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Abstract—We propose a novel framework to learn the spatiotemporal variability in longitudinal 3D shape data sets, which contain
observations of objects that evolve and deform over time. This problem is challenging since surfaces come with arbitrary
parameterizations and thus, they need to be spatially registered. Also, different deforming objects, hereinafter referred to as 4D
surfaces, evolve at different speeds and thus they need to be temporally aligned. We solve this spatiotemporal registration problem
using a Riemannian approach. We treat a 3D surface as a point in a shape space equipped with an elastic Riemannian metric that
measures the amount of bending and stretching that the surfaces undergo. A 4D surface can then be seen as a trajectory in this space.
With this formulation, the statistical analysis of 4D surfaces can be cast as the problem of analyzing trajectories embedded in a
nonlinear Riemannian manifold. However, performing the spatiotemporal registration, and subsequently computing statistics, on such
nonlinear spaces is not straightforward as they rely on complex nonlinear optimizations. Our core contribution is the mapping of the
surfaces to the space of Square-Root Normal Fields (SRNF) where the L2 metric is equivalent to the partial elastic metric in the space
of surfaces. Thus, by solving the spatial registration in the SRNF space, the problem of analyzing 4D surfaces becomes the problem of
analyzing trajectories embedded in the SRNF space, which has a Euclidean structure. In this paper, we develop the building blocks that
enable such analysis. These include: (1) the spatiotemporal registration of arbitrarily parameterized 4D surfaces even in the presence
of large elastic deformations and large variations in their execution rates; (2) the computation of geodesics between 4D surfaces; (3)
the computation of statistical summaries, such as means and modes of variation, of collections of 4D surfaces; and (4) the synthesis of
random 4D surfaces. We demonstrate the performance of the proposed framework using 4D facial surfaces and 4D human body
shapes.

Index Terms—Dynamic surfaces, Elastic metric, Square-Root Normal Field, Statistical summaries, Shape synthesis and generation,
4D surface, Human4D, Face4D, Motion, Growth.
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1 INTRODUCTION

SHAPE, an essential property of natural and man-made
3D objects, deforms over time as a result of many in-

ternal and external factors. For instance, anatomical organs
such as bones, kidneys, and subcortical structures in the
brain deform due to natural growth or disease progression;
human faces deform as a consequence of talking, executing
facial expressions, and aging. Similarly, actions and motions
such as walking, jumping, and running are the result of
a deformation, over time, of the human body shape. The
ability to understand and model (1) the typical deformation
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patterns of a class of 3D objects, and (2) the variability
of these deformations within and across object classes has
many applications. For example, in medical diagnosis and
biological growth modeling, one is interested in measuring
the intensity of pain from facial deformations [1], and in
distinguishing between normal growth and disease progres-
sion using the deformation of body shape over time. In com-
puter vision and graphics, the ability to statistically model
such spatiotemporal variability can be used to summarize
collections of 3D animations, and simulate animations and
motions. Similar to 3D morphable models [2], these tools
can also be used in a generative model for synthesizing large
corpora of labeled longitudinal 3D shape data, e.g., 4D faces,
for training deep neural networks.

This paper proposes a novel framework for the statistical
analysis of longitudinal 3D shape data composed of objects
that deform over time. Each object is represented as a closed
manifold surface. We refer to an object captured at different
points in time, e.g., a 3D human face performing a facial
expression or speaking a sentence, or a 3D human body
shape growing or performing actions, as a 4D (or 3D + t)
surface. Given a set of such 4D surfaces, our goals are to:

• Compute the mean deformation pattern, i.e., the statis-
tical mean 4D surface. For example, the same person
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can smile in different ways. Similarly, different people
smile differently. The goal is to learn, based on observed
longitudinal shape data, the typical smile.

• Compute the main directions of variation, analogous to
Principal Component Analysis (PCA) for modeling 3D
shape variability [3], [4], but here we focus on modeling
variability in 4D surface collections.

• Characterize a population of 4D surfaces using statisti-
cal models.

• Synthesize new 4D surfaces by sampling from these
statistical models.

We refer to these tasks as the process of constructing a
4D atlas. Achieving this goal requires solving important
fundamental challenges. In fact, 3D objects such as faces,
human body shapes, and anatomical organs, which come
with arbitrary parameterizations, exhibit large elastic de-
formations within the same subject and across different
subjects. This makes their spatial registration, i.e., finding
one-to-one correspondences between each pair of shapes,
very challenging. In the case of 4D surfaces, there is an
additional temporal variability due to different execution
rates (speeds) of evolution within and across subjects. For
instance, a walking action can be executed at variable speeds
even by the same person. Thus, the statistical analysis of
the spatiotemporal variability in samples of 4D surfaces
requires efficient spatiotemporal registration of these sam-
ples. Spatial registration refers to the process of finding a
one-to-one correspondence between two 3D surfaces of the
same individual, captured at different points in time, or
of different individuals. Temporal registration refers to the
problem of finding the optimal time warping that aligns
4D surfaces, e.g., walking actions, performed at different
execution rates.

In this paper, we treat a 4D surface as a trajectory
in a high-dimensional nonlinear space. We then formulate
the problem of analyzing the spatiotemporal variability of
4D surfaces as the statistical analysis of elastic trajectories,
where elasticity corresponds to variations in the execution
rates of the 4D surfaces. However, performing statistics on
trajectories embedded in nonlinear spaces of high dimen-
sion is computationally expensive since it relies on nonlinear
optimizations. Our core contribution in this paper is the
mapping of the surfaces to the space of Square-Root Normal
Fields (SRNF) [4], [5], which has a Euclidean structure (see
Section 3.1—in particular, the L2 metric in the space of
SRNFs is equivalent to the partial elastic metric in the space
of surfaces), meaning that the problem of analyzing 4D
surfaces becomes the problem of analyzing trajectories, or
curves, embedded in the Euclidean space of SRNFs.

This paper develops the building blocks that enable such
analysis. We then use these building blocks to compute
statistical summaries, such as means and modes of variation
of collections of 4D surfaces, and for the automatic synthesis
of novel 4D surfaces. We demonstrate the utility and perfor-
mance of the proposed framework using 4D facial surfaces
from the VOCA dataset [6], 4D human body shapes from
the Dynamic FAUST (DFAUST) dataset [7], and dressed
4D human body shapes from the CAPE dataset [8]. Our
approach is, however, general and applies to all spherically-
parameterized surfaces. In summary, the main contributions
of this paper are as follows.

• We represent 4D surfaces as trajectories in the space of
SRNFs, which has a Euclidean structure (Section 3.1).
This key contribution enables the usage of standard
computational tools for the analysis and modeling of
4D surfaces (Section 3.2).

• We propose efficient algorithms for the spatiotempo-
ral registration of 4D surfaces and the computation
of geodesics between such 4D surfaces, even in the
presence of large elastic deformations and significant
variation in execution rates (Sections 3.2.2 and 3.2.3).

• The framework does not explicitly or implicitly as-
sume that the correspondences between the surfaces
are given. It simultaneously solves for the spatial and
temporal registrations, and for the 4D geodesics that are
optimal under the proposed metrics.

• We develop computational tools for (1) computing sum-
mary statistics of 4D surfaces and (2) synthesizing 4D
surfaces from formal statistical models (Section 4).

The remainder of this paper is organized as follows. We
first discuss related work in Section 2. Section 3 describes
the proposed mathematical framework. Section 4 discusses
its application to various statistical analysis tasks. Section 5
presents the results and discusses the performance of the
proposed framework. Section 6 summarizes the main find-
ings of this paper and discusses future research directions.
The Supplementary Material includes more technical de-
tails, additional results, and further performance analyses.

2 RELATED WORK

We classify the state-of-the-art into two categories. Methods
in the first category focus on cross-sectional shape data
(Section 2.1). Methods in the second category focus on
longitudinal shape data (Section 2.2).

2.1 Statistical models of cross-sectional 3D shape data

Modeling shape variability in 2D and 3D objects has been
studied extensively in the literature. Early methods use
Principal Component Analysis (PCA) to characterize the
shape space of objects. Initially introduced for the analysis of
planar shapes, the active shape model of Cootes et al. [9] has
been extended to 3D faces [10] and 3D human bodies [3];
see [2] for a detailed survey. These methods represent 3D
objects as discrete sets of landmarks, e.g., vertices, which
are assumed to be in correspondence across a population of
objects, and use standard Euclidean metrics for their com-
parison. Thus, they are limited to 3D objects that undergo
small elastic deformations.

To handle large nonlinear variations, e.g., elastic defor-
mations such as the bending and stretching observed in 3D
human body shapes, Anguelov et al. [11] introduced SCAPE,
which represents body shape and pose-dependent shape in
terms of triangle deformations instead of vertex displace-
ments. Hasler et al. [12] learn two linear models: one for pose
and one for body shape. Loper et al. [13] introduce SMPL, a
vertex-based linear model for human body shape and pose-
dependent shape variation. This model, which has been
extensively used in the literature, has also been adapted
to other types of objects such as animals [14] and human
body parts [15]. While these models can capture large
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variations, they exhibit two fundamental limitations. First,
they rely on separate models for pose-independent shape,
pose-dependent shape, and pose. Thus, they are limited
to specific classes of objects, e.g., human bodies. Changing
the target application, e.g., to animals [14] or infants [16],
requires redefining the model. Second, they either assume a
given registration between the surfaces of the 3D objects or
solve for registration separately by matching vertices across
the surfaces using an unrelated optimization criterion. To
address this problem, some methods, e.g., [17], inspired by
the minimum description length approach, jointly learn the
statistical model and the registration of the 3D scans used
for training.

Recently, there has been a growing interest in analyzing
variability in 3D shape collections using tools from differen-
tial and Riemannian geometry [4], [5], [18], [19], [20], [21],
[22]; see [23] for a detailed survey. The work most relevant to
ours is the Square-Root Normal Field (SRNF) representation
introduced in [5]. In this work, parameterized surfaces are
compared using a partial elastic Riemannian metric defined
as a weighted sum of a bending term and a stretching term.
More importantly, Jermyn et al. [5] show that by carefully
choosing the weights of these two terms, the complex partial
elastic metric reduces to the L2 metric in the space of SRNFs.
Thus, by treating shapes of objects as points in the SRNF
space, a straight line between two points in this space is
equivalent to the geodesic (or shortest) curve in the original
space of surfaces under the partial elastic metric, and rep-
resents the optimal deformation between them. As a result,
one can perform statistical analysis in the SRNF space using
standard vector calculus, and then map the results back to
the space of surfaces (for visualization), using the approach
of Laga et al. [4]. Another important property of SRNFs is
that both registration and optimal deformation (geodesic)
are computed jointly, using the same partial elastic metric.

One of the fundamental problems in statistical shape
analysis is correspondence and registration; see [24]. Past
methods do not define a shape space and a metric that
enable the computation of geodesics and statistics. Also,
correspondence methods that are based on the intrinsic
properties of surfaces, e.g., Generalized Multidimensional
Scaling [25], spectral descriptors [26], or functional maps
(which rely on the availability of descriptors) [27], [28], are
primarily suited for surfaces that deform in an isometric
manner. They also require landmarks to resolve symmetry
ambiguities.

2.2 Statistical models for longitudinal shape data

As stated in [7], we live in a 4D world of 3D shapes in
motion. With the availability of a variety of range sensing
devices that can scan dynamic objects at high temporal
frequency, there is a growing interest in capturing and mod-
eling the 4D dynamics of objects [29], [30], [31]. For instance,
Wand et al. [29] and Tevs et al. [31] propose methods to
reconstruct the deforming geometry of time-varying point
clouds. Li et al. [32] use sequences of 4D scans to learn
a statistical 3D facial model. This model, referred to as
FLAME, has been later used by Cudeiro et al. [6] to capture,
learn, and synthesize 3D speaking styles. Bogo et al. [7] build
a 4D human data set by registering a 3D human template to

sequences of 3D human scans performing various types of
actions. These methods focus on the 3D reconstruction of
deforming objects. The literature on the statistical analysis
of their spatiotemporal variability is rather limited.

Early works focused on longitudinal 2D shape data. For
instance, Anirudh et al. [33] represent the contour of planar
shapes that evolve as trajectories on a Grassmann manifold.
They then use the Transported Square-Root Vector Field
(TSRVF) representation for their rate-invariant analysis. This
approach was later extended to the analysis of the trajecto-
ries of sparse features or landmarks measured on the surface
of a deforming 3D object. Akhter et al. [34] introduced a
bilinear spatiotemporal basis to model the spatiotemporal
variability in 4D surfaces. The approach treats surfaces as
N discrete landmarks and uses the L2 metric and PCA in
R4N for their analysis. Thus, the approch is not suitable
for highly articulated shapes that undergo large articulated
and elastic motion (e.g., human bodies). The approach also
assumes that the landmarks are in correspondence, both
spatially and temporally.

Anirudh et al. [33] and Ben Amor et al. [35] represent
human body actions using dynamic skeletons. By treating
each skeleton, represented by a set of landmarks, as a high-
dimensional point on Kendall’s shape space [36], motions
become trajectories in a high-dimensional Euclidean space.
Thus, one can use the rich literature on the statistical analy-
sis of high-dimensional curves [37] to build a framework for
the statistical analysis of human motions and actions. This
approach, however, has two fundamental limitations. First,
the L2 metric on Kendall’s shape space is not suitable for
large articulated motions. Second, skeletons and landmarks
do not capture surface elasticity, and thus, cannot be used
to model growth processes and surface deformations due to
motion. While this can be addressed by using two separate
models, one for shape and another for motion, it will fail to
capture motion-dependent shape variations.

Using the LDDMM framework [38], Debavelaere et
al. [39] and Bone et al. [40] represent a 4D surface as a flow
of deformations of the 3D volume around each surface and
then encode deformations as geodesics on a Riemannian
manifold. However, in general, natural deformations do not
correspond to geodesics but can be arbitrary paths on the
shape space. Also, deforming 3D volumes is expensive in
terms of computation and memory requirements. Finally,
this approach relies on manually-specified landmarks to
efficiently register the 3D volumes. Our approach, which
can handle large articulated and elastic motions, works
directly on surfaces, does not assume that deformations are
(piecewise) geodesics, and does not rely on landmarks for
the spatiotemporal registration.

3 MATHEMATICAL FRAMEWORK

In this section, we describe the proposed mathematical
framework for the spatiotemporal registration and compari-
son of 4D surfaces. Section 4 discusses its application to var-
ious statistical analysis tasks. A 4D surface, where the fourth
dimension refers to time, is a 3D surface that evolves over
time. Examples of such 4D surfaces include facial expres-
sions (e.g., a smiling face), a human body shape performing
an action such as walking or jumping, or an anatomical
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Spatial elastic registration of surfaces
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Fig. 1. Overview of the proposed spatial registration framework. Sur-
faces are first mapped onto the space of Square-Root Normal Fields
(SRNF) and spatially registered using the L2 metric, which is equivalent
to the partial elastic metric in the original space of surfaces. 4D surfaces
can then be treated as curves embedded in the L2 space of SRNFs. The
operator ? refers to the composition of functions in the SRNF space.

organ that evolves over time due to natural growth or
disease progression. A 4D surface can be represented as a
path α(t), t ∈ [0, 1] such that α(0) and α(1) are the initial
and final surfaces, respectively, and α(t), 0 < t < 1 are the
intermediate surfaces. The main challenges posed by the
statistical analysis of such 4D surfaces are two-fold. First,
surfaces within the same 4D surface and across different 4D
surfaces come with arbitrary poses and registrations. Sec-
ond, 4D surfaces can have different execution rates, e.g., two
smiling expressions performed at different speeds. Thus, to
compare and perform statistical analysis on samples of 4D
surfaces, we first need to spatiotemporally register them.

We solve the spatiotemporal registration problem using
tools from differential geometry. We treat surfaces as points
in a Riemannian shape space equipped with an elastic
metric that captures shape differences using bending and
stretching energies. We then formulate the elastic registra-
tion problem, i.e., the problem of computing spatial cor-
respondences, as that of finding the optimal rotation and
reparameterization that align one surface onto another. This
enables comparing and spatially registering surfaces, even
in the presence of large elastic deformations (Section 3.1).

With this representation, a 4D surface becomes a time-
parameterized trajectory in the above-referenced Rieman-
nian shape space. Thus, the problem of analyzing 4D sur-
faces is reduced to the problem of analyzing curves. Similar
to surfaces, we define a space of curves equipped with a
Riemannian metric, which quantifies the amount of elastic
deformation, or time warping, needed to align two 4D
surfaces (Section 3.2).

3.1 The elastic shape space of surfaces

Fig. 1 overviews the proposed spatial registration frame-
work. We consider a surface as a function f of the form:

f : Ω→ R3; s 7→ f(s) = (X(s), Y (s), Z(s)), (1)

where Ω is a parameterization domain and s ∈ Ω is the
parameter in this domain. The choice of Ω depends on
the nature of the surfaces of interest. When dealing with
closed surfaces of genus-0, Ω is a sphere, i.e., Ω = S2, and

s = (u, v), where u ∈ [0, π] and v ∈ [0, 2π[ are the spherical
coordinates. In practice, surfaces come as unregistered tri-
angular meshes, which we map to a spherical domain using
the spherical parameterization algorithm of [41].

To remove shape-preserving transformations, we first
translate the surfaces so that their center of mass is located
at the origin, and then scale them to have unit surface area.
The space of such normalized surfaces, denoted by F , is
called the preshape space.

Having removed translation and scale, we still need to
account for rotations and reparameterizations. Those are
handled algebraically. For any surface f ∈ F and for any
rotation O ∈ SO(3), Of and f have equivalent shapes.
Similarly, any reparameterization of a surface with an
orientation-preserving diffeomorphism preserves its shape.
Let Γ be the space of all orientation-preserving diffeomor-
phisms of Ω. Then, ∀ γ ∈ Γ, f and f ◦ γ, i.e., the repa-
rameterization of f using γ, have the same shape. (Here,
◦ refers to the composition of two functions.) Note that
reparameterizations provide dense correspondences across
surfaces. If one wants to put a surface f2 in correspondence
with another surface f1, then we need to find a rotation O∗

and a reparameterization γ∗ such that O∗(f2 ◦γ∗) is as close
as possible to f1. This is precisely the process of 3D surface
registration. It is defined mathematically as:

(O∗, γ∗) = argmin
O∈SO(3),γ∈Γ

dF (f1, O(f2 ◦ γ)), (2)

where dF is a distance in F .

3.1.1 SRNF representation of surfaces
For efficient registration and comparison of surfaces, the dis-
tance measure, or metric, dF should quantify interpretable
shape differences, i.e., the amount of bending and stretching
one needs to apply to one surface to deform it into another. It
should also be simple enough to facilitate efficient computa-
tion of correspondences and geodesic paths. Jermyn et al. [5]
introduced a partial elastic metric that measures differences
between surfaces as a weighted sum of the amount of
bending and stretching that one needs to apply to a surface
to align it to another. In this approach, bending is measured
in terms of changes in the orientation of the unit normal
vectors, while stretching is measured in terms of changes
in the infinitesimal surface areas. More importantly, Jermyn
et al. [5] showed that by using a special representation
of surfaces, called the Square-Root Normal Field (SRNF),
the complex partial elastic metric reduces to the simple L2

metric on the SRNF space.
Definition 3.1 (Square-Root Normal Field (SRNF)). The

SRNF map H(f) of a surface f ∈ F is defined as the
normal vector field of the surface scaled by the square-
root of the local area around each surface point:

H : F → Ch

f 7→ H(f) = h, such that h(u, v) =
n(u, v)

‖n(u, v)‖
1
2
2

, (3)

where Ch is the space of all SRNFs, n = ∂f
∂u
× ∂f

∂v
is the

normal field to f and ‖ · ‖2 is the Euclidean norm in R3.

The SNRF representation of surfaces has nice properties that
make it suitable for the various analysis tasks at hand:
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• It is translation invariant. Also, the SRNF of a rotated
surface is simply the rotation of the SRNF of that
surface, i.e., H(Of) = OH(f).

• ∀γ ∈ Γ, H(f ◦ γ) =
√
|Jγ |(h ◦ γ) ≡ h ∗ γ, where Jγ is

the Jacobian of γ and | · | is its determinant.
• Under the L2 metric on the space of SRNFs, the action

of Γ is by isometries, i.e., ∀ γ ∈ Γ and ∀ f1, f2 ∈
F , ‖h1−h2‖ = ‖h1∗γ−h2∗γ‖, where hi = H(fi), i =
1, 2.

• The space of SRNFs is a subset of L2(Ω,R3). In addi-
tion, the L2 metric in Ch is equivalent to the partial elas-
tic metric in the space of surfaces. As such, geodesics in
F become straight lines in the SRNF space Ch; see Fig. 1.

• Currently, there is no analytical expression for the in-
verse SRNF map, and in fact, the injectivity and surjec-
tivity of the SRNF remain open questions. However,
Laga et al. [4] showed that, for a given SRNF of a
valid surface, one can always numerically estimate the
original surface, up to translation [4].

The last three properties are critical for comparison and
atlas construction of 4D surfaces. One can perform elastic
registration of surfaces using the standard L2 metric in the
space of SRNFs, which is computationally very efficient
compared to using the complex elastic metric in the space
of surfaces (Section 3.1.2). Further, temporal evolutions of
surfaces can be interpreted as curves in the Euclidean space
of SRNFs, making them amenable to statistical analysis.
Thus, the problem of constructing 4D atlases becomes the
problem of statistical analysis of elastic curves in the space
of SRNFs using standard statistical tools developed for
Euclidean spaces. After analysis, the results can be mapped
back to the original space of surfaces using efficient SRNF
inversion procedures [4] (Section 3.2).

3.1.2 Spatial elastic registration of surfaces
Under the SRNF representation, the elastic registration
problem in Eqn. (2) can be reformulated using the L2 metric
on Ch, the space of SRNFs, instead of the complex partial
elastic metric on the preshape space F . Let f1 and f2

be two surfaces in the preshape space F , and h1 and h2

their SRNFs. Then, the rotation and reparameterization that
optimally register f2 to f1 are given by:

(O∗, γ∗) = argmin
O∈SO(3),γ∈Γ

‖h1 −O(h2 ∗ γ)‖, (4)

where ∗ is the composition operator between an SRNF and
a diffeomorphism γ ∈ Γ. This joint optimization over SO(3)
and Γ can be solved by alternating, until convergence,
between the two marginal optimizations (this is allowed due
to the product structure of SO(3)× Γ) [42]:
• Assuming a fixed parameterization, solve for the op-

timal rotation using Procrustes analysis via Singular
Value Decomposition (SVD).

• Assuming a fixed rotation, solve for the optimal repa-
rameterization using a gradient descent algorithm.

To solve for the optimal reparameterization, we represent
the space Γ of diffeomorphisms γ, which are functions
on the sphere, using gradients of the spherical harmonic
basis {Bi}i=1,...,n. This way, every γ ∈ Γ can be writ-
ten as a weighted sum of the harmonic basis gradients:

(a) Source.

(b) Target before spatio-temporal registration.

(c) Target after spatio-temporal registration.

(a) Source.

(b) Target before spatio-temporal registration.

(c) Target after spatio-temporal registration.

(a) Source.

(b) Target before spatio-temporal registration.

(c) Target after spatio-temporal registration.
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Fig. 2. In the proposed temporal registration framework, 4D surfaces,
represented as curves in the SRNF space, are first mapped to the space
of Transported Square-Root Vector Fields (TSRVFs) for their temporal
registration. Points in the TSRVF space are mapped back to the space of
SRNFs and then to the original space of surfaces for visualization. The
operator � refers to the composition of functions in the TSRVF space.

γ =
∑n
i=1 aiBi. Thus, the search for the optimal diffeomor-

phism is reduced to the search for the optimal weights {ai}.
This procedure is described in detail in Section 2.1 of the
Supplementary Material.

Although this approach converges to a local optimum,
in practice, it can be used in a very efficient way. Since a
4D surface α is a sequence of discrete realizations α(ti) ∈
F , i = 0, · · · , n, with t0 = 0 and tn = 1, one can perform
the elastic registration sequentially. Let β = H(α) be the
SRNF map of the 4D surface α, i.e., ∀ t ∈ [0, 1], β(t) =
H(α(t)). Also, let α0 be a reference surface randomly chosen
from the population of surfaces being analyzed, and β0 its
SRNF map (α0 can be, for example, α(0)). Then, the spatial
registration procedure is as follows.

1) Find O0 ∈ SO(3) and γ0 ∈ Γ that register β(t0)
(the start point of the SRNF path) to the SRNF of the
reference surface β0, by solving Eqn. (4).

2) For i = 0, . . . , n,
• β(ti)← O0(β(ti) ∗ γ0) and α(ti)← O0α(ti) ◦ γ0.

3) For i = 1, . . . , n,
• Find, by solving Eqn. (4), Oi ∈ SO(3) and γi ∈ Γ that

register β(ti) to β(ti−1).
• β(ti)← Oi(β(ti) ∗ γi) and α(ti)← Oiα(ti) ◦ γi.

The first step ensures that, when given a collection of 4D sur-
faces αj , j = 1, · · · , n, the surfaces αj(0), j = 1, · · · , n are
registered to each other. The subsequent steps ensure that
∀t, αj(t) is registered to αj(0). This sequential approach
is efficient since, in general, elastic deformations between
two consecutive frames in a 4D surface are relatively small.
In what follows, we assume that all surfaces within a 4D
surface and across 4D surfaces are correctly registered, i.e.,
they have been normalized for translation and scale, and
optimally rotated and reparameterized using the approach
described in this section.
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3.2 The shape space of 4D surfaces

Under the setup of Section 3.1, a 4D surface becomes a curve
α : [0, 1] → F . However, since F is endowed with the
partial elastic metric, which is non-Euclidean, we propose to
further map the 4D surfaces to the SRNF space, which has a
Euclidean structure. Thus, 4D surfaces become curves of the
form β : [0, 1] → Ch. With this representation, all statistical
tasks are carried out in Ch under the L2 metric with results
mapped back to the space of surfaces F for visualization.

3.2.1 TSRVF representation of SRNF trajectories
Let α be a curve (path) in F and β its image under the SRNF
map, i.e., ∀ t ∈ [0, 1], β(t) = H(α(t)); β is also a curve, but
in Ch. Let MF be the space of all paths in F , and Mh be
the space of all paths in Ch: Mh = {β : [0, 1] → Ch|β =
H(α), α ∈MF}.

To temporally register, compare, and summarize sam-
ples of such curves, we need to define an appropriate metric
on MF , or Mh, that is invariant to the rate (or speed)
of the 4D surfaces. For example, facial expressions that
only differ in the rate of their execution should be deemed
equivalent under such a metric. Let Ξ = {ξ : [0, 1] →
[0, 1] such that 0 < ξ̇ < ∞, ξ(0) = 0 and ξ(1) = 1} denote
all reparameterizations of the temporal domain [0, 1]. Here,
ξ̇ = dξ

dt . Then, for any ξ ∈ Ξ, β ◦ ξ and β only differ in
the rate of execution and are thus equivalent. The function
ξ is often referred to as a time warping of the domain
[0, 1]. Temporal registration of two 4D surfaces α1 and α2

then becomes the problem of registering their corresponding
curves β1 and β2 in Ch. This requires solving for an optimal
reparameterization ξ∗ ∈ Ξ that minimizes an appropriate
distance d(·, ·) between β1 and β2:

ξ∗ = argmin
ξ∈Ξ

d(β1, β2 ◦ ξ). (5)

The optimization over Ξ in Eqn. (5) ensures rate invariance.
Thus, we are left with defining a distance d(·, ·) that is
invariant to time warping of the temporal domain [0, 1]. To
this end, we borrow tools from Srivastava et al. [37] for ana-
lyzing shapes of curves in Rn, n ≥ 2. The associated elastic
metric defined therein is invariant to reparameterizations of
curves, and quantifies the amount of bending and stretching
of the curves in terms of changes in the orientations and
lengths of their tangent vectors, respectively. However, in-
stead of directly working with such a complex elastic metric,
Su et al. [43] introduced the Transported Square-Root Vector
Field (TSRVF) representation, which simplifies the complex
elastic metric into the simple L2 metric.

Definition 3.2 (Transported Square-Root Vector Field
(TSRVF)1). For any smooth trajectory β ∈ Mh, the
transported square-root vector field (TSRVF) is a parallel
transport of a scaled velocity vector field of β to a
reference point c ∈ Ch according to

Q(β)(t) = q(t) =
β̇(t)|β(t)→c√
‖β̇(t)‖

, (6)

1. Although, in this paper, we consider curves β in the space Mh,
TSRVFs are general and can be defined on any curves, e.g., curves in
Rd, d ≥ 1.

where β̇ = ∂β
∂t is the tangent vector field on β and ‖ · ‖ is

the L2 metric on Ch.

Note that the parallel transport β̇(t)|β(t)→c is performed
along the geodesic from β(t) to c. The TSRVF representation
has nice properties that facilitate efficient temporal registra-
tion of 4D surfaces. Let β1 and β2 be two trajectories onMh,
and let q1 and q2 be their respective TSRVFs.
• The elastic metric on the space of trajectories Mh re-

duces to the L2 metric on the space of their TSRVFs.
Thus, one can use the L2 metric to compare two paths:

d(β1, β2) = ‖q1 − q2‖ =

(ˆ 1

0
‖q1(t)− q2(t)‖2dt

) 1
2

,

(7)
where ‖ · ‖ is again the L2 norm on Ch.

• For any ξ ∈ Ξ, Q(β ◦ ξ) = (q ◦ ξ)
√
ξ̇(t) ≡ q � ξ.

• Under the L2 metric, the action of the reparameteriza-
tion group Ξ on the space of TSRVFs is by isometries,
i.e., ‖q1 − q2‖ = ‖(q1 � ξ)− (q2 � ξ)‖, ∀ ξ ∈ Ξ.

• Given a TSRVF q and an initial trajectory point, one can
reconstruct the corresponding path β, such that Q(β) =
q, by solving an ordinary differential equation [43].

As we will see next, these properties enable efficient tempo-
ral registration of trajectories and subsequent rate-invariant
statistical analysis. In what follows, let Q denote the space
of TSRVFs equipped with the L2 metric defined in Eqn. 7.

3.2.2 Temporal registration
Under the TSRVF representation, the temporal registration
problem in Eqn. (5), which involved optimization over Ξ,
can now be reformulated using the standard L2 metric on
the space of TSRVFs:

ξ∗ = argmin
ξ∈Ξ

‖q1 − q2 � ξ‖. (8)

This problem can be solved efficiently using a Dynamic
Programming algorithm [43], [44]. Then, the rate-invariant
distance d(β1, β2) between two trajectories β1 and β2 is
given by:

d(β1, β2) = inf
ξ∈Ξ
‖q1 − q2 � ξ‖. (9)

3.2.3 Geodesics between 4D surfaces
Let α1, α2 ∈ MF be two 4D surfaces. The pipeline to
spatiotemporally register them and compute the geodesic
path between them can be summarized as follows.

(1) Proposed spatial registration. The goal is to spatially
register the surfaces in α1 and α2 to the same reference
surface, which can be any arbitrary surface. For simplicity,
we choose it to be α1(0), the first surface in the sequence α1.
The spatial registration can then be performed in two steps:
• Compute the SRNF maps: ∀ t ∈ [0, 1], β1(t) =
H(α1(t)) and β2(t) = H(α2(t)).

• Spatially register β1 and β2, and thus α1 and α2, to
the reference surface, using the algorithm described in
Section 3.1.2.

For simplicity of notation, we also use β1 and β2 to denote
the spatially-registered trajectories.
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Fig. 3. Example of a geodesic between the source 4D surface (top row) and the target 4D surface (bottom row) after spatiotemporal registration.
The highlighted row corresponds to the mean 4D surface. A video of the figure is included in the Supplementary Material.

(2) Proposed temporal alignment. β1 and β2 are elements
ofMh. We perform temporal registration in three steps:
• Map β1 and β2 to the TSRVF space Q : q1 = Q(β1) and
q2 = Q(β2).

• Find ξ∗, the optimal reparameterization that registers
q2 to q1 by solving Eqn. (8).

• q∗2 ← q2 � ξ∗ and β∗2 ← β2 ◦ ξ∗.

(3) Proposed geodesic computation. Since Q is Euclidean,
the geodesic path Λq between q1 and q∗2 is a straight line:

Λq(τ) = (1− τ)q1 + τq∗2 , τ ∈ [0, 1]. (10)

Next, we map Λq back to Mh using the inverse TSRVF
map, i.e., ∀ τ, Λβ(τ) = Q−1(Λq(τ)). The computation of
the inverse mapping uses the starting point on the trajectory
and has a closed-form solution, making it computationally
efficient. This is described in detail in [43]. After applying
the inverse mapping to the entire geodesic path, we have
Λβ(0) = β1, Λβ(1) = β2, and βτ = Λβ(τ), τ ∈ (0, 1), i.e., a
geodesic path between the SRNF curves β1 and β2.

(4) Visualization. To visualize geodesic paths between 4D
surfaces (and not their SRNFs), we need to further map
all SRNFs on the trajectory Λβ(τ) to their corresponding
surfaces in F . This is done using the inverse SRNF map,
i.e., ∀ τ ∈ [0, 1], t ∈ [0, 1], Λ(τ)(t) = H−1(Λβ(τ)(t)).
Unlike the TSRVF map whose inverse can be computed an-
alytically, inversion of the SRNF map, whose injectivity and
surjectivity are yet to be determined, has to be accomplished
numerically using the approach of Laga et al. [4].

Now, Λ is the geodesic path between the 4D surfaces
α1 and α∗2, i.e., Λ(0) = α1,Λ(1) = α∗2, and ατ = Λ(τ)
is a 4D surface at time τ along the geodesic path. Fig. 3
shows an example of a geodesic between two 4D surfaces
representing talking faces. Each row corresponds to one
4D surface. The top row is the source, the bottom row is
the target after optimal spatiotemporal registration, and the

highlighted row in the middle corresponds to the mean 4D
surface. The temporal registration is further illustrated in
Fig. 4, where we show the source 4D surface, the target 4D
surface before the spatiotemporal registration, and the target
4D surface after the spatiotemporal registration. Section 5
provides more examples of geodesics computed between
various types of 4D surfaces.

4 STATISTICAL ANALYSIS OF 4D SURFACES

Now that we have devised all of the required mathematical
tools for comparing 4D surfaces, we shift our focus to how
these tools can be used to build a 4D atlas from a sample
of 4D surfaces. Let α1, · · · , αn be a set of 4D surfaces and
β1, · · · , βn be their corresponding trajectories in Ch. We
assume that all of the surfaces, and their corresponding
SRNFs, have been spatially registered to a common refer-
ence; see Section 3.1.2. We proceed to map all of the 4D sur-
faces to their corresponding TSRVFs, hereinafter denoted by
q1, · · · , qn, and compute statistics in that space. As before,
all results are mapped at the end to the original space of
surfaces F for visualization. We will use this framework to
compute means and modes of variation, and to synthesize
novel 4D surfaces by sampling from probability distribu-
tions fitted to a set of exemplar 4D surfaces.

Mean of 4D surfaces. Intuitively, the mean of a collection
of 4D surfaces is the 4D surface that is as close as possible to
all of the 4D surfaces in the collection, under the specified
distance measure (or metric). It is also called the Karcher
mean and is defined as the 4D surface that minimizes the
sum of squared distances to all of the 4D surfaces in the
given sample. In other words, we seek to solve the following
optimization problem, defined in the space of TSRVFs:

q̄ = argmin
q∈Q

n∑
i=1

min
ξi∈Ξ
‖q − qi � ξi‖2. (11)
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Algorithm 3 in the Supplementary Material describes the
proposed procedure for solving this optimization problem.
It outputs the TSRVF Karcher mean q̄, the optimal temporal
reparameterizations ξ∗i , i = 1, . . . , n, and the temporally
registered TSRVFs q∗i = qi�ξ∗i ; again, for simplified notation
we simply use ξi and qi to denote the optimal temporal
reparameterizations and the temporally registered TSRVFs.
The mean 4D surface can be obtained by TSRVF inversion
of the mean TSRVF followed by SRNF inversion [4].

Principal directions of variation. Since the TSRVF space
is Euclidean, the principal directions of variation can also
be computed in a standard way, i.e., using the Singular
Value Decomposition (SVD) of the covariance matrix. In
the following, we assume that the TSRVFs are sampled
using a finite set of points and appropriately vectorized. Let
K = 1

n−1

∑
i(qi− q̄)(qi− q̄)> be the covariance matrix of the

input sample, σi, i = 1, . . . , k its k-leading eigenvalues, and
Σi, i = 1, . . . , k the corresponding eigenvectors. Then, one
can explore the variability in the i−th principal direction
using qτ = q̄+ τ

√
σiΣi, where τ ∈ R. To visualize this prin-

cipal direction of variation, we again use TSRVF inversion
followed by SRNF inversion to compute the 4D surface ατ ,
such that Q(H(ατ )) = q̄ + τ

√
σiΣi, τ ∈ R.

Random 4D surface synthesis. Given the mean and the
k-leading principal directions of variation, any TSRVF q
of a 4D surface α can be approximately represented, in a
parameterized form, as:

q = q̄ +
k∑
i=1

τi
√
σiΣi, τi ∈ R. (12)

Thus, to generate a random TSRVF, we only need to gener-
ate k random values τi ∈ R and plug them into Eqn. (12).
Then, to compute the corresponding random 4D surface, we
apply the inverse TSRVF map followed by the inverse SRNF
map. Also, by enforcing each τi to be within a certain range,
e.g., [−1, 1], we can ensure that the generated random 4D
surfaces are similar to the given samples and thus plausible.

This procedure allows the generation of new random
4D surfaces. However, it does not offer any control over
the generation process, which is entirely random. In many
situations, we would like to control this process using a set
of parameters. For instance, when dealing with 4D facial
expressions, these parameters can be the degree of sadness,
facial dimensions, etc. This type of control can be imple-
mented using regression in the TSRVF space, a problem that
we plan to explore in the future.

5 RESULTS

This section demonstrates some results of the proposed
framework and evaluates its performance. Section 5.1 fo-
cuses on spatiotemporal registration and geodesic compu-
tation between 4D surfaces. Section 5.2 focuses on the com-
putation of statistical summaries while Section 5.3 focuses
on the random synthesis of 4D surfaces. Finally, Section 5.4
provides an ablation study to demonstrate the importance of
each component of the proposed framework. We use three
data sets: (1) VOCA [6], which contains 4D facial scans,
captured at 60fps, of 12 subjects speaking various sentences;

(2) MPI DFAUST [7], which contains high-resolution 4D
scans of 10 human subjects in motion, captured at 60fps,
with a total of 129 dynamic performances; and (3) MPI
4D CAPE [8], which contains high-resolution 4D scans of
10 male and 5 female subjects in clothing. These data sets
come as polygonal meshes with consistent triangulation
and given registration across the meshes. We spherically
parameterize them using Kurtek et al.’s implementation [18]
of the spherical parameterization approach of [41]. We
also apply randomly generated spatial diffeomorphisms to
simulate non-registered surfaces. Our framework does not
use, either explicitly or implicitly, the provided vertex-wise
correspondences.

5.1 Spatiotemporal registration and 4D geodesics

We consider pairs of 4D facial expressions from the VOCA
dataset. We first reparameterize each 4D surface using
randomly generated time-warping functions to simulate
facial expressions performed at different execution rates.
We then apply the framework proposed in this paper to
spatiotemporally register them. Fig. 4 shows an example of
such spatiotemporal registration. In this example, we show
(a) the source 4D surface, (b) the target 4D surface before
spatiotemporal registration, and (c) the target 4D surface
after spatiotemporally registering it to the source. We also
highlight some key frames. As one can see, the original
4D surfaces differ significantly in their execution rates. The
proposed spatiotemporal registration framework synchro-
nizes the source and target expressions, thus enabling their
comparison, interpolation and averaging. We also perform
a similar experiment on the human body shapes in the
DFAUST [7] and CAPE [8] data sets; see Figs. 5, 6, and 12(a)-
(c). Compared to faces, human body shapes are very chal-
lenging to analyze since they perform complex articulated
motions, which result in large bending and stretching of
their surfaces.

4D geodesics. Fig. 7 shows geodesics between 4D human
body shapes. In this example, both the source and the
target perform a punching action but at different rates.
We show the geodesic before and after the spatiotemporal
registration of the target 4D surface onto the source. Unlike
the jumping action in Fig. 5, the left hand of the target
surface does not perform the same action as the left hand of
the source surface. Nevertheless, our framework can bring
these two 4D surfaces as close as possible to each other. The
Supplementary Material includes a video of the sequence
and more examples of geodesics between 4D faces (from
VOCA), 4D human bodies (from DFAUST), and clothed 4D
human bodies (from CAPE).

Evaluation of the spatial registration. We quantitatively
evaluate the accuracy of the proposed spatial registration
method and compare it to the latest functional map-based
techniques such as MapTree [45] and Fast Sinkhorn fil-
ters [46]. Similar to our method, functional maps operate on
clean manifold surfaces and do not use any form of (deep)
learning. We take the surfaces of COMA [47], CAPE [8], and
DFAUST [7] data sets, which come with ground-truth cor-
respondences, and apply random spatial diffeomorphisms
to them to simulate unregistered surfaces. We then compute
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(a) Source.

(b) Target.

(c) Target after spatio-temporal registration.

(a) Source.

(b) Target.

(c) Target after spatio-temporal registration.

Fig. 4. Examples of the spatiotemporal registration of two facial expressions (4D faces). In each example, we show (a) the source 4D face, (b) the
target 4D face, and (c) the target 4D face after spatiotemporal registration using the proposed framework. Note how the spatiotemporally registered
target 4D surface became fully synchronised with the source 4D surface. The full video sequence is provided in the Supplementary Material.

(a) Source.

(b) Target before spatio-temporal registration.

(c) Target after spatio-temporal registration.

Fig. 5. Example of the spatiotemporal registration, using the proposed algorithm, of two 4D human body shapes (from the DFAUST dataset)
performing a jumping action at different speeds. Note how the spatiotemporally registered target 4D surface in (c) became synchronised with the
source 4D surface in (a). The full video sequence is provided in the Supplementary Material.

the correspondence map between each pair of surfaces in the
dataset. We measure the spatial registration error in terms of
the geodesic distance, on the parameterization domain, be-
tween the ground-truth and the computed correspondence.
Table 1 reports the mean, standard deviation, and median
of the registration errors computed across all of the models

in each data set. As one can see, the proposed SRNF-based
spatial registration method significantly outperforms state-
of-the-art algorithms [45], [46]. We refer the reader to the
Supplementary Material, which includes visual examples of
pairs of surfaces before and after spatial registration. It also
includes additional spatial registration experiments using
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(a) Source.

(b) Target before spatio-temporal registration.

(c) Target after spatio-temporal registration.

Fig. 6. Example of the spatiotemporal registration, using the proposed algorithm, of two 4D body shapes with different clothing (from the CAPE
dataset). Note how the spatiotemporally registered target 4D surface in (c) became fully synchronised with the source 4D surface in (a). The full
video sequence is provided in the Supplementary Material.

TABLE 1
Comparison of the accuracy of the proposed spatial registration with state-of-the-art techniques such as MAP Tree [45] and Fast Sinkhorn

filters [46], which are based on functional maps [28]. The computation time is in seconds. We use spherical maps of size 128× 128 for COMA and
256× 256 for CAPE and DFAUST.

COMA [47] CAPE [8] DFAUST [7]
Mean Std Median Time Mean Std Median Time Mean Std Median Time

MapTree [45] 1.6042 0.6956 1.6069 10.75 1.4447 0.7227 1.4483 9.59 1.5344 0.7065 1.5211 9.39
ICP-NN [46] 1.6028 0.6973 1.6056 4.13 1.4684 0.7087 1.5116 3.49 1.5185 0.6905 1.5082 3.65

ICP-Sinkhorn [46] 1.6019 0.6974 1.6053 7.05 1.4684 0.7037 1.5058 6.28 1.5275 0.6888 1.5227 7.03
Zoomout-NN [46] 1.5997 0.6902 1.6002 2.49 1.4743 0.7029 1.4781 2.38 1.5101 0.6922 1.4857 2.67

Zoomout-Sinkhorn [46] 1.6016 0.6908 1.5968 4.84 1.4737 0.6937 1.4925 4.66 1.5019 0.6948 1.4731 4.93
SRNF (ours) 0.0012 0.0008 0.0003 15.42 0.0008 0.0008 0.0006 25.32 0.0008 0.0008 0.0007 26.13

the quadruped animal data set of Kulkarni et al. [48].
An important property of the proposed approach is that

it finds a one-to-one mapping between the source and target
surfaces. This is not the case with functional map-based
methods, which can map a point on the source to multiple
points on the target. Thus, they cannot be used to compute
geodesics and statistical summaries.

Evaluation of the temporal registration. We perform an
ablation study in which we evaluate the contribution of each
component of the proposed temporal registration frame-
work. We use the FLAME fitting framework [32] to generate
random 4D facial surfaces with known ground-truth tempo-
ral registrations. We first generate two random SMPL [13]
parameters, each corresponding to a 3D surface, and then
linearly interpolate them to simulate a deforming 4D facial
surface. Let αi, i ∈ {1, . . . , 5} be the resulting 4D surfaces.
Next, we generate 100 random temporal diffeomorphisms
ξi; see Fig. 12(b) in the Supplementary Material.

Now, given a pair of 4D surfaces αi and αj , and for each
pair of temporal diffeomorphims ξk and ξl, αi◦ξk and αj ◦ξl
can be seen as a pair of 4D surfaces with different execution
rates. We then compute the distance between:
• the perfectly registered 4D surfaces αi and αj ; see the

green curves in the plots (a) to (e) in Fig. 8. Note that,

since these 4D surfaces correspond to different subjects
performing different animations, then the original dis-
tance between them is not 0, but it is the lower bound.

• the perturbed 4D surfaces, i.e., αi ◦ ξk and αj ◦ ξl before
temporal registration; see Fig. 8(a);

• the registered 4D surfaces but without SRNF and with-
out TSRVF; see Fig. 8(b). For this, we use a dynamic
programming-based time warping algorithm;

• the registered 4D surfaces, without SRNF but with
TSRVF; see Fig. 8(c);

• the registered 4D surfaces, with SRNF but without
TSRVF; see Fig. 8(d);

• the registered 4D surfaces using the full framework, i.e.,
with SRNF and with TSRVF; see Fig. 8(e).

Figs. 8(a) to (e) report statistics of these errors for each of
the 20 pairs of 4D surfaces, but aggregated over the 100
random temporal diffeomorphisms. As one can see, the
median distance between the 4D surfaces after registration
using the full pipeline (Fig. 8(e)) is significantly lower than
the ablated methods. The former is significantly closer to
the ground-truth shown with green curves in Fig. 8 than the
ablated methods.

Computation time. Our approach runs entirely on the CPU.
The Matlab implementation of the spatiotemporal registra-
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(a) Before registration. The highlighted middle row corresponds to the mean 4D surface.

(b) After registration. The highlighted middle row corresponds to the mean 4D surface.

Fig. 7. Example of a geodesic between 4D surfaces corresponding to punching actions: (a) the 4D surfaces before registration and (b) after
registration. In each example, we show the source 4D surface in the first row, the target 4D surface in the last row, and three intermediate 4D
surfaces along the geodesic between the source and the target. Observe how misaligned are the highlighted frames before registration, and how
synchronised they became after registration. A video illustrating these sequences is included in the Supplementary Material.
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(a) Original (b) Registration (c) Registration (d) Registration (e) Registration
no registration. no SRNF, no TSRVF. no SRNF, with TSRVF. with SRNF, no TSRVF. with SRNF and TSRVF.

Fig. 8. Boxplots of errors between 20 pairs of 4D surfaces. In all of the plots, the red lines represent the median error and the boxes represent its
spread. The green curve is the ground-truth distance, i.e., the distance between the perfectly registered 4D surfaces. (a) Unregistered 4D surfaces
generated using 100 random diffeomorphic transformations, (b) temporally registered surfaces, using dynamic programming-based time warping,
without SRNF and without TSRVF, (c) temporally registered surfaces using TSRVF but without SRNF, (d) temporally registered surfaces using
SRNF but without TSRVF, and (e) temporally registered surfaces using the full framework, i.e., using TSRVF in the space of SRNFs.

Fig. 9. Co-registration of multiple 4D surfaces. In this example, we consider four human body shapes performing a jumping action (first four rows)
and two others performing a punching action (rows 5 and 6). Here, we show the spatiotemporally co-registered 4D surfaces and the 4D mean (last
row) computed using the proposed algorithm. The Supplementary Material includes the input 4D surfaces before their spatiotemporal registration.
It also includes the full video sequences. The surfaces are from the DFAUST dataset.

tion process takes less than 31.43 seconds on 4.2 GHz Intel
Core i7 with 32 GB of RAM. The visualization, which is
needed when computing geodesics, means, and directions

of variation, and when synthesizing random 4D surfaces,
relies on the inversion of the SRNF maps. It requires 6
seconds per frame and a total of 30 minutes for the 300
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temporal frames used in this paper. All of the experiments
were performed using a spherical resolution of 256×256 for
the DFAUST and CAPE data sets, and of 128 × 128 for the
COMA data set.

5.2 Summary statistics

We now consider a set of unregistered 4D surfaces and
compute their mean and principal directions of variation.
Fig. 9 shows the 4D mean (highlighted with a blue box)
computed from six 4D human shapes performing different
types of actions. The figure also shows the input 4D surfaces
after their spatiotemporal registration; see the video in the
Supplementary Material for an illustration of the input
4D surfaces before spatiotemporal registration. Despite the
large articulated motion, the large differences in the type of
actions, and the significant differences in the execution rates
of the 4D surfaces, our framework is able to co-register them
and generate a plausible average 4D surface.

Fig. 10(a) and (b), on the other hand, show the mean and
the first two principal directions of variation computed on
input 4D facial surfaces. As we can see, the computed mean
captures the main features of the dataset. The principal
directions of variation further capture relevant variability
in the given data. The Supplementary Material includes the
input 4D surfaces prior to their registration. Please also refer
to the videos in the Supplementary Material for additional
results.

5.3 4D surface synthesis

Fig. 10(c) shows five 4D facial expressions randomly sam-
pled from a Gaussian distribution with parameters esti-
mated from the VOCA data set using the method described
in Sec. 4. To ensure that the synthesized 4D surfaces are
plausible, we only consider those that are within 1.5 stan-
dard deviations along each principal direction of variation.
We refer the reader to the Supplementary Material for
videos of all of the randomly generated 4D surfaces. The
ability to synthesize novel 4D surfaces can benefit many
applications in computer vision and graphics. It can be used
to augment data sets for efficient training of deep learning
models.

5.4 Ablation study

We undertake an ablation study to demonstrate the impor-
tance of each component of the proposed framework.

Importance of the SRNF representation. In this experiment
(Fig. 11), we take two challenging 3D human body models,
which undergo a large articulated motion, perform their
spatial registration using the proposed SRNF approach, and
then compute their statistical mean using the L2 metric
(1) in the original surface space (Fig. 11(a)) and (2) in the
SRNF space (Fig. 11(b)). Fig. 11(a) shows that the articulated
parts of the mean computed in the original surface space
unnaturally shrink. This is predictable since, under the L2

metric, geodesics correspond to straight lines. However, in
the SRNF space, the L2 metric is equivalent to the optimal
bending and stretching of the surfaces. Thus, the computed
mean is more natural; see Fig. 11(b).

Next, we consider two full 4D surfaces of deforming
human body shapes (Fig. 12(a) and (b)) and show their mean
4D surface obtained:
• with the SRNF representation, with spatial registration,

and without temporal registration (Fig. 12(d)),
• with the SRNF representation, with spatial registration,

and with temporal registration (Fig. 12(e)),
• without SRNF representation, with spatial registration,

and without temporal registration (Fig. 12(f)), and
• without SRNF representation, with spatial registration,

and with temporal registration (Fig. 12(g)).
The last two cases are equivalent to a linear interpolation
in the original surface space, after spatial registration. In all
cases, we perform the spatial registration using the SRNF
framework.

First, we can see that the temporally-aligned target 4D
surface (Fig. 12(c)) is very close to the source 4D surface
in Fig. 12(a). We observe that the right hands became fully
synchronized. As such, the mean 4D surface obtained after
temporal registration (Fig. 12(e)) is fully synchronized with
the source and the aligned target, unlike the mean 4D
surface in Fig. 12(d), which has been obtained without
temporal registration. Second, in the mean 4D surfaces
obtained without the SRNF framework (Figs. 12(f) and (g)),
we can observe that the parts that undergo large articulated
motion (e.g., the arms) unnaturally shrink. This shrinkage
is stronger in Fig. 12(f) since the mean is obtained without
temporal registration. The bottom row of Fig. 12 shows a
zoom-in on the time frame highlighted in Fig. 12(a) to (g).

Finally, we quantitatively evaluate the importance of the
SRNF representation by comparing the expressive power of
PCA on the original space of spatially registered surfaces
and on the space of SRNFs. We randomly divide a data set
into a training set and a testing set, using an 80% − 20%
split. We then fit a PCA model to the training set (both
in the original space and in the space of SRNFs), project
each surface in the test set onto the PCA model, reconstruct
it, and measure the error between the original and the
reconstructed surfaces. Let P = {p1, . . . , pn} be the set of
points on the original surface (after centering the surface to
its center of mass), and Q = {q1, . . . , qn} the corresponding
points on the reconstructed surface (after centering the
reconstructed surface to its center of mass). We measure the
reconstruction error as:

E =
1

n

(∑ ‖pi − qi‖22∑
‖pi‖22

)0.5

. (13)

Note that while the normalization in Equation (13) is not
necessary, it allows comparison of the reconstruction errors
on the same scale. We perform 10-fold cross-validation.
Table 2 reports the mean, median, and standard deviation
of the error over the test set and averaged over the 10
runs. In this experiment, we use 95% of the cumulative
energy, i.e., the ratio between the sum of the eigenvalues
of the selected leading eigenvectors and the sum of all of
the eigenvalues is 95%. As one can see, PCA on the SRNF
space has a significantly lower reconstruction error than
PCA in the original space of surfaces. This demonstrates
that the former is more suitable to characterize variability in
the shape of 3D objects that bend and stretch. Section 5 in
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(a) First principal direction of variation.
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(b) Second principal direction of variation.

(c) Five randomly synthesized 4D faces.

Fig. 10. First (a) and second (b) principal directions of variation (the mean 4D surface is highlighted in the middle). Each row corresponds to
one 4D surface sampled between −1.5 to 1.5 times the standard deviation along the principal direction of variation. We refer the reader to the
Supplementary Material and Video, which show the input 4D faces (before their spatiotemporal registration) and the animated sequences of the
modes of variation as well as the randomly synthesized faces. The Supplementary Material and Video also include more modes of variation and
randomly synthesized samples.
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(a) Without SRNF. (b) With SRNF.

Fig. 11. The mean shape between the left and right surfaces, computed
(a) in the original surface space without the SRNF representation, and
(b) in the SRNF space. In (a), the mean shape is distorted due to the
use of the L2 metric in the original space of surfaces. In both cases, the
spatial registration is performed using the proposed registration method.

TABLE 2
Comparison of the expressive power of PCA on the original space of
surfaces and on the space of SRNFs. The lower the values are, the

better. These results are obtained using 95% of the cumulative energy.

PCA on surfaces PCA on SRNFs
Mean Std Median Mean Std Median

DFAUST 0.083 0.022 0.083 0.047 0.012 0.046
VOCA 0.031 0.011 0.029 0.009 0.004 0.008
CAPE 0.098 0.035 0.097 0.052 0.019 0.049

the Supplementary Material provides an in-depth analysis
of the expressive power of PCA in the SRNF space.

Importance of the TSRVF representation for 4D surfaces.
We perform a similar ablation study, but on 4D surfaces, to
compare the expressive power of PCA on the original space
of curves and on the space of TSRVFs. Table 3 shows that
PCA error on the TSRVF space is lower than the error in the
original space. We compute the reconstruction error using
Equation (13), but this time the points are sampled from
the curves. This experiment demonstrates that the former is
more suitable to characterize variability in 4D surfaces. In
this experiment, we use 95% of the cumulative energy, i.e.,
the ratio between the sum of the eigenvalues of the selected
leading eigenvectors and the sum of all of the eigenvalues
is higher or equal to 95%. Section 5 in the Supplementary
Material provides a more detailed analysis.

6 CONCLUSION

We have proposed a new framework for the statistical
analysis of longitudinal 3D shape data (or 4D surfaces,
i.e., surfaces that deform over time), e.g., 3D human body
shapes performing actions at different execution rates or
3D human faces pronouncing sentences at different speeds.
Unlike traditional techniques, which only consider how
features such as landmarks or measurements vary over
time, the proposed framework considers the deformation
of the entire surface of a 3D object. Our key contribution
is in representing 4D surfaces as trajectories in the space
of SRNFs, and the use of Transported Square-Root Vector
Fields to analyze such trajectories statistically. The proposed
framework can spatiotemporally register 4D surfaces, even
in the presence of large elastic deformations and significant

TABLE 3
Comparison of the expressive power of PCA on the original space of
curves and on the space of TSRVFs. The lower the values are, the

better. These results are obtained using 95% of the cumulative energy;
see Section 5 in the Supplementary Material.

PCA on curves PCA on TSRVFs
Mean Std Median Mean Std Median

DFAUST 0.770 0.123 0.758 0.602 0.051 0.617
VOCA 0.690 0.127 0.662 0.486 0.318 0.603
CAPE 0.787 0.123 0.800 0.500 0.152 0.471

variation in the execution rates. It is also able to compute
geodesics and summary statistics, which in turn can be used
to randomly synthesize new, unseen 4D surfaces.

In contrast to SMPL-based representations, which are
specialized for human body shapes, this paper’s focus is
on generic statistical models that are applicable to a wide
range of object classes. Comparing generic statistical models
vs. specialized ones such as SMPL (and its variants) is a very
important problem, which requires an in-depth analysis that
is well beyond the scope of this paper. We note that generic
models can always be applied to specific classes of objects.
However, each class of objects would require its specialised
SMPL, e.g., one for faces, one for hands, one for the body,
one for animals, etc.. They all lie on different subspaces and
thus cannot be used for inter-class analysis. This, however,
is not the case with our SRNF-based representation. In fact,
although we have demonstrated the proposed 4D analysis
framework on human body shapes and facial surfaces, it
is general and can be applied to other classes of surfaces.
Note also that our current implementation is limited to
surfaces that are homeomorphic to a sphere, but we plan to
extend the framework to higher-genus surfaces by exploring
different parameterization methods, including mesh-based
representations [49]. Also, the approach uses the numerical
SRNF inversion procedure of Laga et al. [4], which is some-
times not accurate near the poles of the parameterization
domain; we plan to improve its performance via the use of
charts.

The framework deals with surfaces that bend and stretch
but do not change in topology; as such, it does not apply
to tree-like shapes, e.g., botanical trees or roots. However,
the concept of representing deformations as trajectories in a
shape space also applies to tree-shape spaces such as those
used in [50], [51]. The framework is also limited to clean
surfaces that are free of geometric and topological noise; as
such, the proposed spatial registration method cannot be
used to register partial scans to each other, or to register
a template to partial scans. However, similar to statistical
shape models such as 3D morphable models and SMPL, the
proposed 4D atlas can be used as a prior; in conjunction
with a data generation model, it can thereby be applied to
noisy or partial data, e.g., to reconstruct entire 4D surfaces.
The statistical analysis presented in this paper assumes
that the population of the 4D surfaces follows a Gaussian
distribution. We plan to extend the approach to other types
of distributions, e.g., Gaussian Mixture Models, which can
represent populations that follow multimodal distributions.

The proposed framework has various applications in
computer vision, graphics, biology, and medicine. In com-
puter vision, collecting large animations to train deep neu-



16

(a) Source.

(b) Target (with no temporal registration).

(c) Target (with SRNF, with spatial registration, with temporal registration).

(e) Mean (with SRNF, with spatial registration, with temporal registration).

(d) Mean (with SRNF, with spatial registration, without temporal registration).

(f) Mean (without SRNF, with spatial registration, without temporal registration).

(g) Mean (without SRNF, with spatial registration, with temporal registration).

With SRNF Without SRNF

(d) w/o temp.
registration

(e) With temp.
registration

(f) w/o temp.
registration

(g) With temp.
registration

(a) Source (b) Target before
temp. registration

(c) Target after
temp. registration

Fig. 12. Illustration of the effect of the different components of the proposed framework on the quality of the computed mean 4D surface, which is
the middle point along the geodesic between the source and target 4D surfaces. The bottom row is a zoom-in on the frame highlighted in (a) to (g).
The 4D surfaces are from the DFAUST dataset. A video illustrating these sequences is included in the Supplementary Material.

ral networks, e.g., for 3D reconstruction or action recogni-
tion [52], [53], is complex and time-consuming. Our frame-
work can contribute to solving this problem by automati-

cally synthesizing new samples from a small dataset. Our
current implementation has only considered random syn-
thesis, which is very important for populating virtual envi-



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3163720, IEEE
Transactions on Pattern Analysis and Machine Intelligence

17

ronments and for data augmentation to train deep learning
networks. However, there are many situations where we
would like to control this process using a set of parameters.
For instance, when dealing with 4D facial expressions, these
parameters can be the degree of sadness, facial dimensions,
etc. This type of control can be implemented efficiently
using regression in the TSRVF space. Finally, our framework
can be used to statistically analyze how anatomical organs
deform due to growth or disease progression.

The code for (1) the spherical parameterization, (2) the
spatial registration of genus-0 surfaces using SRNFs, (3) the
SRNF map inversion, and (4) the temporal registration of
high-dimensional curves are available by request.
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