which is
also available at youtu.be/mrN5iQo7NxE.

A. Planar VTOL vehicle

The state vector is defined as x = [px, pz, ϕ, vx, vz, ϕ̇]
⊤,

where px and pz are the position in x and z directions,
respectively, vx and vz are the slip velocity (lateral) and the
velocity along the thrust axis in the body frame of the vehicle,
ϕ is the angle between the x direction of the body frame
and the x direction of the inertia frame. The input vector
u = [u1, u2] contains the thrust force produced by each of the
two propellers. The dynamics of the vehicle and details about
the implementation can be found in the extended version of
this paper [16].

http://github.com/boranzhao/robust_ccm_tube
http://github.com/boranzhao/robust_ccm_tube
http://youtu.be/mrN5iQo7NxE
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Fig. 2: Tube size for all states (top), position states (mid-
dle) and inputs (bottom) versus λ value under disturbances
bounded by w̄ = 1

1) Computation of CCM/RCCM and associated tubes:
We parameterize both the RCCM W and the CCM Ŵ as
polynomial matrices in (ϕ, vx) with up to degree 4 monomials.
For a fair comparison of the proposed RCCM-based approach
and the CCM-based approach in [3], we use same parameters
when searching for CCM and RCCM whenever possible. We
first consider the optimization of the tube size for all the states,
as considered in [3]. For simplicity, we did not use weights for
the states. For RCCM synthesis, we include a penalty for large
control efforts when solving OPTRCCM by setting g(x, u) =
[x⊤, u⊤]⊤, and denote the resulting controller as RCCM.
Additionally, we design another RCCM controller with a focus
on optimizing the tubes for the position states and inputs,
denoted as RCCM-P, by setting g(x, u) = [px, pz, u

⊤]⊤. We
denote the controller designed using the CCM approach in [3]
as CCM.

We consider a disturbance along the x direction of the
inertia frame with effective acceleration up to 1 m/s (i.e.,
W̄ = 1), which is 10 times as large as the disturbance
considered in [3]. We swept through a range of values for
λ (setting λ̂ = λ) and solved the OPTRCCM in Section III-B
to search for the RCCM and the optimization problem in [3,
Section 4.2] to search for the CCM, using SOS techniques
with YALMIP [17] and Mosek solver [18]. After obtaining
the RCCM, we further solved OPTREF in Section III-C by
gridding the state space to get refined tubes for different
variables. The results are shown in Fig. 2. According to the
top plot, while both controllers focused on optimizing the tube
size for all states without using weights, RCCM yielded a
much smaller tube than CCM. RCCM-P yielded a tube of
similar size for all states compared to CCM, which came as no
surprise since RCCM-P focused on minimizing the tube size
for position states only, i.e., (px, pz). From the middle and
bottom plots, one can see that RCCM-P yielded much smaller
tubes for both position states and inputs than RCCM, which
further outperforms CCM by a large margin. For subsequent
tests and simulations, we selected a best λ value for each of

-5 0 5 10 15
-5

0

5

10

15

Wind

Nominal
CCM
RCCM
RCCM-P
Tube: CCM
Tube: RCCM
Tube: RCCM-P

Fig. 3: Tubes and actual trajectories under different controllers

the three controllers in terms of tube size for (px, pz), since the
vehicle position is of more importance in tasks with collision-
avoidance requirements. The best values for CCM, RCCM,
RCCM-P are determined to be 0.8, 1.4 and 1.2, respectively.

2) Trajectory tracking and verification of tubes: To test
the trajectory tracking performance of the three controllers
in scenarios and evaluate the conservatism with the derived
tubes, we considered a task of navigation from the origin
to target point (10, 10). We first planed a nominal trajectory
with the objective of minimal force and minimal travel time,
where the state constraint h(x) ≥ 0, used in searching for
CCM/RCCM, was enforced. With the nominal state and input
trajectories, we simulated the performance of controllers in
the presence of a wind disturbance, artificially simulated by
w(t) = 0.8 + 0.2 sin(2πt/10). The results of the position
trajectories along with the tubes projected to the (px, pz) plane
are shown in Fig. 3. First, it is clear that the actual trajectory
under each controller always stays in the associated tube.
Second, in terms of tracking performance, RCCM-P and CCM
perform the best and worst, respectively.

We further incorporated the three controllers in feedback
motion planning for navigation in the presence of obstacles.
Due to space limit, the results are included in [16].

B. 3D quadrotor

The 3D quadrotor model is taken from [3]
and has the state-space representation given by
x = [px, py, pz, ṗx, ṗy, ṗz, τ, ϕ, θ, ψ]

⊤, where the position
p = [px, py, pz]

⊤ ∈ R3 and corresponding velocities are
expressed in the global inertial (vertical axis pointing down)
frame. Adopting the North-East-Down frame convention
for the quadrotor body and the XYZ Euler-angle rotation
sequence, the attitude (roll, pitch, yaw) is parameterized
as (ϕ, θ, ψ) and τ > 0 is the total (normalized by mass)
thrust generated by the four rotors. For controller design,
we consider u ≜ [τ̇, ϕ̇, θ̇]⊤ as the control input. The actual
implementation embeds the τ̇ term within an integrator, and
the resulting thrust and angular velocity reference (after
being converted to body rate reference) are passed to a
lower-level controller that is assumed to operate at a much
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faster time-scale. Given this parameterization, the dynamics
of the quadrotor may be written as⎡⎣p̈xp̈y
p̈z

⎤⎦ = ge3 − τ b̂z +w =

⎡⎣ −τ sin(θ) + w2

τ cos(θ) sin(ϕ) + w1

g − τ cos(θ) cos(ϕ) + w3

⎤⎦ , (25)

where g is the local gravitational acceleration, e3 = [0, 0, 1]⊤,
b̂z is the body-frame z-axis, and w = [w1, w2, w3]

⊤ ∈
R3 denotes the disturbance. We impose the following
bounds: (ϕ, θ) ∈ [−60◦, 60◦]2, τ ∈ [0.5, 2]g, (ϕ̇, θ̇) ∈
[−180◦/s, 180◦/s]2, and τ̇ ∈ [−5, 5]g/s, which are sufficient
for fairly aggressive maneuvers. Since yaw control is not a
focus here, we simply set ψ̇ = 0.

1) Computation of CCM/RCCM and tubes: We parame-
terized both the RCCM W and the CCM Ŵ as polynomial
matrices in (τ, ϕ, θ) with up to degree 3 monomials. Addition-
ally, the top left 6×6 block of Ŵ was imposed to be constant,
i.e., independent of (τ, ϕ, θ) to ensure that the resulting syn-
thesis condition does not depend on u (see [3] for details).
The RCCM synthesis condition (13), however, depends on
(τ̇, ϕ̇, θ̇), which is why we impose the bounds on (τ̇, ϕ̇, θ̇)
mentioned above. Similar to Section VI-A, we first considered
all states in optimizing the tube size. For simplicity, we did not
use weights for the states. For RCCM synthesis, we included a
penalty for large control efforts when solving OPTRCCM by
setting g(x, u) = [x⊤, 0.02τ̇, 0.05ϕ̇, 0.05θ̇]⊤, and denote the
resulting controller as RCCM. We designed another RCCM
controller by optimizing the tubes for the position states only.
For this, we set g(x, u) = [px, py, pz, 0.02τ̇, 0.05ϕ̇, 0.05θ̇]

⊤

and denote the resulting controller as RCCM-P. We addition-
ally designed a CCM controller and computed the associated
tubes by following [3]. Through numerical experimentation,
we found that imposing the lower bound constraint W ≥
0.01I9 yielded good performance for searching W , while
imposing the constraint Ŵ ≥ I9 yielded good performance
when searching Ŵ . We swept through a range of values from
0.4 to 3.6 for λ (setting λ̂ = λ) and solved the OPTRCCM in
Section III-B to search for the RCCM and the optimization
problem in [3, Section 4.2] to search for the CCM. We first
tried the SOS technique used in Section VI-A to solve the
involved optimization problems, but found it was not reli-
able especially for RCCM synthesis, taking notoriously long
time while still yielding unsatisfactory results. Therefore, we
eventually chose to grid the set of (τ, ϕ, θ) (and additionally
(τ̇, ϕ̇, θ̇) for RCCM search), and solved the resulting optimiza-
tion problem with a finite number of LMIs with YALMIP [17]
and Mosek solver [18]. After obtaining the RCCM, we further
solved OPTREF in Section III-C using the gridding technique
to get refined tubes for different variables. The results in terms
of tube size gain are shown in Fig. 4. As shown in the top
plot, while both controllers focused on optimizing the tube
size for all states without using weights, RCCM yielded a
much smaller tube than CCM. RCCM-P yielded a tube of
similar size for all states compared to CCM, which came as
no surprise since RCCM-P focused on minimizing the tube
size for position states only. From the bottom plot, one can
see that RCCM-P yielded much smaller tubes for the position
states than RCCM, which further outperformed CCM when λ

is less than 2. Note that Assumption 2 does not hold anymore
for this example, as the condition (C2) cannot be satisfied.
Therefore, we cannot guarantee that RCCM will yield tighter
tubes for all the states than CCM by applying Theorem 2.

0 0.5 1 1.5 2 2.5 3 3.5 4
100

101

102

CCM RCCM RCCM-P

0 0.5 1 1.5 2 2.5 3 3.5 4

10-1

101

Fig. 4: Tube size gain for all states (top) and position states
(bottom) versus λ (λ̂) value

2) Feedback motion planning and tracking in cluttered envi-
ronments: To verify the controller performance, we randomly
initialize the obstacle environments for the quadrotor, depicted
in Fig. 5. The task for the quadrotor is to navigate from the
start point [0, 0, 0]⊤ to the goal region, depicted by the light
green box, while avoding collisions. We considered a wind
disturbance of up to 1 m/s2, i.e., ∥w∥ ≤ w̄ = 1. Due to
space limit, we just show the performance of RCCM-P, which
yielded a tube of a 0.32 m radius ball (i.e., αpw̄ = 0.32)
for position coordinates at λ = 3.4 under the aforementioned
disturbance setting. The performance of CCM and the details
of trajectory planning leveraging the tubes for position states
are included in [16].

For simulation, RCCM-P was implemented using zero-
order-hold at 250 Hz. The Euler angular rates (ϕ̇, θ̇), computed
by the CCM/RCCM-P, and ψ̇ (which was set to constant
zero) were converted to desired body rates, which were then
sent to a low-level proportional controller. The P controller
computed the three moments to track the desired body rates.
The moments and the total thrust (from integrating τ̇ ) were
then applied as ultimate inputs to the quadrotor, which consists
of 12 states. The planned and actual trajectories together with
the projected tubes for position coordinates under RCCM-
P and a wind disturbance, artificially simulated by w(t) =
(0.8 + 0.2 sin(0.2πt)) [sin(45◦),− cos(45◦), 0], are depicted
in Fig. 5. One can see that the actual position trajectory was
fairly close to the nominal one and consistently stayed in the
ellipsoidal tubs. To evaluate the conservatism of the derived
theoretical bounds associated with RCCM-P, we performed
tests under incrementally increased disturbances. The results
are shown in Fig. 6. According to Fig. 6, the tracking error
under a disturbance bounded by w̄ = 6 violated the theoretical
bound associated with w̄ = 1 for the tested disturbance
setting, indicating that the tube for position states was not very
conservative. Trajectories of other states and control inputs are
included in [16].
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(a) RCCM-P: Isometric view (b) RCCM-P: Overhead view

Fig. 5: Planned nominal and actual trajectories in an obstacle-rich environment under the RCCM-P. Actual trajectories
consistently stay in the (light blue shaded) ellipsoidal tubes around the nominal trajectories.

0 2 4 6 8 10

Time (s)

0

0.1

0.2

0.3

0.4

Fig. 6: Tracking error for the position states. The green dashed
line denotes the theoretical bound associated with w̄ = 1.

VII. CONCLUSION

For nonlinear control-affine systems subject to bounded
disturbances, this paper presents robust control contraction
metrics (RCCM) for designing trajectory tracking controllers
with explicit disturbance rejection properties and certificate
tubes around any feasible nominal trajectories, for both states
and inputs, in which the actual trajectories are guaranteed
to remain despite disturbances. Both the RCCM controller
and the tubes can be computed, offline, by solving convex
optimization problems and conveniently incorporated into a
feedback motion planning framework. Simulation results for
a planar VTOL vehicle and a 3D quadrotor verify the effec-
tiveness the proposed approach.

Future work includes testing of the proposed method on
real hardware and leveraging the proposed method to deal with
unmatched uncertainties within an adaptive control framework
[12].
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